4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
45 static const char *cpu_model
;
46 unsigned long mmap_min_addr
;
47 #if defined(CONFIG_USE_GUEST_BASE)
48 unsigned long guest_base
;
50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
52 * When running 32-on-64 we should make sure we can fit all of the possible
53 * guest address space into a contiguous chunk of virtual host memory.
55 * This way we will never overlap with our own libraries or binaries or stack
56 * or anything else that QEMU maps.
59 /* MIPS only supports 31 bits of virtual address space for user space */
60 unsigned long reserved_va
= 0x77000000;
62 unsigned long reserved_va
= 0xf7000000;
65 unsigned long reserved_va
;
69 static void usage(void);
71 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
72 const char *qemu_uname_release
= CONFIG_UNAME_RELEASE
;
74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
75 we allocate a bigger stack. Need a better solution, for example
76 by remapping the process stack directly at the right place */
77 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
79 void gemu_log(const char *fmt
, ...)
84 vfprintf(stderr
, fmt
, ap
);
88 #if defined(TARGET_I386)
89 int cpu_get_pic_interrupt(CPUX86State
*env
)
95 /***********************************************************/
96 /* Helper routines for implementing atomic operations. */
98 /* To implement exclusive operations we force all cpus to syncronise.
99 We don't require a full sync, only that no cpus are executing guest code.
100 The alternative is to map target atomic ops onto host equivalents,
101 which requires quite a lot of per host/target work. */
102 static pthread_mutex_t cpu_list_mutex
= PTHREAD_MUTEX_INITIALIZER
;
103 static pthread_mutex_t exclusive_lock
= PTHREAD_MUTEX_INITIALIZER
;
104 static pthread_cond_t exclusive_cond
= PTHREAD_COND_INITIALIZER
;
105 static pthread_cond_t exclusive_resume
= PTHREAD_COND_INITIALIZER
;
106 static int pending_cpus
;
108 /* Make sure everything is in a consistent state for calling fork(). */
109 void fork_start(void)
111 pthread_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
112 pthread_mutex_lock(&exclusive_lock
);
116 void fork_end(int child
)
118 mmap_fork_end(child
);
120 CPUState
*cpu
, *next_cpu
;
121 /* Child processes created by fork() only have a single thread.
122 Discard information about the parent threads. */
123 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
124 if (cpu
!= thread_cpu
) {
125 QTAILQ_REMOVE(&cpus
, thread_cpu
, node
);
129 pthread_mutex_init(&exclusive_lock
, NULL
);
130 pthread_mutex_init(&cpu_list_mutex
, NULL
);
131 pthread_cond_init(&exclusive_cond
, NULL
);
132 pthread_cond_init(&exclusive_resume
, NULL
);
133 pthread_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
, NULL
);
134 gdbserver_fork((CPUArchState
*)thread_cpu
->env_ptr
);
136 pthread_mutex_unlock(&exclusive_lock
);
137 pthread_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
141 /* Wait for pending exclusive operations to complete. The exclusive lock
143 static inline void exclusive_idle(void)
145 while (pending_cpus
) {
146 pthread_cond_wait(&exclusive_resume
, &exclusive_lock
);
150 /* Start an exclusive operation.
151 Must only be called from outside cpu_arm_exec. */
152 static inline void start_exclusive(void)
156 pthread_mutex_lock(&exclusive_lock
);
160 /* Make all other cpus stop executing. */
161 CPU_FOREACH(other_cpu
) {
162 if (other_cpu
->running
) {
167 if (pending_cpus
> 1) {
168 pthread_cond_wait(&exclusive_cond
, &exclusive_lock
);
172 /* Finish an exclusive operation. */
173 static inline void end_exclusive(void)
176 pthread_cond_broadcast(&exclusive_resume
);
177 pthread_mutex_unlock(&exclusive_lock
);
180 /* Wait for exclusive ops to finish, and begin cpu execution. */
181 static inline void cpu_exec_start(CPUState
*cpu
)
183 pthread_mutex_lock(&exclusive_lock
);
186 pthread_mutex_unlock(&exclusive_lock
);
189 /* Mark cpu as not executing, and release pending exclusive ops. */
190 static inline void cpu_exec_end(CPUState
*cpu
)
192 pthread_mutex_lock(&exclusive_lock
);
193 cpu
->running
= false;
194 if (pending_cpus
> 1) {
196 if (pending_cpus
== 1) {
197 pthread_cond_signal(&exclusive_cond
);
201 pthread_mutex_unlock(&exclusive_lock
);
204 void cpu_list_lock(void)
206 pthread_mutex_lock(&cpu_list_mutex
);
209 void cpu_list_unlock(void)
211 pthread_mutex_unlock(&cpu_list_mutex
);
216 /***********************************************************/
217 /* CPUX86 core interface */
219 void cpu_smm_update(CPUX86State
*env
)
223 uint64_t cpu_get_tsc(CPUX86State
*env
)
225 return cpu_get_real_ticks();
228 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
233 e1
= (addr
<< 16) | (limit
& 0xffff);
234 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
241 static uint64_t *idt_table
;
243 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
244 uint64_t addr
, unsigned int sel
)
247 e1
= (addr
& 0xffff) | (sel
<< 16);
248 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
252 p
[2] = tswap32(addr
>> 32);
255 /* only dpl matters as we do only user space emulation */
256 static void set_idt(int n
, unsigned int dpl
)
258 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
261 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
262 uint32_t addr
, unsigned int sel
)
265 e1
= (addr
& 0xffff) | (sel
<< 16);
266 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
272 /* only dpl matters as we do only user space emulation */
273 static void set_idt(int n
, unsigned int dpl
)
275 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
279 void cpu_loop(CPUX86State
*env
)
281 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
284 target_siginfo_t info
;
287 trapnr
= cpu_x86_exec(env
);
290 /* linux syscall from int $0x80 */
291 env
->regs
[R_EAX
] = do_syscall(env
,
303 /* linux syscall from syscall instruction */
304 env
->regs
[R_EAX
] = do_syscall(env
,
313 env
->eip
= env
->exception_next_eip
;
318 info
.si_signo
= SIGBUS
;
320 info
.si_code
= TARGET_SI_KERNEL
;
321 info
._sifields
._sigfault
._addr
= 0;
322 queue_signal(env
, info
.si_signo
, &info
);
325 /* XXX: potential problem if ABI32 */
326 #ifndef TARGET_X86_64
327 if (env
->eflags
& VM_MASK
) {
328 handle_vm86_fault(env
);
332 info
.si_signo
= SIGSEGV
;
334 info
.si_code
= TARGET_SI_KERNEL
;
335 info
._sifields
._sigfault
._addr
= 0;
336 queue_signal(env
, info
.si_signo
, &info
);
340 info
.si_signo
= SIGSEGV
;
342 if (!(env
->error_code
& 1))
343 info
.si_code
= TARGET_SEGV_MAPERR
;
345 info
.si_code
= TARGET_SEGV_ACCERR
;
346 info
._sifields
._sigfault
._addr
= env
->cr
[2];
347 queue_signal(env
, info
.si_signo
, &info
);
350 #ifndef TARGET_X86_64
351 if (env
->eflags
& VM_MASK
) {
352 handle_vm86_trap(env
, trapnr
);
356 /* division by zero */
357 info
.si_signo
= SIGFPE
;
359 info
.si_code
= TARGET_FPE_INTDIV
;
360 info
._sifields
._sigfault
._addr
= env
->eip
;
361 queue_signal(env
, info
.si_signo
, &info
);
366 #ifndef TARGET_X86_64
367 if (env
->eflags
& VM_MASK
) {
368 handle_vm86_trap(env
, trapnr
);
372 info
.si_signo
= SIGTRAP
;
374 if (trapnr
== EXCP01_DB
) {
375 info
.si_code
= TARGET_TRAP_BRKPT
;
376 info
._sifields
._sigfault
._addr
= env
->eip
;
378 info
.si_code
= TARGET_SI_KERNEL
;
379 info
._sifields
._sigfault
._addr
= 0;
381 queue_signal(env
, info
.si_signo
, &info
);
386 #ifndef TARGET_X86_64
387 if (env
->eflags
& VM_MASK
) {
388 handle_vm86_trap(env
, trapnr
);
392 info
.si_signo
= SIGSEGV
;
394 info
.si_code
= TARGET_SI_KERNEL
;
395 info
._sifields
._sigfault
._addr
= 0;
396 queue_signal(env
, info
.si_signo
, &info
);
400 info
.si_signo
= SIGILL
;
402 info
.si_code
= TARGET_ILL_ILLOPN
;
403 info
._sifields
._sigfault
._addr
= env
->eip
;
404 queue_signal(env
, info
.si_signo
, &info
);
407 /* just indicate that signals should be handled asap */
413 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
418 info
.si_code
= TARGET_TRAP_BRKPT
;
419 queue_signal(env
, info
.si_signo
, &info
);
424 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
425 fprintf(stderr
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
429 process_pending_signals(env
);
436 #define get_user_code_u32(x, gaddr, doswap) \
437 ({ abi_long __r = get_user_u32((x), (gaddr)); \
438 if (!__r && (doswap)) { \
444 #define get_user_code_u16(x, gaddr, doswap) \
445 ({ abi_long __r = get_user_u16((x), (gaddr)); \
446 if (!__r && (doswap)) { \
453 /* Commpage handling -- there is no commpage for AArch64 */
456 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
458 * r0 = pointer to oldval
459 * r1 = pointer to newval
460 * r2 = pointer to target value
463 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
464 * C set if *ptr was changed, clear if no exchange happened
466 * Note segv's in kernel helpers are a bit tricky, we can set the
467 * data address sensibly but the PC address is just the entry point.
469 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
471 uint64_t oldval
, newval
, val
;
473 target_siginfo_t info
;
475 /* Based on the 32 bit code in do_kernel_trap */
477 /* XXX: This only works between threads, not between processes.
478 It's probably possible to implement this with native host
479 operations. However things like ldrex/strex are much harder so
480 there's not much point trying. */
482 cpsr
= cpsr_read(env
);
485 if (get_user_u64(oldval
, env
->regs
[0])) {
486 env
->cp15
.c6_data
= env
->regs
[0];
490 if (get_user_u64(newval
, env
->regs
[1])) {
491 env
->cp15
.c6_data
= env
->regs
[1];
495 if (get_user_u64(val
, addr
)) {
496 env
->cp15
.c6_data
= addr
;
503 if (put_user_u64(val
, addr
)) {
504 env
->cp15
.c6_data
= addr
;
514 cpsr_write(env
, cpsr
, CPSR_C
);
520 /* We get the PC of the entry address - which is as good as anything,
521 on a real kernel what you get depends on which mode it uses. */
522 info
.si_signo
= SIGSEGV
;
524 /* XXX: check env->error_code */
525 info
.si_code
= TARGET_SEGV_MAPERR
;
526 info
._sifields
._sigfault
._addr
= env
->cp15
.c6_data
;
527 queue_signal(env
, info
.si_signo
, &info
);
532 /* Handle a jump to the kernel code page. */
534 do_kernel_trap(CPUARMState
*env
)
540 switch (env
->regs
[15]) {
541 case 0xffff0fa0: /* __kernel_memory_barrier */
542 /* ??? No-op. Will need to do better for SMP. */
544 case 0xffff0fc0: /* __kernel_cmpxchg */
545 /* XXX: This only works between threads, not between processes.
546 It's probably possible to implement this with native host
547 operations. However things like ldrex/strex are much harder so
548 there's not much point trying. */
550 cpsr
= cpsr_read(env
);
552 /* FIXME: This should SEGV if the access fails. */
553 if (get_user_u32(val
, addr
))
555 if (val
== env
->regs
[0]) {
557 /* FIXME: Check for segfaults. */
558 put_user_u32(val
, addr
);
565 cpsr_write(env
, cpsr
, CPSR_C
);
568 case 0xffff0fe0: /* __kernel_get_tls */
569 env
->regs
[0] = env
->cp15
.tpidrro_el0
;
571 case 0xffff0f60: /* __kernel_cmpxchg64 */
572 arm_kernel_cmpxchg64_helper(env
);
578 /* Jump back to the caller. */
579 addr
= env
->regs
[14];
584 env
->regs
[15] = addr
;
589 /* Store exclusive handling for AArch32 */
590 static int do_strex(CPUARMState
*env
)
598 if (env
->exclusive_addr
!= env
->exclusive_test
) {
601 /* We know we're always AArch32 so the address is in uint32_t range
602 * unless it was the -1 exclusive-monitor-lost value (which won't
603 * match exclusive_test above).
