1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
6 #include <sys/resource.h>
10 #include "user-internals.h"
11 #include "signal-common.h"
13 #include "user-mmap.h"
14 #include "disas/disas.h"
15 #include "qemu/bitops.h"
16 #include "qemu/path.h"
17 #include "qemu/queue.h"
18 #include "qemu/guest-random.h"
19 #include "qemu/units.h"
20 #include "qemu/selfmap.h"
21 #include "qemu/lockable.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "target_signal.h"
25 #include "tcg/debuginfo.h"
28 #include "target/arm/cpu-features.h"
41 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
42 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
47 const uint32_t *relocs
;
50 unsigned sigreturn_ofs
;
51 unsigned rt_sigreturn_ofs
;
54 #define ELF_OSABI ELFOSABI_SYSV
56 /* from personality.h */
59 * Flags for bug emulation.
61 * These occupy the top three bytes.
64 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
65 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
66 descriptors (signal handling) */
67 MMAP_PAGE_ZERO
= 0x0100000,
68 ADDR_COMPAT_LAYOUT
= 0x0200000,
69 READ_IMPLIES_EXEC
= 0x0400000,
70 ADDR_LIMIT_32BIT
= 0x0800000,
71 SHORT_INODE
= 0x1000000,
72 WHOLE_SECONDS
= 0x2000000,
73 STICKY_TIMEOUTS
= 0x4000000,
74 ADDR_LIMIT_3GB
= 0x8000000,
80 * These go in the low byte. Avoid using the top bit, it will
81 * conflict with error returns.
85 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
86 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
87 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
88 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
89 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
90 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
91 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
92 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
94 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
95 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
97 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
98 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
99 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
100 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
102 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
103 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
104 PER_OSF4
= 0x000f, /* OSF/1 v4 */
110 * Return the base personality without flags.
112 #define personality(pers) (pers & PER_MASK)
114 int info_is_fdpic(struct image_info
*info
)
116 return info
->personality
== PER_LINUX_FDPIC
;
119 /* this flag is uneffective under linux too, should be deleted */
120 #ifndef MAP_DENYWRITE
121 #define MAP_DENYWRITE 0
124 /* should probably go in elf.h */
129 #if TARGET_BIG_ENDIAN
130 #define ELF_DATA ELFDATA2MSB
132 #define ELF_DATA ELFDATA2LSB
135 #ifdef TARGET_ABI_MIPSN32
136 typedef abi_ullong target_elf_greg_t
;
137 #define tswapreg(ptr) tswap64(ptr)
139 typedef abi_ulong target_elf_greg_t
;
140 #define tswapreg(ptr) tswapal(ptr)
144 typedef abi_ushort target_uid_t
;
145 typedef abi_ushort target_gid_t
;
147 typedef abi_uint target_uid_t
;
148 typedef abi_uint target_gid_t
;
150 typedef abi_int target_pid_t
;
154 #define ELF_HWCAP get_elf_hwcap()
156 static uint32_t get_elf_hwcap(void)
158 X86CPU
*cpu
= X86_CPU(thread_cpu
);
160 return cpu
->env
.features
[FEAT_1_EDX
];
164 #define ELF_CLASS ELFCLASS64
165 #define ELF_ARCH EM_X86_64
167 #define ELF_PLATFORM "x86_64"
169 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
172 regs
->rsp
= infop
->start_stack
;
173 regs
->rip
= infop
->entry
;
177 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
180 * Note that ELF_NREG should be 29 as there should be place for
181 * TRAPNO and ERR "registers" as well but linux doesn't dump
184 * See linux kernel: arch/x86/include/asm/elf.h
186 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
188 (*regs
)[0] = tswapreg(env
->regs
[15]);
189 (*regs
)[1] = tswapreg(env
->regs
[14]);
190 (*regs
)[2] = tswapreg(env
->regs
[13]);
191 (*regs
)[3] = tswapreg(env
->regs
[12]);
192 (*regs
)[4] = tswapreg(env
->regs
[R_EBP
]);
193 (*regs
)[5] = tswapreg(env
->regs
[R_EBX
]);
194 (*regs
)[6] = tswapreg(env
->regs
[11]);
195 (*regs
)[7] = tswapreg(env
->regs
[10]);
196 (*regs
)[8] = tswapreg(env
->regs
[9]);
197 (*regs
)[9] = tswapreg(env
->regs
[8]);
198 (*regs
)[10] = tswapreg(env
->regs
[R_EAX
]);
199 (*regs
)[11] = tswapreg(env
->regs
[R_ECX
]);
200 (*regs
)[12] = tswapreg(env
->regs
[R_EDX
]);
201 (*regs
)[13] = tswapreg(env
->regs
[R_ESI
]);
202 (*regs
)[14] = tswapreg(env
->regs
[R_EDI
]);
203 (*regs
)[15] = tswapreg(env
->regs
[R_EAX
]); /* XXX */
204 (*regs
)[16] = tswapreg(env
->eip
);
205 (*regs
)[17] = tswapreg(env
->segs
[R_CS
].selector
& 0xffff);
206 (*regs
)[18] = tswapreg(env
->eflags
);
207 (*regs
)[19] = tswapreg(env
->regs
[R_ESP
]);
208 (*regs
)[20] = tswapreg(env
->segs
[R_SS
].selector
& 0xffff);
209 (*regs
)[21] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
210 (*regs
)[22] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
211 (*regs
)[23] = tswapreg(env
->segs
[R_DS
].selector
& 0xffff);
212 (*regs
)[24] = tswapreg(env
->segs
[R_ES
].selector
& 0xffff);
213 (*regs
)[25] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
214 (*regs
)[26] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
217 #if ULONG_MAX > UINT32_MAX
218 #define INIT_GUEST_COMMPAGE
219 static bool init_guest_commpage(void)
222 * The vsyscall page is at a high negative address aka kernel space,
223 * which means that we cannot actually allocate it with target_mmap.
224 * We still should be able to use page_set_flags, unless the user
225 * has specified -R reserved_va, which would trigger an assert().
227 if (reserved_va
!= 0 &&
228 TARGET_VSYSCALL_PAGE
+ TARGET_PAGE_SIZE
- 1 > reserved_va
) {
229 error_report("Cannot allocate vsyscall page");
232 page_set_flags(TARGET_VSYSCALL_PAGE
,
233 TARGET_VSYSCALL_PAGE
| ~TARGET_PAGE_MASK
,
234 PAGE_EXEC
| PAGE_VALID
);
241 * This is used to ensure we don't load something for the wrong architecture.
243 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
246 * These are used to set parameters in the core dumps.
248 #define ELF_CLASS ELFCLASS32
249 #define ELF_ARCH EM_386
251 #define ELF_PLATFORM get_elf_platform()
252 #define EXSTACK_DEFAULT true
254 static const char *get_elf_platform(void)
256 static char elf_platform
[] = "i386";
257 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
262 elf_platform
[1] = '0' + family
;
267 static inline void init_thread(struct target_pt_regs
*regs
,
268 struct image_info
*infop
)
270 regs
->esp
= infop
->start_stack
;
271 regs
->eip
= infop
->entry
;
273 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
274 starts %edx contains a pointer to a function which might be
275 registered using `atexit'. This provides a mean for the
276 dynamic linker to call DT_FINI functions for shared libraries
277 that have been loaded before the code runs.
279 A value of 0 tells we have no such handler. */
284 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
287 * Note that ELF_NREG should be 19 as there should be place for
288 * TRAPNO and ERR "registers" as well but linux doesn't dump
291 * See linux kernel: arch/x86/include/asm/elf.h
293 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
295 (*regs
)[0] = tswapreg(env
->regs
[R_EBX
]);
296 (*regs
)[1] = tswapreg(env
->regs
[R_ECX
]);
297 (*regs
)[2] = tswapreg(env
->regs
[R_EDX
]);
298 (*regs
)[3] = tswapreg(env
->regs
[R_ESI
]);
299 (*regs
)[4] = tswapreg(env
->regs
[R_EDI
]);
300 (*regs
)[5] = tswapreg(env
->regs
[R_EBP
]);
301 (*regs
)[6] = tswapreg(env
->regs
[R_EAX
]);
302 (*regs
)[7] = tswapreg(env
->segs
[R_DS
].selector
& 0xffff);
303 (*regs
)[8] = tswapreg(env
->segs
[R_ES
].selector
& 0xffff);
304 (*regs
)[9] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
305 (*regs
)[10] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
306 (*regs
)[11] = tswapreg(env
->regs
[R_EAX
]); /* XXX */
307 (*regs
)[12] = tswapreg(env
->eip
);
308 (*regs
)[13] = tswapreg(env
->segs
[R_CS
].selector
& 0xffff);
309 (*regs
)[14] = tswapreg(env
->eflags
);
310 (*regs
)[15] = tswapreg(env
->regs
[R_ESP
]);
311 (*regs
)[16] = tswapreg(env
->segs
[R_SS
].selector
& 0xffff);
315 * i386 is the only target which supplies AT_SYSINFO for the vdso.
316 * All others only supply AT_SYSINFO_EHDR.
318 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
319 #define ARCH_DLINFO \
322 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \
326 #endif /* TARGET_X86_64 */
328 #define VDSO_HEADER "vdso.c.inc"
330 #define USE_ELF_CORE_DUMP
331 #define ELF_EXEC_PAGESIZE 4096
333 #endif /* TARGET_I386 */
337 #ifndef TARGET_AARCH64
338 /* 32 bit ARM definitions */
340 #define ELF_ARCH EM_ARM
341 #define ELF_CLASS ELFCLASS32
342 #define EXSTACK_DEFAULT true
344 static inline void init_thread(struct target_pt_regs
*regs
,
345 struct image_info
*infop
)
347 abi_long stack
= infop
->start_stack
;
348 memset(regs
, 0, sizeof(*regs
));
350 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
351 if (infop
->entry
& 1) {
352 regs
->uregs
[16] |= CPSR_T
;
354 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
355 regs
->uregs
[13] = infop
->start_stack
;
356 /* FIXME - what to for failure of get_user()? */
357 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
358 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
359 /* XXX: it seems that r0 is zeroed after ! */
361 /* For uClinux PIC binaries. */
362 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
363 regs
->uregs
[10] = infop
->start_data
;
365 /* Support ARM FDPIC. */
366 if (info_is_fdpic(infop
)) {
367 /* As described in the ABI document, r7 points to the loadmap info
368 * prepared by the kernel. If an interpreter is needed, r8 points
369 * to the interpreter loadmap and r9 points to the interpreter
370 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
371 * r9 points to the main program PT_DYNAMIC info.
373 regs
->uregs
[7] = infop
->loadmap_addr
;
374 if (infop
->interpreter_loadmap_addr
) {
375 /* Executable is dynamically loaded. */
376 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
377 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
380 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
386 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
388 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
390 (*regs
)[0] = tswapreg(env
->regs
[0]);
391 (*regs
)[1] = tswapreg(env
->regs
[1]);
392 (*regs
)[2] = tswapreg(env
->regs
[2]);
393 (*regs
)[3] = tswapreg(env
->regs
[3]);
394 (*regs
)[4] = tswapreg(env
->regs
[4]);
395 (*regs
)[5] = tswapreg(env
->regs
[5]);
396 (*regs
)[6] = tswapreg(env
->regs
[6]);
397 (*regs
)[7] = tswapreg(env
->regs
[7]);
398 (*regs
)[8] = tswapreg(env
->regs
[8]);
399 (*regs
)[9] = tswapreg(env
->regs
[9]);
400 (*regs
)[10] = tswapreg(env
->regs
[10]);
401 (*regs
)[11] = tswapreg(env
->regs
[11]);
402 (*regs
)[12] = tswapreg(env
->regs
[12]);
403 (*regs
)[13] = tswapreg(env
->regs
[13]);
404 (*regs
)[14] = tswapreg(env
->regs
[14]);
405 (*regs
)[15] = tswapreg(env
->regs
[15]);
407 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
408 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
411 #define USE_ELF_CORE_DUMP
412 #define ELF_EXEC_PAGESIZE 4096
416 ARM_HWCAP_ARM_SWP
= 1 << 0,
417 ARM_HWCAP_ARM_HALF
= 1 << 1,
418 ARM_HWCAP_ARM_THUMB
= 1 << 2,
419 ARM_HWCAP_ARM_26BIT
= 1 << 3,
420 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
421 ARM_HWCAP_ARM_FPA
= 1 << 5,
422 ARM_HWCAP_ARM_VFP
= 1 << 6,
423 ARM_HWCAP_ARM_EDSP
= 1 << 7,
424 ARM_HWCAP_ARM_JAVA
= 1 << 8,
425 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
426 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
427 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
428 ARM_HWCAP_ARM_NEON
= 1 << 12,
429 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
430 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
431 ARM_HWCAP_ARM_TLS
= 1 << 15,
432 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
433 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
434 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
435 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
436 ARM_HWCAP_ARM_LPAE
= 1 << 20,
437 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
438 ARM_HWCAP_ARM_FPHP
= 1 << 22,
439 ARM_HWCAP_ARM_ASIMDHP
= 1 << 23,
440 ARM_HWCAP_ARM_ASIMDDP
= 1 << 24,
441 ARM_HWCAP_ARM_ASIMDFHM
= 1 << 25,
442 ARM_HWCAP_ARM_ASIMDBF16
= 1 << 26,
443 ARM_HWCAP_ARM_I8MM
= 1 << 27,
447 ARM_HWCAP2_ARM_AES
= 1 << 0,
448 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
449 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
450 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
451 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
452 ARM_HWCAP2_ARM_SB
= 1 << 5,
453 ARM_HWCAP2_ARM_SSBS
= 1 << 6,
456 /* The commpage only exists for 32 bit kernels */
458 #define HI_COMMPAGE (intptr_t)0xffff0f00u
460 static bool init_guest_commpage(void)
462 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
468 * M-profile allocates maximum of 2GB address space, so can never
469 * allocate the commpage. Skip it.
