4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/boards.h"
32 #include "hw/xen/xen.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #if defined(CONFIG_USER_ONLY)
41 #else /* !CONFIG_USER_ONLY */
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/hw_accel.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <linux/falloc.h>
58 #include "exec/cpu-all.h"
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
72 #include "qemu/mmap-alloc.h"
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
85 static MemoryRegion
*system_memory
;
86 static MemoryRegion
*system_io
;
88 AddressSpace address_space_io
;
89 AddressSpace address_space_memory
;
91 MemoryRegion io_mem_rom
, io_mem_notdirty
;
92 static MemoryRegion io_mem_unassigned
;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits
;
109 bool target_page_bits_decided
;
112 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
113 /* current CPU in the current thread. It is only valid inside
115 __thread CPUState
*current_cpu
;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
121 uintptr_t qemu_host_page_size
;
122 intptr_t qemu_host_page_mask
;
123 uintptr_t qemu_real_host_page_size
;
124 intptr_t qemu_real_host_page_mask
;
126 bool set_preferred_target_page_bits(int bits
)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits
>= TARGET_PAGE_BITS_MIN
);
135 if (target_page_bits
== 0 || target_page_bits
> bits
) {
136 if (target_page_bits_decided
) {
139 target_page_bits
= bits
;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits
== 0) {
151 target_page_bits
= TARGET_PAGE_BITS_MIN
;
153 target_page_bits_decided
= true;
157 typedef struct PhysPageEntry PhysPageEntry
;
159 struct PhysPageEntry
{
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node
[P_L2_SIZE
];
178 typedef struct PhysPageMap
{
181 unsigned sections_nb
;
182 unsigned sections_nb_alloc
;
184 unsigned nodes_nb_alloc
;
186 MemoryRegionSection
*sections
;
189 struct AddressSpaceDispatch
{
192 MemoryRegionSection
*mru_section
;
193 /* This is a multi-level map on the physical address space.
194 * The bottom level has pointers to MemoryRegionSections.
196 PhysPageEntry phys_map
;
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t
{
206 uint16_t sub_section
[];
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener
*listener
);
218 static MemoryRegion io_mem_watch
;
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
227 struct CPUAddressSpace
{
230 struct AddressSpaceDispatch
*memory_dispatch
;
231 MemoryListener tcg_as_listener
;
234 struct DirtyBitmapSnapshot
{
237 unsigned long dirty
[];
242 #if !defined(CONFIG_USER_ONLY)
244 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
246 static unsigned alloc_hint
= 16;
247 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
248 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
249 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
250 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
251 alloc_hint
= map
->nodes_nb_alloc
;
255 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
262 ret
= map
->nodes_nb
++;
264 assert(ret
!= PHYS_MAP_NODE_NIL
);
265 assert(ret
!= map
->nodes_nb_alloc
);
267 e
.skip
= leaf
? 0 : 1;
268 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
269 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
270 memcpy(&p
[i
], &e
, sizeof(e
));
275 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
276 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
280 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
282 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
283 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
285 p
= map
->nodes
[lp
->ptr
];
286 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
288 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
289 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
295 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
301 static void phys_page_set(AddressSpaceDispatch
*d
,
302 hwaddr index
, hwaddr nb
,
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
308 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
314 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
316 unsigned valid_ptr
= P_L2_SIZE
;
321 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
326 for (i
= 0; i
< P_L2_SIZE
; i
++) {
327 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
334 phys_page_compact(&p
[i
], nodes
);
338 /* We can only compress if there's only one child. */
343 assert(valid_ptr
< P_L2_SIZE
);
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
350 lp
->ptr
= p
[valid_ptr
].ptr
;
351 if (!p
[valid_ptr
].skip
) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
360 lp
->skip
+= p
[valid_ptr
].skip
;
364 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
366 if (d
->phys_map
.skip
) {
367 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
371 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
377 return int128_gethi(section
->size
) ||
378 range_covers_byte(section
->offset_within_address_space
,
379 int128_getlo(section
->size
), addr
);
382 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
384 PhysPageEntry lp
= d
->phys_map
, *p
;
385 Node
*nodes
= d
->map
.nodes
;
386 MemoryRegionSection
*sections
= d
->map
.sections
;
387 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
390 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
391 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
392 return §ions
[PHYS_SECTION_UNASSIGNED
];
395 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
398 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
399 return §ions
[lp
.ptr
];
401 return §ions
[PHYS_SECTION_UNASSIGNED
];
405 bool memory_region_is_unassigned(MemoryRegion
*mr
)
407 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
408 && mr
!= &io_mem_watch
;
411 /* Called from RCU critical section */
412 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
414 bool resolve_subpage
)
416 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
420 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
421 section_covers_addr(section
, addr
)) {
424 section
= phys_page_find(d
, addr
);
427 if (resolve_subpage
&& section
->mr
->subpage
) {
428 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
429 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
432 atomic_set(&d
->mru_section
, section
);
437 /* Called from RCU critical section */
438 static MemoryRegionSection
*
439 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
440 hwaddr
*plen
, bool resolve_subpage
)
442 MemoryRegionSection
*section
;
446 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
447 /* Compute offset within MemoryRegionSection */
448 addr
-= section
->offset_within_address_space
;
450 /* Compute offset within MemoryRegion */
451 *xlat
= addr
+ section
->offset_within_region
;
455 /* MMIO registers can be expected to perform full-width accesses based only
456 * on their address, without considering adjacent registers that could
457 * decode to completely different MemoryRegions. When such registers
458 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
459 * regions overlap wildly. For this reason we cannot clamp the accesses
462 * If the length is small (as is the case for address_space_ldl/stl),
463 * everything works fine. If the incoming length is large, however,
464 * the caller really has to do the clamping through memory_access_size.
466 if (memory_region_is_ram(mr
)) {
467 diff
= int128_sub(section
->size
, int128_make64(addr
));
468 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
473 /* Called from RCU critical section */
474 static MemoryRegionSection
address_space_do_translate(AddressSpace
*as
,
482 MemoryRegionSection
*section
;
486 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
487 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, is_mmio
);
490 if (!mr
->iommu_ops
) {
494 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
?
495 IOMMU_WO
: IOMMU_RO
);
496 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
497 | (addr
& iotlb
.addr_mask
));
498 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
499 if (!(iotlb
.perm
& (1 << is_write
))) {
503 as
= iotlb
.target_as
;
511 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
514 /* Called from RCU critical section */
515 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
518 MemoryRegionSection section
;
521 /* Try to get maximum page mask during translation. */
524 /* This can never be MMIO. */
525 section
= address_space_do_translate(as
, addr
, &xlat
, &plen
,
528 /* Illegal translation */
529 if (section
.mr
== &io_mem_unassigned
) {
533 /* Convert memory region offset into address space offset */
534 xlat
+= section
.offset_within_address_space
-
535 section
.offset_within_region
;
537 if (plen
== (hwaddr
)-1) {
539 * We use default page size here. Logically it only happens
540 * for identity mappings.