605 assert(extract64(env
->exclusive_addr
, 32, 32) == 0);
606 addr
= env
->exclusive_addr
;
607 size
= env
->exclusive_info
& 0xf;
610 segv
= get_user_u8(val
, addr
);
613 segv
= get_user_u16(val
, addr
);
617 segv
= get_user_u32(val
, addr
);
623 env
->cp15
.c6_data
= addr
;
628 segv
= get_user_u32(valhi
, addr
+ 4);
630 env
->cp15
.c6_data
= addr
+ 4;
633 val
= deposit64(val
, 32, 32, valhi
);
635 if (val
!= env
->exclusive_val
) {
639 val
= env
->regs
[(env
->exclusive_info
>> 8) & 0xf];
642 segv
= put_user_u8(val
, addr
);
645 segv
= put_user_u16(val
, addr
);
649 segv
= put_user_u32(val
, addr
);
653 env
->cp15
.c6_data
= addr
;
657 val
= env
->regs
[(env
->exclusive_info
>> 12) & 0xf];
658 segv
= put_user_u32(val
, addr
+ 4);
660 env
->cp15
.c6_data
= addr
+ 4;
667 env
->regs
[(env
->exclusive_info
>> 4) & 0xf] = rc
;
673 void cpu_loop(CPUARMState
*env
)
675 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
677 unsigned int n
, insn
;
678 target_siginfo_t info
;
683 trapnr
= cpu_arm_exec(env
);
688 TaskState
*ts
= cs
->opaque
;
692 /* we handle the FPU emulation here, as Linux */
693 /* we get the opcode */
694 /* FIXME - what to do if get_user() fails? */
695 get_user_code_u32(opcode
, env
->regs
[15], env
->bswap_code
);
697 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
698 if (rc
== 0) { /* illegal instruction */
699 info
.si_signo
= SIGILL
;
701 info
.si_code
= TARGET_ILL_ILLOPN
;
702 info
._sifields
._sigfault
._addr
= env
->regs
[15];
703 queue_signal(env
, info
.si_signo
, &info
);
704 } else if (rc
< 0) { /* FP exception */
707 /* translate softfloat flags to FPSR flags */
708 if (-rc
& float_flag_invalid
)
710 if (-rc
& float_flag_divbyzero
)
712 if (-rc
& float_flag_overflow
)
714 if (-rc
& float_flag_underflow
)
716 if (-rc
& float_flag_inexact
)
719 FPSR fpsr
= ts
->fpa
.fpsr
;
720 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
722 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
723 info
.si_signo
= SIGFPE
;
726 /* ordered by priority, least first */
727 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
728 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
729 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
730 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
731 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
733 info
._sifields
._sigfault
._addr
= env
->regs
[15];
734 queue_signal(env
, info
.si_signo
, &info
);
739 /* accumulate unenabled exceptions */
740 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
742 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
744 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
746 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
748 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
751 } else { /* everything OK */
762 if (trapnr
== EXCP_BKPT
) {
764 /* FIXME - what to do if get_user() fails? */
765 get_user_code_u16(insn
, env
->regs
[15], env
->bswap_code
);
769 /* FIXME - what to do if get_user() fails? */
770 get_user_code_u32(insn
, env
->regs
[15], env
->bswap_code
);
771 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
776 /* FIXME - what to do if get_user() fails? */
777 get_user_code_u16(insn
, env
->regs
[15] - 2,
781 /* FIXME - what to do if get_user() fails? */
782 get_user_code_u32(insn
, env
->regs
[15] - 4,
788 if (n
== ARM_NR_cacheflush
) {
790 } else if (n
== ARM_NR_semihosting
791 || n
== ARM_NR_thumb_semihosting
) {
792 env
->regs
[0] = do_arm_semihosting (env
);
793 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
795 if (env
->thumb
|| n
== 0) {
798 n
-= ARM_SYSCALL_BASE
;
801 if ( n
> ARM_NR_BASE
) {
803 case ARM_NR_cacheflush
:
807 cpu_set_tls(env
, env
->regs
[0]);
811 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
813 env
->regs
[0] = -TARGET_ENOSYS
;
817 env
->regs
[0] = do_syscall(env
,
833 /* just indicate that signals should be handled asap */
835 case EXCP_PREFETCH_ABORT
:
836 addr
= env
->cp15
.c6_insn
;
838 case EXCP_DATA_ABORT
:
839 addr
= env
->cp15
.c6_data
;
842 info
.si_signo
= SIGSEGV
;
844 /* XXX: check env->error_code */
845 info
.si_code
= TARGET_SEGV_MAPERR
;
846 info
._sifields
._sigfault
._addr
= addr
;
847 queue_signal(env
, info
.si_signo
, &info
);
854 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
859 info
.si_code
= TARGET_TRAP_BRKPT
;
860 queue_signal(env
, info
.si_signo
, &info
);
864 case EXCP_KERNEL_TRAP
:
865 if (do_kernel_trap(env
))
870 addr
= env
->cp15
.c6_data
;
876 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
878 cpu_dump_state(cs
, stderr
, fprintf
, 0);
881 process_pending_signals(env
);
888 * Handle AArch64 store-release exclusive
890 * rs = gets the status result of store exclusive
891 * rt = is the register that is stored
892 * rt2 = is the second register store (in STP)
895 static int do_strex_a64(CPUARMState
*env
)
906 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
907 size
= extract32(env
->exclusive_info
, 0, 2);
908 is_pair
= extract32(env
->exclusive_info
, 2, 1);
909 rs
= extract32(env
->exclusive_info
, 4, 5);
910 rt
= extract32(env
->exclusive_info
, 9, 5);
911 rt2
= extract32(env
->exclusive_info
, 14, 5);
913 addr
= env
->exclusive_addr
;
915 if (addr
!= env
->exclusive_test
) {
921 segv
= get_user_u8(val
, addr
);
924 segv
= get_user_u16(val
, addr
);
927 segv
= get_user_u32(val
, addr
);
930 segv
= get_user_u64(val
, addr
);
936 env
->cp15
.c6_data
= addr
;
939 if (val
!= env
->exclusive_val
) {
944 segv
= get_user_u32(val
, addr
+ 4);
946 segv
= get_user_u64(val
, addr
+ 8);
949 env
->cp15
.c6_data
= addr
+ (size
== 2 ? 4 : 8);
952 if (val
!= env
->exclusive_high
) {
956 /* handle the zero register */
957 val
= rt
== 31 ? 0 : env
->xregs
[rt
];
960 segv
= put_user_u8(val
, addr
);
963 segv
= put_user_u16(val
, addr
);
966 segv
= put_user_u32(val
, addr
);
969 segv
= put_user_u64(val
, addr
);
976 /* handle the zero register */
977 val
= rt2
== 31 ? 0 : env
->xregs
[rt2
];
979 segv
= put_user_u32(val
, addr
+ 4);
981 segv
= put_user_u64(val
, addr
+ 8);
984 env
->cp15
.c6_data
= addr
+ (size
== 2 ? 4 : 8);
991 /* rs == 31 encodes a write to the ZR, thus throwing away
992 * the status return. This is rather silly but valid.
998 /* instruction faulted, PC does not advance */
999 /* either way a strex releases any exclusive lock we have */
1000 env
->exclusive_addr
= -1;
1005 /* AArch64 main loop */
1006 void cpu_loop(CPUARMState
*env
)
1008 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1010 target_siginfo_t info
;
1015 trapnr
= cpu_arm_exec(env
);
1020 env
->xregs
[0] = do_syscall(env
,
1030 case EXCP_INTERRUPT
:
1031 /* just indicate that signals should be handled asap */
1034 info
.si_signo
= SIGILL
;
1036 info
.si_code
= TARGET_ILL_ILLOPN
;
1037 info
._sifields
._sigfault
._addr
= env
->pc
;
1038 queue_signal(env
, info
.si_signo
, &info
);
1040 case EXCP_PREFETCH_ABORT
:
1041 addr
= env
->cp15
.c6_insn
;
1043 case EXCP_DATA_ABORT
:
1044 addr
= env
->cp15
.c6_data
;
1046 info
.si_signo
= SIGSEGV
;
1048 /* XXX: check env->error_code */
1049 info
.si_code
= TARGET_SEGV_MAPERR
;
1050 info
._sifields
._sigfault
._addr
= addr
;
1051 queue_signal(env
, info
.si_signo
, &info
);
1055 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1057 info
.si_signo
= sig
;
1059 info
.si_code
= TARGET_TRAP_BRKPT
;
1060 queue_signal(env
, info
.si_signo
, &info
);
1064 if (do_strex_a64(env
)) {
1065 addr
= env
->cp15
.c6_data
;
1070 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
1072 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1075 process_pending_signals(env
);
1076 /* Exception return on AArch64 always clears the exclusive monitor,
1077 * so any return to running guest code implies this.
1078 * A strex (successful or otherwise) also clears the monitor, so
1079 * we don't need to specialcase EXCP_STREX.
1081 env
->exclusive_addr
= -1;
1084 #endif /* ndef TARGET_ABI32 */
1088 #ifdef TARGET_UNICORE32
1090 void cpu_loop(CPUUniCore32State
*env
)
1092 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
1094 unsigned int n
, insn
;
1095 target_siginfo_t info
;
1099 trapnr
= uc32_cpu_exec(env
);
1102 case UC32_EXCP_PRIV
:
1105 get_user_u32(insn
, env
->regs
[31] - 4);
1106 n
= insn
& 0xffffff;
1108 if (n
>= UC32_SYSCALL_BASE
) {
1110 n
-= UC32_SYSCALL_BASE
;
1111 if (n
== UC32_SYSCALL_NR_set_tls
) {
1112 cpu_set_tls(env
, env
->regs
[0]);
1115 env
->regs
[0] = do_syscall(env
,
1130 case UC32_EXCP_DTRAP
:
1131 case UC32_EXCP_ITRAP
:
1132 info
.si_signo
= SIGSEGV
;
1134 /* XXX: check env->error_code */
1135 info
.si_code
= TARGET_SEGV_MAPERR
;
1136 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
1137 queue_signal(env
, info
.si_signo
, &info
);
1139 case EXCP_INTERRUPT
:
1140 /* just indicate that signals should be handled asap */
1146 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1148 info
.si_signo
= sig
;
1150 info
.si_code
= TARGET_TRAP_BRKPT
;
1151 queue_signal(env
, info
.si_signo
, &info
);
1158 process_pending_signals(env
);
1162 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1163 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1169 #define SPARC64_STACK_BIAS 2047
1173 /* WARNING: dealing with register windows _is_ complicated. More info
1174 can be found at http://www.sics.se/~psm/sparcstack.html */
1175 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
1177 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
1178 /* wrap handling : if cwp is on the last window, then we use the
1179 registers 'after' the end */
1180 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
1181 index
+= 16 * env
->nwindows
;
1185 /* save the register window 'cwp1' */
1186 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
1191 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1192 #ifdef TARGET_SPARC64
1194 sp_ptr
+= SPARC64_STACK_BIAS
;
1196 #if defined(DEBUG_WIN)
1197 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
1200 for(i
= 0; i
< 16; i
++) {
1201 /* FIXME - what to do if put_user() fails? */
1202 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1203 sp_ptr
+= sizeof(abi_ulong
);
1207 static void save_window(CPUSPARCState
*env
)
1209 #ifndef TARGET_SPARC64
1210 unsigned int new_wim
;
1211 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
1212 ((1LL << env
->nwindows
) - 1);
1213 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1216 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1222 static void restore_window(CPUSPARCState
*env
)
1224 #ifndef TARGET_SPARC64
1225 unsigned int new_wim
;
1227 unsigned int i
, cwp1
;
1230 #ifndef TARGET_SPARC64
1231 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1232 ((1LL << env
->nwindows
) - 1);
1235 /* restore the invalid window */
1236 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1237 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1238 #ifdef TARGET_SPARC64
1240 sp_ptr
+= SPARC64_STACK_BIAS
;
1242 #if defined(DEBUG_WIN)
1243 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1246 for(i
= 0; i
< 16; i
++) {
1247 /* FIXME - what to do if get_user() fails? */
1248 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1249 sp_ptr
+= sizeof(abi_ulong
);
1251 #ifdef TARGET_SPARC64
1253 if (env
->cleanwin
< env
->nwindows
- 1)
1261 static void flush_windows(CPUSPARCState
*env
)
1267 /* if restore would invoke restore_window(), then we can stop */
1268 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1269 #ifndef TARGET_SPARC64
1270 if (env
->wim
& (1 << cwp1
))
1273 if (env
->canrestore
== 0)
1278 save_window_offset(env
, cwp1
);
1281 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1282 #ifndef TARGET_SPARC64
1283 /* set wim so that restore will reload the registers */
1284 env
->wim
= 1 << cwp1
;
1286 #if defined(DEBUG_WIN)
1287 printf("flush_windows: nb=%d\n", offset
- 1);
1291 void cpu_loop (CPUSPARCState
*env
)
1293 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1296 target_siginfo_t info
;
1299 trapnr
= cpu_sparc_exec (env
);
1301 /* Compute PSR before exposing state. */
1302 if (env
->cc_op
!= CC_OP_FLAGS
) {
1307 #ifndef TARGET_SPARC64
1314 ret
= do_syscall (env
, env
->gregs
[1],
1315 env
->regwptr