471 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
475 commpage
= HI_COMMPAGE
& -qemu_host_page_size
;
476 want
= g2h_untagged(commpage
);
477 addr
= mmap(want
, qemu_host_page_size
, PROT_READ
| PROT_WRITE
,
478 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED
, -1, 0);
480 if (addr
== MAP_FAILED
) {
481 perror("Allocating guest commpage");
488 /* Set kernel helper versions; rest of page is 0. */
489 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu
));
491 if (mprotect(addr
, qemu_host_page_size
, PROT_READ
)) {
492 perror("Protecting guest commpage");
496 page_set_flags(commpage
, commpage
| ~qemu_host_page_mask
,
497 PAGE_READ
| PAGE_EXEC
| PAGE_VALID
);
501 #define ELF_HWCAP get_elf_hwcap()
502 #define ELF_HWCAP2 get_elf_hwcap2()
504 uint32_t get_elf_hwcap(void)
506 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
509 hwcaps
|= ARM_HWCAP_ARM_SWP
;
510 hwcaps
|= ARM_HWCAP_ARM_HALF
;
511 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
512 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
514 /* probe for the extra features */
515 #define GET_FEATURE(feat, hwcap) \
516 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
518 #define GET_FEATURE_ID(feat, hwcap) \
519 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
521 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
522 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
523 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
524 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
525 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
526 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
527 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
528 GET_FEATURE_ID(aa32_arm_div
, ARM_HWCAP_ARM_IDIVA
);
529 GET_FEATURE_ID(aa32_thumb_div
, ARM_HWCAP_ARM_IDIVT
);
530 GET_FEATURE_ID(aa32_vfp
, ARM_HWCAP_ARM_VFP
);
532 if (cpu_isar_feature(aa32_fpsp_v3
, cpu
) ||
533 cpu_isar_feature(aa32_fpdp_v3
, cpu
)) {
534 hwcaps
|= ARM_HWCAP_ARM_VFPv3
;
535 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
536 hwcaps
|= ARM_HWCAP_ARM_VFPD32
;
538 hwcaps
|= ARM_HWCAP_ARM_VFPv3D16
;
541 GET_FEATURE_ID(aa32_simdfmac
, ARM_HWCAP_ARM_VFPv4
);
543 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
544 * isar_feature function for both. The kernel reports them as two hwcaps.
546 GET_FEATURE_ID(aa32_fp16_arith
, ARM_HWCAP_ARM_FPHP
);
547 GET_FEATURE_ID(aa32_fp16_arith
, ARM_HWCAP_ARM_ASIMDHP
);
548 GET_FEATURE_ID(aa32_dp
, ARM_HWCAP_ARM_ASIMDDP
);
549 GET_FEATURE_ID(aa32_fhm
, ARM_HWCAP_ARM_ASIMDFHM
);
550 GET_FEATURE_ID(aa32_bf16
, ARM_HWCAP_ARM_ASIMDBF16
);
551 GET_FEATURE_ID(aa32_i8mm
, ARM_HWCAP_ARM_I8MM
);
556 uint64_t get_elf_hwcap2(void)
558 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
561 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
562 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
563 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
564 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
565 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
566 GET_FEATURE_ID(aa32_sb
, ARM_HWCAP2_ARM_SB
);
567 GET_FEATURE_ID(aa32_ssbs
, ARM_HWCAP2_ARM_SSBS
);
571 const char *elf_hwcap_str(uint32_t bit
)
573 static const char *hwcap_str
[] = {
574 [__builtin_ctz(ARM_HWCAP_ARM_SWP
)] = "swp",
575 [__builtin_ctz(ARM_HWCAP_ARM_HALF
)] = "half",
576 [__builtin_ctz(ARM_HWCAP_ARM_THUMB
)] = "thumb",
577 [__builtin_ctz(ARM_HWCAP_ARM_26BIT
)] = "26bit",
578 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT
)] = "fast_mult",
579 [__builtin_ctz(ARM_HWCAP_ARM_FPA
)] = "fpa",
580 [__builtin_ctz(ARM_HWCAP_ARM_VFP
)] = "vfp",
581 [__builtin_ctz(ARM_HWCAP_ARM_EDSP
)] = "edsp",
582 [__builtin_ctz(ARM_HWCAP_ARM_JAVA
)] = "java",
583 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT
)] = "iwmmxt",
584 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH
)] = "crunch",
585 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE
)] = "thumbee",
586 [__builtin_ctz(ARM_HWCAP_ARM_NEON
)] = "neon",
587 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3
)] = "vfpv3",
588 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16
)] = "vfpv3d16",
589 [__builtin_ctz(ARM_HWCAP_ARM_TLS
)] = "tls",
590 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4
)] = "vfpv4",
591 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA
)] = "idiva",
592 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT
)] = "idivt",
593 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32
)] = "vfpd32",
594 [__builtin_ctz(ARM_HWCAP_ARM_LPAE
)] = "lpae",
595 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM
)] = "evtstrm",
596 [__builtin_ctz(ARM_HWCAP_ARM_FPHP
)] = "fphp",
597 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP
)] = "asimdhp",
598 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP
)] = "asimddp",
599 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM
)] = "asimdfhm",
600 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16
)] = "asimdbf16",
601 [__builtin_ctz(ARM_HWCAP_ARM_I8MM
)] = "i8mm",
604 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
607 const char *elf_hwcap2_str(uint32_t bit
)
609 static const char *hwcap_str
[] = {
610 [__builtin_ctz(ARM_HWCAP2_ARM_AES
)] = "aes",
611 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL
)] = "pmull",
612 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1
)] = "sha1",
613 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2
)] = "sha2",
614 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32
)] = "crc32",
615 [__builtin_ctz(ARM_HWCAP2_ARM_SB
)] = "sb",
616 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS
)] = "ssbs",
619 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
623 #undef GET_FEATURE_ID
625 #define ELF_PLATFORM get_elf_platform()
627 static const char *get_elf_platform(void)
629 CPUARMState
*env
= cpu_env(thread_cpu
);
631 #if TARGET_BIG_ENDIAN
637 if (arm_feature(env
, ARM_FEATURE_V8
)) {
639 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
640 if (arm_feature(env
, ARM_FEATURE_M
)) {
645 } else if (arm_feature(env
, ARM_FEATURE_V6
)) {
647 } else if (arm_feature(env
, ARM_FEATURE_V5
)) {
657 /* 64 bit ARM definitions */
659 #define ELF_ARCH EM_AARCH64
660 #define ELF_CLASS ELFCLASS64
661 #if TARGET_BIG_ENDIAN
662 # define ELF_PLATFORM "aarch64_be"
664 # define ELF_PLATFORM "aarch64"
667 static inline void init_thread(struct target_pt_regs
*regs
,
668 struct image_info
*infop
)
670 abi_long stack
= infop
->start_stack
;
671 memset(regs
, 0, sizeof(*regs
));
673 regs
->pc
= infop
->entry
& ~0x3ULL
;
678 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
680 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
681 const CPUARMState
*env
)
685 for (i
= 0; i
< 32; i
++) {
686 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
688 (*regs
)[32] = tswapreg(env
->pc
);
689 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
692 #define USE_ELF_CORE_DUMP
693 #define ELF_EXEC_PAGESIZE 4096
696 ARM_HWCAP_A64_FP
= 1 << 0,
697 ARM_HWCAP_A64_ASIMD
= 1 << 1,
698 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
699 ARM_HWCAP_A64_AES
= 1 << 3,
700 ARM_HWCAP_A64_PMULL
= 1 << 4,
701 ARM_HWCAP_A64_SHA1
= 1 << 5,
702 ARM_HWCAP_A64_SHA2
= 1 << 6,
703 ARM_HWCAP_A64_CRC32
= 1 << 7,
704 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
705 ARM_HWCAP_A64_FPHP
= 1 << 9,
706 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
707 ARM_HWCAP_A64_CPUID
= 1 << 11,
708 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
709 ARM_HWCAP_A64_JSCVT
= 1 << 13,
710 ARM_HWCAP_A64_FCMA
= 1 << 14,
711 ARM_HWCAP_A64_LRCPC
= 1 << 15,
712 ARM_HWCAP_A64_DCPOP
= 1 << 16,
713 ARM_HWCAP_A64_SHA3
= 1 << 17,
714 ARM_HWCAP_A64_SM3
= 1 << 18,
715 ARM_HWCAP_A64_SM4
= 1 << 19,
716 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
717 ARM_HWCAP_A64_SHA512
= 1 << 21,
718 ARM_HWCAP_A64_SVE
= 1 << 22,
719 ARM_HWCAP_A64_ASIMDFHM
= 1 << 23,
720 ARM_HWCAP_A64_DIT
= 1 << 24,
721 ARM_HWCAP_A64_USCAT
= 1 << 25,
722 ARM_HWCAP_A64_ILRCPC
= 1 << 26,
723 ARM_HWCAP_A64_FLAGM
= 1 << 27,
724 ARM_HWCAP_A64_SSBS
= 1 << 28,
725 ARM_HWCAP_A64_SB
= 1 << 29,
726 ARM_HWCAP_A64_PACA
= 1 << 30,
727 ARM_HWCAP_A64_PACG
= 1UL << 31,
729 ARM_HWCAP2_A64_DCPODP
= 1 << 0,
730 ARM_HWCAP2_A64_SVE2
= 1 << 1,
731 ARM_HWCAP2_A64_SVEAES
= 1 << 2,
732 ARM_HWCAP2_A64_SVEPMULL
= 1 << 3,
733 ARM_HWCAP2_A64_SVEBITPERM
= 1 << 4,
734 ARM_HWCAP2_A64_SVESHA3
= 1 << 5,
735 ARM_HWCAP2_A64_SVESM4
= 1 << 6,
736 ARM_HWCAP2_A64_FLAGM2
= 1 << 7,
737 ARM_HWCAP2_A64_FRINT
= 1 << 8,
738 ARM_HWCAP2_A64_SVEI8MM
= 1 << 9,
739 ARM_HWCAP2_A64_SVEF32MM
= 1 << 10,
740 ARM_HWCAP2_A64_SVEF64MM
= 1 << 11,
741 ARM_HWCAP2_A64_SVEBF16
= 1 << 12,
742 ARM_HWCAP2_A64_I8MM
= 1 << 13,
743 ARM_HWCAP2_A64_BF16
= 1 << 14,
744 ARM_HWCAP2_A64_DGH
= 1 << 15,
745 ARM_HWCAP2_A64_RNG
= 1 << 16,
746 ARM_HWCAP2_A64_BTI
= 1 << 17,
747 ARM_HWCAP2_A64_MTE
= 1 << 18,
748 ARM_HWCAP2_A64_ECV
= 1 << 19,
749 ARM_HWCAP2_A64_AFP
= 1 << 20,
750 ARM_HWCAP2_A64_RPRES
= 1 << 21,
751 ARM_HWCAP2_A64_MTE3
= 1 << 22,
752 ARM_HWCAP2_A64_SME
= 1 << 23,
753 ARM_HWCAP2_A64_SME_I16I64
= 1 << 24,
754 ARM_HWCAP2_A64_SME_F64F64
= 1 << 25,
755 ARM_HWCAP2_A64_SME_I8I32
= 1 << 26,
756 ARM_HWCAP2_A64_SME_F16F32
= 1 << 27,
757 ARM_HWCAP2_A64_SME_B16F32
= 1 << 28,
758 ARM_HWCAP2_A64_SME_F32F32
= 1 << 29,
759 ARM_HWCAP2_A64_SME_FA64
= 1 << 30,
760 ARM_HWCAP2_A64_WFXT
= 1ULL << 31,
761 ARM_HWCAP2_A64_EBF16
= 1ULL << 32,
762 ARM_HWCAP2_A64_SVE_EBF16
= 1ULL << 33,
763 ARM_HWCAP2_A64_CSSC
= 1ULL << 34,
764 ARM_HWCAP2_A64_RPRFM
= 1ULL << 35,
765 ARM_HWCAP2_A64_SVE2P1
= 1ULL << 36,
766 ARM_HWCAP2_A64_SME2
= 1ULL << 37,
767 ARM_HWCAP2_A64_SME2P1
= 1ULL << 38,
768 ARM_HWCAP2_A64_SME_I16I32
= 1ULL << 39,
769 ARM_HWCAP2_A64_SME_BI32I32
= 1ULL << 40,
770 ARM_HWCAP2_A64_SME_B16B16
= 1ULL << 41,
771 ARM_HWCAP2_A64_SME_F16F16
= 1ULL << 42,
772 ARM_HWCAP2_A64_MOPS
= 1ULL << 43,
773 ARM_HWCAP2_A64_HBC
= 1ULL << 44,
776 #define ELF_HWCAP get_elf_hwcap()
777 #define ELF_HWCAP2 get_elf_hwcap2()
779 #define GET_FEATURE_ID(feat, hwcap) \
780 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
782 uint32_t get_elf_hwcap(void)
784 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
787 hwcaps
|= ARM_HWCAP_A64_FP
;
788 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
789 hwcaps
|= ARM_HWCAP_A64_CPUID
;
791 /* probe for the extra features */
793 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
794 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
795 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
796 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
797 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
798 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
799 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
800 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
801 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
802 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
803 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
804 GET_FEATURE_ID(aa64_lse2
, ARM_HWCAP_A64_USCAT
);
805 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
806 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
807 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
808 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
809 GET_FEATURE_ID(aa64_pauth
, ARM_HWCAP_A64_PACA
| ARM_HWCAP_A64_PACG
);
810 GET_FEATURE_ID(aa64_fhm
, ARM_HWCAP_A64_ASIMDFHM
);
811 GET_FEATURE_ID(aa64_dit
, ARM_HWCAP_A64_DIT
);
812 GET_FEATURE_ID(aa64_jscvt
, ARM_HWCAP_A64_JSCVT
);
813 GET_FEATURE_ID(aa64_sb
, ARM_HWCAP_A64_SB
);
814 GET_FEATURE_ID(aa64_condm_4
, ARM_HWCAP_A64_FLAGM
);
815 GET_FEATURE_ID(aa64_dcpop
, ARM_HWCAP_A64_DCPOP
);
816 GET_FEATURE_ID(aa64_rcpc_8_3
, ARM_HWCAP_A64_LRCPC
);
817 GET_FEATURE_ID(aa64_rcpc_8_4
, ARM_HWCAP_A64_ILRCPC
);
822 uint64_t get_elf_hwcap2(void)
824 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
827 GET_FEATURE_ID(aa64_dcpodp
, ARM_HWCAP2_A64_DCPODP
);
828 GET_FEATURE_ID(aa64_sve2
, ARM_HWCAP2_A64_SVE2
);
829 GET_FEATURE_ID(aa64_sve2_aes
, ARM_HWCAP2_A64_SVEAES
);
830 GET_FEATURE_ID(aa64_sve2_pmull128
, ARM_HWCAP2_A64_SVEPMULL
);
831 GET_FEATURE_ID(aa64_sve2_bitperm
, ARM_HWCAP2_A64_SVEBITPERM
);
832 GET_FEATURE_ID(aa64_sve2_sha3
, ARM_HWCAP2_A64_SVESHA3
);
833 GET_FEATURE_ID(aa64_sve2_sm4
, ARM_HWCAP2_A64_SVESM4
);
834 GET_FEATURE_ID(aa64_condm_5
, ARM_HWCAP2_A64_FLAGM2
);
835 GET_FEATURE_ID(aa64_frint
, ARM_HWCAP2_A64_FRINT
);
836 GET_FEATURE_ID(aa64_sve_i8mm
, ARM_HWCAP2_A64_SVEI8MM
);
837 GET_FEATURE_ID(aa64_sve_f32mm