542 plen
= TARGET_PAGE_SIZE
;
545 /* Convert to address mask */
548 return (IOMMUTLBEntry
) {
549 .target_as
= section
.address_space
,
550 .iova
= addr
& ~plen
,
551 .translated_addr
= xlat
& ~plen
,
553 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
558 return (IOMMUTLBEntry
) {0};
561 /* Called from RCU critical section */
562 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
563 hwaddr
*xlat
, hwaddr
*plen
,
567 MemoryRegionSection section
;
569 /* This can be MMIO, so setup MMIO bit. */
570 section
= address_space_do_translate(as
, addr
, xlat
, plen
, is_write
, true);
573 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
574 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
575 *plen
= MIN(page
, *plen
);
581 /* Called from RCU critical section */
582 MemoryRegionSection
*
583 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
584 hwaddr
*xlat
, hwaddr
*plen
)
586 MemoryRegionSection
*section
;
587 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
589 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
591 assert(!section
->mr
->iommu_ops
);
596 #if !defined(CONFIG_USER_ONLY)
598 static int cpu_common_post_load(void *opaque
, int version_id
)
600 CPUState
*cpu
= opaque
;
602 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
603 version_id is increased. */
604 cpu
->interrupt_request
&= ~0x01;
610 static int cpu_common_pre_load(void *opaque
)
612 CPUState
*cpu
= opaque
;
614 cpu
->exception_index
= -1;
619 static bool cpu_common_exception_index_needed(void *opaque
)
621 CPUState
*cpu
= opaque
;
623 return tcg_enabled() && cpu
->exception_index
!= -1;
626 static const VMStateDescription vmstate_cpu_common_exception_index
= {
627 .name
= "cpu_common/exception_index",
629 .minimum_version_id
= 1,
630 .needed
= cpu_common_exception_index_needed
,
631 .fields
= (VMStateField
[]) {
632 VMSTATE_INT32(exception_index
, CPUState
),
633 VMSTATE_END_OF_LIST()
637 static bool cpu_common_crash_occurred_needed(void *opaque
)
639 CPUState
*cpu
= opaque
;
641 return cpu
->crash_occurred
;
644 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
645 .name
= "cpu_common/crash_occurred",
647 .minimum_version_id
= 1,
648 .needed
= cpu_common_crash_occurred_needed
,
649 .fields
= (VMStateField
[]) {
650 VMSTATE_BOOL(crash_occurred
, CPUState
),
651 VMSTATE_END_OF_LIST()
655 const VMStateDescription vmstate_cpu_common
= {
656 .name
= "cpu_common",
658 .minimum_version_id
= 1,
659 .pre_load
= cpu_common_pre_load
,
660 .post_load
= cpu_common_post_load
,
661 .fields
= (VMStateField
[]) {
662 VMSTATE_UINT32(halted
, CPUState
),
663 VMSTATE_UINT32(interrupt_request
, CPUState
),
664 VMSTATE_END_OF_LIST()
666 .subsections
= (const VMStateDescription
*[]) {
667 &vmstate_cpu_common_exception_index
,
668 &vmstate_cpu_common_crash_occurred
,
675 CPUState
*qemu_get_cpu(int index
)
680 if (cpu
->cpu_index
== index
) {
688 #if !defined(CONFIG_USER_ONLY)
689 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
691 CPUAddressSpace
*newas
;
693 /* Target code should have set num_ases before calling us */
694 assert(asidx
< cpu
->num_ases
);
697 /* address space 0 gets the convenience alias */
701 /* KVM cannot currently support multiple address spaces. */
702 assert(asidx
== 0 || !kvm_enabled());
704 if (!cpu
->cpu_ases
) {
705 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
708 newas
= &cpu
->cpu_ases
[asidx
];
712 newas
->tcg_as_listener
.commit
= tcg_commit
;
713 memory_listener_register(&newas
->tcg_as_listener
, as
);
717 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
719 /* Return the AddressSpace corresponding to the specified index */
720 return cpu
->cpu_ases
[asidx
].as
;
724 void cpu_exec_unrealizefn(CPUState
*cpu
)
726 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
728 cpu_list_remove(cpu
);
730 if (cc
->vmsd
!= NULL
) {
731 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
733 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
734 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
738 void cpu_exec_initfn(CPUState
*cpu
)
743 #ifndef CONFIG_USER_ONLY
744 cpu
->thread_id
= qemu_get_thread_id();
746 /* This is a softmmu CPU object, so create a property for it
747 * so users can wire up its memory. (This can't go in qom/cpu.c
748 * because that file is compiled only once for both user-mode
749 * and system builds.) The default if no link is set up is to use
750 * the system address space.
752 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
753 (Object
**)&cpu
->memory
,
754 qdev_prop_allow_set_link_before_realize
,
755 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
757 cpu
->memory
= system_memory
;
758 object_ref(OBJECT(cpu
->memory
));
762 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
764 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
768 #ifndef CONFIG_USER_ONLY
769 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
770 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
772 if (cc
->vmsd
!= NULL
) {
773 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
778 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
780 /* Flush the whole TB as this will not have race conditions
781 * even if we don't have proper locking yet.
782 * Ideally we would just invalidate the TBs for the
788 #if defined(CONFIG_USER_ONLY)
789 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
794 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
800 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
804 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
805 int flags
, CPUWatchpoint
**watchpoint
)
810 /* Add a watchpoint. */
811 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
812 int flags
, CPUWatchpoint
**watchpoint
)
816 /* forbid ranges which are empty or run off the end of the address space */
817 if (len
== 0 || (addr
+ len
- 1) < addr
) {
818 error_report("tried to set invalid watchpoint at %"
819 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
822 wp
= g_malloc(sizeof(*wp
));
828 /* keep all GDB-injected watchpoints in front */
829 if (flags
& BP_GDB
) {
830 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
832 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
835 tlb_flush_page(cpu
, addr
);
842 /* Remove a specific watchpoint. */
843 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
848 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
849 if (addr
== wp
->vaddr
&& len
== wp
->len
850 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
851 cpu_watchpoint_remove_by_ref(cpu
, wp
);
858 /* Remove a specific watchpoint by reference. */
859 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
861 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
863 tlb_flush_page(cpu
, watchpoint
->vaddr
);
868 /* Remove all matching watchpoints. */
869 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
871 CPUWatchpoint
*wp
, *next
;
873 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
874 if (wp
->flags
& mask
) {
875 cpu_watchpoint_remove_by_ref(cpu
, wp
);
880 /* Return true if this watchpoint address matches the specified
881 * access (ie the address range covered by the watchpoint overlaps
882 * partially or completely with the address range covered by the
885 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
889 /* We know the lengths are non-zero, but a little caution is
890 * required to avoid errors in the case where the range ends
891 * exactly at the top of the address space and so addr + len
892 * wraps round to zero.
894 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
895 vaddr addrend
= addr
+ len
- 1;
897 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
902 /* Add a breakpoint. */
903 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
904 CPUBreakpoint
**breakpoint
)
908 bp
= g_malloc(sizeof(*bp
));
913 /* keep all GDB-injected breakpoints in front */
914 if (flags
& BP_GDB
) {
915 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
917 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
920 breakpoint_invalidate(cpu
, pc
);
928 /* Remove a specific breakpoint. */
929 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
933 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
934 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
935 cpu_breakpoint_remove_by_ref(cpu
, bp
);
942 /* Remove a specific breakpoint by reference. */
943 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
945 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
947 breakpoint_invalidate(cpu
, breakpoint
->pc
);
952 /* Remove all matching breakpoints. */
953 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
955 CPUBreakpoint
*bp
, *next
;
957 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
958 if (bp
->flags
& mask
) {
959 cpu_breakpoint_remove_by_ref(cpu
, bp
);
964 /* enable or disable single step mode. EXCP_DEBUG is returned by the
965 CPU loop after each instruction */
966 void cpu_single_step(CPUState
*cpu
, int enabled
)
968 if (cpu
->singlestep_enabled
!= enabled
) {
969 cpu
->singlestep_enabled
= enabled
;
971 kvm_update_guest_debug(cpu
, 0);
973 /* must flush all the translated code to avoid inconsistencies */
974 /* XXX: only flush what is necessary */
980 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
987 fprintf(stderr
, "qemu: fatal: ");
988 vfprintf(stderr
, fmt
, ap
);
989 fprintf(stderr
, "\n");
990 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
991 if (qemu_log_separate()) {
993 qemu_log("qemu: fatal: ");
994 qemu_log_vprintf(fmt
, ap2
);
996 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1004 #if defined(CONFIG_USER_ONLY)
1006 struct sigaction act
;
1007 sigfillset(&act
.sa_mask
);
1008 act
.sa_handler
= SIG_DFL
;
1009 sigaction(SIGABRT
, &act
, NULL
);
1015 #if !defined(CONFIG_USER_ONLY)
1016 /* Called from RCU critical section */
1017 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1021 block
= atomic_rcu_read(&ram_list
.mru_block
);
1022 if (block
&& addr
- block
->offset
< block
->max_length
) {
1025 RAMBLOCK_FOREACH(block
) {
1026 if (addr
- block
->offset
< block
->max_length
) {
1031 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1035 /* It is safe to write mru_block outside the iothread lock. This
1040 * xxx removed from list
1044 * call_rcu(reclaim_ramblock, xxx);
1047 * atomic_rcu_set is not needed here. The block was already published
1048 * when it was placed into the list. Here we're just making an extra
1049 * copy of the pointer.