[0], env
->regwptr
[1],
1316 env
->regwptr
[2], env
->regwptr
[3],
1317 env
->regwptr
[4], env
->regwptr
[5],
1319 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1320 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1321 env
->xcc
|= PSR_CARRY
;
1323 env
->psr
|= PSR_CARRY
;
1327 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1328 env
->xcc
&= ~PSR_CARRY
;
1330 env
->psr
&= ~PSR_CARRY
;
1333 env
->regwptr
[0] = ret
;
1334 /* next instruction */
1336 env
->npc
= env
->npc
+ 4;
1338 case 0x83: /* flush windows */
1343 /* next instruction */
1345 env
->npc
= env
->npc
+ 4;
1347 #ifndef TARGET_SPARC64
1348 case TT_WIN_OVF
: /* window overflow */
1351 case TT_WIN_UNF
: /* window underflow */
1352 restore_window(env
);
1357 info
.si_signo
= TARGET_SIGSEGV
;
1359 /* XXX: check env->error_code */
1360 info
.si_code
= TARGET_SEGV_MAPERR
;
1361 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1362 queue_signal(env
, info
.si_signo
, &info
);
1366 case TT_SPILL
: /* window overflow */
1369 case TT_FILL
: /* window underflow */
1370 restore_window(env
);
1375 info
.si_signo
= TARGET_SIGSEGV
;
1377 /* XXX: check env->error_code */
1378 info
.si_code
= TARGET_SEGV_MAPERR
;
1379 if (trapnr
== TT_DFAULT
)
1380 info
._sifields
._sigfault
._addr
= env
->dmmuregs
[4];
1382 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1383 queue_signal(env
, info
.si_signo
, &info
);
1386 #ifndef TARGET_ABI32
1389 sparc64_get_context(env
);
1393 sparc64_set_context(env
);
1397 case EXCP_INTERRUPT
:
1398 /* just indicate that signals should be handled asap */
1402 info
.si_signo
= TARGET_SIGILL
;
1404 info
.si_code
= TARGET_ILL_ILLOPC
;
1405 info
._sifields
._sigfault
._addr
= env
->pc
;
1406 queue_signal(env
, info
.si_signo
, &info
);
1413 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1416 info
.si_signo
= sig
;
1418 info
.si_code
= TARGET_TRAP_BRKPT
;
1419 queue_signal(env
, info
.si_signo
, &info
);
1424 printf ("Unhandled trap: 0x%x\n", trapnr
);
1425 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1428 process_pending_signals (env
);
1435 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1441 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1443 return cpu_ppc_get_tb(env
);
1446 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1448 return cpu_ppc_get_tb(env
) >> 32;
1451 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1453 return cpu_ppc_get_tb(env
);
1456 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1458 return cpu_ppc_get_tb(env
) >> 32;
1461 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1462 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1464 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1466 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1469 /* XXX: to be fixed */
1470 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1475 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1480 #define EXCP_DUMP(env, fmt, ...) \
1482 CPUState *cs = ENV_GET_CPU(env); \
1483 fprintf(stderr, fmt , ## __VA_ARGS__); \
1484 cpu_dump_state(cs, stderr, fprintf, 0); \
1485 qemu_log(fmt, ## __VA_ARGS__); \
1486 if (qemu_log_enabled()) { \
1487 log_cpu_state(cs, 0); \
1491 static int do_store_exclusive(CPUPPCState
*env
)
1494 target_ulong page_addr
;
1495 target_ulong val
, val2
__attribute__((unused
));
1499 addr
= env
->reserve_ea
;
1500 page_addr
= addr
& TARGET_PAGE_MASK
;
1503 flags
= page_get_flags(page_addr
);
1504 if ((flags
& PAGE_READ
) == 0) {
1507 int reg
= env
->reserve_info
& 0x1f;
1508 int size
= (env
->reserve_info
>> 5) & 0xf;
1511 if (addr
== env
->reserve_addr
) {
1513 case 1: segv
= get_user_u8(val
, addr
); break;
1514 case 2: segv
= get_user_u16(val
, addr
); break;
1515 case 4: segv
= get_user_u32(val
, addr
); break;
1516 #if defined(TARGET_PPC64)
1517 case 8: segv
= get_user_u64(val
, addr
); break;
1519 segv
= get_user_u64(val
, addr
);
1521 segv
= get_user_u64(val2
, addr
+ 8);
1528 if (!segv
&& val
== env
->reserve_val
) {
1529 val
= env
->gpr
[reg
];
1531 case 1: segv
= put_user_u8(val
, addr
); break;
1532 case 2: segv
= put_user_u16(val
, addr
); break;
1533 case 4: segv
= put_user_u32(val
, addr
); break;
1534 #if defined(TARGET_PPC64)
1535 case 8: segv
= put_user_u64(val
, addr
); break;
1537 if (val2
== env
->reserve_val2
) {
1538 segv
= put_user_u64(val
, addr
);
1540 segv
= put_user_u64(val2
, addr
+ 8);
1553 env
->crf
[0] = (stored
<< 1) | xer_so
;
1554 env
->reserve_addr
= (target_ulong
)-1;
1564 void cpu_loop(CPUPPCState
*env
)
1566 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1567 target_siginfo_t info
;
1573 trapnr
= cpu_ppc_exec(env
);
1576 case POWERPC_EXCP_NONE
:
1579 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1580 cpu_abort(cs
, "Critical interrupt while in user mode. "
1583 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1584 cpu_abort(cs
, "Machine check exception while in user mode. "
1587 case POWERPC_EXCP_DSI
: /* Data storage exception */
1588 EXCP_DUMP(env
, "Invalid data memory access: 0x" TARGET_FMT_lx
"\n",
1590 /* XXX: check this. Seems bugged */
1591 switch (env
->error_code
& 0xFF000000) {
1593 info
.si_signo
= TARGET_SIGSEGV
;
1595 info
.si_code
= TARGET_SEGV_MAPERR
;
1598 info
.si_signo
= TARGET_SIGILL
;
1600 info
.si_code
= TARGET_ILL_ILLADR
;
1603 info
.si_signo
= TARGET_SIGSEGV
;
1605 info
.si_code
= TARGET_SEGV_ACCERR
;
1608 /* Let's send a regular segfault... */
1609 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1611 info
.si_signo
= TARGET_SIGSEGV
;
1613 info
.si_code
= TARGET_SEGV_MAPERR
;
1616 info
._sifields
._sigfault
._addr
= env
->nip
;
1617 queue_signal(env
, info
.si_signo
, &info
);
1619 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1620 EXCP_DUMP(env
, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1621 "\n", env
->spr
[SPR_SRR0
]);
1622 /* XXX: check this */
1623 switch (env
->error_code
& 0xFF000000) {
1625 info
.si_signo
= TARGET_SIGSEGV
;
1627 info
.si_code
= TARGET_SEGV_MAPERR
;
1631 info
.si_signo
= TARGET_SIGSEGV
;
1633 info
.si_code
= TARGET_SEGV_ACCERR
;
1636 /* Let's send a regular segfault... */
1637 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1639 info
.si_signo
= TARGET_SIGSEGV
;
1641 info
.si_code
= TARGET_SEGV_MAPERR
;
1644 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1645 queue_signal(env
, info
.si_signo
, &info
);
1647 case POWERPC_EXCP_EXTERNAL
: /* External input */
1648 cpu_abort(cs
, "External interrupt while in user mode. "
1651 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1652 EXCP_DUMP(env
, "Unaligned memory access\n");
1653 /* XXX: check this */
1654 info
.si_signo
= TARGET_SIGBUS
;
1656 info
.si_code
= TARGET_BUS_ADRALN
;
1657 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1658 queue_signal(env
, info
.si_signo
, &info
);
1660 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1661 /* XXX: check this */
1662 switch (env
->error_code
& ~0xF) {
1663 case POWERPC_EXCP_FP
:
1664 EXCP_DUMP(env
, "Floating point program exception\n");
1665 info
.si_signo
= TARGET_SIGFPE
;
1667 switch (env
->error_code
& 0xF) {
1668 case POWERPC_EXCP_FP_OX
:
1669 info
.si_code
= TARGET_FPE_FLTOVF
;
1671 case POWERPC_EXCP_FP_UX
:
1672 info
.si_code
= TARGET_FPE_FLTUND
;
1674 case POWERPC_EXCP_FP_ZX
:
1675 case POWERPC_EXCP_FP_VXZDZ
:
1676 info
.si_code
= TARGET_FPE_FLTDIV
;
1678 case POWERPC_EXCP_FP_XX
:
1679 info
.si_code
= TARGET_FPE_FLTRES
;
1681 case POWERPC_EXCP_FP_VXSOFT
:
1682 info
.si_code
= TARGET_FPE_FLTINV
;
1684 case POWERPC_EXCP_FP_VXSNAN
:
1685 case POWERPC_EXCP_FP_VXISI
:
1686 case POWERPC_EXCP_FP_VXIDI
:
1687 case POWERPC_EXCP_FP_VXIMZ
:
1688 case POWERPC_EXCP_FP_VXVC
:
1689 case POWERPC_EXCP_FP_VXSQRT
:
1690 case POWERPC_EXCP_FP_VXCVI
:
1691 info
.si_code
= TARGET_FPE_FLTSUB
;
1694 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1699 case POWERPC_EXCP_INVAL
:
1700 EXCP_DUMP(env
, "Invalid instruction\n");
1701 info
.si_signo
= TARGET_SIGILL
;
1703 switch (env
->error_code
& 0xF) {
1704 case POWERPC_EXCP_INVAL_INVAL
:
1705 info
.si_code
= TARGET_ILL_ILLOPC
;
1707 case POWERPC_EXCP_INVAL_LSWX
:
1708 info
.si_code
= TARGET_ILL_ILLOPN
;
1710 case POWERPC_EXCP_INVAL_SPR
:
1711 info
.si_code
= TARGET_ILL_PRVREG
;
1713 case POWERPC_EXCP_INVAL_FP
:
1714 info
.si_code
= TARGET_ILL_COPROC
;
1717 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1718 env
->error_code
& 0xF);
1719 info
.si_code
= TARGET_ILL_ILLADR
;
1723 case POWERPC_EXCP_PRIV
:
1724 EXCP_DUMP(env
, "Privilege violation\n");
1725 info
.si_signo
= TARGET_SIGILL
;
1727 switch (env
->error_code
& 0xF) {
1728 case POWERPC_EXCP_PRIV_OPC
:
1729 info
.si_code
= TARGET_ILL_PRVOPC
;
1731 case POWERPC_EXCP_PRIV_REG
:
1732 info
.si_code
= TARGET_ILL_PRVREG
;
1735 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1736 env
->error_code
& 0xF);
1737 info
.si_code
= TARGET_ILL_PRVOPC
;
1741 case POWERPC_EXCP_TRAP
:
1742 cpu_abort(cs
, "Tried to call a TRAP\n");
1745 /* Should not happen ! */
1746 cpu_abort(cs
, "Unknown program exception (%02x)\n",
1750 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1751 queue_signal(env
, info
.si_signo
, &info
);
1753 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1754 EXCP_DUMP(env
, "No floating point allowed\n");
1755 info
.si_signo
= TARGET_SIGILL
;
1757 info
.si_code
= TARGET_ILL_COPROC
;
1758 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1759 queue_signal(env
, info
.si_signo
, &info
);
1761 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1762 cpu_abort(cs
, "Syscall exception while in user mode. "
1765 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1766 EXCP_DUMP(env
, "No APU instruction allowed\n");
1767 info
.si_signo
= TARGET_SIGILL
;
1769 info
.si_code
= TARGET_ILL_COPROC
;
1770 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1771 queue_signal(env
, info
.si_signo
, &info
);
1773 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1774 cpu_abort(cs
, "Decrementer interrupt while in user mode. "
1777 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1778 cpu_abort(cs
, "Fix interval timer interrupt while in user mode. "
1781 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1782 cpu_abort(cs
, "Watchdog timer interrupt while in user mode. "
1785 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1786 cpu_abort(cs
, "Data TLB exception while in user mode. "
1789 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1790 cpu_abort(cs
, "Instruction TLB exception while in user mode. "
1793 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1794 EXCP_DUMP(env
, "No SPE/floating-point instruction allowed\n");
1795 info
.si_signo
= TARGET_SIGILL
;
1797 info
.si_code
= TARGET_ILL_COPROC
;
1798 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1799 queue_signal(env
, info
.si_signo
, &info
);
1801 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1802 cpu_abort(cs
, "Embedded floating-point data IRQ not handled\n");
1804 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1805 cpu_abort(cs
, "Embedded floating-point round IRQ not handled\n");
1807 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1808 cpu_abort(cs
, "Performance monitor exception not handled\n");
1810 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1811 cpu_abort(cs
, "Doorbell interrupt while in user mode. "
1814 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1815 cpu_abort(cs
, "Doorbell critical interrupt while in user mode. "
1818 case POWERPC_EXCP_RESET
: /* System reset exception */
1819 cpu_abort(cs
, "Reset interrupt while in user mode. "
1822 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1823 cpu_abort(cs
, "Data segment exception while in user mode. "
1826 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1827 cpu_abort(cs
, "Instruction segment exception "
1828 "while in user mode. Aborting\n");
1830 /* PowerPC 64 with hypervisor mode support */
1831 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1832 cpu_abort(cs
, "Hypervisor decrementer interrupt "
1833 "while in user mode. Aborting\n");
1835 case POWERPC_EXCP_TRACE
: /* Trace exception */
1837 * we use this exception to emulate step-by-step execution mode.