, ARM_HWCAP2_A64_SVEF32MM
);
838 GET_FEATURE_ID(aa64_sve_f64mm
, ARM_HWCAP2_A64_SVEF64MM
);
839 GET_FEATURE_ID(aa64_sve_bf16
, ARM_HWCAP2_A64_SVEBF16
);
840 GET_FEATURE_ID(aa64_i8mm
, ARM_HWCAP2_A64_I8MM
);
841 GET_FEATURE_ID(aa64_bf16
, ARM_HWCAP2_A64_BF16
);
842 GET_FEATURE_ID(aa64_rndr
, ARM_HWCAP2_A64_RNG
);
843 GET_FEATURE_ID(aa64_bti
, ARM_HWCAP2_A64_BTI
);
844 GET_FEATURE_ID(aa64_mte
, ARM_HWCAP2_A64_MTE
);
845 GET_FEATURE_ID(aa64_mte3
, ARM_HWCAP2_A64_MTE3
);
846 GET_FEATURE_ID(aa64_sme
, (ARM_HWCAP2_A64_SME
|
847 ARM_HWCAP2_A64_SME_F32F32
|
848 ARM_HWCAP2_A64_SME_B16F32
|
849 ARM_HWCAP2_A64_SME_F16F32
|
850 ARM_HWCAP2_A64_SME_I8I32
));
851 GET_FEATURE_ID(aa64_sme_f64f64
, ARM_HWCAP2_A64_SME_F64F64
);
852 GET_FEATURE_ID(aa64_sme_i16i64
, ARM_HWCAP2_A64_SME_I16I64
);
853 GET_FEATURE_ID(aa64_sme_fa64
, ARM_HWCAP2_A64_SME_FA64
);
854 GET_FEATURE_ID(aa64_hbc
, ARM_HWCAP2_A64_HBC
);
855 GET_FEATURE_ID(aa64_mops
, ARM_HWCAP2_A64_MOPS
);
860 const char *elf_hwcap_str(uint32_t bit
)
862 static const char *hwcap_str
[] = {
863 [__builtin_ctz(ARM_HWCAP_A64_FP
)] = "fp",
864 [__builtin_ctz(ARM_HWCAP_A64_ASIMD
)] = "asimd",
865 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM
)] = "evtstrm",
866 [__builtin_ctz(ARM_HWCAP_A64_AES
)] = "aes",
867 [__builtin_ctz(ARM_HWCAP_A64_PMULL
)] = "pmull",
868 [__builtin_ctz(ARM_HWCAP_A64_SHA1
)] = "sha1",
869 [__builtin_ctz(ARM_HWCAP_A64_SHA2
)] = "sha2",
870 [__builtin_ctz(ARM_HWCAP_A64_CRC32
)] = "crc32",
871 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS
)] = "atomics",
872 [__builtin_ctz(ARM_HWCAP_A64_FPHP
)] = "fphp",
873 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP
)] = "asimdhp",
874 [__builtin_ctz(ARM_HWCAP_A64_CPUID
)] = "cpuid",
875 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM
)] = "asimdrdm",
876 [__builtin_ctz(ARM_HWCAP_A64_JSCVT
)] = "jscvt",
877 [__builtin_ctz(ARM_HWCAP_A64_FCMA
)] = "fcma",
878 [__builtin_ctz(ARM_HWCAP_A64_LRCPC
)] = "lrcpc",
879 [__builtin_ctz(ARM_HWCAP_A64_DCPOP
)] = "dcpop",
880 [__builtin_ctz(ARM_HWCAP_A64_SHA3
)] = "sha3",
881 [__builtin_ctz(ARM_HWCAP_A64_SM3
)] = "sm3",
882 [__builtin_ctz(ARM_HWCAP_A64_SM4
)] = "sm4",
883 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP
)] = "asimddp",
884 [__builtin_ctz(ARM_HWCAP_A64_SHA512
)] = "sha512",
885 [__builtin_ctz(ARM_HWCAP_A64_SVE
)] = "sve",
886 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM
)] = "asimdfhm",
887 [__builtin_ctz(ARM_HWCAP_A64_DIT
)] = "dit",
888 [__builtin_ctz(ARM_HWCAP_A64_USCAT
)] = "uscat",
889 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC
)] = "ilrcpc",
890 [__builtin_ctz(ARM_HWCAP_A64_FLAGM
)] = "flagm",
891 [__builtin_ctz(ARM_HWCAP_A64_SSBS
)] = "ssbs",
892 [__builtin_ctz(ARM_HWCAP_A64_SB
)] = "sb",
893 [__builtin_ctz(ARM_HWCAP_A64_PACA
)] = "paca",
894 [__builtin_ctz(ARM_HWCAP_A64_PACG
)] = "pacg",
897 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
900 const char *elf_hwcap2_str(uint32_t bit
)
902 static const char *hwcap_str
[] = {
903 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP
)] = "dcpodp",
904 [__builtin_ctz(ARM_HWCAP2_A64_SVE2
)] = "sve2",
905 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES
)] = "sveaes",
906 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL
)] = "svepmull",
907 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM
)] = "svebitperm",
908 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3
)] = "svesha3",
909 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4
)] = "svesm4",
910 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2
)] = "flagm2",
911 [__builtin_ctz(ARM_HWCAP2_A64_FRINT
)] = "frint",
912 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM
)] = "svei8mm",
913 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM
)] = "svef32mm",
914 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM
)] = "svef64mm",
915 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16
)] = "svebf16",
916 [__builtin_ctz(ARM_HWCAP2_A64_I8MM
)] = "i8mm",
917 [__builtin_ctz(ARM_HWCAP2_A64_BF16
)] = "bf16",
918 [__builtin_ctz(ARM_HWCAP2_A64_DGH
)] = "dgh",
919 [__builtin_ctz(ARM_HWCAP2_A64_RNG
)] = "rng",
920 [__builtin_ctz(ARM_HWCAP2_A64_BTI
)] = "bti",
921 [__builtin_ctz(ARM_HWCAP2_A64_MTE
)] = "mte",
922 [__builtin_ctz(ARM_HWCAP2_A64_ECV
)] = "ecv",
923 [__builtin_ctz(ARM_HWCAP2_A64_AFP
)] = "afp",
924 [__builtin_ctz(ARM_HWCAP2_A64_RPRES
)] = "rpres",
925 [__builtin_ctz(ARM_HWCAP2_A64_MTE3
)] = "mte3",
926 [__builtin_ctz(ARM_HWCAP2_A64_SME
)] = "sme",
927 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64
)] = "smei16i64",
928 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64
)] = "smef64f64",
929 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32
)] = "smei8i32",
930 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32
)] = "smef16f32",
931 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32
)] = "smeb16f32",
932 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32
)] = "smef32f32",
933 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64
)] = "smefa64",
934 [__builtin_ctz(ARM_HWCAP2_A64_WFXT
)] = "wfxt",
935 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16
)] = "ebf16",
936 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16
)] = "sveebf16",
937 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC
)] = "cssc",
938 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM
)] = "rprfm",
939 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1
)] = "sve2p1",
940 [__builtin_ctzll(ARM_HWCAP2_A64_SME2
)] = "sme2",
941 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1
)] = "sme2p1",
942 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32
)] = "smei16i32",
943 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32
)] = "smebi32i32",
944 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16
)] = "smeb16b16",
945 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16
)] = "smef16f16",
946 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS
)] = "mops",
947 [__builtin_ctzll(ARM_HWCAP2_A64_HBC
)] = "hbc",
950 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
953 #undef GET_FEATURE_ID
955 #endif /* not TARGET_AARCH64 */
957 #if TARGET_BIG_ENDIAN
958 # define VDSO_HEADER "vdso-be.c.inc"
960 # define VDSO_HEADER "vdso-le.c.inc"
963 #endif /* TARGET_ARM */
966 #ifdef TARGET_SPARC64
968 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
969 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
971 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
973 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
976 #define ELF_CLASS ELFCLASS64
977 #define ELF_ARCH EM_SPARCV9
979 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
980 | HWCAP_SPARC_MULDIV)
981 #define ELF_CLASS ELFCLASS32
982 #define ELF_ARCH EM_SPARC
983 #endif /* TARGET_SPARC64 */
985 static inline void init_thread(struct target_pt_regs
*regs
,
986 struct image_info
*infop
)
988 /* Note that target_cpu_copy_regs does not read psr/tstate. */
989 regs
->pc
= infop
->entry
;
990 regs
->npc
= regs
->pc
+ 4;
992 regs
->u_regs
[14] = (infop
->start_stack
- 16 * sizeof(abi_ulong
)
993 - TARGET_STACK_BIAS
);
995 #endif /* TARGET_SPARC */
999 #define ELF_MACHINE PPC_ELF_MACHINE
1001 #if defined(TARGET_PPC64)
1003 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1005 #define ELF_CLASS ELFCLASS64
1009 #define ELF_CLASS ELFCLASS32
1010 #define EXSTACK_DEFAULT true
1014 #define ELF_ARCH EM_PPC
1016 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1017 See arch/powerpc/include/asm/cputable.h. */
1019 QEMU_PPC_FEATURE_32
= 0x80000000,
1020 QEMU_PPC_FEATURE_64
= 0x40000000,
1021 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
1022 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
1023 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
1024 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
1025 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
1026 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
1027 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
1028 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
1029 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
1030 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
1031 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
1032 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
1033 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
1034 QEMU_PPC_FEATURE_CELL
= 0x00010000,
1035 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
1036 QEMU_PPC_FEATURE_SMT
= 0x00004000,
1037 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
1038 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
1039 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
1040 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
1041 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
1042 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
1043 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
1044 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
1046 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
1047 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
1049 /* Feature definitions in AT_HWCAP2. */
1050 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
1051 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
1052 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
1053 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
1054 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
1055 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
1056 QEMU_PPC_FEATURE2_VEC_CRYPTO
= 0x02000000,
1057 QEMU_PPC_FEATURE2_HTM_NOSC
= 0x01000000,
1058 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
1059 QEMU_PPC_FEATURE2_HAS_IEEE128
= 0x00400000, /* VSX IEEE Bin Float 128-bit */
1060 QEMU_PPC_FEATURE2_DARN
= 0x00200000, /* darn random number insn */
1061 QEMU_PPC_FEATURE2_SCV
= 0x00100000, /* scv syscall */
1062 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND
= 0x00080000, /* TM w/o suspended state */
1063 QEMU_PPC_FEATURE2_ARCH_3_1
= 0x00040000, /* ISA 3.1 */
1064 QEMU_PPC_FEATURE2_MMA
= 0x00020000, /* Matrix-Multiply Assist */
1067 #define ELF_HWCAP get_elf_hwcap()
1069 static uint32_t get_elf_hwcap(void)
1071 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
1072 uint32_t features
= 0;
1074 /* We don't have to be terribly complete here; the high points are
1075 Altivec/FP/SPE support. Anything else is just a bonus. */
1076 #define GET_FEATURE(flag, feature) \
1077 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1078 #define GET_FEATURE2(flags, feature) \
1080 if ((cpu->env.insns_flags2 & flags) == flags) { \
1081 features |= feature; \
1084 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
1085 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
1086 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
1087 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
1088 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
1089 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
1090 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
1091 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
1092 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
1093 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
1094 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
1095 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
1096 QEMU_PPC_FEATURE_ARCH_2_06
);
1103 #define ELF_HWCAP2 get_elf_hwcap2()
1105 static uint32_t get_elf_hwcap2(void)
1107 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
1108 uint32_t features
= 0;
1110 #define GET_FEATURE(flag, feature) \
1111 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1112 #define GET_FEATURE2(flag, feature) \
1113 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1115 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
1116 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
1117 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
1118 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
|
1119 QEMU_PPC_FEATURE2_VEC_CRYPTO
);
1120 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
|
1121 QEMU_PPC_FEATURE2_DARN
| QEMU_PPC_FEATURE2_HAS_IEEE128
);
1122 GET_FEATURE2(PPC2_ISA310
, QEMU_PPC_FEATURE2_ARCH_3_1
|
1123 QEMU_PPC_FEATURE2_MMA
);
1132 * The requirements here are:
1133 * - keep the final alignment of sp (sp & 0xf)
1134 * - make sure the 32-bit value at the first 16 byte aligned position of
1135 * AUXV is greater than 16 for glibc compatibility.