1051 ram_list
.mru_block
= block
;
1055 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1062 end
= TARGET_PAGE_ALIGN(start
+ length
);
1063 start
&= TARGET_PAGE_MASK
;
1066 block
= qemu_get_ram_block(start
);
1067 assert(block
== qemu_get_ram_block(end
- 1));
1068 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1070 tlb_reset_dirty(cpu
, start1
, length
);
1075 /* Note: start and end must be within the same ram block. */
1076 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1080 DirtyMemoryBlocks
*blocks
;
1081 unsigned long end
, page
;
1088 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1089 page
= start
>> TARGET_PAGE_BITS
;
1093 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1095 while (page
< end
) {
1096 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1097 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1098 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1100 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1107 if (dirty
&& tcg_enabled()) {
1108 tlb_reset_dirty_range_all(start
, length
);
1114 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1115 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1117 DirtyMemoryBlocks
*blocks
;
1118 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1119 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1120 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1121 DirtyBitmapSnapshot
*snap
;
1122 unsigned long page
, end
, dest
;
1124 snap
= g_malloc0(sizeof(*snap
) +
1125 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1126 snap
->start
= first
;
1129 page
= first
>> TARGET_PAGE_BITS
;
1130 end
= last
>> TARGET_PAGE_BITS
;
1135 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1137 while (page
< end
) {
1138 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1139 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1140 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1142 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1143 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1144 offset
>>= BITS_PER_LEVEL
;
1146 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1147 blocks
->blocks
[idx
] + offset
,
1150 dest
+= num
>> BITS_PER_LEVEL
;
1155 if (tcg_enabled()) {
1156 tlb_reset_dirty_range_all(start
, length
);
1162 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1166 unsigned long page
, end
;
1168 assert(start
>= snap
->start
);
1169 assert(start
+ length
<= snap
->end
);
1171 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1172 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1174 while (page
< end
) {
1175 if (test_bit(page
, snap
->dirty
)) {
1183 /* Called from RCU critical section */
1184 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1185 MemoryRegionSection
*section
,
1187 hwaddr paddr
, hwaddr xlat
,
1189 target_ulong
*address
)
1194 if (memory_region_is_ram(section
->mr
)) {
1196 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1197 if (!section
->readonly
) {
1198 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1200 iotlb
|= PHYS_SECTION_ROM
;
1203 AddressSpaceDispatch
*d
;
1205 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1206 iotlb
= section
- d
->map
.sections
;
1210 /* Make accesses to pages with watchpoints go via the
1211 watchpoint trap routines. */
1212 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1213 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1214 /* Avoid trapping reads of pages with a write breakpoint. */
1215 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1216 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1217 *address
|= TLB_MMIO
;
1225 #endif /* defined(CONFIG_USER_ONLY) */
1227 #if !defined(CONFIG_USER_ONLY)
1229 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1231 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1233 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1234 qemu_anon_ram_alloc
;
1237 * Set a custom physical guest memory alloator.
1238 * Accelerators with unusual needs may need this. Hopefully, we can
1239 * get rid of it eventually.
1241 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1243 phys_mem_alloc
= alloc
;
1246 static uint16_t phys_section_add(PhysPageMap
*map
,
1247 MemoryRegionSection
*section
)
1249 /* The physical section number is ORed with a page-aligned
1250 * pointer to produce the iotlb entries. Thus it should
1251 * never overflow into the page-aligned value.
1253 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1255 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1256 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1257 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1258 map
->sections_nb_alloc
);
1260 map
->sections
[map
->sections_nb
] = *section
;
1261 memory_region_ref(section
->mr
);
1262 return map
->sections_nb
++;
1265 static void phys_section_destroy(MemoryRegion
*mr
)
1267 bool have_sub_page
= mr
->subpage
;
1269 memory_region_unref(mr
);
1271 if (have_sub_page
) {
1272 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1273 object_unref(OBJECT(&subpage
->iomem
));
1278 static void phys_sections_free(PhysPageMap
*map
)
1280 while (map
->sections_nb
> 0) {
1281 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1282 phys_section_destroy(section
->mr
);
1284 g_free(map
->sections
);
1288 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1291 hwaddr base
= section
->offset_within_address_space
1293 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1294 MemoryRegionSection subsection
= {
1295 .offset_within_address_space
= base
,
1296 .size
= int128_make64(TARGET_PAGE_SIZE
),
1300 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1302 if (!(existing
->mr
->subpage
)) {
1303 subpage
= subpage_init(d
->as
, base
);
1304 subsection
.address_space
= d
->as
;
1305 subsection
.mr
= &subpage
->iomem
;
1306 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1307 phys_section_add(&d
->map
, &subsection
));
1309 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1311 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1312 end
= start
+ int128_get64(section
->size
) - 1;
1313 subpage_register(subpage
, start
, end
,
1314 phys_section_add(&d
->map
, section
));
1318 static void register_multipage(AddressSpaceDispatch
*d
,
1319 MemoryRegionSection
*section
)
1321 hwaddr start_addr
= section
->offset_within_address_space
;
1322 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1323 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1327 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1330 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1332 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1333 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1334 MemoryRegionSection now
= *section
, remain
= *section
;
1335 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1337 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1338 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1339 - now
.offset_within_address_space
;
1341 now
.size
= int128_min(int128_make64(left
), now
.size
);
1342 register_subpage(d
, &now
);
1344 now
.size
= int128_zero();
1346 while (int128_ne(remain
.size
, now
.size
)) {
1347 remain
.size
= int128_sub(remain
.size
, now
.size
);
1348 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1349 remain
.offset_within_region
+= int128_get64(now
.size
);
1351 if (int128_lt(remain
.size
, page_size
)) {
1352 register_subpage(d
, &now
);
1353 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1354 now
.size
= page_size
;
1355 register_subpage(d
, &now
);
1357 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1358 register_multipage(d
, &now
);
1363 void qemu_flush_coalesced_mmio_buffer(void)
1366 kvm_flush_coalesced_mmio_buffer();
1369 void qemu_mutex_lock_ramlist(void)
1371 qemu_mutex_lock(&ram_list
.mutex
);
1374 void qemu_mutex_unlock_ramlist(void)
1376 qemu_mutex_unlock(&ram_list
.mutex
);
1379 void ram_block_dump(Monitor
*mon
)
1385 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1386 "Block Name", "PSize", "Offset", "Used", "Total");
1387 RAMBLOCK_FOREACH(block
) {
1388 psize
= size_to_str(block
->page_size
);
1389 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1390 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1391 (uint64_t)block
->offset
,
1392 (uint64_t)block
->used_length
,
1393 (uint64_t)block
->max_length
);
1401 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1402 * may or may not name the same files / on the same filesystem now as
1403 * when we actually open and map them. Iterate over the file
1404 * descriptors instead, and use qemu_fd_getpagesize().