1840 /* PowerPC 64 with hypervisor mode support */
1841 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1842 cpu_abort(cs
, "Hypervisor data storage exception "
1843 "while in user mode. Aborting\n");
1845 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1846 cpu_abort(cs
, "Hypervisor instruction storage exception "
1847 "while in user mode. Aborting\n");
1849 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1850 cpu_abort(cs
, "Hypervisor data segment exception "
1851 "while in user mode. Aborting\n");
1853 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1854 cpu_abort(cs
, "Hypervisor instruction segment exception "
1855 "while in user mode. Aborting\n");
1857 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1858 EXCP_DUMP(env
, "No Altivec instructions allowed\n");
1859 info
.si_signo
= TARGET_SIGILL
;
1861 info
.si_code
= TARGET_ILL_COPROC
;
1862 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1863 queue_signal(env
, info
.si_signo
, &info
);
1865 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1866 cpu_abort(cs
, "Programmable interval timer interrupt "
1867 "while in user mode. Aborting\n");
1869 case POWERPC_EXCP_IO
: /* IO error exception */
1870 cpu_abort(cs
, "IO error exception while in user mode. "
1873 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1874 cpu_abort(cs
, "Run mode exception while in user mode. "
1877 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1878 cpu_abort(cs
, "Emulation trap exception not handled\n");
1880 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1881 cpu_abort(cs
, "Instruction fetch TLB exception "
1882 "while in user-mode. Aborting");
1884 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1885 cpu_abort(cs
, "Data load TLB exception while in user-mode. "
1888 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1889 cpu_abort(cs
, "Data store TLB exception while in user-mode. "
1892 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1893 cpu_abort(cs
, "Floating-point assist exception not handled\n");
1895 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1896 cpu_abort(cs
, "Instruction address breakpoint exception "
1899 case POWERPC_EXCP_SMI
: /* System management interrupt */
1900 cpu_abort(cs
, "System management interrupt while in user mode. "
1903 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1904 cpu_abort(cs
, "Thermal interrupt interrupt while in user mode. "
1907 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1908 cpu_abort(cs
, "Performance monitor exception not handled\n");
1910 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1911 cpu_abort(cs
, "Vector assist exception not handled\n");
1913 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1914 cpu_abort(cs
, "Soft patch exception not handled\n");
1916 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1917 cpu_abort(cs
, "Maintenance exception while in user mode. "
1920 case POWERPC_EXCP_STOP
: /* stop translation */
1921 /* We did invalidate the instruction cache. Go on */
1923 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1924 /* We just stopped because of a branch. Go on */
1926 case POWERPC_EXCP_SYSCALL_USER
:
1927 /* system call in user-mode emulation */
1929 * PPC ABI uses overflow flag in cr0 to signal an error
1932 env
->crf
[0] &= ~0x1;
1933 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1934 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1936 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
1937 /* Returning from a successful sigreturn syscall.
1938 Avoid corrupting register state. */
1941 if (ret
> (target_ulong
)(-515)) {
1947 case POWERPC_EXCP_STCX
:
1948 if (do_store_exclusive(env
)) {
1949 info
.si_signo
= TARGET_SIGSEGV
;
1951 info
.si_code
= TARGET_SEGV_MAPERR
;
1952 info
._sifields
._sigfault
._addr
= env
->nip
;
1953 queue_signal(env
, info
.si_signo
, &info
);
1960 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1962 info
.si_signo
= sig
;
1964 info
.si_code
= TARGET_TRAP_BRKPT
;
1965 queue_signal(env
, info
.si_signo
, &info
);
1969 case EXCP_INTERRUPT
:
1970 /* just indicate that signals should be handled asap */
1973 cpu_abort(cs
, "Unknown exception 0x%d. Aborting\n", trapnr
);
1976 process_pending_signals(env
);
1983 # ifdef TARGET_ABI_MIPSO32
1984 # define MIPS_SYS(name, args) args,
1985 static const uint8_t mips_syscall_args
[] = {
1986 MIPS_SYS(sys_syscall
, 8) /* 4000 */
1987 MIPS_SYS(sys_exit
, 1)
1988 MIPS_SYS(sys_fork
, 0)
1989 MIPS_SYS(sys_read
, 3)
1990 MIPS_SYS(sys_write
, 3)
1991 MIPS_SYS(sys_open
, 3) /* 4005 */
1992 MIPS_SYS(sys_close
, 1)
1993 MIPS_SYS(sys_waitpid
, 3)
1994 MIPS_SYS(sys_creat
, 2)
1995 MIPS_SYS(sys_link
, 2)
1996 MIPS_SYS(sys_unlink
, 1) /* 4010 */
1997 MIPS_SYS(sys_execve
, 0)
1998 MIPS_SYS(sys_chdir
, 1)
1999 MIPS_SYS(sys_time
, 1)
2000 MIPS_SYS(sys_mknod
, 3)
2001 MIPS_SYS(sys_chmod
, 2) /* 4015 */
2002 MIPS_SYS(sys_lchown
, 3)
2003 MIPS_SYS(sys_ni_syscall
, 0)
2004 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
2005 MIPS_SYS(sys_lseek
, 3)
2006 MIPS_SYS(sys_getpid
, 0) /* 4020 */
2007 MIPS_SYS(sys_mount
, 5)
2008 MIPS_SYS(sys_umount
, 1)
2009 MIPS_SYS(sys_setuid
, 1)
2010 MIPS_SYS(sys_getuid
, 0)
2011 MIPS_SYS(sys_stime
, 1) /* 4025 */
2012 MIPS_SYS(sys_ptrace
, 4)
2013 MIPS_SYS(sys_alarm
, 1)
2014 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
2015 MIPS_SYS(sys_pause
, 0)
2016 MIPS_SYS(sys_utime
, 2) /* 4030 */
2017 MIPS_SYS(sys_ni_syscall
, 0)
2018 MIPS_SYS(sys_ni_syscall
, 0)
2019 MIPS_SYS(sys_access
, 2)
2020 MIPS_SYS(sys_nice
, 1)
2021 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
2022 MIPS_SYS(sys_sync
, 0)
2023 MIPS_SYS(sys_kill
, 2)
2024 MIPS_SYS(sys_rename
, 2)
2025 MIPS_SYS(sys_mkdir
, 2)
2026 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
2027 MIPS_SYS(sys_dup
, 1)
2028 MIPS_SYS(sys_pipe
, 0)
2029 MIPS_SYS(sys_times
, 1)
2030 MIPS_SYS(sys_ni_syscall
, 0)
2031 MIPS_SYS(sys_brk
, 1) /* 4045 */
2032 MIPS_SYS(sys_setgid
, 1)
2033 MIPS_SYS(sys_getgid
, 0)
2034 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
2035 MIPS_SYS(sys_geteuid
, 0)
2036 MIPS_SYS(sys_getegid
, 0) /* 4050 */
2037 MIPS_SYS(sys_acct
, 0)
2038 MIPS_SYS(sys_umount2
, 2)
2039 MIPS_SYS(sys_ni_syscall
, 0)
2040 MIPS_SYS(sys_ioctl
, 3)
2041 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
2042 MIPS_SYS(sys_ni_syscall
, 2)
2043 MIPS_SYS(sys_setpgid
, 2)
2044 MIPS_SYS(sys_ni_syscall
, 0)
2045 MIPS_SYS(sys_olduname
, 1)
2046 MIPS_SYS(sys_umask
, 1) /* 4060 */
2047 MIPS_SYS(sys_chroot
, 1)
2048 MIPS_SYS(sys_ustat
, 2)
2049 MIPS_SYS(sys_dup2
, 2)
2050 MIPS_SYS(sys_getppid
, 0)
2051 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
2052 MIPS_SYS(sys_setsid
, 0)
2053 MIPS_SYS(sys_sigaction
, 3)
2054 MIPS_SYS(sys_sgetmask
, 0)
2055 MIPS_SYS(sys_ssetmask
, 1)
2056 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
2057 MIPS_SYS(sys_setregid
, 2)
2058 MIPS_SYS(sys_sigsuspend
, 0)
2059 MIPS_SYS(sys_sigpending
, 1)
2060 MIPS_SYS(sys_sethostname
, 2)
2061 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
2062 MIPS_SYS(sys_getrlimit
, 2)
2063 MIPS_SYS(sys_getrusage
, 2)
2064 MIPS_SYS(sys_gettimeofday
, 2)
2065 MIPS_SYS(sys_settimeofday
, 2)
2066 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
2067 MIPS_SYS(sys_setgroups
, 2)
2068 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
2069 MIPS_SYS(sys_symlink
, 2)
2070 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
2071 MIPS_SYS(sys_readlink
, 3) /* 4085 */
2072 MIPS_SYS(sys_uselib
, 1)
2073 MIPS_SYS(sys_swapon
, 2)
2074 MIPS_SYS(sys_reboot
, 3)
2075 MIPS_SYS(old_readdir
, 3)
2076 MIPS_SYS(old_mmap
, 6) /* 4090 */
2077 MIPS_SYS(sys_munmap
, 2)
2078 MIPS_SYS(sys_truncate
, 2)
2079 MIPS_SYS(sys_ftruncate
, 2)
2080 MIPS_SYS(sys_fchmod
, 2)
2081 MIPS_SYS(sys_fchown
, 3) /* 4095 */
2082 MIPS_SYS(sys_getpriority
, 2)
2083 MIPS_SYS(sys_setpriority
, 3)
2084 MIPS_SYS(sys_ni_syscall
, 0)
2085 MIPS_SYS(sys_statfs
, 2)
2086 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
2087 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
2088 MIPS_SYS(sys_socketcall
, 2)
2089 MIPS_SYS(sys_syslog
, 3)
2090 MIPS_SYS(sys_setitimer
, 3)
2091 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
2092 MIPS_SYS(sys_newstat
, 2)
2093 MIPS_SYS(sys_newlstat
, 2)
2094 MIPS_SYS(sys_newfstat
, 2)
2095 MIPS_SYS(sys_uname
, 1)
2096 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
2097 MIPS_SYS(sys_vhangup
, 0)
2098 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
2099 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
2100 MIPS_SYS(sys_wait4
, 4)
2101 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
2102 MIPS_SYS(sys_sysinfo
, 1)
2103 MIPS_SYS(sys_ipc
, 6)
2104 MIPS_SYS(sys_fsync
, 1)
2105 MIPS_SYS(sys_sigreturn
, 0)
2106 MIPS_SYS(sys_clone
, 6) /* 4120 */
2107 MIPS_SYS(sys_setdomainname
, 2)
2108 MIPS_SYS(sys_newuname
, 1)
2109 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
2110 MIPS_SYS(sys_adjtimex
, 1)
2111 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
2112 MIPS_SYS(sys_sigprocmask
, 3)
2113 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
2114 MIPS_SYS(sys_init_module
, 5)
2115 MIPS_SYS(sys_delete_module
, 1)
2116 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
2117 MIPS_SYS(sys_quotactl
, 0)
2118 MIPS_SYS(sys_getpgid
, 1)
2119 MIPS_SYS(sys_fchdir
, 1)
2120 MIPS_SYS(sys_bdflush
, 2)
2121 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
2122 MIPS_SYS(sys_personality
, 1)
2123 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
2124 MIPS_SYS(sys_setfsuid
, 1)
2125 MIPS_SYS(sys_setfsgid
, 1)
2126 MIPS_SYS(sys_llseek
, 5) /* 4140 */
2127 MIPS_SYS(sys_getdents
, 3)
2128 MIPS_SYS(sys_select
, 5)
2129 MIPS_SYS(sys_flock
, 2)
2130 MIPS_SYS(sys_msync
, 3)
2131 MIPS_SYS(sys_readv
, 3) /* 4145 */
2132 MIPS_SYS(sys_writev
, 3)
2133 MIPS_SYS(sys_cacheflush
, 3)
2134 MIPS_SYS(sys_cachectl
, 3)
2135 MIPS_SYS(sys_sysmips
, 4)
2136 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
2137 MIPS_SYS(sys_getsid
, 1)
2138 MIPS_SYS(sys_fdatasync
, 0)
2139 MIPS_SYS(sys_sysctl
, 1)
2140 MIPS_SYS(sys_mlock
, 2)
2141 MIPS_SYS(sys_munlock
, 2) /* 4155 */
2142 MIPS_SYS(sys_mlockall
, 1)
2143 MIPS_SYS(sys_munlockall
, 0)
2144 MIPS_SYS(sys_sched_setparam
, 2)
2145 MIPS_SYS(sys_sched_getparam
, 2)
2146 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
2147 MIPS_SYS(sys_sched_getscheduler
, 1)
2148 MIPS_SYS(sys_sched_yield
, 0)
2149 MIPS_SYS(sys_sched_get_priority_max
, 1)
2150 MIPS_SYS(sys_sched_get_priority_min
, 1)
2151 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