1136 * AT_IGNOREPPC is used for that.
1137 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1138 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1140 #define DLINFO_ARCH_ITEMS 5
1141 #define ARCH_DLINFO \
1143 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
1145 * Handle glibc compatibility: these magic entries must \
1146 * be at the lowest addresses in the final auxv. \
1148 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1149 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1150 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1151 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1152 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
1155 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
1157 _regs
->gpr
[1] = infop
->start_stack
;
1158 #if defined(TARGET_PPC64)
1159 if (get_ppc64_abi(infop
) < 2) {
1161 get_user_u64(val
, infop
->entry
+ 8);
1162 _regs
->gpr
[2] = val
+ infop
->load_bias
;
1163 get_user_u64(val
, infop
->entry
);
1164 infop
->entry
= val
+ infop
->load_bias
;
1166 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
1169 _regs
->nip
= infop
->entry
;
1172 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
1174 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1176 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
1179 target_ulong ccr
= 0;
1181 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
1182 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
1185 (*regs
)[32] = tswapreg(env
->nip
);
1186 (*regs
)[33] = tswapreg(env
->msr
);
1187 (*regs
)[35] = tswapreg(env
->ctr
);
1188 (*regs
)[36] = tswapreg(env
->lr
);
1189 (*regs
)[37] = tswapreg(cpu_read_xer(env
));
1191 ccr
= ppc_get_cr(env
);
1192 (*regs
)[38] = tswapreg(ccr
);
1195 #define USE_ELF_CORE_DUMP
1196 #define ELF_EXEC_PAGESIZE 4096
1198 #ifndef TARGET_PPC64
1199 # define VDSO_HEADER "vdso-32.c.inc"
1200 #elif TARGET_BIG_ENDIAN
1201 # define VDSO_HEADER "vdso-64.c.inc"
1203 # define VDSO_HEADER "vdso-64le.c.inc"
1208 #ifdef TARGET_LOONGARCH64
1210 #define ELF_CLASS ELFCLASS64
1211 #define ELF_ARCH EM_LOONGARCH
1212 #define EXSTACK_DEFAULT true
1214 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1216 #define VDSO_HEADER "vdso.c.inc"
1218 static inline void init_thread(struct target_pt_regs
*regs
,
1219 struct image_info
*infop
)
1221 /*Set crmd PG,DA = 1,0 */
1222 regs
->csr
.crmd
= 2 << 3;
1223 regs
->csr
.era
= infop
->entry
;
1224 regs
->regs
[3] = infop
->start_stack
;
1227 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1229 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1233 TARGET_EF_CSR_ERA
= TARGET_EF_R0
+ 33,
1234 TARGET_EF_CSR_BADV
= TARGET_EF_R0
+ 34,
1237 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1238 const CPULoongArchState
*env
)
1242 (*regs
)[TARGET_EF_R0
] = 0;
1244 for (i
= 1; i
< ARRAY_SIZE(env
->gpr
); i
++) {
1245 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->gpr
[i
]);
1248 (*regs
)[TARGET_EF_CSR_ERA
] = tswapreg(env
->pc
);
1249 (*regs
)[TARGET_EF_CSR_BADV
] = tswapreg(env
->CSR_BADV
);
1252 #define USE_ELF_CORE_DUMP
1253 #define ELF_EXEC_PAGESIZE 4096
1255 #define ELF_HWCAP get_elf_hwcap()
1257 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1259 HWCAP_LOONGARCH_CPUCFG
= (1 << 0),
1260 HWCAP_LOONGARCH_LAM
= (1 << 1),
1261 HWCAP_LOONGARCH_UAL
= (1 << 2),
1262 HWCAP_LOONGARCH_FPU
= (1 << 3),
1263 HWCAP_LOONGARCH_LSX
= (1 << 4),
1264 HWCAP_LOONGARCH_LASX
= (1 << 5),
1265 HWCAP_LOONGARCH_CRC32
= (1 << 6),
1266 HWCAP_LOONGARCH_COMPLEX
= (1 << 7),
1267 HWCAP_LOONGARCH_CRYPTO
= (1 << 8),
1268 HWCAP_LOONGARCH_LVZ
= (1 << 9),
1269 HWCAP_LOONGARCH_LBT_X86
= (1 << 10),
1270 HWCAP_LOONGARCH_LBT_ARM
= (1 << 11),
1271 HWCAP_LOONGARCH_LBT_MIPS
= (1 << 12),
1274 static uint32_t get_elf_hwcap(void)
1276 LoongArchCPU
*cpu
= LOONGARCH_CPU(thread_cpu
);
1277 uint32_t hwcaps
= 0;
1279 hwcaps
|= HWCAP_LOONGARCH_CRC32
;
1281 if (FIELD_EX32(cpu
->env
.cpucfg
[1], CPUCFG1
, UAL
)) {
1282 hwcaps
|= HWCAP_LOONGARCH_UAL
;
1285 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, FP
)) {
1286 hwcaps
|= HWCAP_LOONGARCH_FPU
;
1289 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LAM
)) {
1290 hwcaps
|= HWCAP_LOONGARCH_LAM
;
1293 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LSX
)) {
1294 hwcaps
|= HWCAP_LOONGARCH_LSX
;
1297 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LASX
)) {
1298 hwcaps
|= HWCAP_LOONGARCH_LASX
;
1304 #define ELF_PLATFORM "loongarch"
1306 #endif /* TARGET_LOONGARCH64 */
1310 #ifdef TARGET_MIPS64
1311 #define ELF_CLASS ELFCLASS64
1313 #define ELF_CLASS ELFCLASS32
1315 #define ELF_ARCH EM_MIPS
1316 #define EXSTACK_DEFAULT true
1318 #ifdef TARGET_ABI_MIPSN32
1319 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1321 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1324 #define ELF_BASE_PLATFORM get_elf_base_platform()
1326 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1327 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1328 { return _base_platform; } } while (0)
1330 static const char *get_elf_base_platform(void)
1332 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
1334 /* 64 bit ISAs goes first */
1335 MATCH_PLATFORM_INSN(CPU_MIPS64R6
, "mips64r6");
1336 MATCH_PLATFORM_INSN(CPU_MIPS64R5
, "mips64r5");
1337 MATCH_PLATFORM_INSN(CPU_MIPS64R2
, "mips64r2");
1338 MATCH_PLATFORM_INSN(CPU_MIPS64R1
, "mips64");
1339 MATCH_PLATFORM_INSN(CPU_MIPS5
, "mips5");
1340 MATCH_PLATFORM_INSN(CPU_MIPS4
, "mips4");
1341 MATCH_PLATFORM_INSN(CPU_MIPS3
, "mips3");
1344 MATCH_PLATFORM_INSN(CPU_MIPS32R6
, "mips32r6");
1345 MATCH_PLATFORM_INSN(CPU_MIPS32R5
, "mips32r5");
1346 MATCH_PLATFORM_INSN(CPU_MIPS32R2
, "mips32r2");
1347 MATCH_PLATFORM_INSN(CPU_MIPS32R1
, "mips32");
1348 MATCH_PLATFORM_INSN(CPU_MIPS2
, "mips2");
1353 #undef MATCH_PLATFORM_INSN
1355 static inline void init_thread(struct target_pt_regs
*regs
,
1356 struct image_info
*infop
)
1358 regs
->cp0_status
= 2 << CP0St_KSU
;
1359 regs
->cp0_epc
= infop
->entry
;
1360 regs
->regs
[29] = infop
->start_stack
;
1363 /* See linux kernel: arch/mips/include/asm/elf.h. */
1365 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1367 /* See linux kernel: arch/mips/include/asm/reg.h. */
1369 #ifdef TARGET_MIPS64
1374 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
1375 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
1376 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
1377 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
1378 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
1379 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
1380 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
1381 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
1384 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1385 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
1389 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
1392 (*regs
)[TARGET_EF_R0
] = 0;
1394 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
1395 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
1398 (*regs
)[TARGET_EF_R26
] = 0;
1399 (*regs
)[TARGET_EF_R27
] = 0;
1400 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
1401 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
1402 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
1403 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
1404 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
1405 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
1408 #define USE_ELF_CORE_DUMP
1409 #define ELF_EXEC_PAGESIZE 4096
1411 /* See arch/mips/include/uapi/asm/hwcap.h. */
1413 HWCAP_MIPS_R6
= (1 << 0),
1414 HWCAP_MIPS_MSA
= (1 << 1),
1415 HWCAP_MIPS_CRC32
= (1 << 2),
1416 HWCAP_MIPS_MIPS16
= (1 << 3),
1417 HWCAP_MIPS_MDMX
= (1 << 4),
1418 HWCAP_MIPS_MIPS3D
= (1 << 5),
1419 HWCAP_MIPS_SMARTMIPS
= (1 << 6),
1420 HWCAP_MIPS_DSP
= (1 << 7),
1421 HWCAP_MIPS_DSP2
= (1 << 8),
1422 HWCAP_MIPS_DSP3
= (1 << 9),
1423 HWCAP_MIPS_MIPS16E2
= (1 << 10),
1424 HWCAP_LOONGSON_MMI
= (1 << 11),
1425 HWCAP_LOONGSON_EXT
= (1 << 12),
1426 HWCAP_LOONGSON_EXT2
= (1 << 13),
1427 HWCAP_LOONGSON_CPUCFG
= (1 << 14),
1430 #define ELF_HWCAP get_elf_hwcap()
1432 #define GET_FEATURE_INSN(_flag, _hwcap) \
1433 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1435 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1436 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1438 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1440 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1445 static uint32_t get_elf_hwcap(void)
1447 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
1448 uint32_t hwcaps
= 0;
1450 GET_FEATURE_REG_EQU(CP0_Config0
, CP0C0_AR
, CP0C0_AR_LENGTH
,
1452 GET_FEATURE_REG_SET(CP0_Config3
, 1 << CP0C3_MSAP
, HWCAP_MIPS_MSA
);
1453 GET_FEATURE_INSN(ASE_LMMI
, HWCAP_LOONGSON_MMI
);
1454 GET_FEATURE_INSN(ASE_LEXT
, HWCAP_LOONGSON_EXT
);
1459 #undef GET_FEATURE_REG_EQU
1460 #undef GET_FEATURE_REG_SET
1461 #undef GET_FEATURE_INSN
1463 #endif /* TARGET_MIPS */
1465 #ifdef TARGET_MICROBLAZE
1467 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1469 #define ELF_CLASS ELFCLASS32
1470 #define ELF_ARCH EM_MICROBLAZE
1472 static inline void init_thread(struct target_pt_regs
*regs
,
1473 struct image_info
*infop
)
1475 regs
->pc
= infop
->entry
;
1476 regs
->r1
= infop
->start_stack
;
1480 #define ELF_EXEC_PAGESIZE 4096
1482 #define USE_ELF_CORE_DUMP
1484 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1486 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1487 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
1491 for (i
= 0; i
< 32; i
++) {
1492 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
1495 (*regs
)[pos
++] = tswapreg(env
->pc
);
1496 (*regs
)[pos
++] = tswapreg(mb_cpu_read_msr(env
));
1498 (*regs
)[pos
++] = tswapreg(env
->ear
);
1500 (*regs
)[pos
++] = tswapreg(env
->esr
);
1503 #endif /* TARGET_MICROBLAZE */
1507 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1509 #define ELF_CLASS ELFCLASS32
1510 #define ELF_ARCH EM_ALTERA_NIOS2
1512 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1514 regs
->ea
= infop
->entry
;
1515 regs
->sp
= infop
->start_stack
;
1518 #define LO_COMMPAGE TARGET_PAGE_SIZE
1520 static bool init_guest_commpage(void)
1522 static const uint8_t kuser_page
[4 + 2 * 64] = {
1523 /* __kuser_helper_version */
1524 [0x00] = 0x02, 0x00, 0x00, 0x00,
1526 /* __kuser_cmpxchg */
1527 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1528 0x3a, 0x28, 0x00, 0xf8, /* ret */
1530 /* __kuser_sigtramp */
1531 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1532 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1535 void *want
= g2h_untagged(LO_COMMPAGE
& -qemu_host_page_size
);
1536 void *addr
= mmap(want
, qemu_host_page_size
, PROT_READ
| PROT_WRITE
,
1537 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED
, -1, 0);
1539 if (addr
== MAP_FAILED
) {
1540 perror("Allocating guest commpage");
1547 memcpy(addr
, kuser_page
, sizeof(kuser_page
));
1549 if (mprotect(addr
, qemu_host_page_size
, PROT_READ
)) {
1550 perror("Protecting guest commpage");
1554 page_set_flags(LO_COMMPAGE
, LO_COMMPAGE
| ~TARGET_PAGE_MASK
,
1555 PAGE_READ
| PAGE_EXEC
| PAGE_VALID
);
1559 #define ELF_EXEC_PAGESIZE 4096
1561 #define USE_ELF_CORE_DUMP
1563 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1565 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1566 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1567 const CPUNios2State
*env
)
1572 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1573 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1575 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1576 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1578 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1579 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1580 (*regs
)[24] = -1; /* R_ET */
1581 (*regs
)[25] = -1; /* R_BT */
1582 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1583 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1584 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1585 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1586 (*regs
)[30] = -1; /* R_SSTATUS */
1587 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1589 (*regs
)[32] = tswapreg(env
->pc
);
1591 (*regs
)[33] = -1; /* R_STATUS */
1592 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1594 for (i
= 35; i
< 49; i
++) /* ... */
1598 #endif /* TARGET_NIOS2 */
1600 #ifdef TARGET_OPENRISC
1602 #define ELF_ARCH EM_OPENRISC
1603 #define ELF_CLASS ELFCLASS32
1604 #define ELF_DATA ELFDATA2MSB
1606 static inline void init_thread(struct target_pt_regs
*regs
,
1607 struct image_info
*infop
)
1609 regs
->pc
= infop
->entry
;
1610 regs
->gpr
[1] = infop
->start_stack
;
1613 #define USE_ELF_CORE_DUMP
1614 #define ELF_EXEC_PAGESIZE 8192
1616 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1617 #define ELF_NREG 34 /* gprs and pc, sr */
1618 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1620 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1621 const CPUOpenRISCState
*env
)
1625 for (i
= 0; i
< 32; i
++) {
1626 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1628 (*regs
)[32] = tswapreg(env
->pc
);
1629 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1632 #define ELF_PLATFORM NULL
1634 #endif /* TARGET_OPENRISC */
1638 #define ELF_CLASS ELFCLASS32
1639 #define ELF_ARCH EM_SH
1641 static inline void init_thread(struct target_pt_regs
*regs
,
1642 struct image_info
*infop
)
1644 /* Check other registers XXXXX */
1645 regs
->pc
= infop
->entry
;
1646 regs
->regs
[15] = infop
->start_stack
;
1649 /* See linux kernel: arch/sh/include/asm/elf.h. */
1651 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1653 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1658 TARGET_REG_GBR
= 19,
1659 TARGET_REG_MACH
= 20,
1660 TARGET_REG_MACL
= 21,
1661 TARGET_REG_SYSCALL
= 22
1664 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1665 const CPUSH4State
*env
)
1669 for (i
= 0; i
< 16; i
++) {
1670 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1673 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1674 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1675 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1676 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1677 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1678 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1679 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1682 #define USE_ELF_CORE_DUMP
1683 #define ELF_EXEC_PAGESIZE 4096
1686 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1687 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1688 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1689 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1690 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1691 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1692 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1693 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1694 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1695 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1698 #define ELF_HWCAP get_elf_hwcap()
1700 static uint32_t get_elf_hwcap(void)
1702 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1705 hwcap
|= SH_CPU_HAS_FPU
;
1707 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1708 hwcap
|= SH_CPU_HAS_LLSC
;
1718 #define ELF_CLASS ELFCLASS32
1719 #define ELF_ARCH EM_CRIS
1721 static inline void init_thread(struct target_pt_regs
*regs
,
1722 struct image_info
*infop
)
1724 regs
->erp
= infop
->entry
;
1727 #define ELF_EXEC_PAGESIZE 8192
1733 #define ELF_CLASS ELFCLASS32
1734 #define ELF_ARCH EM_68K
1736 /* ??? Does this need to do anything?