1406 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1409 long *hpsize_min
= opaque
;
1411 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1412 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1414 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1415 if (hpsize
< *hpsize_min
) {
1416 *hpsize_min
= hpsize
;
1419 *hpsize_min
= getpagesize();
1426 long qemu_getrampagesize(void)
1428 long hpsize
= LONG_MAX
;
1429 long mainrampagesize
;
1430 Object
*memdev_root
;
1433 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1435 mainrampagesize
= getpagesize();
1438 /* it's possible we have memory-backend objects with
1439 * hugepage-backed RAM. these may get mapped into system
1440 * address space via -numa parameters or memory hotplug
1441 * hooks. we want to take these into account, but we
1442 * also want to make sure these supported hugepage
1443 * sizes are applicable across the entire range of memory
1444 * we may boot from, so we take the min across all
1445 * backends, and assume normal pages in cases where a
1446 * backend isn't backed by hugepages.
1448 memdev_root
= object_resolve_path("/objects", NULL
);
1450 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1452 if (hpsize
== LONG_MAX
) {
1453 /* No additional memory regions found ==> Report main RAM page size */
1454 return mainrampagesize
;
1457 /* If NUMA is disabled or the NUMA nodes are not backed with a
1458 * memory-backend, then there is at least one node using "normal" RAM,
1459 * so if its page size is smaller we have got to report that size instead.
1461 if (hpsize
> mainrampagesize
&&
1462 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1465 error_report("Huge page support disabled (n/a for main memory).");
1468 return mainrampagesize
;
1474 long qemu_getrampagesize(void)
1476 return getpagesize();
1481 static int64_t get_file_size(int fd
)
1483 int64_t size
= lseek(fd
, 0, SEEK_END
);
1490 static int file_ram_open(const char *path
,
1491 const char *region_name
,
1496 char *sanitized_name
;
1502 fd
= open(path
, O_RDWR
);
1504 /* @path names an existing file, use it */
1507 if (errno
== ENOENT
) {
1508 /* @path names a file that doesn't exist, create it */
1509 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1514 } else if (errno
== EISDIR
) {
1515 /* @path names a directory, create a file there */
1516 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1517 sanitized_name
= g_strdup(region_name
);
1518 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1524 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1526 g_free(sanitized_name
);
1528 fd
= mkstemp(filename
);
1536 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1537 error_setg_errno(errp
, errno
,
1538 "can't open backing store %s for guest RAM",
1543 * Try again on EINTR and EEXIST. The latter happens when
1544 * something else creates the file between our two open().
1551 static void *file_ram_alloc(RAMBlock
*block
,
1559 block
->page_size
= qemu_fd_getpagesize(fd
);
1560 block
->mr
->align
= block
->page_size
;
1561 #if defined(__s390x__)
1562 if (kvm_enabled()) {
1563 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1567 if (memory
< block
->page_size
) {
1568 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1569 "or larger than page size 0x%zx",
1570 memory
, block
->page_size
);
1574 memory
= ROUND_UP(memory
, block
->page_size
);
1577 * ftruncate is not supported by hugetlbfs in older
1578 * hosts, so don't bother bailing out on errors.
1579 * If anything goes wrong with it under other filesystems,
1582 * Do not truncate the non-empty backend file to avoid corrupting
1583 * the existing data in the file. Disabling shrinking is not
1584 * enough. For example, the current vNVDIMM implementation stores
1585 * the guest NVDIMM labels at the end of the backend file. If the
1586 * backend file is later extended, QEMU will not be able to find
1587 * those labels. Therefore, extending the non-empty backend file
1588 * is disabled as well.
1590 if (truncate
&& ftruncate(fd
, memory
)) {
1591 perror("ftruncate");
1594 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1595 block
->flags
& RAM_SHARED
);
1596 if (area
== MAP_FAILED
) {
1597 error_setg_errno(errp
, errno
,
1598 "unable to map backing store for guest RAM");
1603 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1604 if (errp
&& *errp
) {
1605 qemu_ram_munmap(area
, memory
);
1615 /* Called with the ramlist lock held. */
1616 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1618 RAMBlock
*block
, *next_block
;
1619 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1621 assert(size
!= 0); /* it would hand out same offset multiple times */
1623 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1627 RAMBLOCK_FOREACH(block
) {
1628 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1630 end
= block
->offset
+ block
->max_length
;
1632 RAMBLOCK_FOREACH(next_block
) {
1633 if (next_block
->offset
>= end
) {
1634 next
= MIN(next
, next_block
->offset
);
1637 if (next
- end
>= size
&& next
- end
< mingap
) {
1639 mingap
= next
- end
;
1643 if (offset
== RAM_ADDR_MAX
) {
1644 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1652 unsigned long last_ram_page(void)
1655 ram_addr_t last
= 0;
1658 RAMBLOCK_FOREACH(block
) {
1659 last
= MAX(last
, block
->offset
+ block
->max_length
);
1662 return last
>> TARGET_PAGE_BITS
;
1665 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1669 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1670 if (!machine_dump_guest_core(current_machine
)) {
1671 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1673 perror("qemu_madvise");
1674 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1675 "but dump_guest_core=off specified\n");
1680 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1685 bool qemu_ram_is_shared(RAMBlock
*rb
)
1687 return rb
->flags
& RAM_SHARED
;
1690 /* Called with iothread lock held. */
1691 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1696 assert(!new_block
->idstr
[0]);
1699 char *id
= qdev_get_dev_path(dev
);
1701 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1705 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1708 RAMBLOCK_FOREACH(block
) {
1709 if (block
!= new_block
&&
1710 !strcmp(block
->idstr
, new_block
->idstr
)) {
1711 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1719 /* Called with iothread lock held. */
1720 void qemu_ram_unset_idstr(RAMBlock
*block
)
1722 /* FIXME: arch_init.c assumes that this is not called throughout
1723 * migration. Ignore the problem since hot-unplug during migration
1724 * does not work anyway.
1727 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1731 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1733 return rb
->page_size
;
1736 /* Returns the largest size of page in use */
1737 size_t qemu_ram_pagesize_largest(void)
1742 RAMBLOCK_FOREACH(block
) {
1743 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1749 static int memory_try_enable_merging(void *addr
, size_t len
)
1751 if (!machine_mem_merge(current_machine
)) {
1752 /* disabled by the user */
1756 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1759 /* Only legal before guest might have detected the memory size: e.g. on
1760 * incoming migration, or right after reset.
1762 * As memory core doesn't know how is memory accessed, it is up to
1763 * resize callback to update device state and/or add assertions to detect
1764 * misuse, if necessary.