2152 MIPS_SYS(sys_nanosleep
, 2)
2153 MIPS_SYS(sys_mremap
, 5)
2154 MIPS_SYS(sys_accept
, 3)
2155 MIPS_SYS(sys_bind
, 3)
2156 MIPS_SYS(sys_connect
, 3) /* 4170 */
2157 MIPS_SYS(sys_getpeername
, 3)
2158 MIPS_SYS(sys_getsockname
, 3)
2159 MIPS_SYS(sys_getsockopt
, 5)
2160 MIPS_SYS(sys_listen
, 2)
2161 MIPS_SYS(sys_recv
, 4) /* 4175 */
2162 MIPS_SYS(sys_recvfrom
, 6)
2163 MIPS_SYS(sys_recvmsg
, 3)
2164 MIPS_SYS(sys_send
, 4)
2165 MIPS_SYS(sys_sendmsg
, 3)
2166 MIPS_SYS(sys_sendto
, 6) /* 4180 */
2167 MIPS_SYS(sys_setsockopt
, 5)
2168 MIPS_SYS(sys_shutdown
, 2)
2169 MIPS_SYS(sys_socket
, 3)
2170 MIPS_SYS(sys_socketpair
, 4)
2171 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
2172 MIPS_SYS(sys_getresuid
, 3)
2173 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
2174 MIPS_SYS(sys_poll
, 3)
2175 MIPS_SYS(sys_nfsservctl
, 3)
2176 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
2177 MIPS_SYS(sys_getresgid
, 3)
2178 MIPS_SYS(sys_prctl
, 5)
2179 MIPS_SYS(sys_rt_sigreturn
, 0)
2180 MIPS_SYS(sys_rt_sigaction
, 4)
2181 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
2182 MIPS_SYS(sys_rt_sigpending
, 2)
2183 MIPS_SYS(sys_rt_sigtimedwait
, 4)
2184 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
2185 MIPS_SYS(sys_rt_sigsuspend
, 0)
2186 MIPS_SYS(sys_pread64
, 6) /* 4200 */
2187 MIPS_SYS(sys_pwrite64
, 6)
2188 MIPS_SYS(sys_chown
, 3)
2189 MIPS_SYS(sys_getcwd
, 2)
2190 MIPS_SYS(sys_capget
, 2)
2191 MIPS_SYS(sys_capset
, 2) /* 4205 */
2192 MIPS_SYS(sys_sigaltstack
, 2)
2193 MIPS_SYS(sys_sendfile
, 4)
2194 MIPS_SYS(sys_ni_syscall
, 0)
2195 MIPS_SYS(sys_ni_syscall
, 0)
2196 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
2197 MIPS_SYS(sys_truncate64
, 4)
2198 MIPS_SYS(sys_ftruncate64
, 4)
2199 MIPS_SYS(sys_stat64
, 2)
2200 MIPS_SYS(sys_lstat64
, 2)
2201 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
2202 MIPS_SYS(sys_pivot_root
, 2)
2203 MIPS_SYS(sys_mincore
, 3)
2204 MIPS_SYS(sys_madvise
, 3)
2205 MIPS_SYS(sys_getdents64
, 3)
2206 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
2207 MIPS_SYS(sys_ni_syscall
, 0)
2208 MIPS_SYS(sys_gettid
, 0)
2209 MIPS_SYS(sys_readahead
, 5)
2210 MIPS_SYS(sys_setxattr
, 5)
2211 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2212 MIPS_SYS(sys_fsetxattr
, 5)
2213 MIPS_SYS(sys_getxattr
, 4)
2214 MIPS_SYS(sys_lgetxattr
, 4)
2215 MIPS_SYS(sys_fgetxattr
, 4)
2216 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2217 MIPS_SYS(sys_llistxattr
, 3)
2218 MIPS_SYS(sys_flistxattr
, 3)
2219 MIPS_SYS(sys_removexattr
, 2)
2220 MIPS_SYS(sys_lremovexattr
, 2)
2221 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2222 MIPS_SYS(sys_tkill
, 2)
2223 MIPS_SYS(sys_sendfile64
, 5)
2224 MIPS_SYS(sys_futex
, 6)
2225 MIPS_SYS(sys_sched_setaffinity
, 3)
2226 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2227 MIPS_SYS(sys_io_setup
, 2)
2228 MIPS_SYS(sys_io_destroy
, 1)
2229 MIPS_SYS(sys_io_getevents
, 5)
2230 MIPS_SYS(sys_io_submit
, 3)
2231 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2232 MIPS_SYS(sys_exit_group
, 1)
2233 MIPS_SYS(sys_lookup_dcookie
, 3)
2234 MIPS_SYS(sys_epoll_create
, 1)
2235 MIPS_SYS(sys_epoll_ctl
, 4)
2236 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2237 MIPS_SYS(sys_remap_file_pages
, 5)
2238 MIPS_SYS(sys_set_tid_address
, 1)
2239 MIPS_SYS(sys_restart_syscall
, 0)
2240 MIPS_SYS(sys_fadvise64_64
, 7)
2241 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2242 MIPS_SYS(sys_fstatfs64
, 2)
2243 MIPS_SYS(sys_timer_create
, 3)
2244 MIPS_SYS(sys_timer_settime
, 4)
2245 MIPS_SYS(sys_timer_gettime
, 2)
2246 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2247 MIPS_SYS(sys_timer_delete
, 1)
2248 MIPS_SYS(sys_clock_settime
, 2)
2249 MIPS_SYS(sys_clock_gettime
, 2)
2250 MIPS_SYS(sys_clock_getres
, 2)
2251 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2252 MIPS_SYS(sys_tgkill
, 3)
2253 MIPS_SYS(sys_utimes
, 2)
2254 MIPS_SYS(sys_mbind
, 4)
2255 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2256 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2257 MIPS_SYS(sys_mq_open
, 4)
2258 MIPS_SYS(sys_mq_unlink
, 1)
2259 MIPS_SYS(sys_mq_timedsend
, 5)
2260 MIPS_SYS(sys_mq_timedreceive
, 5)
2261 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2262 MIPS_SYS(sys_mq_getsetattr
, 3)
2263 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2264 MIPS_SYS(sys_waitid
, 4)
2265 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2266 MIPS_SYS(sys_add_key
, 5)
2267 MIPS_SYS(sys_request_key
, 4)
2268 MIPS_SYS(sys_keyctl
, 5)
2269 MIPS_SYS(sys_set_thread_area
, 1)
2270 MIPS_SYS(sys_inotify_init
, 0)
2271 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2272 MIPS_SYS(sys_inotify_rm_watch
, 2)
2273 MIPS_SYS(sys_migrate_pages
, 4)
2274 MIPS_SYS(sys_openat
, 4)
2275 MIPS_SYS(sys_mkdirat
, 3)
2276 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2277 MIPS_SYS(sys_fchownat
, 5)
2278 MIPS_SYS(sys_futimesat
, 3)
2279 MIPS_SYS(sys_fstatat64
, 4)
2280 MIPS_SYS(sys_unlinkat
, 3)
2281 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2282 MIPS_SYS(sys_linkat
, 5)
2283 MIPS_SYS(sys_symlinkat
, 3)
2284 MIPS_SYS(sys_readlinkat
, 4)
2285 MIPS_SYS(sys_fchmodat
, 3)
2286 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2287 MIPS_SYS(sys_pselect6
, 6)
2288 MIPS_SYS(sys_ppoll
, 5)
2289 MIPS_SYS(sys_unshare
, 1)
2290 MIPS_SYS(sys_splice
, 6)
2291 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2292 MIPS_SYS(sys_tee
, 4)
2293 MIPS_SYS(sys_vmsplice
, 4)
2294 MIPS_SYS(sys_move_pages
, 6)
2295 MIPS_SYS(sys_set_robust_list
, 2)
2296 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2297 MIPS_SYS(sys_kexec_load
, 4)
2298 MIPS_SYS(sys_getcpu
, 3)
2299 MIPS_SYS(sys_epoll_pwait
, 6)
2300 MIPS_SYS(sys_ioprio_set
, 3)
2301 MIPS_SYS(sys_ioprio_get
, 2)
2302 MIPS_SYS(sys_utimensat
, 4)
2303 MIPS_SYS(sys_signalfd
, 3)
2304 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2305 MIPS_SYS(sys_eventfd
, 1)
2306 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2307 MIPS_SYS(sys_timerfd_create
, 2)
2308 MIPS_SYS(sys_timerfd_gettime
, 2)
2309 MIPS_SYS(sys_timerfd_settime
, 4)
2310 MIPS_SYS(sys_signalfd4
, 4)
2311 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2312 MIPS_SYS(sys_epoll_create1
, 1)
2313 MIPS_SYS(sys_dup3
, 3)
2314 MIPS_SYS(sys_pipe2
, 2)
2315 MIPS_SYS(sys_inotify_init1
, 1)
2316 MIPS_SYS(sys_preadv
, 6) /* 4330 */
2317 MIPS_SYS(sys_pwritev
, 6)
2318 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2319 MIPS_SYS(sys_perf_event_open
, 5)
2320 MIPS_SYS(sys_accept4
, 4)
2321 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2322 MIPS_SYS(sys_fanotify_init
, 2)
2323 MIPS_SYS(sys_fanotify_mark
, 6)
2324 MIPS_SYS(sys_prlimit64
, 4)
2325 MIPS_SYS(sys_name_to_handle_at
, 5)
2326 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2327 MIPS_SYS(sys_clock_adjtime
, 2)
2328 MIPS_SYS(sys_syncfs
, 1)
2333 static int do_store_exclusive(CPUMIPSState
*env
)
2336 target_ulong page_addr
;
2344 page_addr
= addr
& TARGET_PAGE_MASK
;
2347 flags
= page_get_flags(page_addr
);
2348 if ((flags
& PAGE_READ
) == 0) {
2351 reg
= env
->llreg
& 0x1f;
2352 d
= (env
->llreg
& 0x20) != 0;
2354 segv
= get_user_s64(val
, addr
);
2356 segv
= get_user_s32(val
, addr
);
2359 if (val
!= env
->llval
) {
2360 env
->active_tc
.gpr
[reg
] = 0;
2363 segv
= put_user_u64(env
->llnewval
, addr
);
2365 segv
= put_user_u32(env
->llnewval
, addr
);
2368 env
->active_tc
.gpr
[reg
] = 1;
2375 env
->active_tc
.PC
+= 4;
2388 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2396 info
->si_signo
= TARGET_SIGFPE
;
2398 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2399 queue_signal(env
, info
->si_signo
, &*info
);
2403 info
->si_signo
= TARGET_SIGTRAP
;
2405 queue_signal(env
, info
->si_signo
, &*info
);
2413 void cpu_loop(CPUMIPSState
*env
)
2415 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2416 target_siginfo_t info
;
2419 # ifdef TARGET_ABI_MIPSO32
2420 unsigned int syscall_num
;
2425 trapnr
= cpu_mips_exec(env
);
2429 env
->active_tc
.PC
+= 4;
2430 # ifdef TARGET_ABI_MIPSO32
2431 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2432 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2433 ret
= -TARGET_ENOSYS
;
2437 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2439 nb_args
= mips_syscall_args
[syscall_num
];
2440 sp_reg
= env
->active_tc
.gpr
[29];
2442 /* these arguments are taken from the stack */
2444 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2448 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2452 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2456 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2462 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2463 env
->active_tc
.gpr
[4],
2464 env
->active_tc
.gpr
[5],
2465 env
->active_tc
.gpr
[6],
2466 env
->active_tc
.gpr
[7],
2467 arg5
, arg6
, arg7
, arg8
);
2471 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2472 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2473 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2474 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2475 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2477 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2478 /* Returning from a successful sigreturn syscall.
2479 Avoid clobbering register state. */
2482 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2483 env
->active_tc
.gpr
[7] = 1; /* error flag */
2486 env
->active_tc
.gpr
[7] = 0; /* error flag */
2488 env
->active_tc
.gpr
[2] = ret
;
2494 info
.si_signo
= TARGET_SIGSEGV
;
2496 /* XXX: check env->error_code */
2497 info
.si_code
= TARGET_SEGV_MAPERR
;
2498 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2499 queue_signal(env
, info
.si_signo
, &info
);
2503 info
.si_signo
= TARGET_SIGILL
;
2506 queue_signal(env
, info
.si_signo
, &info
);
2508 case EXCP_INTERRUPT
:
2509 /* just indicate that signals should be handled asap */
2515 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2518 info
.si_signo
= sig
;
2520 info
.si_code
= TARGET_TRAP_BRKPT
;
2521 queue_signal(env
, info
.si_signo
, &info
);
2526 if (do_store_exclusive(env
)) {
2527 info
.si_signo
= TARGET_SIGSEGV
;
2529 info
.si_code
= TARGET_SEGV_MAPERR
;
2530 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2531 queue_signal(env
, info
.si_signo
, &info
);
2535 info
.si_signo
= TARGET_SIGILL
;
2537 info
.si_code
= TARGET_ILL_ILLOPC
;
2538 queue_signal(env
, info
.si_signo
, &info
);
2540 /* The code below was inspired by the MIPS Linux kernel trap
2541 * handling code in arch/mips/kernel/traps.c.