1737 #define ELF_PLAT_INIT(_r) */
1739 static inline void init_thread(struct target_pt_regs
*regs
,
1740 struct image_info
*infop
)
1742 regs
->usp
= infop
->start_stack
;
1744 regs
->pc
= infop
->entry
;
1747 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1749 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1751 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1753 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1754 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1755 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1756 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1757 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1758 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1759 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1760 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1761 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1762 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1763 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1764 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1765 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1766 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1767 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1768 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1769 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1770 (*regs
)[17] = tswapreg(env
->sr
);
1771 (*regs
)[18] = tswapreg(env
->pc
);
1772 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1775 #define USE_ELF_CORE_DUMP
1776 #define ELF_EXEC_PAGESIZE 8192
1782 #define ELF_CLASS ELFCLASS64
1783 #define ELF_ARCH EM_ALPHA
1785 static inline void init_thread(struct target_pt_regs
*regs
,
1786 struct image_info
*infop
)
1788 regs
->pc
= infop
->entry
;
1790 regs
->usp
= infop
->start_stack
;
1793 #define ELF_EXEC_PAGESIZE 8192
1795 #endif /* TARGET_ALPHA */
1799 #define ELF_CLASS ELFCLASS64
1800 #define ELF_DATA ELFDATA2MSB
1801 #define ELF_ARCH EM_S390
1805 #define ELF_HWCAP get_elf_hwcap()
1807 #define GET_FEATURE(_feat, _hwcap) \
1808 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1810 uint32_t get_elf_hwcap(void)
1813 * Let's assume we always have esan3 and zarch.
1814 * 31-bit processes can use 64-bit registers (high gprs).
1816 uint32_t hwcap
= HWCAP_S390_ESAN3
| HWCAP_S390_ZARCH
| HWCAP_S390_HIGH_GPRS
;
1818 GET_FEATURE(S390_FEAT_STFLE
, HWCAP_S390_STFLE
);
1819 GET_FEATURE(S390_FEAT_MSA
, HWCAP_S390_MSA
);
1820 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT
, HWCAP_S390_LDISP
);
1821 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE
, HWCAP_S390_EIMM
);
1822 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3
) &&
1823 s390_has_feat(S390_FEAT_ETF3_ENH
)) {
1824 hwcap
|= HWCAP_S390_ETF3EH
;
1826 GET_FEATURE(S390_FEAT_VECTOR
, HWCAP_S390_VXRS
);
1827 GET_FEATURE(S390_FEAT_VECTOR_ENH
, HWCAP_S390_VXRS_EXT
);
1828 GET_FEATURE(S390_FEAT_VECTOR_ENH2
, HWCAP_S390_VXRS_EXT2
);
1833 const char *elf_hwcap_str(uint32_t bit
)
1835 static const char *hwcap_str
[] = {
1836 [HWCAP_S390_NR_ESAN3
] = "esan3",
1837 [HWCAP_S390_NR_ZARCH
] = "zarch",
1838 [HWCAP_S390_NR_STFLE
] = "stfle",
1839 [HWCAP_S390_NR_MSA
] = "msa",
1840 [HWCAP_S390_NR_LDISP
] = "ldisp",
1841 [HWCAP_S390_NR_EIMM
] = "eimm",
1842 [HWCAP_S390_NR_DFP
] = "dfp",
1843 [HWCAP_S390_NR_HPAGE
] = "edat",
1844 [HWCAP_S390_NR_ETF3EH
] = "etf3eh",
1845 [HWCAP_S390_NR_HIGH_GPRS
] = "highgprs",
1846 [HWCAP_S390_NR_TE
] = "te",
1847 [HWCAP_S390_NR_VXRS
] = "vx",
1848 [HWCAP_S390_NR_VXRS_BCD
] = "vxd",
1849 [HWCAP_S390_NR_VXRS_EXT
] = "vxe",
1850 [HWCAP_S390_NR_GS
] = "gs",
1851 [HWCAP_S390_NR_VXRS_EXT2
] = "vxe2",
1852 [HWCAP_S390_NR_VXRS_PDE
] = "vxp",
1853 [HWCAP_S390_NR_SORT
] = "sort",
1854 [HWCAP_S390_NR_DFLT
] = "dflt",
1855 [HWCAP_S390_NR_NNPA
] = "nnpa",
1856 [HWCAP_S390_NR_PCI_MIO
] = "pcimio",
1857 [HWCAP_S390_NR_SIE
] = "sie",
1860 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
1863 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1865 regs
->psw
.addr
= infop
->entry
;
1866 regs
->psw
.mask
= PSW_MASK_DAT
| PSW_MASK_IO
| PSW_MASK_EXT
| \
1867 PSW_MASK_MCHECK
| PSW_MASK_PSTATE
| PSW_MASK_64
| \
1869 regs
->gprs
[15] = infop
->start_stack
;
1872 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1874 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1877 TARGET_REG_PSWM
= 0,
1878 TARGET_REG_PSWA
= 1,
1879 TARGET_REG_GPRS
= 2,
1880 TARGET_REG_ARS
= 18,
1881 TARGET_REG_ORIG_R2
= 26,
1884 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1885 const CPUS390XState
*env
)
1890 (*regs
)[TARGET_REG_PSWM
] = tswapreg(env
->psw
.mask
);
1891 (*regs
)[TARGET_REG_PSWA
] = tswapreg(env
->psw
.addr
);
1892 for (i
= 0; i
< 16; i
++) {
1893 (*regs
)[TARGET_REG_GPRS
+ i
] = tswapreg(env
->regs
[i
]);
1895 aregs
= (uint32_t *)&((*regs
)[TARGET_REG_ARS
]);
1896 for (i
= 0; i
< 16; i
++) {
1897 aregs
[i
] = tswap32(env
->aregs
[i
]);
1899 (*regs
)[TARGET_REG_ORIG_R2
] = 0;
1902 #define USE_ELF_CORE_DUMP
1903 #define ELF_EXEC_PAGESIZE 4096
1905 #define VDSO_HEADER "vdso.c.inc"
1907 #endif /* TARGET_S390X */
1911 #define ELF_ARCH EM_RISCV
1913 #ifdef TARGET_RISCV32
1914 #define ELF_CLASS ELFCLASS32
1915 #define VDSO_HEADER "vdso-32.c.inc"
1917 #define ELF_CLASS ELFCLASS64
1918 #define VDSO_HEADER "vdso-64.c.inc"
1921 #define ELF_HWCAP get_elf_hwcap()
1923 static uint32_t get_elf_hwcap(void)
1925 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1926 RISCVCPU
*cpu
= RISCV_CPU(thread_cpu
);
1927 uint32_t mask
= MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1928 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1931 return cpu
->env
.misa_ext
& mask
;
1935 static inline void init_thread(struct target_pt_regs
*regs
,
1936 struct image_info
*infop
)
1938 regs
->sepc
= infop
->entry
;
1939 regs
->sp
= infop
->start_stack
;
1942 #define ELF_EXEC_PAGESIZE 4096
1944 #endif /* TARGET_RISCV */
1948 #define ELF_CLASS ELFCLASS32
1949 #define ELF_ARCH EM_PARISC
1950 #define ELF_PLATFORM "PARISC"
1951 #define STACK_GROWS_DOWN 0
1952 #define STACK_ALIGNMENT 64
1954 #define VDSO_HEADER "vdso.c.inc"
1956 static inline void init_thread(struct target_pt_regs
*regs
,
1957 struct image_info
*infop
)
1959 regs
->iaoq
[0] = infop
->entry
;
1960 regs
->iaoq
[1] = infop
->entry
+ 4;
1962 regs
->gr
[24] = infop
->argv
;
1963 regs
->gr
[25] = infop
->argc
;
1964 /* The top-of-stack contains a linkage buffer. */
1965 regs
->gr
[30] = infop
->start_stack
+ 64;
1966 regs
->gr
[31] = infop
->entry
;
1969 #define LO_COMMPAGE 0
1971 static bool init_guest_commpage(void)
1973 void *want
= g2h_untagged(LO_COMMPAGE
);
1974 void *addr
= mmap(want
, qemu_host_page_size
, PROT_NONE
,
1975 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED
, -1, 0);
1977 if (addr
== MAP_FAILED
) {
1978 perror("Allocating guest commpage");
1986 * On Linux, page zero is normally marked execute only + gateway.
1987 * Normal read or write is supposed to fail (thus PROT_NONE above),
1988 * but specific offsets have kernel code mapped to raise permissions
1989 * and implement syscalls. Here, simply mark the page executable.
1990 * Special case the entry points during translation (see do_page_zero).