1766 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1770 newsize
= HOST_PAGE_ALIGN(newsize
);
1772 if (block
->used_length
== newsize
) {
1776 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1777 error_setg_errno(errp
, EINVAL
,
1778 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1779 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1780 newsize
, block
->used_length
);
1784 if (block
->max_length
< newsize
) {
1785 error_setg_errno(errp
, EINVAL
,
1786 "Length too large: %s: 0x" RAM_ADDR_FMT
1787 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1788 newsize
, block
->max_length
);
1792 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1793 block
->used_length
= newsize
;
1794 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1796 memory_region_set_size(block
->mr
, newsize
);
1797 if (block
->resized
) {
1798 block
->resized(block
->idstr
, newsize
, block
->host
);
1803 /* Called with ram_list.mutex held */
1804 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1805 ram_addr_t new_ram_size
)
1807 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1808 DIRTY_MEMORY_BLOCK_SIZE
);
1809 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1810 DIRTY_MEMORY_BLOCK_SIZE
);
1813 /* Only need to extend if block count increased */
1814 if (new_num_blocks
<= old_num_blocks
) {
1818 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1819 DirtyMemoryBlocks
*old_blocks
;
1820 DirtyMemoryBlocks
*new_blocks
;
1823 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1824 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1825 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1827 if (old_num_blocks
) {
1828 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1829 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1832 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1833 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1836 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1839 g_free_rcu(old_blocks
, rcu
);
1844 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1847 RAMBlock
*last_block
= NULL
;
1848 ram_addr_t old_ram_size
, new_ram_size
;
1851 old_ram_size
= last_ram_page();
1853 qemu_mutex_lock_ramlist();
1854 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1856 if (!new_block
->host
) {
1857 if (xen_enabled()) {
1858 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1859 new_block
->mr
, &err
);
1861 error_propagate(errp
, err
);
1862 qemu_mutex_unlock_ramlist();
1866 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1867 &new_block
->mr
->align
);
1868 if (!new_block
->host
) {
1869 error_setg_errno(errp
, errno
,
1870 "cannot set up guest memory '%s'",
1871 memory_region_name(new_block
->mr
));
1872 qemu_mutex_unlock_ramlist();
1875 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1879 new_ram_size
= MAX(old_ram_size
,
1880 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1881 if (new_ram_size
> old_ram_size
) {
1882 dirty_memory_extend(old_ram_size
, new_ram_size
);
1884 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1885 * QLIST (which has an RCU-friendly variant) does not have insertion at
1886 * tail, so save the last element in last_block.
1888 RAMBLOCK_FOREACH(block
) {
1890 if (block
->max_length
< new_block
->max_length
) {
1895 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1896 } else if (last_block
) {
1897 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1898 } else { /* list is empty */
1899 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1901 ram_list
.mru_block
= NULL
;
1903 /* Write list before version */
1906 qemu_mutex_unlock_ramlist();
1908 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1909 new_block
->used_length
,
1912 if (new_block
->host
) {
1913 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1914 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1915 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1916 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1917 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
1922 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
1926 RAMBlock
*new_block
;
1927 Error
*local_err
= NULL
;
1930 if (xen_enabled()) {
1931 error_setg(errp
, "-mem-path not supported with Xen");
1935 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1937 "host lacks kvm mmu notifiers, -mem-path unsupported");
1941 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1943 * file_ram_alloc() needs to allocate just like
1944 * phys_mem_alloc, but we haven't bothered to provide
1948 "-mem-path not supported with this accelerator");
1952 size
= HOST_PAGE_ALIGN(size
);
1953 file_size
= get_file_size(fd
);
1954 if (file_size
> 0 && file_size
< size
) {
1955 error_setg(errp
, "backing store %s size 0x%" PRIx64
1956 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1957 mem_path
, file_size
, size
);
1961 new_block
= g_malloc0(sizeof(*new_block
));
1963 new_block
->used_length
= size
;
1964 new_block
->max_length
= size
;
1965 new_block
->flags
= share
? RAM_SHARED
: 0;
1966 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
1967 if (!new_block
->host
) {
1972 ram_block_add(new_block
, &local_err
);
1975 error_propagate(errp
, local_err
);
1983 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1984 bool share
, const char *mem_path
,
1991 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
1996 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2010 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2011 void (*resized
)(const char*,
2014 void *host
, bool resizeable
,
2015 MemoryRegion
*mr
, Error
**errp
)
2017 RAMBlock
*new_block
;
2018 Error
*local_err
= NULL
;
2020 size
= HOST_PAGE_ALIGN(size
);
2021 max_size
= HOST_PAGE_ALIGN(max_size
);
2022 new_block
= g_malloc0(sizeof(*new_block
));
2024 new_block
->resized
= resized
;
2025 new_block
->used_length
= size
;
2026 new_block
->max_length
= max_size
;
2027 assert(max_size
>= size
);
2029 new_block
->page_size
= getpagesize();
2030 new_block
->host
= host
;
2032 new_block
->flags
|= RAM_PREALLOC
;
2035 new_block
->flags
|= RAM_RESIZEABLE
;
2037 ram_block_add(new_block
, &local_err
);
2040 error_propagate(errp
, local_err
);
2046 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2047 MemoryRegion
*mr
, Error
**errp
)
2049 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
2052 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
2054 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
2057 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2058 void (*resized
)(const char*,
2061 MemoryRegion
*mr
, Error
**errp
)
2063 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
2066 static void reclaim_ramblock(RAMBlock
*block
)
2068 if (block
->flags
& RAM_PREALLOC
) {
2070 } else if (xen_enabled()) {
2071 xen_invalidate_map_cache_entry(block
->host
);
2073 } else if (block
->fd
>= 0) {
2074 qemu_ram_munmap(block
->host
, block
->max_length
);
2078 qemu_anon_ram_free(block
->host
, block
->max_length
);
2083 void qemu_ram_free(RAMBlock
*block
)
2090 ram_block_notify_remove(block
->host
, block
->max_length
);
2093 qemu_mutex_lock_ramlist();
2094 QLIST_REMOVE_RCU(block
, next
);
2095 ram_list
.mru_block
= NULL
;
2096 /* Write list before version */
2099 call_rcu(block
, reclaim_ramblock
, rcu
);
2100 qemu_mutex_unlock_ramlist();
2104 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2111 RAMBLOCK_FOREACH(block
) {
2112 offset
= addr
- block
->offset
;
2113 if (offset
< block
->max_length
) {
2114 vaddr
= ramblock_ptr(block
, offset
);
2115 if (block
->flags
& RAM_PREALLOC
) {
2117 } else if (xen_enabled()) {
2121 if (block
->fd
>= 0) {
2122 flags
|= (block
->flags
& RAM_SHARED
?
2123 MAP_SHARED
: MAP_PRIVATE
);
2124 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2125 flags
, block
->fd
, offset
);
2128 * Remap needs to match alloc. Accelerators that
2129 * set phys_mem_alloc never remap. If they did,
2130 * we'd need a remap hook here.
2132 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2134 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2135 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2138 if (area
!= vaddr
) {
2139 fprintf(stderr
, "Could not remap addr: "
2140 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2144 memory_try_enable_merging(vaddr
, length
);
2145 qemu_ram_setup_dump(vaddr
, length
);
2150 #endif /* !_WIN32 */
2152 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2153 * This should not be used for general purpose DMA. Use address_space_map
2154 * or address_space_rw instead. For local memory (e.g. video ram) that the
2155 * device owns, use memory_region_get_ram_ptr.
2157 * Called within RCU critical section.
2159 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2161 RAMBlock
*block
= ram_block
;
2163 if (block
== NULL
) {
2164 block
= qemu_get_ram_block(addr
);
2165 addr
-= block
->offset
;
2168 if (xen_enabled() && block
->host
== NULL
) {
2169 /* We need to check if the requested address is in the RAM
2170 * because we don't want to map the entire memory in QEMU.
2171 * In that case just map until the end of the page.
2173 if (block
->offset
== 0) {
2174 return xen_map_cache(addr
, 0, 0, false);
2177 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2179 return ramblock_ptr(block
, addr
);
2182 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2183 * but takes a size argument.
2185 * Called within RCU critical section.
2187 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2190 RAMBlock
*block
= ram_block
;
2195 if (block
== NULL
) {
2196 block
= qemu_get_ram_block(addr
);
2197 addr
-= block
->offset
;
2199 *size
= MIN(*size
, block
->max_length
- addr
);
2201 if (xen_enabled() && block
->host
== NULL
) {
2202 /* We need to check if the requested address is in the RAM
2203 * because we don't want to map the entire memory in QEMU.
2204 * In that case just map the requested area.