2545 abi_ulong trap_instr
;
2548 if (env
->hflags
& MIPS_HFLAG_M16
) {
2549 if (env
->insn_flags
& ASE_MICROMIPS
) {
2550 /* microMIPS mode */
2551 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2556 if ((trap_instr
>> 10) == 0x11) {
2557 /* 16-bit instruction */
2558 code
= trap_instr
& 0xf;
2560 /* 32-bit instruction */
2563 ret
= get_user_u16(instr_lo
,
2564 env
->active_tc
.PC
+ 2);
2568 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2569 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2570 /* Unfortunately, microMIPS also suffers from
2571 the old assembler bug... */
2572 if (code
>= (1 << 10)) {
2578 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2582 code
= (trap_instr
>> 6) & 0x3f;
2585 ret
= get_user_ual(trap_instr
, env
->active_tc
.PC
);
2590 /* As described in the original Linux kernel code, the
2591 * below checks on 'code' are to work around an old
2594 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2595 if (code
>= (1 << 10)) {
2600 if (do_break(env
, &info
, code
) != 0) {
2607 abi_ulong trap_instr
;
2608 unsigned int code
= 0;
2610 if (env
->hflags
& MIPS_HFLAG_M16
) {
2611 /* microMIPS mode */
2614 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2615 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2617 trap_instr
= (instr
[0] << 16) | instr
[1];
2619 ret
= get_user_ual(trap_instr
, env
->active_tc
.PC
);
2626 /* The immediate versions don't provide a code. */
2627 if (!(trap_instr
& 0xFC000000)) {
2628 if (env
->hflags
& MIPS_HFLAG_M16
) {
2629 /* microMIPS mode */
2630 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2632 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2636 if (do_break(env
, &info
, code
) != 0) {
2643 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
2645 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2648 process_pending_signals(env
);
2653 #ifdef TARGET_OPENRISC
2655 void cpu_loop(CPUOpenRISCState
*env
)
2657 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2661 trapnr
= cpu_exec(env
);
2666 qemu_log("\nReset request, exit, pc is %#x\n", env
->pc
);
2670 qemu_log("\nBus error, exit, pc is %#x\n", env
->pc
);
2675 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2676 gdbsig
= TARGET_SIGSEGV
;
2679 qemu_log("\nTick time interrupt pc is %#x\n", env
->pc
);
2682 qemu_log("\nAlignment pc is %#x\n", env
->pc
);
2686 qemu_log("\nIllegal instructionpc is %#x\n", env
->pc
);
2690 qemu_log("\nExternal interruptpc is %#x\n", env
->pc
);
2694 qemu_log("\nTLB miss\n");
2697 qemu_log("\nRange\n");
2701 env
->pc
+= 4; /* 0xc00; */
2702 env
->gpr
[11] = do_syscall(env
,
2703 env
->gpr
[11], /* return value */
2704 env
->gpr
[3], /* r3 - r7 are params */
2712 qemu_log("\nFloating point error\n");
2715 qemu_log("\nTrap\n");
2722 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2724 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2725 gdbsig
= TARGET_SIGILL
;
2729 gdb_handlesig(cs
, gdbsig
);
2730 if (gdbsig
!= TARGET_SIGTRAP
) {
2735 process_pending_signals(env
);
2739 #endif /* TARGET_OPENRISC */
2742 void cpu_loop(CPUSH4State
*env
)
2744 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2746 target_siginfo_t info
;
2749 trapnr
= cpu_sh4_exec (env
);
2754 ret
= do_syscall(env
,
2763 env
->gregs
[0] = ret
;
2765 case EXCP_INTERRUPT
:
2766 /* just indicate that signals should be handled asap */
2772 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2775 info
.si_signo
= sig
;
2777 info
.si_code
= TARGET_TRAP_BRKPT
;
2778 queue_signal(env
, info
.si_signo
, &info
);
2784 info
.si_signo
= SIGSEGV
;
2786 info
.si_code
= TARGET_SEGV_MAPERR
;
2787 info
._sifields
._sigfault
._addr
= env
->tea
;
2788 queue_signal(env
, info
.si_signo
, &info
);
2792 printf ("Unhandled trap: 0x%x\n", trapnr
);
2793 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2796 process_pending_signals (env
);
2802 void cpu_loop(CPUCRISState
*env
)
2804 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2806 target_siginfo_t info
;
2809 trapnr
= cpu_cris_exec (env
);
2813 info
.si_signo
= SIGSEGV
;
2815 /* XXX: check env->error_code */
2816 info
.si_code
= TARGET_SEGV_MAPERR
;
2817 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2818 queue_signal(env
, info
.si_signo
, &info
);
2821 case EXCP_INTERRUPT
:
2822 /* just indicate that signals should be handled asap */
2825 ret
= do_syscall(env
,
2834 env
->regs
[10] = ret
;
2840 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2843 info
.si_signo
= sig
;
2845 info
.si_code
= TARGET_TRAP_BRKPT
;
2846 queue_signal(env
, info
.si_signo
, &info
);
2851 printf ("Unhandled trap: 0x%x\n", trapnr
);
2852 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2855 process_pending_signals (env
);
2860 #ifdef TARGET_MICROBLAZE
2861 void cpu_loop(CPUMBState
*env
)
2863 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2865 target_siginfo_t info
;
2868 trapnr
= cpu_mb_exec (env
);
2872 info
.si_signo
= SIGSEGV
;
2874 /* XXX: check env->error_code */
2875 info
.si_code
= TARGET_SEGV_MAPERR
;
2876 info
._sifields
._sigfault
._addr
= 0;
2877 queue_signal(env
, info
.si_signo
, &info
);
2880 case EXCP_INTERRUPT
:
2881 /* just indicate that signals should be handled asap */
2884 /* Return address is 4 bytes after the call. */
2886 env
->sregs
[SR_PC
] = env
->regs
[14];
2887 ret
= do_syscall(env
,
2899 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2900 if (env
->iflags
& D_FLAG
) {
2901 env
->sregs
[SR_ESR
] |= 1 << 12;
2902 env
->sregs
[SR_PC
] -= 4;
2903 /* FIXME: if branch was immed, replay the imm as well. */
2906 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2908 switch (env
->sregs
[SR_ESR
] & 31) {
2909 case ESR_EC_DIVZERO
:
2910 info
.si_signo
= SIGFPE
;
2912 info
.si_code
= TARGET_FPE_FLTDIV
;
2913 info
._sifields
._sigfault
._addr
= 0;
2914 queue_signal(env
, info
.si_signo
, &info
);
2917 info
.si_signo
= SIGFPE
;
2919 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
2920 info
.si_code
= TARGET_FPE_FLTINV
;
2922 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
2923 info
.si_code
= TARGET_FPE_FLTDIV
;
2925 info
._sifields
._sigfault
._addr
= 0;
2926 queue_signal(env
, info
.si_signo
, &info
);
2929 printf ("Unhandled hw-exception: 0x%x\n",
2930 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
2931 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2940 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2943 info
.si_signo
= sig
;
2945 info
.si_code
= TARGET_TRAP_BRKPT
;
2946 queue_signal(env
, info
.si_signo
, &info
);
2951 printf ("Unhandled trap: 0x%x\n", trapnr
);
2952 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2955 process_pending_signals (env
);
2962 void cpu_loop(CPUM68KState
*env
)
2964 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
2967 target_siginfo_t info
;
2968 TaskState
*ts
= cs
->opaque
;
2971 trapnr
= cpu_m68k_exec(env
);
2975 if (ts
->sim_syscalls
) {
2977 nr
= lduw(env
->pc
+ 2);
2979 do_m68k_simcall(env
, nr
);
2985 case EXCP_HALT_INSN
:
2986 /* Semihosing syscall. */
2988 do_m68k_semihosting(env
, env
->dregs
[0]);
2992 case EXCP_UNSUPPORTED
:
2994 info
.si_signo
= SIGILL
;
2996 info
.si_code
= TARGET_ILL_ILLOPN
;
2997 info
._sifields
._sigfault
._addr
= env
->pc
;
2998 queue_signal(env
, info
.si_signo
, &info
);
3002 ts
->sim_syscalls
= 0;
3005 env
->dregs
[0] = do_syscall(env
,
3016 case EXCP_INTERRUPT
:
3017 /* just indicate that signals should be handled asap */
3021 info
.si_signo
= SIGSEGV
;
3023 /* XXX: check env->error_code */
3024 info
.si_code
= TARGET_SEGV_MAPERR
;
3025 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3026 queue_signal(env
, info
.si_signo
, &info
);
3033 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3036 info
.si_signo
= sig
;
3038 info
.si_code
= TARGET_TRAP_BRKPT
;
3039 queue_signal(env
, info
.si_signo
, &info
);
3044 fprintf(stderr
, "qemu: unhandled CPU exception 0x%x - aborting\n",
3046 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3049 process_pending_signals(env
);
3052 #endif /* TARGET_M68K */
3055 static void do_store_exclusive(CPUAlphaState
*env
, int reg
, int quad
)
3057 target_ulong addr
, val
, tmp
;
3058 target_siginfo_t info
;
3061 addr
= env
->lock_addr
;
3062 tmp
= env
->lock_st_addr
;
3063 env
->lock_addr
= -1;
3064 env
->lock_st_addr
= 0;
3070 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3074 if (val
== env
->lock_value
) {
3076 if (quad
? put_user_u64(tmp
, addr
) : put_user_u32(tmp
, addr
)) {
3093 info
.si_signo
= TARGET_SIGSEGV
;
3095 info
.si_code
= TARGET_SEGV_MAPERR
;
3096 info
._sifields
._sigfault
._addr
= addr
;
3097 queue_signal(env
, TARGET_SIGSEGV
, &info
);
3100 void cpu_loop(CPUAlphaState
*env
)
3102 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3104 target_siginfo_t info
;
3108 trapnr
= cpu_alpha_exec (env
);
3110 /* All of the traps imply a transition through PALcode, which
3111 implies an REI instruction has been executed. Which means
3112 that the intr_flag should be cleared. */
3117 fprintf(stderr
, "Reset requested. Exit\n");
3121 fprintf(stderr
, "Machine check exception. Exit\n");
3124 case EXCP_SMP_INTERRUPT
:
3125 case EXCP_CLK_INTERRUPT
:
3126 case EXCP_DEV_INTERRUPT
:
3127 fprintf(stderr
, "External interrupt. Exit\n");
3131 env
->lock_addr
= -1;
3132 info
.si_signo
= TARGET_SIGSEGV
;
3134 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3135 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3136 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3137 queue_signal(env
, info
.si_signo
, &info
);
3140 env
->lock_addr
= -1;
3141 info
.si_signo
= TARGET_SIGBUS
;
3143 info
.si_code
= TARGET_BUS_ADRALN
;
3144 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3145 queue_signal(env
, info
.si_signo
, &info
);
3149 env
->lock_addr
= -1;
3150 info
.si_signo
= TARGET_SIGILL
;
3152 info
.si_code
= TARGET_ILL_ILLOPC
;
3153 info
._sifields
._sigfault
._addr
= env
->pc
;
3154 queue_signal(env
, info
.si_signo
, &info
);
3157 env
->lock_addr
= -1;
3158 info
.si_signo
= TARGET_SIGFPE
;
3160 info
.si_code
= TARGET_FPE_FLTINV
;
3161 info
._sifields
._sigfault
._addr
= env
->pc
;
3162 queue_signal(env
, info
.si_signo
, &info
);
3165 /* No-op. Linux simply re-enables the FPU. */
3168 env
->lock_addr
= -1;
3169 switch (env
->error_code
) {
3172 info
.si_signo
= TARGET_SIGTRAP
;
3174 info
.si_code
= TARGET_TRAP_BRKPT
;
3175 info
._sifields
._sigfault
._addr
= env
->pc
;
3176 queue_signal(env
, info
.si_signo
, &info
);
3180 info
.si_signo
= TARGET_SIGTRAP
;
3183 info
._sifields
._sigfault
._addr
= env
->pc
;
3184 queue_signal(env
, info
.si_signo
, &info
);
3188 trapnr
= env
->ir
[IR_V0
];
3189 sysret
= do_syscall(env
, trapnr
,
3190 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3191 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3192 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3194 if (trapnr
== TARGET_NR_sigreturn
3195 || trapnr
== TARGET_NR_rt_sigreturn
) {
3198 /* Syscall writes 0 to V0 to bypass error check, similar
3199 to how this is handled internal to Linux kernel.