1992 page_set_flags(LO_COMMPAGE
, LO_COMMPAGE
| ~TARGET_PAGE_MASK
,
1993 PAGE_EXEC
| PAGE_VALID
);
1997 #endif /* TARGET_HPPA */
1999 #ifdef TARGET_XTENSA
2001 #define ELF_CLASS ELFCLASS32
2002 #define ELF_ARCH EM_XTENSA
2004 static inline void init_thread(struct target_pt_regs
*regs
,
2005 struct image_info
*infop
)
2007 regs
->windowbase
= 0;
2008 regs
->windowstart
= 1;
2009 regs
->areg
[1] = infop
->start_stack
;
2010 regs
->pc
= infop
->entry
;
2011 if (info_is_fdpic(infop
)) {
2012 regs
->areg
[4] = infop
->loadmap_addr
;
2013 regs
->areg
[5] = infop
->interpreter_loadmap_addr
;
2014 if (infop
->interpreter_loadmap_addr
) {
2015 regs
->areg
[6] = infop
->interpreter_pt_dynamic_addr
;
2017 regs
->areg
[6] = infop
->pt_dynamic_addr
;
2022 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
2023 #define ELF_NREG 128
2024 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
2033 TARGET_REG_WINDOWSTART
,
2034 TARGET_REG_WINDOWBASE
,
2035 TARGET_REG_THREADPTR
,
2036 TARGET_REG_AR0
= 64,
2039 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
2040 const CPUXtensaState
*env
)
2044 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
2045 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
2046 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
2047 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
2048 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
2049 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
2050 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
2051 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
2052 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
2053 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
2054 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
2055 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
2059 #define USE_ELF_CORE_DUMP
2060 #define ELF_EXEC_PAGESIZE 4096
2062 #endif /* TARGET_XTENSA */
2064 #ifdef TARGET_HEXAGON
2066 #define ELF_CLASS ELFCLASS32
2067 #define ELF_ARCH EM_HEXAGON
2069 static inline void init_thread(struct target_pt_regs
*regs
,
2070 struct image_info
*infop
)
2072 regs
->sepc
= infop
->entry
;
2073 regs
->sp
= infop
->start_stack
;
2076 #endif /* TARGET_HEXAGON */
2078 #ifndef ELF_BASE_PLATFORM
2079 #define ELF_BASE_PLATFORM (NULL)
2082 #ifndef ELF_PLATFORM
2083 #define ELF_PLATFORM (NULL)
2087 #define ELF_MACHINE ELF_ARCH
2090 #ifndef elf_check_arch
2091 #define elf_check_arch(x) ((x) == ELF_ARCH)
2094 #ifndef elf_check_abi
2095 #define elf_check_abi(x) (1)
2102 #ifndef STACK_GROWS_DOWN
2103 #define STACK_GROWS_DOWN 1
2106 #ifndef STACK_ALIGNMENT
2107 #define STACK_ALIGNMENT 16
2112 #define ELF_CLASS ELFCLASS32
2114 #define bswaptls(ptr) bswap32s(ptr)
2117 #ifndef EXSTACK_DEFAULT
2118 #define EXSTACK_DEFAULT false
2123 /* We must delay the following stanzas until after "elf.h". */
2124 #if defined(TARGET_AARCH64)
2126 static bool arch_parse_elf_property(uint32_t pr_type
, uint32_t pr_datasz
,
2127 const uint32_t *data
,
2128 struct image_info
*info
,
2131 if (pr_type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
2132 if (pr_datasz
!= sizeof(uint32_t)) {
2133 error_setg(errp
, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2136 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2137 info
->note_flags
= *data
;
2141 #define ARCH_USE_GNU_PROPERTY 1
2145 static bool arch_parse_elf_property(uint32_t pr_type
, uint32_t pr_datasz
,
2146 const uint32_t *data
,
2147 struct image_info
*info
,
2150 g_assert_not_reached();
2152 #define ARCH_USE_GNU_PROPERTY 0
2158 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
2159 unsigned int a_text
; /* length of text, in bytes */
2160 unsigned int a_data
; /* length of data, in bytes */
2161 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
2162 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
2163 unsigned int a_entry
; /* start address */
2164 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
2165 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
2169 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2175 #define DLINFO_ITEMS 16
2177 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
2179 memcpy(to
, from
, n
);
2183 static void bswap_ehdr(struct elfhdr
*ehdr
)
2185 bswap16s(&ehdr
->e_type
); /* Object file type */
2186 bswap16s(&ehdr
->e_machine
); /* Architecture */
2187 bswap32s(&ehdr
->e_version
); /* Object file version */
2188 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
2189 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
2190 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
2191 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
2192 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
2193 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
2194 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
2195 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
2196 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
2197 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
2200 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
2203 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
2204 bswap32s(&phdr
->p_type
); /* Segment type */
2205 bswap32s(&phdr
->p_flags
); /* Segment flags */
2206 bswaptls(&phdr
->p_offset
); /* Segment file offset */
2207 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
2208 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
2209 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
2210 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
2211 bswaptls(&phdr
->p_align
); /* Segment alignment */
2215 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
2218 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
2219 bswap32s(&shdr
->sh_name
);
2220 bswap32s(&shdr
->sh_type
);
2221 bswaptls(&shdr
->sh_flags
);
2222 bswaptls(&shdr
->sh_addr
);
2223 bswaptls(&shdr
->sh_offset
);
2224 bswaptls(&shdr
->sh_size
);
2225 bswap32s(&shdr
->sh_link
);
2226 bswap32s(&shdr
->sh_info
);
2227 bswaptls(&shdr
->sh_addralign
);
2228 bswaptls(&shdr
->sh_entsize
);
2232 static void bswap_sym(struct elf_sym
*sym
)
2234 bswap32s(&sym
->st_name
);
2235 bswaptls(&sym
->st_value
);
2236 bswaptls(&sym
->st_size
);
2237 bswap16s(&sym
->st_shndx
);
2241 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
2243 bswap16s(&abiflags
->version
);
2244 bswap32s(&abiflags
->ases
);
2245 bswap32s(&abiflags
->isa_ext
);
2246 bswap32s(&abiflags
->flags1
);
2247 bswap32s(&abiflags
->flags2
);
2251 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
2252 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
2253 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
2254 static inline void bswap_sym(struct elf_sym
*sym
) { }
2256 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
2260 #ifdef USE_ELF_CORE_DUMP
2261 static int elf_core_dump(int, const CPUArchState
*);
2262 #endif /* USE_ELF_CORE_DUMP */
2263 static void load_symbols(struct elfhdr
*hdr
, const ImageSource
*src
,
2264 abi_ulong load_bias
);
2266 /* Verify the portions of EHDR within E_IDENT for the target.
2267 This can be performed before bswapping the entire header. */
2268 static bool elf_check_ident(struct elfhdr
*ehdr
)
2270 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
2271 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
2272 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
2273 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
2274 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
2275 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
2276 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
2279 /* Verify the portions of EHDR outside of E_IDENT for the target.
2280 This has to wait until after bswapping the header. */
2281 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
2283 return (elf_check_arch(ehdr
->e_machine
)
2284 && elf_check_abi(ehdr
->e_flags
)
2285 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
2286 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
2287 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
2291 * 'copy_elf_strings()' copies argument/envelope strings from user
2292 * memory to free pages in kernel mem. These are in a format ready
2293 * to be put directly into the top of new user memory.
2296 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
2297 abi_ulong p
, abi_ulong stack_limit
)
2304 return 0; /* bullet-proofing */
2307 if (STACK_GROWS_DOWN
) {
2308 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
2309 for (i
= argc
- 1; i
>= 0; --i
) {
2312 fprintf(stderr
, "VFS: argc is wrong");
2315 len
= strlen(tmp
) + 1;
2318 if (len
> (p
- stack_limit
)) {
2322 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
2323 tmp
-= bytes_to_copy
;
2325 offset
-= bytes_to_copy
;
2326 len
-= bytes_to_copy
;
2328 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
2331 memcpy_to_target(p
, scratch
, top
- p
);
2333 offset
= TARGET_PAGE_SIZE
;
2338 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
2341 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
2342 for (i
= 0; i
< argc
; ++i
) {
2345 fprintf(stderr
, "VFS: argc is wrong");
2348 len
= strlen(tmp
) + 1;
2349 if (len
> (stack_limit
- p
)) {
2353 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
2355 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
2357 tmp
+= bytes_to_copy
;
2358 remaining
-= bytes_to_copy
;
2360 len
-= bytes_to_copy
;
2362 if (remaining
== 0) {
2363 memcpy_to_target(top
, scratch
, p
- top
);
2365 remaining
= TARGET_PAGE_SIZE
;
2370 memcpy_to_target(top
, scratch
, p
- top
);
2377 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2378 * argument/environment space. Newer kernels (>2.6.33) allow more,
2379 * dependent on stack size, but guarantee at least 32 pages for
2380 * backwards compatibility.
2382 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2384 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
2385 struct image_info
*info
)
2387 abi_ulong size
, error
, guard
;
2390 size
= guest_stack_size
;
2391 if (size
< STACK_LOWER_LIMIT
) {
2392 size
= STACK_LOWER_LIMIT
;
2395 if (STACK_GROWS_DOWN
) {
2396 guard
= TARGET_PAGE_SIZE
;
2397 if (guard
< qemu_real_host_page_size()) {
2398 guard
= qemu_real_host_page_size();
2401 /* no guard page for hppa target where stack grows upwards. */
2405 prot
= PROT_READ
| PROT_WRITE
;
2406 if (info
->exec_stack
) {
2409 error
= target_mmap(0, size
+ guard
, prot
,
2410 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2412 perror("mmap stack");
2416 /* We reserve one extra page at the top of the stack as guard. */
2417 if (STACK_GROWS_DOWN
) {
2418 target_mprotect(error
, guard
, PROT_NONE
);
2419 info
->stack_limit
= error
+ guard
;
2420 return info
->stack_limit
+ size
- sizeof(void *);
2422 info
->stack_limit
= error
+ size
;
2430 * Map and zero the bss. We need to explicitly zero any fractional pages
2431 * after the data section (i.e. bss). Return false on mapping failure.
2433 static bool zero_bss(abi_ulong start_bss
, abi_ulong end_bss
,
2434 int prot
, Error
**errp
)
2436 abi_ulong align_bss
;
2438 /* We only expect writable bss; the code segment shouldn't need this. */
2439 if (!(prot
& PROT_WRITE
)) {
2440 error_setg(errp
, "PT_LOAD with non-writable bss");
2444 align_bss
= TARGET_PAGE_ALIGN(start_bss
);
2445 end_bss
= TARGET_PAGE_ALIGN(end_bss
);
2447 if (start_bss
< align_bss
) {
2448 int flags
= page_get_flags(start_bss
);
2450 if (!(flags
& PAGE_BITS
)) {
2452 * The whole address space of the executable was reserved
2453 * at the start, therefore all pages will be VALID.
2454 * But assuming there are no PROT_NONE PT_LOAD segments,
2455 * a PROT_NONE page means no data all bss, and we can
2456 * simply extend the new anon mapping back to the start
2457 * of the page of bss.
2459 align_bss
-= TARGET_PAGE_SIZE
;
2462 * The start of the bss shares a page with something.
2463 * The only thing that we expect is the data section,
2464 * which would already be marked writable.
2465 * Overlapping the RX code segment seems malformed.
2467 if (!(flags
& PAGE_WRITE
)) {
2468 error_setg(errp
, "PT_LOAD with bss overlapping "
2469 "non-writable page");
2473 /* The page is already mapped and writable. */
2474 memset(g2h_untagged(start_bss
), 0, align_bss
- start_bss
);
2478 if (align_bss
< end_bss
&&
2479 target_mmap(align_bss
, end_bss
- align_bss
, prot
,
2480 MAP_FIXED
| MAP_PRIVATE
| MAP_ANON
, -1, 0) == -1) {
2481 error_setg_errno(errp
, errno
, "Error mapping bss");
2487 #if defined(TARGET_ARM)
2488 static int elf_is_fdpic(struct elfhdr
*exec
)
2490 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
2492 #elif defined(TARGET_XTENSA)
2493 static int elf_is_fdpic(struct elfhdr
*exec
)
2495 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_XTENSA_FDPIC
;
2498 /* Default implementation, always false. */
2499 static int elf_is_fdpic(struct elfhdr
*exec
)
2505 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
2508 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
2510 /* elf32_fdpic_loadseg */
2514 put_user_u32(loadsegs
[n
].addr
, sp
+0);
2515 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
2516 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
2519 /* elf32_fdpic_loadmap */
2521 put_user_u16(0, sp
+0); /* version */
2522 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
2524 info
->personality
= PER_LINUX_FDPIC
;
2525 info
->loadmap_addr
= sp
;
2530 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
2531 struct elfhdr
*exec
,
2532 struct image_info
*info
,
2533 struct image_info
*interp_info
,
2534 struct image_info
*vdso_info
)
2537 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
2540 abi_ulong u_rand_bytes
;
2541 uint8_t k_rand_bytes
[16];
2542 abi_ulong u_platform
, u_base_platform
;
2543 const char *k_platform
, *k_base_platform
;
2544 const int n
= sizeof(elf_addr_t
);
2548 /* Needs to be before we load the env/argc/... */
2549 if (elf_is_fdpic(exec
)) {
2550 /* Need 4 byte alignment for these structs */
2552 sp
= loader_build_fdpic_loadmap(info
, sp
);
2553 info
->other_info
= interp_info
;
2555 interp_info
->other_info
= info
;
2556 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
2557 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
2558 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
2560 info
->interpreter_loadmap_addr
= 0;
2561 info
->interpreter_pt_dynamic_addr
= 0;
2565 u_base_platform
= 0;
2566 k_base_platform
= ELF_BASE_PLATFORM
;
2567 if (k_base_platform
) {
2568 size_t len
= strlen(k_base_platform
) + 1;
2569 if (STACK_GROWS_DOWN
) {
2570 sp
-= (len
+ n
- 1) & ~(n
- 1);
2571 u_base_platform
= sp
;
2572 /* FIXME - check return value of memcpy_to_target() for failure */
2573 memcpy_to_target(sp
, k_base_platform
, len
);
2575 memcpy_to_target(sp
, k_base_platform
, len
);
2576 u_base_platform
= sp
;
2582 k_platform
= ELF_PLATFORM
;
2584 size_t len
= strlen(k_platform
) + 1;
2585 if (STACK_GROWS_DOWN
) {
2586 sp
-= (len
+ n
- 1) & ~(n
- 1);
2588 /* FIXME - check return value of memcpy_to_target() for failure */
2589 memcpy_to_target(sp
, k_platform
, len
);
2591 memcpy_to_target(sp
, k_platform
, len
);
2597 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2598 * the argv and envp pointers.
2600 if (STACK_GROWS_DOWN
) {
2601 sp
= QEMU_ALIGN_DOWN(sp
, 16);
2603 sp
= QEMU_ALIGN_UP(sp
, 16);
2607 * Generate 16 random bytes for userspace PRNG seeding.
2609 qemu_guest_getrandom_nofail(k_rand_bytes
, sizeof(k_rand_bytes
));
2610 if (STACK_GROWS_DOWN
) {
2613 /* FIXME - check return value of memcpy_to_target() for failure */
2614 memcpy_to_target(sp
, k_rand_bytes
, 16);
2616 memcpy_to_target(sp
, k_rand_bytes
, 16);
2621 size
= (DLINFO_ITEMS
+ 1) * 2;
2622 if (k_base_platform
) {
2631 #ifdef DLINFO_ARCH_ITEMS
2632 size
+= DLINFO_ARCH_ITEMS
* 2;
2637 info
->auxv_len
= size
* n
;
2639 size
+= envc
+ argc
+ 2;
2640 size
+= 1; /* argc itself */
2643 /* Allocate space and finalize stack alignment for entry now. */
2644 if (STACK_GROWS_DOWN
) {
2645 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
2649 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
2652 u_argv
= u_argc
+ n
;
2653 u_envp
= u_argv
+ (argc
+ 1) * n
;
2654 u_auxv
= u_envp
+ (envc
+ 1) * n
;
2655 info
->saved_auxv
= u_auxv
;
2658 info
->argv
= u_argv
;
2659 info
->envp
= u_envp
;
2661 /* This is correct because Linux defines
2662 * elf_addr_t as Elf32_Off / Elf64_Off
2664 #define NEW_AUX_ENT(id, val) do { \
2665 put_user_ual(id, u_auxv); u_auxv += n; \
2666 put_user_ual(val, u_auxv); u_auxv += n; \
2671 * ARCH_DLINFO must come first so platform specific code can enforce
2672 * special alignment requirements on the AUXV if necessary (eg. PPC).
2676 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2677 * on info->auxv_len will trigger.