2206 if (block
->offset
== 0) {
2207 return xen_map_cache(addr
, *size
, 1, true);
2210 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, true);
2213 return ramblock_ptr(block
, addr
);
2217 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2220 * ptr: Host pointer to look up
2221 * round_offset: If true round the result offset down to a page boundary
2222 * *ram_addr: set to result ram_addr
2223 * *offset: set to result offset within the RAMBlock
2225 * Returns: RAMBlock (or NULL if not found)
2227 * By the time this function returns, the returned pointer is not protected
2228 * by RCU anymore. If the caller is not within an RCU critical section and
2229 * does not hold the iothread lock, it must have other means of protecting the
2230 * pointer, such as a reference to the region that includes the incoming
2233 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2237 uint8_t *host
= ptr
;
2239 if (xen_enabled()) {
2240 ram_addr_t ram_addr
;
2242 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2243 block
= qemu_get_ram_block(ram_addr
);
2245 *offset
= ram_addr
- block
->offset
;
2252 block
= atomic_rcu_read(&ram_list
.mru_block
);
2253 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2257 RAMBLOCK_FOREACH(block
) {
2258 /* This case append when the block is not mapped. */
2259 if (block
->host
== NULL
) {
2262 if (host
- block
->host
< block
->max_length
) {
2271 *offset
= (host
- block
->host
);
2273 *offset
&= TARGET_PAGE_MASK
;
2280 * Finds the named RAMBlock
2282 * name: The name of RAMBlock to find
2284 * Returns: RAMBlock (or NULL if not found)
2286 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2290 RAMBLOCK_FOREACH(block
) {
2291 if (!strcmp(name
, block
->idstr
)) {
2299 /* Some of the softmmu routines need to translate from a host pointer
2300 (typically a TLB entry) back to a ram offset. */
2301 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2306 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2308 return RAM_ADDR_INVALID
;
2311 return block
->offset
+ offset
;
2314 /* Called within RCU critical section. */
2315 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2316 uint64_t val
, unsigned size
)
2318 bool locked
= false;
2320 assert(tcg_enabled());
2321 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2324 tb_invalidate_phys_page_fast(ram_addr
, size
);
2328 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2331 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2334 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2344 /* Set both VGA and migration bits for simplicity and to remove
2345 * the notdirty callback faster.
2347 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2348 DIRTY_CLIENTS_NOCODE
);
2349 /* we remove the notdirty callback only if the code has been
2351 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2352 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2356 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2357 unsigned size
, bool is_write
)
2362 static const MemoryRegionOps notdirty_mem_ops
= {
2363 .write
= notdirty_mem_write
,
2364 .valid
.accepts
= notdirty_mem_accepts
,
2365 .endianness
= DEVICE_NATIVE_ENDIAN
,
2368 /* Generate a debug exception if a watchpoint has been hit. */
2369 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2371 CPUState
*cpu
= current_cpu
;
2372 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2373 CPUArchState
*env
= cpu
->env_ptr
;
2374 target_ulong pc
, cs_base
;
2379 assert(tcg_enabled());
2380 if (cpu
->watchpoint_hit
) {
2381 /* We re-entered the check after replacing the TB. Now raise
2382 * the debug interrupt so that is will trigger after the
2383 * current instruction. */
2384 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2387 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2388 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2389 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2390 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2391 && (wp
->flags
& flags
)) {
2392 if (flags
== BP_MEM_READ
) {
2393 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2395 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2397 wp
->hitaddr
= vaddr
;
2398 wp
->hitattrs
= attrs
;
2399 if (!cpu
->watchpoint_hit
) {
2400 if (wp
->flags
& BP_CPU
&&
2401 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2402 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2405 cpu
->watchpoint_hit
= wp
;
2407 /* Both tb_lock and iothread_mutex will be reset when
2408 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2409 * back into the cpu_exec main loop.
2412 tb_check_watchpoint(cpu
);
2413 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2414 cpu
->exception_index
= EXCP_DEBUG
;
2417 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2418 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2419 cpu_loop_exit_noexc(cpu
);
2423 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2428 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2429 so these check for a hit then pass through to the normal out-of-line
2431 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2432 unsigned size
, MemTxAttrs attrs
)
2436 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2437 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2439 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2442 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2445 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2448 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2456 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2457 uint64_t val
, unsigned size
,
2461 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2462 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2464 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2467 address_space_stb(as
, addr
, val
, attrs
, &res
);
2470 address_space_stw(as
, addr
, val
, attrs
, &res
);
2473 address_space_stl(as
, addr
, val
, attrs
, &res
);
2480 static const MemoryRegionOps watch_mem_ops
= {
2481 .read_with_attrs
= watch_mem_read
,
2482 .write_with_attrs
= watch_mem_write
,
2483 .endianness
= DEVICE_NATIVE_ENDIAN
,
2486 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2487 unsigned len
, MemTxAttrs attrs
)
2489 subpage_t
*subpage
= opaque
;
2493 #if defined(DEBUG_SUBPAGE)
2494 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2495 subpage
, len
, addr
);
2497 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2504 *data
= ldub_p(buf
);
2507 *data
= lduw_p(buf
);
2520 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2521 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2523 subpage_t
*subpage
= opaque
;
2526 #if defined(DEBUG_SUBPAGE)
2527 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2528 " value %"PRIx64
"\n",
2529 __func__
, subpage
, len
, addr
, value
);
2547 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2551 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2552 unsigned len
, bool is_write
)
2554 subpage_t
*subpage
= opaque
;
2555 #if defined(DEBUG_SUBPAGE)
2556 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2557 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2560 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2564 static const MemoryRegionOps subpage_ops
= {
2565 .read_with_attrs
= subpage_read
,
2566 .write_with_attrs
= subpage_write
,
2567 .impl
.min_access_size
= 1,
2568 .impl
.max_access_size
= 8,
2569 .valid
.min_access_size
= 1,
2570 .valid
.max_access_size
= 8,
2571 .valid
.accepts
= subpage_accepts
,
2572 .endianness
= DEVICE_NATIVE_ENDIAN
,
2575 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2580 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2582 idx
= SUBPAGE_IDX(start
);
2583 eidx
= SUBPAGE_IDX(end
);
2584 #if defined(DEBUG_SUBPAGE)
2585 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2586 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2588 for (; idx
<= eidx
; idx
++) {
2589 mmio
->sub_section
[idx
] = section
;
2595 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2599 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2602 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2603 NULL
, TARGET_PAGE_SIZE
);
2604 mmio
->iomem
.subpage
= true;
2605 #if defined(DEBUG_SUBPAGE)
2606 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2607 mmio
, base
, TARGET_PAGE_SIZE
);
2609 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2614 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2618 MemoryRegionSection section
= {
2619 .address_space
= as
,
2621 .offset_within_address_space
= 0,
2622 .offset_within_region
= 0,
2623 .size
= int128_2_64(),
2626 return phys_section_add(map
, §ion
);
2629 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2631 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2632 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2633 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2634 MemoryRegionSection
*sections
= d
->map
.sections
;
2636 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2639 static void io_mem_init(void)
2641 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2642 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2645 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2646 * which can be called without the iothread mutex.
2648 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2650 memory_region_clear_global_locking(&io_mem_notdirty
);
2652 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2656 static void mem_begin(MemoryListener
*listener
)
2658 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2659 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2662 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2663 assert(n
== PHYS_SECTION_UNASSIGNED
);
2664 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2665 assert(n
== PHYS_SECTION_NOTDIRTY
);
2666 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2667 assert(n
== PHYS_SECTION_ROM
);
2668 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2669 assert(n
== PHYS_SECTION_WATCH
);
2671 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2673 as
->next_dispatch
= d
;
2676 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2678 phys_sections_free(&d
->map
);
2682 static void mem_commit(MemoryListener
*listener
)
2684 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2685 AddressSpaceDispatch
*cur
= as
->dispatch
;
2686 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2688 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2690 atomic_rcu_set(&as
->dispatch
, next
);
2692 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2696 static void tcg_commit(MemoryListener
*listener
)
2698 CPUAddressSpace
*cpuas
;
2699 AddressSpaceDispatch
*d
;
2701 /* since each CPU stores ram addresses in its TLB cache, we must
2702 reset the modified entries */
2703 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2704 cpu_reloading_memory_map();
2705 /* The CPU and TLB are protected by the iothread lock.