3200 (Ab)use trapnr temporarily as boolean indicating error. */
3201 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3202 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3203 env
->ir
[IR_A3
] = trapnr
;
3207 /* ??? We can probably elide the code using page_unprotect
3208 that is checking for self-modifying code. Instead we
3209 could simply call tb_flush here. Until we work out the
3210 changes required to turn off the extra write protection,
3211 this can be a no-op. */
3215 /* Handled in the translator for usermode. */
3219 /* Handled in the translator for usermode. */
3223 info
.si_signo
= TARGET_SIGFPE
;
3224 switch (env
->ir
[IR_A0
]) {
3225 case TARGET_GEN_INTOVF
:
3226 info
.si_code
= TARGET_FPE_INTOVF
;
3228 case TARGET_GEN_INTDIV
:
3229 info
.si_code
= TARGET_FPE_INTDIV
;
3231 case TARGET_GEN_FLTOVF
:
3232 info
.si_code
= TARGET_FPE_FLTOVF
;
3234 case TARGET_GEN_FLTUND
:
3235 info
.si_code
= TARGET_FPE_FLTUND
;
3237 case TARGET_GEN_FLTINV
:
3238 info
.si_code
= TARGET_FPE_FLTINV
;
3240 case TARGET_GEN_FLTINE
:
3241 info
.si_code
= TARGET_FPE_FLTRES
;
3243 case TARGET_GEN_ROPRAND
:
3247 info
.si_signo
= TARGET_SIGTRAP
;
3252 info
._sifields
._sigfault
._addr
= env
->pc
;
3253 queue_signal(env
, info
.si_signo
, &info
);
3260 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3261 if (info
.si_signo
) {
3262 env
->lock_addr
= -1;
3264 info
.si_code
= TARGET_TRAP_BRKPT
;
3265 queue_signal(env
, info
.si_signo
, &info
);
3270 do_store_exclusive(env
, env
->error_code
, trapnr
- EXCP_STL_C
);
3272 case EXCP_INTERRUPT
:
3273 /* Just indicate that signals should be handled asap. */
3276 printf ("Unhandled trap: 0x%x\n", trapnr
);
3277 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3280 process_pending_signals (env
);
3283 #endif /* TARGET_ALPHA */
3286 void cpu_loop(CPUS390XState
*env
)
3288 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3290 target_siginfo_t info
;
3294 trapnr
= cpu_s390x_exec(env
);
3296 case EXCP_INTERRUPT
:
3297 /* Just indicate that signals should be handled asap. */
3301 n
= env
->int_svc_code
;
3303 /* syscalls > 255 */
3306 env
->psw
.addr
+= env
->int_svc_ilen
;
3307 env
->regs
[2] = do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3308 env
->regs
[4], env
->regs
[5],
3309 env
->regs
[6], env
->regs
[7], 0, 0);
3313 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3315 n
= TARGET_TRAP_BRKPT
;
3320 n
= env
->int_pgm_code
;
3323 case PGM_PRIVILEGED
:
3325 n
= TARGET_ILL_ILLOPC
;
3327 case PGM_PROTECTION
:
3328 case PGM_ADDRESSING
:
3330 /* XXX: check env->error_code */
3331 n
= TARGET_SEGV_MAPERR
;
3332 addr
= env
->__excp_addr
;
3335 case PGM_SPECIFICATION
:
3336 case PGM_SPECIAL_OP
:
3340 n
= TARGET_ILL_ILLOPN
;
3343 case PGM_FIXPT_OVERFLOW
:
3345 n
= TARGET_FPE_INTOVF
;
3347 case PGM_FIXPT_DIVIDE
:
3349 n
= TARGET_FPE_INTDIV
;
3353 n
= (env
->fpc
>> 8) & 0xff;
3355 /* compare-and-trap */
3358 /* An IEEE exception, simulated or otherwise. */
3360 n
= TARGET_FPE_FLTINV
;
3361 } else if (n
& 0x40) {
3362 n
= TARGET_FPE_FLTDIV
;
3363 } else if (n
& 0x20) {
3364 n
= TARGET_FPE_FLTOVF
;
3365 } else if (n
& 0x10) {
3366 n
= TARGET_FPE_FLTUND
;
3367 } else if (n
& 0x08) {
3368 n
= TARGET_FPE_FLTRES
;
3370 /* ??? Quantum exception; BFP, DFP error. */
3378 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3379 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3385 addr
= env
->psw
.addr
;
3387 info
.si_signo
= sig
;
3390 info
._sifields
._sigfault
._addr
= addr
;
3391 queue_signal(env
, info
.si_signo
, &info
);
3395 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3396 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3399 process_pending_signals (env
);
3403 #endif /* TARGET_S390X */
3405 THREAD CPUState
*thread_cpu
;
3407 void task_settid(TaskState
*ts
)
3409 if (ts
->ts_tid
== 0) {
3410 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3414 void stop_all_tasks(void)
3417 * We trust that when using NPTL, start_exclusive()
3418 * handles thread stopping correctly.
3423 /* Assumes contents are already zeroed. */
3424 void init_task_state(TaskState
*ts
)
3429 ts
->first_free
= ts
->sigqueue_table
;
3430 for (i
= 0; i
< MAX_SIGQUEUE_SIZE
- 1; i
++) {
3431 ts
->sigqueue_table
[i
].next
= &ts
->sigqueue_table
[i
+ 1];
3433 ts
->sigqueue_table
[i
].next
= NULL
;
3436 CPUArchState
*cpu_copy(CPUArchState
*env
)
3438 CPUState
*cpu
= ENV_GET_CPU(env
);
3439 CPUArchState
*new_env
= cpu_init(cpu_model
);
3440 CPUState
*new_cpu
= ENV_GET_CPU(new_env
);
3441 #if defined(TARGET_HAS_ICE)
3446 /* Reset non arch specific state */
3449 memcpy(new_env
, env
, sizeof(CPUArchState
));
3451 /* Clone all break/watchpoints.
3452 Note: Once we support ptrace with hw-debug register access, make sure
3453 BP_CPU break/watchpoints are handled correctly on clone. */
3454 QTAILQ_INIT(&cpu
->breakpoints
);
3455 QTAILQ_INIT(&cpu
->watchpoints
);
3456 #if defined(TARGET_HAS_ICE)
3457 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
3458 cpu_breakpoint_insert(new_cpu
, bp
->pc
, bp
->flags
, NULL
);
3460 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
3461 cpu_watchpoint_insert(new_cpu
, wp
->vaddr
, (~wp
->len_mask
) + 1,
3469 static void handle_arg_help(const char *arg
)
3474 static void handle_arg_log(const char *arg
)
3478 mask
= qemu_str_to_log_mask(arg
);
3480 qemu_print_log_usage(stdout
);
3486 static void handle_arg_log_filename(const char *arg
)
3488 qemu_set_log_filename(arg
);
3491 static void handle_arg_set_env(const char *arg
)
3493 char *r
, *p
, *token
;
3494 r
= p
= strdup(arg
);
3495 while ((token
= strsep(&p
, ",")) != NULL
) {
3496 if (envlist_setenv(envlist
, token
) != 0) {
3503 static void handle_arg_unset_env(const char *arg
)
3505 char *r
, *p
, *token
;
3506 r
= p
= strdup(arg
);
3507 while ((token
= strsep(&p
, ",")) != NULL
) {
3508 if (envlist_unsetenv(envlist
, token
) != 0) {
3515 static void handle_arg_argv0(const char *arg
)
3517 argv0
= strdup(arg
);
3520 static void handle_arg_stack_size(const char *arg
)
3523 guest_stack_size
= strtoul(arg
, &p
, 0);
3524 if (guest_stack_size
== 0) {
3529 guest_stack_size
*= 1024 * 1024;
3530 } else if (*p
== 'k' || *p
== 'K') {
3531 guest_stack_size
*= 1024;
3535 static void handle_arg_ld_prefix(const char *arg
)
3537 interp_prefix
= strdup(arg
);
3540 static void handle_arg_pagesize(const char *arg
)
3542 qemu_host_page_size
= atoi(arg
);
3543 if (qemu_host_page_size
== 0 ||
3544 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3545 fprintf(stderr
, "page size must be a power of two\n");
3550 static void handle_arg_gdb(const char *arg
)
3552 gdbstub_port
= atoi(arg
);
3555 static void handle_arg_uname(const char *arg
)
3557 qemu_uname_release
= strdup(arg
);
3560 static void handle_arg_cpu(const char *arg
)
3562 cpu_model
= strdup(arg
);
3563 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3564 /* XXX: implement xxx_cpu_list for targets that still miss it */
3565 #if defined(cpu_list)
3566 cpu_list(stdout
, &fprintf
);
3572 #if defined(CONFIG_USE_GUEST_BASE)
3573 static void handle_arg_guest_base(const char *arg
)
3575 guest_base
= strtol(arg
, NULL
, 0);
3576 have_guest_base
= 1;
3579 static void handle_arg_reserved_va(const char *arg
)
3583 reserved_va
= strtoul(arg
, &p
, 0);
3597 unsigned long unshifted
= reserved_va
;
3599 reserved_va
<<= shift
;
3600 if (((reserved_va
>> shift
) != unshifted
)
3601 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3602 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3605 fprintf(stderr
, "Reserved virtual address too big\n");
3610 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
3616 static void handle_arg_singlestep(const char *arg
)
3621 static void handle_arg_strace(const char *arg
)
3626 static void handle_arg_version(const char *arg
)
3628 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
3629 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3633 struct qemu_argument
{
3637 void (*handle_opt
)(const char *arg
);
3638 const char *example
;
3642 static const struct qemu_argument arg_table
[] = {
3643 {"h", "", false, handle_arg_help
,
3644 "", "print this help"},
3645 {"g", "QEMU_GDB", true, handle_arg_gdb
,
3646 "port", "wait gdb connection to 'port'"},
3647 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
3648 "path", "set the elf interpreter prefix to 'path'"},
3649 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
3650 "size", "set the stack size to 'size' bytes"},
3651 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
3652 "model", "select CPU (-cpu help for list)"},
3653 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
3654 "var=value", "sets targets environment variable (see below)"},
3655 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
3656 "var", "unsets targets environment variable (see below)"},
3657 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
3658 "argv0", "forces target process argv[0] to be 'argv0'"},
3659 {"r", "QEMU_UNAME", true, handle_arg_uname
,
3660 "uname", "set qemu uname release string to 'uname'"},
3661 #if defined(CONFIG_USE_GUEST_BASE)
3662 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
3663 "address", "set guest_base address to 'address'"},
3664 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
3665 "size", "reserve 'size' bytes for guest virtual address space"},
3667 {"d", "QEMU_LOG", true, handle_arg_log
,
3668 "item[,...]", "enable logging of specified items "
3669 "(use '-d help' for a list of items)"},
3670 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
3671 "logfile", "write logs to 'logfile' (default stderr)"},
3672 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
3673 "pagesize", "set the host page size to 'pagesize'"},
3674 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
3675 "", "run in singlestep mode"},
3676 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
3677 "", "log system calls"},
3678 {"version", "QEMU_VERSION", false, handle_arg_version
,
3679 "", "display version information and exit"},
3680 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
3683 static void usage(void)
3685 const struct qemu_argument
*arginfo
;
3689 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
3690 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
3692 "Options and associated environment variables:\n"
3695 /* Calculate column widths. We must always have at least enough space
3696 * for the column header.
3698 maxarglen
= strlen("Argument");
3699 maxenvlen
= strlen("Env-variable");
3701 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3702 int arglen
= strlen(arginfo
->argv
);
3703 if (arginfo
->has_arg
) {
3704 arglen
+= strlen(arginfo
->example
) + 1;
3706 if (strlen(arginfo
->env
) > maxenvlen
) {
3707 maxenvlen
= strlen(arginfo
->env
);
3709 if (arglen
> maxarglen
) {
3714 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
3715 maxenvlen
, "Env-variable");
3717 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3718 if (arginfo
->has_arg
) {
3719 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
3720 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
3721 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
3723 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
3724 maxenvlen
, arginfo
->env
,
3731 "QEMU_LD_PREFIX = %s\n"
3732 "QEMU_STACK_SIZE = %ld byte\n",
3737 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3738 "QEMU_UNSET_ENV environment variables to set and unset\n"
3739 "environment variables for the target process.\n"
3740 "It is possible to provide several variables by separating them\n"
3741 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3742 "provide the -E and -U options multiple times.\n"
3743 "The following lines are equivalent:\n"
3744 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3745 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3746 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3747 "Note that if you provide several changes to a single variable\n"
3748 "the last change will stay in effect.\n");
3753 static int parse_args(int argc
, char **argv
)
3757 const struct qemu_argument
*arginfo
;
3759 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3760 if (arginfo
->env
== NULL
) {
3764 r
= getenv(arginfo
->env
);
3766 arginfo
->handle_opt(r
);
3772 if (optind
>= argc
) {
3781 if (!strcmp(r
, "-")) {
3785 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
3786 if (!strcmp(r
, arginfo
->argv
)) {
3787 if (arginfo
->has_arg
) {
3788 if (optind
>= argc
) {
3791 arginfo
->handle_opt(argv
[optind
]);
3794 arginfo
->handle_opt(NULL
);
3800 /* no option matched the current argv */
3801 if (arginfo
->handle_opt
== NULL
) {
3806 if (optind
>= argc
) {
3810 filename
= argv
[optind
];
3811 exec_path
= argv
[optind
];
3816 int main(int argc
, char **argv
, char **envp
)
3818 struct target_pt_regs regs1
, *regs
= ®s1
;
3819 struct image_info info1
, *info
= &info1
;
3820 struct linux_binprm bprm
;
3825 char **target_environ
, **wrk
;
3832 module_call_init(MODULE_INIT_QOM
);
3834 qemu_init_auxval(envp
);
3835 qemu_cache_utils_init();
3837 if ((envlist
= envlist_create()) == NULL
) {
3838 (void) fprintf(stderr
, "Unable to allocate envlist\n");
3842 /* add current environment into the list */
3843 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
3844 (void) envlist_setenv(envlist
, *wrk
);
3847 /* Read the stack limit from the kernel. If it's "unlimited",
3848 then we can do little else besides use the default. */
3851 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
3852 && lim
.rlim_cur
!= RLIM_INFINITY
3853 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
3854 guest_stack_size
= lim
.rlim_cur
;
3859 #if defined(cpudef_setup)
3860 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3863 optind
= parse_args(argc
, argv
);
3866 memset(regs
, 0, sizeof(struct target_pt_regs
));
3868 /* Zero out image_info */
3869 memset(info
, 0, sizeof(struct image_info
));
3871 memset(&bprm
, 0, sizeof (bprm
));
3873 /* Scan interp_prefix dir for replacement files. */
3874 init_paths(interp_prefix
);
3876 init_qemu_uname_release();
3878 if (cpu_model
== NULL
) {
3879 #if defined(TARGET_I386)
3880 #ifdef TARGET_X86_64
3881 cpu_model
= "qemu64";
3883 cpu_model
= "qemu32";
3885 #elif defined(TARGET_ARM)
3887 #elif defined(TARGET_UNICORE32)
3889 #elif defined(TARGET_M68K)
3891 #elif defined(TARGET_SPARC)
3892 #ifdef TARGET_SPARC64
3893 cpu_model
= "TI UltraSparc II";
3895 cpu_model
= "Fujitsu MB86904";
3897 #elif defined(TARGET_MIPS)
3898 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3903 #elif defined TARGET_OPENRISC
3904 cpu_model
= "or1200";
3905 #elif defined(TARGET_PPC)
3907 cpu_model
= "970fx";
3916 cpu_exec_init_all();
3917 /* NOTE: we need to init the CPU at this stage to get
3918 qemu_host_page_size */
3919 env
= cpu_init(cpu_model
);
3921 fprintf(stderr
, "Unable to find CPU definition\n");
3924 cpu
= ENV_GET_CPU(env
);
3929 if (getenv("QEMU_STRACE")) {
3933 target_environ
= envlist_to_environ(envlist
, NULL
);
3934 envlist_free(envlist
);
3936 #if defined(CONFIG_USE_GUEST_BASE)
3938 * Now that page sizes are configured in cpu_init() we can do
3939 * proper page alignment for guest_base.