2679 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
2680 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
2681 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
2682 if ((info
->alignment
& ~qemu_host_page_mask
) != 0) {
2683 /* Target doesn't support host page size alignment */
2684 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
2686 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
,
2687 qemu_host_page_size
)));
2689 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
2690 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
2691 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
2692 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
2693 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
2694 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
2695 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
2696 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
2697 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
2698 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
2699 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
2700 NEW_AUX_ENT(AT_EXECFN
, info
->file_string
);
2703 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
2706 if (u_base_platform
) {
2707 NEW_AUX_ENT(AT_BASE_PLATFORM
, u_base_platform
);
2710 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
2713 NEW_AUX_ENT(AT_SYSINFO_EHDR
, vdso_info
->load_addr
);
2715 NEW_AUX_ENT (AT_NULL
, 0);
2718 /* Check that our initial calculation of the auxv length matches how much
2719 * we actually put into it.
2721 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
2723 put_user_ual(argc
, u_argc
);
2725 p
= info
->arg_strings
;
2726 for (i
= 0; i
< argc
; ++i
) {
2727 put_user_ual(p
, u_argv
);
2729 p
+= target_strlen(p
) + 1;
2731 put_user_ual(0, u_argv
);
2733 p
= info
->env_strings
;
2734 for (i
= 0; i
< envc
; ++i
) {
2735 put_user_ual(p
, u_envp
);
2737 p
+= target_strlen(p
) + 1;
2739 put_user_ual(0, u_envp
);
2744 #if defined(HI_COMMPAGE)
2745 #define LO_COMMPAGE -1
2746 #elif defined(LO_COMMPAGE)
2747 #define HI_COMMPAGE 0
2749 #define HI_COMMPAGE 0
2750 #define LO_COMMPAGE -1
2751 #ifndef INIT_GUEST_COMMPAGE
2752 #define init_guest_commpage() true
2758 * @addr: host start address
2759 * @addr_last: host last address
2760 * @keep: do not unmap the probe region
2762 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2763 * return 0 if it is not available to map, and -1 on mmap error.
2764 * If @keep, the region is left mapped on success, otherwise unmapped.
2766 static int pgb_try_mmap(uintptr_t addr
, uintptr_t addr_last
, bool keep
)
2768 size_t size
= addr_last
- addr
+ 1;
2769 void *p
= mmap((void *)addr
, size
, PROT_NONE
,
2770 MAP_ANONYMOUS
| MAP_PRIVATE
|
2771 MAP_NORESERVE
| MAP_FIXED_NOREPLACE
, -1, 0);
2774 if (p
== MAP_FAILED
) {
2775 return errno
== EEXIST
? 0 : -1;
2777 ret
= p
== (void *)addr
;
2778 if (!keep
|| !ret
) {
2785 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2786 * @addr: host address
2787 * @addr_last: host last address
2790 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2792 static int pgb_try_mmap_skip_brk(uintptr_t addr
, uintptr_t addr_last
,
2793 uintptr_t brk
, bool keep
)
2795 uintptr_t brk_last
= brk
+ 16 * MiB
- 1;
2797 /* Do not map anything close to the host brk. */
2798 if (addr
<= brk_last
&& brk
<= addr_last
) {
2801 return pgb_try_mmap(addr
, addr_last
, keep
);
2806 * @ga: set of guest addrs
2810 * Return true if all @ga can be mapped by the host at @base.
2811 * On success, retain the mapping at index 0 for reserved_va.
2814 typedef struct PGBAddrs
{
2815 uintptr_t bounds
[3][2]; /* start/last pairs */
2819 static bool pgb_try_mmap_set(const PGBAddrs
*ga
, uintptr_t base
, uintptr_t brk
)
2821 for (int i
= ga
->nbounds
- 1; i
>= 0; --i
) {
2822 if (pgb_try_mmap_skip_brk(ga
->bounds
[i
][0] + base
,
2823 ga
->bounds
[i
][1] + base
,
2824 brk
, i
== 0 && reserved_va
) <= 0) {
2833 * @ga: output set of guest addrs
2834 * @guest_loaddr: guest image low address
2835 * @guest_loaddr: guest image high address
2836 * @identity: create for identity mapping
2838 * Fill in @ga with the image, COMMPAGE and NULL page.
2840 static bool pgb_addr_set(PGBAddrs
*ga
, abi_ulong guest_loaddr
,
2841 abi_ulong guest_hiaddr
, bool try_identity
)
2846 * With a low commpage, or a guest mapped very low,
2847 * we may not be able to use the identity map.
2850 if (LO_COMMPAGE
!= -1 && LO_COMMPAGE
< mmap_min_addr
) {
2853 if (guest_loaddr
!= 0 && guest_loaddr
< mmap_min_addr
) {
2858 memset(ga
, 0, sizeof(*ga
));
2862 ga
->bounds
[n
][0] = try_identity
? mmap_min_addr
: 0;
2863 ga
->bounds
[n
][1] = reserved_va
;
2865 /* LO_COMMPAGE and NULL handled by reserving from 0. */
2867 /* Add any LO_COMMPAGE or NULL page. */
2868 if (LO_COMMPAGE
!= -1) {
2869 ga
->bounds
[n
][0] = 0;
2870 ga
->bounds
[n
][1] = LO_COMMPAGE
+ TARGET_PAGE_SIZE
- 1;
2872 } else if (!try_identity
) {
2873 ga
->bounds
[n
][0] = 0;
2874 ga
->bounds
[n
][1] = TARGET_PAGE_SIZE
- 1;
2878 /* Add the guest image for ET_EXEC. */
2880 ga
->bounds
[n
][0] = guest_loaddr
;
2881 ga
->bounds
[n
][1] = guest_hiaddr
;
2887 * Temporarily disable
2888 * "comparison is always false due to limited range of data type"
2889 * due to comparison between unsigned and (possible) 0.
2891 #pragma GCC diagnostic push
2892 #pragma GCC diagnostic ignored "-Wtype-limits"
2894 /* Add any HI_COMMPAGE not covered by reserved_va. */
2895 if (reserved_va
< HI_COMMPAGE
) {
2896 ga
->bounds
[n
][0] = HI_COMMPAGE
& qemu_host_page_mask
;
2897 ga
->bounds
[n
][1] = HI_COMMPAGE
+ TARGET_PAGE_SIZE
- 1;
2901 #pragma GCC diagnostic pop
2907 static void pgb_fail_in_use(const char *image_name
)
2909 error_report("%s: requires virtual address space that is in use "
2910 "(omit the -B option or choose a different value)",
2915 static void pgb_fixed(const char *image_name
, uintptr_t guest_loaddr
,
2916 uintptr_t guest_hiaddr
, uintptr_t align
)
2919 uintptr_t brk
= (uintptr_t)sbrk(0);
2921 if (!QEMU_IS_ALIGNED(guest_base
, align
)) {
2922 fprintf(stderr
, "Requested guest base %p does not satisfy "
2923 "host minimum alignment (0x%" PRIxPTR
")\n",
2924 (void *)guest_base
, align
);
2928 if (!pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, !guest_base
)
2929 || !pgb_try_mmap_set(&ga
, guest_base
, brk
)) {
2930 pgb_fail_in_use(image_name
);
2935 * pgb_find_fallback:
2937 * This is a fallback method for finding holes in the host address space
2938 * if we don't have the benefit of being able to access /proc/self/map.
2939 * It can potentially take a very long time as we can only dumbly iterate
2940 * up the host address space seeing if the allocation would work.
2942 static uintptr_t pgb_find_fallback(const PGBAddrs
*ga
, uintptr_t align
,
2945 /* TODO: come up with a better estimate of how much to skip. */
2946 uintptr_t skip
= sizeof(uintptr_t) == 4 ? MiB
: GiB
;
2948 for (uintptr_t base
= skip
; ; base
+= skip
) {
2949 base
= ROUND_UP(base
, align
);
2950 if (pgb_try_mmap_set(ga
, base
, brk
)) {
2953 if (base
>= -skip
) {
2959 static uintptr_t pgb_try_itree(const PGBAddrs
*ga
, uintptr_t base
,
2960 IntervalTreeRoot
*root
)
2962 for (int i
= ga
->nbounds
- 1; i
>= 0; --i
) {
2963 uintptr_t s
= base
+ ga
->bounds
[i
][0];
2964 uintptr_t l
= base
+ ga
->bounds
[i
][1];
2965 IntervalTreeNode
*n
;
2968 /* Wraparound. Skip to advance S to mmap_min_addr. */
2969 return mmap_min_addr
- s
;
2972 n
= interval_tree_iter_first(root
, s
, l
);
2974 /* Conflict. Skip to advance S to LAST + 1. */
2975 return n
->last
- s
+ 1;
2978 return 0; /* success */
2981 static uintptr_t pgb_find_itree(const PGBAddrs
*ga
, IntervalTreeRoot
*root
,
2982 uintptr_t align
, uintptr_t brk
)
2984 uintptr_t last
= mmap_min_addr
;
2985 uintptr_t base
, skip
;
2988 base
= ROUND_UP(last
, align
);
2993 skip
= pgb_try_itree(ga
, base
, root
);
3005 * We've chosen 'base' based on holes in the interval tree,
3006 * but we don't yet know if it is a valid host address.
3007 * Because it is the first matching hole, if the host addresses
3008 * are invalid we know there are no further matches.
3010 return pgb_try_mmap_set(ga
, base
, brk
) ? base
: -1;
3013 static void pgb_dynamic(const char *image_name
, uintptr_t guest_loaddr
,
3014 uintptr_t guest_hiaddr
, uintptr_t align
)
3016 IntervalTreeRoot
*root
;
3020 assert(QEMU_IS_ALIGNED(guest_loaddr
, align
));
3022 /* Try the identity map first. */
3023 if (pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, true)) {
3024 brk
= (uintptr_t)sbrk(0);
3025 if (pgb_try_mmap_set(&ga
, 0, brk
)) {
3032 * Rebuild the address set for non-identity map.
3033 * This differs in the mapping of the guest NULL page.
3035 pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, false);
3037 root
= read_self_maps();
3039 /* Read brk after we've read the maps, which will malloc. */
3040 brk
= (uintptr_t)sbrk(0);
3043 ret
= pgb_find_fallback(&ga
, align
, brk
);
3046 * Reserve the area close to the host brk.
3047 * This will be freed with the rest of the tree.
3049 IntervalTreeNode
*b
= g_new0(IntervalTreeNode
, 1);
3051 b
->last
= brk
+ 16 * MiB
- 1;
3052 interval_tree_insert(b
, root
);
3054 ret
= pgb_find_itree(&ga
, root
, align
, brk
);
3055 free_self_maps(root
);
3059 int w
= TARGET_LONG_BITS
/ 4;
3061 error_report("%s: Unable to find a guest_base to satisfy all "
3062 "guest address mapping requirements", image_name
);
3064 for (int i
= 0; i
< ga
.nbounds
; ++i
) {
3065 error_printf(" %0*" PRIx64
"-%0*" PRIx64
"\n",
3066 w
, (uint64_t)ga
.bounds
[i
][0],
3067 w
, (uint64_t)ga
.bounds
[i
][1]);
3074 void probe_guest_base(const char *image_name
, abi_ulong guest_loaddr
,
3075 abi_ulong guest_hiaddr
)
3077 /* In order to use host shmat, we must be able to honor SHMLBA. */
3078 uintptr_t align
= MAX(SHMLBA
, qemu_host_page_size
);
3080 /* Sanity check the guest binary. */
3082 if (guest_hiaddr
> reserved_va
) {
3083 error_report("%s: requires more than reserved virtual "
3084 "address space (0x%" PRIx64
" > 0x%lx)",
3085 image_name
, (uint64_t)guest_hiaddr
, reserved_va
);
3089 if (guest_hiaddr
!= (uintptr_t)guest_hiaddr
) {
3090 error_report("%s: requires more virtual address space "
3091 "than the host can provide (0x%" PRIx64
")",
3092 image_name
, (uint64_t)guest_hiaddr
+ 1);
3097 if (have_guest_base
) {
3098 pgb_fixed(image_name
, guest_loaddr
, guest_hiaddr
, align
);
3100 pgb_dynamic(image_name
, guest_loaddr
, guest_hiaddr
, align
);
3103 /* Reserve and initialize the commpage. */
3104 if (!init_guest_commpage()) {
3105 /* We have already probed for the commpage being free. */
3106 g_assert_not_reached();
3109 assert(QEMU_IS_ALIGNED(guest_base
, align
));
3110 qemu_log_mask(CPU_LOG_PAGE
, "Locating guest address space "
3111 "@ 0x%" PRIx64
"\n", (uint64_t)guest_base
);
3115 /* The string "GNU\0" as a magic number. */
3116 GNU0_MAGIC
= const_le32('G' | 'N' << 8 | 'U' << 16),
3117 NOTE_DATA_SZ
= 1 * KiB
,
3119 ELF_GNU_PROPERTY_ALIGN
= ELF_CLASS
== ELFCLASS32
? 4 : 8,
3123 * Process a single gnu_property entry.
3124 * Return false for error.