2706 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2707 * may have split the RCU critical section.
2709 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2710 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2711 tlb_flush(cpuas
->cpu
);
2714 void address_space_init_dispatch(AddressSpace
*as
)
2716 as
->dispatch
= NULL
;
2717 as
->dispatch_listener
= (MemoryListener
) {
2719 .commit
= mem_commit
,
2720 .region_add
= mem_add
,
2721 .region_nop
= mem_add
,
2724 memory_listener_register(&as
->dispatch_listener
, as
);
2727 void address_space_unregister(AddressSpace
*as
)
2729 memory_listener_unregister(&as
->dispatch_listener
);
2732 void address_space_destroy_dispatch(AddressSpace
*as
)
2734 AddressSpaceDispatch
*d
= as
->dispatch
;
2736 atomic_rcu_set(&as
->dispatch
, NULL
);
2738 call_rcu(d
, address_space_dispatch_free
, rcu
);
2742 static void memory_map_init(void)
2744 system_memory
= g_malloc(sizeof(*system_memory
));
2746 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2747 address_space_init(&address_space_memory
, system_memory
, "memory");
2749 system_io
= g_malloc(sizeof(*system_io
));
2750 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2752 address_space_init(&address_space_io
, system_io
, "I/O");
2755 MemoryRegion
*get_system_memory(void)
2757 return system_memory
;
2760 MemoryRegion
*get_system_io(void)
2765 #endif /* !defined(CONFIG_USER_ONLY) */
2767 /* physical memory access (slow version, mainly for debug) */
2768 #if defined(CONFIG_USER_ONLY)
2769 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2770 uint8_t *buf
, int len
, int is_write
)
2777 page
= addr
& TARGET_PAGE_MASK
;
2778 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2781 flags
= page_get_flags(page
);
2782 if (!(flags
& PAGE_VALID
))
2785 if (!(flags
& PAGE_WRITE
))
2787 /* XXX: this code should not depend on lock_user */
2788 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2791 unlock_user(p
, addr
, l
);
2793 if (!(flags
& PAGE_READ
))
2795 /* XXX: this code should not depend on lock_user */
2796 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2799 unlock_user(p
, addr
, 0);
2810 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2813 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2814 addr
+= memory_region_get_ram_addr(mr
);
2816 /* No early return if dirty_log_mask is or becomes 0, because
2817 * cpu_physical_memory_set_dirty_range will still call
2818 * xen_modified_memory.
2820 if (dirty_log_mask
) {
2822 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2824 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2825 assert(tcg_enabled());
2827 tb_invalidate_phys_range(addr
, addr
+ length
);
2829 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2831 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2834 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2836 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2838 /* Regions are assumed to support 1-4 byte accesses unless
2839 otherwise specified. */
2840 if (access_size_max
== 0) {
2841 access_size_max
= 4;
2844 /* Bound the maximum access by the alignment of the address. */
2845 if (!mr
->ops
->impl
.unaligned
) {
2846 unsigned align_size_max
= addr
& -addr
;
2847 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2848 access_size_max
= align_size_max
;
2852 /* Don't attempt accesses larger than the maximum. */
2853 if (l
> access_size_max
) {
2854 l
= access_size_max
;
2861 static bool prepare_mmio_access(MemoryRegion
*mr
)
2863 bool unlocked
= !qemu_mutex_iothread_locked();
2864 bool release_lock
= false;
2866 if (unlocked
&& mr
->global_locking
) {
2867 qemu_mutex_lock_iothread();
2869 release_lock
= true;
2871 if (mr
->flush_coalesced_mmio
) {
2873 qemu_mutex_lock_iothread();
2875 qemu_flush_coalesced_mmio_buffer();
2877 qemu_mutex_unlock_iothread();
2881 return release_lock
;
2884 /* Called within RCU critical section. */
2885 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2888 int len
, hwaddr addr1
,
2889 hwaddr l
, MemoryRegion
*mr
)
2893 MemTxResult result
= MEMTX_OK
;
2894 bool release_lock
= false;
2897 if (!memory_access_is_direct(mr
, true)) {
2898 release_lock
|= prepare_mmio_access(mr
);
2899 l
= memory_access_size(mr
, l
, addr1
);
2900 /* XXX: could force current_cpu to NULL to avoid
2904 /* 64 bit write access */
2906 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2910 /* 32 bit write access */
2911 val
= (uint32_t)ldl_p(buf
);
2912 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2916 /* 16 bit write access */
2918 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2922 /* 8 bit write access */
2924 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2932 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2933 memcpy(ptr
, buf
, l
);
2934 invalidate_and_set_dirty(mr
, addr1
, l
);
2938 qemu_mutex_unlock_iothread();
2939 release_lock
= false;
2951 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2957 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2958 const uint8_t *buf
, int len
)
2963 MemTxResult result
= MEMTX_OK
;
2968 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2969 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2977 /* Called within RCU critical section. */
2978 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2979 MemTxAttrs attrs
, uint8_t *buf
,
2980 int len
, hwaddr addr1
, hwaddr l
,
2985 MemTxResult result
= MEMTX_OK
;
2986 bool release_lock
= false;
2989 if (!memory_access_is_direct(mr
, false)) {
2991 release_lock
|= prepare_mmio_access(mr
);
2992 l
= memory_access_size(mr
, l
, addr1
);
2995 /* 64 bit read access */
2996 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
3001 /* 32 bit read access */
3002 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
3007 /* 16 bit read access */
3008 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
3013 /* 8 bit read access */
3014 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
3023 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3024 memcpy(buf
, ptr
, l
);
3028 qemu_mutex_unlock_iothread();
3029 release_lock
= false;
3041 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3047 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3048 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3053 MemTxResult result
= MEMTX_OK
;
3058 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3059 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
3067 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3068 uint8_t *buf
, int len
, bool is_write
)
3071 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3073 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
3077 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3078 int len
, int is_write
)
3080 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3081 buf
, len
, is_write
);
3084 enum write_rom_type
{
3089 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3090 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3100 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3102 if (!(memory_region_is_ram(mr
) ||
3103 memory_region_is_romd(mr
))) {
3104 l
= memory_access_size(mr
, l
, addr1
);
3107 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3110 memcpy(ptr
, buf
, l
);
3111 invalidate_and_set_dirty(mr
, addr1
, l
);
3114 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3125 /* used for ROM loading : can write in RAM and ROM */
3126 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3127 const uint8_t *buf
, int len
)
3129 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3132 void cpu_flush_icache_range(hwaddr start
, int len
)
3135 * This function should do the same thing as an icache flush that was
3136 * triggered from within the guest. For TCG we are always cache coherent,
3137 * so there is no need to flush anything. For KVM / Xen we need to flush
3138 * the host's instruction cache at least.