3941 guest_base
= HOST_PAGE_ALIGN(guest_base
);
3943 if (reserved_va
|| have_guest_base
) {
3944 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
3946 if (guest_base
== (unsigned long)-1) {
3947 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
3948 "space for use as guest address space (check your virtual "
3949 "memory ulimit setting or reserve less using -R option)\n",
3955 mmap_next_start
= reserved_va
;
3958 #endif /* CONFIG_USE_GUEST_BASE */
3961 * Read in mmap_min_addr kernel parameter. This value is used
3962 * When loading the ELF image to determine whether guest_base
3963 * is needed. It is also used in mmap_find_vma.
3968 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
3970 if (fscanf(fp
, "%lu", &tmp
) == 1) {
3971 mmap_min_addr
= tmp
;
3972 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr
);
3979 * Prepare copy of argv vector for target.
3981 target_argc
= argc
- optind
;
3982 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
3983 if (target_argv
== NULL
) {
3984 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
3989 * If argv0 is specified (using '-0' switch) we replace
3990 * argv[0] pointer with the given one.
3993 if (argv0
!= NULL
) {
3994 target_argv
[i
++] = strdup(argv0
);
3996 for (; i
< target_argc
; i
++) {
3997 target_argv
[i
] = strdup(argv
[optind
+ i
]);
3999 target_argv
[target_argc
] = NULL
;
4001 ts
= g_malloc0 (sizeof(TaskState
));
4002 init_task_state(ts
);
4003 /* build Task State */
4009 execfd
= qemu_getauxval(AT_EXECFD
);
4011 execfd
= open(filename
, O_RDONLY
);
4013 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
4018 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
4021 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4025 for (wrk
= target_environ
; *wrk
; wrk
++) {
4029 free(target_environ
);
4031 if (qemu_log_enabled()) {
4032 #if defined(CONFIG_USE_GUEST_BASE)
4033 qemu_log("guest_base 0x%lx\n", guest_base
);
4037 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4038 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4039 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n",
4041 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n",
4043 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4044 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n",
4046 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4047 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4050 target_set_brk(info
->brk
);
4054 #if defined(CONFIG_USE_GUEST_BASE)
4055 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4056 generating the prologue until now so that the prologue can take
4057 the real value of GUEST_BASE into account. */
4058 tcg_prologue_init(&tcg_ctx
);
4061 #if defined(TARGET_I386)
4062 cpu_x86_set_cpl(env
, 3);
4064 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4065 env
->hflags
|= HF_PE_MASK
;
4066 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4067 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4068 env
->hflags
|= HF_OSFXSR_MASK
;
4070 #ifndef TARGET_ABI32
4071 /* enable 64 bit mode if possible */
4072 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4073 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4076 env
->cr
[4] |= CR4_PAE_MASK
;
4077 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4078 env
->hflags
|= HF_LMA_MASK
;
4081 /* flags setup : we activate the IRQs by default as in user mode */
4082 env
->eflags
|= IF_MASK
;
4084 /* linux register setup */
4085 #ifndef TARGET_ABI32
4086 env
->regs
[R_EAX
] = regs
->rax
;
4087 env
->regs
[R_EBX
] = regs
->rbx
;
4088 env
->regs
[R_ECX
] = regs
->rcx
;
4089 env
->regs
[R_EDX
] = regs
->rdx
;
4090 env
->regs
[R_ESI
] = regs
->rsi
;
4091 env
->regs
[R_EDI
] = regs
->rdi
;
4092 env
->regs
[R_EBP
] = regs
->rbp
;
4093 env
->regs
[R_ESP
] = regs
->rsp
;
4094 env
->eip
= regs
->rip
;
4096 env
->regs
[R_EAX
] = regs
->eax
;
4097 env
->regs
[R_EBX
] = regs
->ebx
;
4098 env
->regs
[R_ECX
] = regs
->ecx
;
4099 env
->regs
[R_EDX
] = regs
->edx
;
4100 env
->regs
[R_ESI
] = regs
->esi
;
4101 env
->regs
[R_EDI
] = regs
->edi
;
4102 env
->regs
[R_EBP
] = regs
->ebp
;
4103 env
->regs
[R_ESP
] = regs
->esp
;
4104 env
->eip
= regs
->eip
;
4107 /* linux interrupt setup */
4108 #ifndef TARGET_ABI32
4109 env
->idt
.limit
= 511;
4111 env
->idt
.limit
= 255;
4113 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4114 PROT_READ
|PROT_WRITE
,
4115 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4116 idt_table
= g2h(env
->idt
.base
);
4139 /* linux segment setup */
4141 uint64_t *gdt_table
;
4142 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4143 PROT_READ
|PROT_WRITE
,
4144 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4145 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4146 gdt_table
= g2h(env
->gdt
.base
);
4148 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4149 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4150 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4152 /* 64 bit code segment */
4153 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4154 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4156 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4158 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4159 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4160 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4162 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4163 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4165 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4166 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4167 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4168 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4169 /* This hack makes Wine work... */
4170 env
->segs
[R_FS
].selector
= 0;
4172 cpu_x86_load_seg(env
, R_DS
, 0);
4173 cpu_x86_load_seg(env
, R_ES
, 0);
4174 cpu_x86_load_seg(env
, R_FS
, 0);
4175 cpu_x86_load_seg(env
, R_GS
, 0);
4177 #elif defined(TARGET_AARCH64)
4181 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4183 "The selected ARM CPU does not support 64 bit mode\n");
4187 for (i
= 0; i
< 31; i
++) {
4188 env
->xregs
[i
] = regs
->regs
[i
];
4191 env
->xregs
[31] = regs
->sp
;
4193 #elif defined(TARGET_ARM)
4196 cpsr_write(env
, regs
->uregs
[16], 0xffffffff);
4197 for(i
= 0; i
< 16; i
++) {
4198 env
->regs
[i
] = regs
->uregs
[i
];
4201 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4202 && (info
->elf_flags
& EF_ARM_BE8
)) {
4203 env
->bswap_code
= 1;
4206 #elif defined(TARGET_UNICORE32)
4209 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4210 for (i
= 0; i
< 32; i
++) {
4211 env
->regs
[i
] = regs
->uregs
[i
];
4214 #elif defined(TARGET_SPARC)
4218 env
->npc
= regs
->npc
;
4220 for(i
= 0; i
< 8; i
++)
4221 env
->gregs
[i
] = regs
->u_regs
[i
];
4222 for(i
= 0; i
< 8; i
++)
4223 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4225 #elif defined(TARGET_PPC)
4229 #if defined(TARGET_PPC64)
4230 #if defined(TARGET_ABI32)
4231 env
->msr
&= ~((target_ulong
)1 << MSR_SF
);
4233 env
->msr
|= (target_ulong
)1 << MSR_SF
;
4236 env
->nip
= regs
->nip
;
4237 for(i
= 0; i
< 32; i
++) {
4238 env
->gpr
[i
] = regs
->gpr
[i
];
4241 #elif defined(TARGET_M68K)
4244 env
->dregs
[0] = regs
->d0
;
4245 env
->dregs
[1] = regs
->d1
;
4246 env
->dregs
[2] = regs
->d2
;
4247 env
->dregs
[3] = regs
->d3
;
4248 env
->dregs
[4] = regs
->d4
;
4249 env
->dregs
[5] = regs
->d5
;
4250 env
->dregs
[6] = regs
->d6
;
4251 env
->dregs
[7] = regs
->d7
;
4252 env
->aregs
[0] = regs
->a0
;
4253 env
->aregs
[1] = regs
->a1
;
4254 env
->aregs
[2] = regs
->a2
;
4255 env
->aregs
[3] = regs
->a3
;
4256 env
->aregs
[4] = regs
->a4
;
4257 env
->aregs
[5] = regs
->a5
;
4258 env
->aregs
[6] = regs
->a6
;
4259 env
->aregs
[7] = regs
->usp
;
4261 ts
->sim_syscalls
= 1;
4263 #elif defined(TARGET_MICROBLAZE)
4265 env
->regs
[0] = regs
->r0
;
4266 env
->regs
[1] = regs
->r1
;
4267 env
->regs
[2] = regs
->r2
;
4268 env
->regs
[3] = regs
->r3
;
4269 env
->regs
[4] = regs
->r4
;
4270 env
->regs
[5] = regs
->r5
;
4271 env
->regs
[6] = regs
->r6
;
4272 env
->regs
[7] = regs
->r7
;
4273 env
->regs
[8] = regs
->r8
;
4274 env
->regs
[9] = regs
->r9
;
4275 env
->regs
[10] = regs
->r10
;
4276 env
->regs
[11] = regs
->r11
;
4277 env
->regs
[12] = regs
->r12
;
4278 env
->regs
[13] = regs
->r13
;
4279 env
->regs
[14] = regs
->r14
;
4280 env
->regs
[15] = regs
->r15
;
4281 env
->regs
[16] = regs
->r16
;
4282 env
->regs
[17] = regs
->r17
;
4283 env
->regs
[18] = regs
->r18
;
4284 env
->regs
[19] = regs
->r19
;
4285 env
->regs
[20] = regs
->r20
;
4286 env
->regs
[21] = regs
->r21
;
4287 env
->regs
[22] = regs
->r22
;
4288 env
->regs
[23] = regs
->r23
;
4289 env
->regs
[24] = regs
->r24
;
4290 env
->regs
[25] = regs
->r25
;
4291 env
->regs
[26] = regs
->r26
;
4292 env
->regs
[27] = regs
->r27
;
4293 env
->regs
[28] = regs
->r28
;
4294 env
->regs
[29] = regs
->r29
;
4295 env
->regs
[30] = regs
->r30
;
4296 env
->regs
[31] = regs
->r31
;
4297 env
->sregs
[SR_PC
] = regs
->pc
;
4299 #elif defined(TARGET_MIPS)
4303 for(i
= 0; i
< 32; i
++) {
4304 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4306 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4307 if (regs
->cp0_epc
& 1) {
4308 env
->hflags
|= MIPS_HFLAG_M16
;
4311 #elif defined(TARGET_OPENRISC)
4315 for (i
= 0; i
< 32; i
++) {
4316 env
->gpr
[i
] = regs
->gpr
[i
];
4322 #elif defined(TARGET_SH4)
4326 for(i
= 0; i
< 16; i
++) {
4327 env
->gregs
[i
] = regs
->regs
[i
];
4331 #elif defined(TARGET_ALPHA)
4335 for(i
= 0; i
< 28; i
++) {
4336 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4338 env
->ir
[IR_SP
] = regs
->usp
;
4341 #elif defined(TARGET_CRIS)
4343 env
->regs
[0] = regs
->r0
;
4344 env
->regs
[1] = regs
->r1
;
4345 env
->regs
[2] = regs
->r2
;
4346 env
->regs
[3] = regs
->r3
;
4347 env
->regs
[4] = regs
->r4
;
4348 env
->regs
[5] = regs
->r5
;
4349 env
->regs
[6] = regs
->r6
;
4350 env
->regs
[7] = regs
->r7
;
4351 env
->regs
[8] = regs
->r8
;
4352 env
->regs
[9] = regs
->r9
;
4353 env
->regs
[10] = regs
->r10
;
4354 env
->regs
[11] = regs
->r11
;
4355 env
->regs
[12] = regs
->r12
;
4356 env
->regs
[13] = regs
->r13
;
4357 env
->regs
[14] = info
->start_stack
;
4358 env
->regs
[15] = regs
->acr
;
4359 env
->pc
= regs
->erp
;
4361 #elif defined(TARGET_S390X)
4364 for (i
= 0; i
< 16; i
++) {
4365 env
->regs
[i
] = regs
->gprs
[i
];
4367 env
->psw
.mask
= regs
->psw
.mask
;
4368 env
->psw
.addr
= regs
->psw
.addr
;
4371 #error unsupported target CPU
4374 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4375 ts
->stack_base
= info
->start_stack
;
4376 ts
->heap_base
= info
->brk
;
4377 /* This will be filled in on the first SYS_HEAPINFO call. */
4382 if (gdbserver_start(gdbstub_port
) < 0) {
4383 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4387 gdb_handlesig(cpu
, 0);