target-arm: A64: Implement AdvSIMD reciprocal estimate insns URECPE, FRECPE
[qemu/ar7.git] / target-arm / helper-a64.c
blobcea2468b306e9ab03b0ac58b4926c399a0464a3f
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "exec/gdbstub.h"
22 #include "helper.h"
23 #include "qemu/host-utils.h"
24 #include "sysemu/sysemu.h"
25 #include "qemu/bitops.h"
27 /* C2.4.7 Multiply and divide */
28 /* special cases for 0 and LLONG_MIN are mandated by the standard */
29 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
31 if (den == 0) {
32 return 0;
34 return num / den;
37 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
39 if (den == 0) {
40 return 0;
42 if (num == LLONG_MIN && den == -1) {
43 return LLONG_MIN;
45 return num / den;
48 uint64_t HELPER(clz64)(uint64_t x)
50 return clz64(x);
53 uint64_t HELPER(cls64)(uint64_t x)
55 return clrsb64(x);
58 uint32_t HELPER(cls32)(uint32_t x)
60 return clrsb32(x);
63 uint32_t HELPER(clz32)(uint32_t x)
65 return clz32(x);
68 uint64_t HELPER(rbit64)(uint64_t x)
70 /* assign the correct byte position */
71 x = bswap64(x);
73 /* assign the correct nibble position */
74 x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4)
75 | ((x & 0x0f0f0f0f0f0f0f0fULL) << 4);
77 /* assign the correct bit position */
78 x = ((x & 0x8888888888888888ULL) >> 3)
79 | ((x & 0x4444444444444444ULL) >> 1)
80 | ((x & 0x2222222222222222ULL) << 1)
81 | ((x & 0x1111111111111111ULL) << 3);
83 return x;
86 /* Convert a softfloat float_relation_ (as returned by
87 * the float*_compare functions) to the correct ARM
88 * NZCV flag state.
90 static inline uint32_t float_rel_to_flags(int res)
92 uint64_t flags;
93 switch (res) {
94 case float_relation_equal:
95 flags = PSTATE_Z | PSTATE_C;
96 break;
97 case float_relation_less:
98 flags = PSTATE_N;
99 break;
100 case float_relation_greater:
101 flags = PSTATE_C;
102 break;
103 case float_relation_unordered:
104 default:
105 flags = PSTATE_C | PSTATE_V;
106 break;
108 return flags;
111 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
113 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
116 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
118 return float_rel_to_flags(float32_compare(x, y, fp_status));
121 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
123 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
126 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
128 return float_rel_to_flags(float64_compare(x, y, fp_status));
131 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
133 float_status *fpst = fpstp;
135 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
136 (float32_is_infinity(a) && float32_is_zero(b))) {
137 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
138 return make_float32((1U << 30) |
139 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
141 return float32_mul(a, b, fpst);
144 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
146 float_status *fpst = fpstp;
148 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
149 (float64_is_infinity(a) && float64_is_zero(b))) {
150 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
151 return make_float64((1ULL << 62) |
152 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
154 return float64_mul(a, b, fpst);
157 uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
158 uint32_t rn, uint32_t numregs)
160 /* Helper function for SIMD TBL and TBX. We have to do the table
161 * lookup part for the 64 bits worth of indices we're passed in.
162 * result is the initial results vector (either zeroes for TBL
163 * or some guest values for TBX), rn the register number where
164 * the table starts, and numregs the number of registers in the table.
165 * We return the results of the lookups.
167 int shift;
169 for (shift = 0; shift < 64; shift += 8) {
170 int index = extract64(indices, shift, 8);
171 if (index < 16 * numregs) {
172 /* Convert index (a byte offset into the virtual table
173 * which is a series of 128-bit vectors concatenated)
174 * into the correct vfp.regs[] element plus a bit offset
175 * into that element, bearing in mind that the table
176 * can wrap around from V31 to V0.
178 int elt = (rn * 2 + (index >> 3)) % 64;
179 int bitidx = (index & 7) * 8;
180 uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
182 result = deposit64(result, shift, 8, val);
185 return result;
188 /* Helper function for 64 bit polynomial multiply case:
189 * perform PolynomialMult(op1, op2) and return either the top or
190 * bottom half of the 128 bit result.