3140 if (tcg_enabled()) {
3144 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3145 start
, NULL
, len
, FLUSH_CACHE
);
3156 static BounceBuffer bounce
;
3158 typedef struct MapClient
{
3160 QLIST_ENTRY(MapClient
) link
;
3163 QemuMutex map_client_list_lock
;
3164 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3165 = QLIST_HEAD_INITIALIZER(map_client_list
);
3167 static void cpu_unregister_map_client_do(MapClient
*client
)
3169 QLIST_REMOVE(client
, link
);
3173 static void cpu_notify_map_clients_locked(void)
3177 while (!QLIST_EMPTY(&map_client_list
)) {
3178 client
= QLIST_FIRST(&map_client_list
);
3179 qemu_bh_schedule(client
->bh
);
3180 cpu_unregister_map_client_do(client
);
3184 void cpu_register_map_client(QEMUBH
*bh
)
3186 MapClient
*client
= g_malloc(sizeof(*client
));
3188 qemu_mutex_lock(&map_client_list_lock
);
3190 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3191 if (!atomic_read(&bounce
.in_use
)) {
3192 cpu_notify_map_clients_locked();
3194 qemu_mutex_unlock(&map_client_list_lock
);
3197 void cpu_exec_init_all(void)
3199 qemu_mutex_init(&ram_list
.mutex
);
3200 /* The data structures we set up here depend on knowing the page size,
3201 * so no more changes can be made after this point.
3202 * In an ideal world, nothing we did before we had finished the
3203 * machine setup would care about the target page size, and we could
3204 * do this much later, rather than requiring board models to state
3205 * up front what their requirements are.
3207 finalize_target_page_bits();
3210 qemu_mutex_init(&map_client_list_lock
);
3213 void cpu_unregister_map_client(QEMUBH
*bh
)
3217 qemu_mutex_lock(&map_client_list_lock
);
3218 QLIST_FOREACH(client
, &map_client_list
, link
) {
3219 if (client
->bh
== bh
) {
3220 cpu_unregister_map_client_do(client
);
3224 qemu_mutex_unlock(&map_client_list_lock
);
3227 static void cpu_notify_map_clients(void)
3229 qemu_mutex_lock(&map_client_list_lock
);
3230 cpu_notify_map_clients_locked();
3231 qemu_mutex_unlock(&map_client_list_lock
);
3234 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
3242 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3243 if (!memory_access_is_direct(mr
, is_write
)) {
3244 l
= memory_access_size(mr
, l
, addr
);
3245 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3259 address_space_extend_translation(AddressSpace
*as
, hwaddr addr
, hwaddr target_len
,
3260 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3265 MemoryRegion
*this_mr
;
3271 if (target_len
== 0) {
3276 this_mr
= address_space_translate(as
, addr
, &xlat
, &len
, is_write
);
3277 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3283 /* Map a physical memory region into a host virtual address.
3284 * May map a subset of the requested range, given by and returned in *plen.
3285 * May return NULL if resources needed to perform the mapping are exhausted.
3286 * Use only for reads OR writes - not for read-modify-write operations.
3287 * Use cpu_register_map_client() to know when retrying the map operation is
3288 * likely to succeed.
3290 void *address_space_map(AddressSpace
*as
,
3306 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3308 if (!memory_access_is_direct(mr
, is_write
)) {
3309 if (atomic_xchg(&bounce
.in_use
, true)) {
3313 /* Avoid unbounded allocations */
3314 l
= MIN(l
, TARGET_PAGE_SIZE
);
3315 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3319 memory_region_ref(mr
);
3322 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3328 return bounce
.buffer
;
3332 memory_region_ref(mr
);
3333 *plen
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3334 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
);
3340 /* Unmaps a memory region previously mapped by address_space_map().
3341 * Will also mark the memory as dirty if is_write == 1. access_len gives
3342 * the amount of memory that was actually read or written by the caller.
3344 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3345 int is_write
, hwaddr access_len
)
3347 if (buffer
!= bounce
.buffer
) {
3351 mr
= memory_region_from_host(buffer
, &addr1
);
3354 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3356 if (xen_enabled()) {
3357 xen_invalidate_map_cache_entry(buffer
);
3359 memory_region_unref(mr
);
3363 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3364 bounce
.buffer
, access_len
);
3366 qemu_vfree(bounce
.buffer
);
3367 bounce
.buffer
= NULL
;
3368 memory_region_unref(bounce
.mr
);
3369 atomic_mb_set(&bounce
.in_use
, false);
3370 cpu_notify_map_clients();
3373 void *cpu_physical_memory_map(hwaddr addr
,
3377 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3380 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3381 int is_write
, hwaddr access_len
)
3383 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3386 #define ARG1_DECL AddressSpace *as
3389 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3390 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3391 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3392 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3393 #define RCU_READ_LOCK(...) rcu_read_lock()
3394 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3395 #include "memory_ldst.inc.c"
3397 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3409 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3415 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3420 #define ARG1_DECL MemoryRegionCache *cache
3422 #define SUFFIX _cached
3423 #define TRANSLATE(addr, ...) \
3424 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3425 #define IS_DIRECT(mr, is_write) true
3426 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3427 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3428 #define RCU_READ_LOCK() rcu_read_lock()
3429 #define RCU_READ_UNLOCK() rcu_read_unlock()
3430 #include "memory_ldst.inc.c"
3432 /* virtual memory access for debug (includes writing to ROM) */
3433 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3434 uint8_t *buf
, int len
, int is_write
)
3440 cpu_synchronize_state(cpu
);
3445 page
= addr
& TARGET_PAGE_MASK
;
3446 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3447 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3448 /* if no physical page mapped, return an error */
3449 if (phys_addr
== -1)
3451 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3454 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3456 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3459 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3460 MEMTXATTRS_UNSPECIFIED
,
3471 * Allows code that needs to deal with migration bitmaps etc to still be built
3472 * target independent.
3474 size_t qemu_target_page_size(void)
3476 return TARGET_PAGE_SIZE
;
3479 int qemu_target_page_bits(void)
3481 return TARGET_PAGE_BITS
;
3484 int qemu_target_page_bits_min(void)
3486 return TARGET_PAGE_BITS_MIN
;
3491 * A helper function for the _utterly broken_ virtio device model to find out if
3492 * it's running on a big endian machine. Don't do this at home kids!
3494 bool target_words_bigendian(void);
3495 bool target_words_bigendian(void)
3497 #if defined(TARGET_WORDS_BIGENDIAN)
3504 #ifndef CONFIG_USER_ONLY
3505 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3512 mr
= address_space_translate(&address_space_memory
,
3513 phys_addr
, &phys_addr
, &l
, false);
3515 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3520 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3526 RAMBLOCK_FOREACH(block
) {
3527 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3528 block
->used_length
, opaque
);
3538 * Unmap pages of memory from start to start+length such that
3539 * they a) read as 0, b) Trigger whatever fault mechanism
3540 * the OS provides for postcopy.
3541 * The pages must be unmapped by the end of the function.
3542 * Returns: 0 on success, none-0 on failure
3545 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3549 uint8_t *host_startaddr
= rb
->host
+ start
;
3551 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3552 error_report("ram_block_discard_range: Unaligned start address: %p",
3557 if ((start
+ length
) <= rb
->used_length
) {
3558 uint8_t *host_endaddr
= host_startaddr
+ length
;
3559 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3560 error_report("ram_block_discard_range: Unaligned end address: %p",
3565 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3567 if (rb
->page_size
== qemu_host_page_size
) {
3568 #if defined(CONFIG_MADVISE)
3569 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3572 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3575 /* Huge page case - unfortunately it can't do DONTNEED, but
3576 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3579 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3580 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3586 error_report("ram_block_discard_range: Failed to discard range "
3587 "%s:%" PRIx64
" +%zx (%d)",
3588 rb
->idstr
, start
, length
, ret
);
3591 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3592 "/%zx/" RAM_ADDR_FMT
")",
3593 rb
->idstr
, start
, length
, rb
->used_length
);
3602 void page_size_init(void)
3604 /* NOTE: we can always suppose that qemu_host_page_size >=
3606 qemu_real_host_page_size
= getpagesize();
3607 qemu_real_host_page_mask
= -(intptr_t)qemu_real_host_page_size
;
3608 if (qemu_host_page_size
== 0) {
3609 qemu_host_page_size
= qemu_real_host_page_size
;
3611 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3612 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3614 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;