hw/sd/pl181: Rename pl181_send_command() as pl181_do_command()
[qemu/ar7.git] / hw / riscv / boot.c
blob4c6c101ff17957ca88d9ac68e83ba43680587d21
1 /*
2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "exec/cpu-defs.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/riscv/boot.h"
28 #include "hw/riscv/boot_opensbi.h"
29 #include "elf.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/qtest.h"
33 #include <libfdt.h>
35 #if defined(TARGET_RISCV32)
36 # define KERNEL_BOOT_ADDRESS 0x80400000
37 #define fw_dynamic_info_data(__val) cpu_to_le32(__val)
38 #else
39 # define KERNEL_BOOT_ADDRESS 0x80200000
40 #define fw_dynamic_info_data(__val) cpu_to_le64(__val)
41 #endif
43 void riscv_find_and_load_firmware(MachineState *machine,
44 const char *default_machine_firmware,
45 hwaddr firmware_load_addr,
46 symbol_fn_t sym_cb)
48 char *firmware_filename = NULL;
50 if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
52 * The user didn't specify -bios, or has specified "-bios default".
53 * That means we are going to load the OpenSBI binary included in
54 * the QEMU source.
56 firmware_filename = riscv_find_firmware(default_machine_firmware);
57 } else if (strcmp(machine->firmware, "none")) {
58 firmware_filename = riscv_find_firmware(machine->firmware);
61 if (firmware_filename) {
62 /* If not "none" load the firmware */
63 riscv_load_firmware(firmware_filename, firmware_load_addr, sym_cb);
64 g_free(firmware_filename);
68 char *riscv_find_firmware(const char *firmware_filename)
70 char *filename;
72 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
73 if (filename == NULL) {
74 if (!qtest_enabled()) {
76 * We only ship plain binary bios images in the QEMU source.
77 * With Spike machine that uses ELF images as the default bios,
78 * running QEMU test will complain hence let's suppress the error
79 * report for QEMU testing.
81 error_report("Unable to load the RISC-V firmware \"%s\"",
82 firmware_filename);
83 exit(1);
87 return filename;
90 target_ulong riscv_load_firmware(const char *firmware_filename,
91 hwaddr firmware_load_addr,
92 symbol_fn_t sym_cb)
94 uint64_t firmware_entry, firmware_start, firmware_end;
96 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
97 &firmware_entry, &firmware_start, &firmware_end, NULL,
98 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
99 return firmware_entry;
102 if (load_image_targphys_as(firmware_filename, firmware_load_addr,
103 ram_size, NULL) > 0) {
104 return firmware_load_addr;
107 error_report("could not load firmware '%s'", firmware_filename);
108 exit(1);
111 target_ulong riscv_load_kernel(const char *kernel_filename, symbol_fn_t sym_cb)
113 uint64_t kernel_entry, kernel_high;
115 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
116 &kernel_entry, NULL, &kernel_high, NULL, 0,
117 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
118 return kernel_entry;
121 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
122 NULL, NULL, NULL) > 0) {
123 return kernel_entry;
126 if (load_image_targphys_as(kernel_filename, KERNEL_BOOT_ADDRESS,
127 ram_size, NULL) > 0) {
128 return KERNEL_BOOT_ADDRESS;
131 error_report("could not load kernel '%s'", kernel_filename);
132 exit(1);
135 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
136 uint64_t kernel_entry, hwaddr *start)
138 int size;
141 * We want to put the initrd far enough into RAM that when the
142 * kernel is uncompressed it will not clobber the initrd. However
143 * on boards without much RAM we must ensure that we still leave
144 * enough room for a decent sized initrd, and on boards with large
145 * amounts of RAM we must avoid the initrd being so far up in RAM
146 * that it is outside lowmem and inaccessible to the kernel.
147 * So for boards with less than 256MB of RAM we put the initrd
148 * halfway into RAM, and for boards with 256MB of RAM or more we put
149 * the initrd at 128MB.
151 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
153 size = load_ramdisk(filename, *start, mem_size - *start);
154 if (size == -1) {
155 size = load_image_targphys(filename, *start, mem_size - *start);
156 if (size == -1) {
157 error_report("could not load ramdisk '%s'", filename);
158 exit(1);
162 return *start + size;
165 uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
167 uint32_t temp, fdt_addr;
168 hwaddr dram_end = dram_base + mem_size;
169 int fdtsize = fdt_totalsize(fdt);
171 if (fdtsize <= 0) {
172 error_report("invalid device-tree");
173 exit(1);
177 * We should put fdt as far as possible to avoid kernel/initrd overwriting
178 * its content. But it should be addressable by 32 bit system as well.
179 * Thus, put it at an aligned address that less than fdt size from end of
180 * dram or 4GB whichever is lesser.
182 temp = MIN(dram_end, 4096 * MiB);
183 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
185 fdt_pack(fdt);
186 /* copy in the device tree */
187 qemu_fdt_dumpdtb(fdt, fdtsize);
189 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
190 &address_space_memory);
192 return fdt_addr;
195 void riscv_rom_copy_firmware_info(hwaddr rom_base, hwaddr rom_size,
196 uint32_t reset_vec_size, uint64_t kernel_entry)
198 struct fw_dynamic_info dinfo;
199 size_t dinfo_len;
201 dinfo.magic = fw_dynamic_info_data(FW_DYNAMIC_INFO_MAGIC_VALUE);
202 dinfo.version = fw_dynamic_info_data(FW_DYNAMIC_INFO_VERSION);
203 dinfo.next_mode = fw_dynamic_info_data(FW_DYNAMIC_INFO_NEXT_MODE_S);
204 dinfo.next_addr = fw_dynamic_info_data(kernel_entry);
205 dinfo.options = 0;
206 dinfo.boot_hart = 0;
207 dinfo_len = sizeof(dinfo);
210 * copy the dynamic firmware info. This information is specific to
211 * OpenSBI but doesn't break any other firmware as long as they don't
212 * expect any certain value in "a2" register.
214 if (dinfo_len > (rom_size - reset_vec_size)) {
215 error_report("not enough space to store dynamic firmware info");
216 exit(1);
219 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
220 rom_base + reset_vec_size,
221 &address_space_memory);
224 void riscv_setup_rom_reset_vec(hwaddr start_addr, hwaddr rom_base,
225 hwaddr rom_size, uint64_t kernel_entry,
226 uint32_t fdt_load_addr, void *fdt)
228 int i;
229 uint32_t start_addr_hi32 = 0x00000000;
231 #if defined(TARGET_RISCV64)
232 start_addr_hi32 = start_addr >> 32;
233 #endif
234 /* reset vector */
235 uint32_t reset_vec[10] = {
236 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
237 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
238 0xf1402573, /* csrr a0, mhartid */
239 #if defined(TARGET_RISCV32)
240 0x0202a583, /* lw a1, 32(t0) */
241 0x0182a283, /* lw t0, 24(t0) */
242 #elif defined(TARGET_RISCV64)
243 0x0202b583, /* ld a1, 32(t0) */
244 0x0182b283, /* ld t0, 24(t0) */
245 #endif
246 0x00028067, /* jr t0 */
247 start_addr, /* start: .dword */
248 start_addr_hi32,
249 fdt_load_addr, /* fdt_laddr: .dword */
250 0x00000000,
251 /* fw_dyn: */
254 /* copy in the reset vector in little_endian byte order */
255 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
256 reset_vec[i] = cpu_to_le32(reset_vec[i]);
258 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
259 rom_base, &address_space_memory);
260 riscv_rom_copy_firmware_info(rom_base, rom_size, sizeof(reset_vec),
261 kernel_entry);
263 return;