192 uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
194 int bitnum;
195 uint64_t res = 0;
197 for (bitnum = 0; bitnum < 64; bitnum++) {
198 if (op1 & (1ULL << bitnum)) {
199 res ^= op2 << bitnum;
202 return res;
204 uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
206 int bitnum;
207 uint64_t res = 0;
209 /* bit 0 of op1 can't influence the high 64 bits at all */
210 for (bitnum = 1; bitnum < 64; bitnum++) {
211 if (op1 & (1ULL << bitnum)) {
212 res ^= op2 >> (64 - bitnum);
215 return res;
218 /* 64bit/double versions of the neon float compare functions */
219 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
221 float_status *fpst = fpstp;
222 return -float64_eq_quiet(a, b, fpst);
225 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
227 float_status *fpst = fpstp;
228 return -float64_le(b, a, fpst);
231 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
233 float_status *fpst = fpstp;
234 return -float64_lt(b, a, fpst);
237 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
238 * versions, these do a fully fused multiply-add or
239 * multiply-add-and-halve.
241 #define float32_two make_float32(0x40000000)
242 #define float32_three make_float32(0x40400000)
243 #define float32_one_point_five make_float32(0x3fc00000)
245 #define float64_two make_float64(0x4000000000000000ULL)
246 #define float64_three make_float64(0x4008000000000000ULL)
247 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
249 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
251 float_status *fpst = fpstp;
253 a = float32_chs(a);
254 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
255 (float32_is_infinity(b) && float32_is_zero(a))) {
256 return float32_two;
258 return float32_muladd(a, b, float32_two, 0, fpst);
261 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
263 float_status *fpst = fpstp;
265 a = float64_chs(a);
266 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
267 (float64_is_infinity(b) && float64_is_zero(a))) {
268 return float64_two;
270 return float64_muladd(a, b, float64_two, 0, fpst);
273 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
275 float_status *fpst = fpstp;
277 a = float32_chs(a);
278 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
279 (float32_is_infinity(b) && float32_is_zero(a))) {
280 return float32_one_point_five;
282 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
285 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
287 float_status *fpst = fpstp;
289 a = float64_chs(a);
290 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
291 (float64_is_infinity(b) && float64_is_zero(a))) {
292 return float64_one_point_five;
294 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
297 /* Pairwise long add: add pairs of adjacent elements into
298 * double-width elements in the result (eg _s8 is an 8x8->16 op)
300 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
302 uint64_t nsignmask = 0x0080008000800080ULL;
303 uint64_t wsignmask = 0x8000800080008000ULL;
304 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
305 uint64_t tmp1, tmp2;
306 uint64_t res, signres;
308 /* Extract odd elements, sign extend each to a 16 bit field */
309 tmp1 = a & elementmask;
310 tmp1 ^= nsignmask;
311 tmp1 |= wsignmask;
312 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
313 /* Ditto for the even elements */
314 tmp2 = (a >> 8) & elementmask;
315 tmp2 ^= nsignmask;
316 tmp2 |= wsignmask;
317 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
319 /* calculate the result by summing bits 0..14, 16..22, etc,
320 * and then adjusting the sign bits 15, 23, etc manually.
321 * This ensures the addition can't overflow the 16 bit field.
323 signres = (tmp1 ^ tmp2) & wsignmask;
324 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
325 res ^= signres;
327 return res;
330 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
332 uint64_t tmp;
334 tmp = a & 0x00ff00ff00ff00ffULL;
335 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
336 return tmp;
339 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
341 int32_t reslo, reshi;
343 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
344 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
346 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
349 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
351 uint64_t tmp;
353 tmp = a & 0x0000ffff0000ffffULL;
354 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
355 return tmp;
358 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
359 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
361 float_status *fpst = fpstp;
362 uint32_t val32, sbit;
363 int32_t exp;
365 if (float32_is_any_nan(a)) {
366 float32 nan = a;
367 if (float32_is_signaling_nan(a)) {
368 float_raise(float_flag_invalid, fpst);
369 nan = float32_maybe_silence_nan(a);
371 if (fpst->default_nan_mode) {
372 nan = float32_default_nan;
374 return nan;
377 val32 = float32_val(a);
378 sbit = 0x80000000ULL & val32;
379 exp = extract32(val32, 23, 8);
381 if (exp == 0) {
382 return make_float32(sbit | (0xfe << 23));
383 } else {
384 return make_float32(sbit | (~exp & 0xff) << 23);
388 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
390 float_status *fpst = fpstp;
391 uint64_t val64, sbit;
392 int64_t exp;
394 if (float64_is_any_nan(a)) {
395 float64 nan = a;
396 if (float64_is_signaling_nan(a)) {
397 float_raise(float_flag_invalid, fpst);
398 nan = float64_maybe_silence_nan(a);
400 if (fpst->default_nan_mode) {
401 nan = float64_default_nan;
403 return nan;
406 val64 = float64_val(a);
407 sbit = 0x8000000000000000ULL & val64;
408 exp = extract64(float64_val(a), 52, 11);
410 if (exp == 0) {
411 return make_float64(sbit | (0x7feULL << 52));
412 } else {
413 return make_float64(sbit | (~exp & 0x7ffULL) << 52);