3126 static bool parse_elf_property(const uint32_t *data
, int *off
, int datasz
,
3127 struct image_info
*info
, bool have_prev_type
,
3128 uint32_t *prev_type
, Error
**errp
)
3130 uint32_t pr_type
, pr_datasz
, step
;
3132 if (*off
> datasz
|| !QEMU_IS_ALIGNED(*off
, ELF_GNU_PROPERTY_ALIGN
)) {
3136 data
+= *off
/ sizeof(uint32_t);
3138 if (datasz
< 2 * sizeof(uint32_t)) {
3142 pr_datasz
= data
[1];
3144 datasz
-= 2 * sizeof(uint32_t);
3145 step
= ROUND_UP(pr_datasz
, ELF_GNU_PROPERTY_ALIGN
);
3146 if (step
> datasz
) {
3150 /* Properties are supposed to be unique and sorted on pr_type. */
3151 if (have_prev_type
&& pr_type
<= *prev_type
) {
3152 if (pr_type
== *prev_type
) {
3153 error_setg(errp
, "Duplicate property in PT_GNU_PROPERTY");
3155 error_setg(errp
, "Unsorted property in PT_GNU_PROPERTY");
3159 *prev_type
= pr_type
;
3161 if (!arch_parse_elf_property(pr_type
, pr_datasz
, data
, info
, errp
)) {
3165 *off
+= 2 * sizeof(uint32_t) + step
;
3169 error_setg(errp
, "Ill-formed property in PT_GNU_PROPERTY");
3173 /* Process NT_GNU_PROPERTY_TYPE_0. */
3174 static bool parse_elf_properties(const ImageSource
*src
,
3175 struct image_info
*info
,
3176 const struct elf_phdr
*phdr
,
3180 struct elf_note nhdr
;
3181 uint32_t data
[NOTE_DATA_SZ
/ sizeof(uint32_t)];
3185 bool have_prev_type
;
3188 /* Unless the arch requires properties, ignore them. */
3189 if (!ARCH_USE_GNU_PROPERTY
) {
3193 /* If the properties are crazy large, that's too bad. */
3195 if (n
> sizeof(note
)) {
3196 error_setg(errp
, "PT_GNU_PROPERTY too large");
3199 if (n
< sizeof(note
.nhdr
)) {
3200 error_setg(errp
, "PT_GNU_PROPERTY too small");
3204 if (!imgsrc_read(¬e
, phdr
->p_offset
, n
, src
, errp
)) {
3209 * The contents of a valid PT_GNU_PROPERTY is a sequence
3210 * of uint32_t -- swap them all now.
3213 for (int i
= 0; i
< n
/ 4; i
++) {
3214 bswap32s(note
.data
+ i
);
3219 * Note that nhdr is 3 words, and that the "name" described by namesz
3220 * immediately follows nhdr and is thus at the 4th word. Further, all
3221 * of the inputs to the kernel's round_up are multiples of 4.
3223 if (note
.nhdr
.n_type
!= NT_GNU_PROPERTY_TYPE_0
||
3224 note
.nhdr
.n_namesz
!= NOTE_NAME_SZ
||
3225 note
.data
[3] != GNU0_MAGIC
) {
3226 error_setg(errp
, "Invalid note in PT_GNU_PROPERTY");
3229 off
= sizeof(note
.nhdr
) + NOTE_NAME_SZ
;
3231 datasz
= note
.nhdr
.n_descsz
+ off
;
3233 error_setg(errp
, "Invalid note size in PT_GNU_PROPERTY");
3237 have_prev_type
= false;
3240 if (off
== datasz
) {
3241 return true; /* end, exit ok */
3243 if (!parse_elf_property(note
.data
, &off
, datasz
, info
,
3244 have_prev_type
, &prev_type
, errp
)) {
3247 have_prev_type
= true;
3252 * load_elf_image: Load an ELF image into the address space.
3253 * @image_name: the filename of the image, to use in error messages.
3254 * @src: the ImageSource from which to read.
3255 * @info: info collected from the loaded image.
3256 * @ehdr: the ELF header, not yet bswapped.
3257 * @pinterp_name: record any PT_INTERP string found.
3259 * On return: @info values will be filled in, as necessary or available.
3262 static void load_elf_image(const char *image_name
, const ImageSource
*src
,
3263 struct image_info
*info
, struct elfhdr
*ehdr
,
3264 char **pinterp_name
)
3266 g_autofree
struct elf_phdr
*phdr
= NULL
;
3267 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
3272 * First of all, some simple consistency checks.
3273 * Note that we rely on the bswapped ehdr staying in bprm_buf,
3274 * for later use by load_elf_binary and create_elf_tables.
3276 if (!imgsrc_read(ehdr
, 0, sizeof(*ehdr
), src
, &err
)) {
3279 if (!elf_check_ident(ehdr
)) {
3280 error_setg(&err
, "Invalid ELF image for this architecture");
3284 if (!elf_check_ehdr(ehdr
)) {
3285 error_setg(&err
, "Invalid ELF image for this architecture");
3289 phdr
= imgsrc_read_alloc(ehdr
->e_phoff
,
3290 ehdr
->e_phnum
* sizeof(struct elf_phdr
),
3295 bswap_phdr(phdr
, ehdr
->e_phnum
);
3298 info
->pt_dynamic_addr
= 0;
3303 * Find the maximum size of the image and allocate an appropriate
3304 * amount of memory to handle that. Locate the interpreter, if any.
3306 loaddr
= -1, hiaddr
= 0;
3307 info
->alignment
= 0;
3308 info
->exec_stack
= EXSTACK_DEFAULT
;
3309 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
3310 struct elf_phdr
*eppnt
= phdr
+ i
;
3311 if (eppnt
->p_type
== PT_LOAD
) {
3312 abi_ulong a
= eppnt
->p_vaddr
& TARGET_PAGE_MASK
;
3316 a
= eppnt
->p_vaddr
+ eppnt
->p_memsz
- 1;
3321 info
->alignment
|= eppnt
->p_align
;
3322 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
3323 g_autofree
char *interp_name
= NULL
;
3325 if (*pinterp_name
) {
3326 error_setg(&err
, "Multiple PT_INTERP entries");
3330 interp_name
= imgsrc_read_alloc(eppnt
->p_offset
, eppnt
->p_filesz
,
3332 if (interp_name
== NULL
) {
3335 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
3336 error_setg(&err
, "Invalid PT_INTERP entry");
3339 *pinterp_name
= g_steal_pointer(&interp_name
);
3340 } else if (eppnt
->p_type
== PT_GNU_PROPERTY
) {
3341 if (!parse_elf_properties(src
, info
, eppnt
, &err
)) {
3344 } else if (eppnt
->p_type
== PT_GNU_STACK
) {
3345 info
->exec_stack
= eppnt
->p_flags
& PF_X
;
3351 if (pinterp_name
!= NULL
) {
3352 if (ehdr
->e_type
== ET_EXEC
) {
3354 * Make sure that the low address does not conflict with
3355 * MMAP_MIN_ADDR or the QEMU application itself.
3357 probe_guest_base(image_name
, loaddr
, hiaddr
);
3362 * The binary is dynamic, but we still need to
3363 * select guest_base. In this case we pass a size.
3365 probe_guest_base(image_name
, 0, hiaddr
- loaddr
);
3368 * Avoid collision with the loader by providing a different
3369 * default load address.
3371 load_addr
+= elf_et_dyn_base
;
3374 * TODO: Better support for mmap alignment is desirable.
3375 * Since we do not have complete control over the guest
3376 * address space, we prefer the kernel to choose some address
3377 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3378 * But without MAP_FIXED we cannot guarantee alignment,
3381 align
= pow2ceil(info
->alignment
);
3383 load_addr
&= -align
;
3389 * Reserve address space for all of this.
3391 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3392 * exactly the address range that is required. Without reserved_va,
3393 * the guest address space is not isolated. We have attempted to avoid
3394 * conflict with the host program itself via probe_guest_base, but using
3395 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3397 * Otherwise this is ET_DYN, and we are searching for a location
3398 * that can hold the memory space required. If the image is
3399 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3400 * honor that address if it happens to be free.
3402 * In both cases, we will overwrite pages in this range with mappings
3403 * from the executable.
3405 load_addr
= target_mmap(load_addr
, (size_t)hiaddr
- loaddr
+ 1, PROT_NONE
,
3406 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
|
3407 (ehdr
->e_type
== ET_EXEC
? MAP_FIXED_NOREPLACE
: 0),
3409 if (load_addr
== -1) {
3412 load_bias
= load_addr
- loaddr
;
3414 if (elf_is_fdpic(ehdr
)) {
3415 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
3416 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
3418 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
3419 switch (phdr
[i
].p_type
) {
3421 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
3424 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
3425 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
3426 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
3433 info
->load_bias
= load_bias
;
3434 info
->code_offset
= load_bias
;
3435 info
->data_offset
= load_bias
;
3436 info
->load_addr
= load_addr
;
3437 info
->entry
= ehdr
->e_entry
+ load_bias
;
3438 info
->start_code
= -1;
3440 info
->start_data
= -1;
3442 /* Usual start for brk is after all sections of the main executable. */
3443 info
->brk
= TARGET_PAGE_ALIGN(hiaddr
+ load_bias
);
3444 info
->elf_flags
= ehdr
->e_flags
;
3446 prot_exec
= PROT_EXEC
;
3447 #ifdef TARGET_AARCH64
3449 * If the BTI feature is present, this indicates that the executable
3450 * pages of the startup binary should be mapped with PROT_BTI, so that
3451 * branch targets are enforced.
3453 * The startup binary is either the interpreter or the static executable.
3454 * The interpreter is responsible for all pages of a dynamic executable.
3456 * Elf notes are backward compatible to older cpus.
3457 * Do not enable BTI unless it is supported.
3459 if ((info
->note_flags
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
)
3460 && (pinterp_name
== NULL
|| *pinterp_name
== 0)
3461 && cpu_isar_feature(aa64_bti
, ARM_CPU(thread_cpu
))) {
3462 prot_exec
|= TARGET_PROT_BTI
;
3466 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
3467 struct elf_phdr
*eppnt
= phdr
+ i
;
3468 if (eppnt
->p_type
== PT_LOAD
) {
3469 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
3472 if (eppnt
->p_flags
& PF_R
) {
3473 elf_prot
|= PROT_READ
;
3475 if (eppnt
->p_flags
& PF_W
) {
3476 elf_prot
|= PROT_WRITE
;
3478 if (eppnt
->p_flags
& PF_X
) {
3479 elf_prot
|= prot_exec
;
3482 vaddr
= load_bias
+ eppnt
->p_vaddr
;
3483 vaddr_po
= vaddr
& ~TARGET_PAGE_MASK
;
3484 vaddr_ps
= vaddr
& TARGET_PAGE_MASK
;
3486 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
3487 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
3490 * Some segments may be completely empty, with a non-zero p_memsz
3491 * but no backing file segment.
3493 if (eppnt
->p_filesz
!= 0) {
3494 error
= imgsrc_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
3495 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
3496 src
, eppnt
->p_offset
- vaddr_po
);
3502 /* If the load segment requests extra zeros (e.g. bss), map it. */
3503 if (vaddr_ef
< vaddr_em
&&
3504 !zero_bss(vaddr_ef
, vaddr_em
, elf_prot
, &err
)) {
3508 /* Find the full program boundaries. */
3509 if (elf_prot
& PROT_EXEC
) {
3510 if (vaddr
< info
->start_code
) {
3511 info
->start_code
= vaddr
;
3513 if (vaddr_ef
> info
->end_code
) {
3514 info
->end_code
= vaddr_ef
;
3517 if (elf_prot
& PROT_WRITE
) {
3518 if (vaddr
< info
->start_data
) {
3519 info
->start_data
= vaddr
;
3521 if (vaddr_ef
> info
->end_data
) {
3522 info
->end_data
= vaddr_ef
;
3526 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
3527 Mips_elf_abiflags_v0 abiflags
;
3529 if (!imgsrc_read(&abiflags
, eppnt
->p_offset
, sizeof(abiflags
),
3533 bswap_mips_abiflags(&abiflags
);
3534 info
->fp_abi
= abiflags
.fp_abi
;
3539 if (info
->end_data
== 0) {
3540 info
->start_data
= info
->end_code
;
3541 info
->end_data
= info
->end_code
;
3544 if (qemu_log_enabled()) {
3545 load_symbols(ehdr
, src
, load_bias
);
3548 debuginfo_report_elf(image_name
, src
->fd
, load_bias
);
3556 error_setg_errno(&err
, errno
, "Error mapping file");
3559 error_reportf_err(err
, "%s: ", image_name
);
3563 static void load_elf_interp(const char *filename
, struct image_info
*info
,
3564 char bprm_buf
[BPRM_BUF_SIZE
])
3571 fd
= open(path(filename
), O_RDONLY
);
3573 error_setg_file_open(&err
, errno
, filename
);
3574 error_report_err(err
);
3578 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
3580 error_setg_errno(&err
, errno
, "Error reading file header");
3581 error_reportf_err(err
, "%s: ", filename
);
3586 src
.cache
= bprm_buf
;
3587 src
.cache_size
= retval
;
3589 load_elf_image(filename
, &src
, info
, &ehdr
, NULL
);
3593 #include VDSO_HEADER
3594 #define vdso_image_info() &vdso_image_info
3596 #define vdso_image_info() NULL
3599 static void load_elf_vdso(struct image_info
*info
, const VdsoImageInfo
*vdso
)
3603 abi_ulong load_bias
, load_addr
;
3606 src
.cache
= vdso
->image
;
3607 src
.cache_size
= vdso
->image_size
;
3609 load_elf_image("<internal-vdso>", &src
, info
, &ehdr
, NULL
);
3610 load_addr
= info
->load_addr
;
3611 load_bias
= info
->load_bias
;
3614 * We need to relocate the VDSO image. The one built into the kernel
3615 * is built for a fixed address. The one built for QEMU is not, since
3616 * that requires close control of the guest address space.
3617 * We pre-processed the image to locate all of the addresses that need
3620 for (unsigned i
= 0, n
= vdso
->reloc_count
; i
< n
; i
++) {
3621 abi_ulong
*addr
= g2h_untagged(load_addr
+ vdso
->relocs
[i
]);
3622 *addr
= tswapal(tswapal(*addr
) + load_bias
);
3625 /* Install signal trampolines, if present. */
3626 if (vdso
->sigreturn_ofs
) {
3627 default_sigreturn
= load_addr
+ vdso
->sigreturn_ofs
;
3629 if (vdso
->rt_sigreturn_ofs
) {
3630 default_rt_sigreturn
= load_addr
+ vdso
->rt_sigreturn_ofs
;
3633 /* Remove write from VDSO segment. */
3634 target_mprotect(info
->start_data
, info
->end_data
- info
->start_data
,
3635 PROT_READ
| PROT_EXEC
);
3638 static int symfind(const void *s0
, const void *s1
)
3640 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
3641 __typeof(sym
->st_value
) addr
= *(uint64_t *)s0
;
3644 if (addr
< sym
->st_value
) {
3646 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
3652 static const char *lookup_symbolxx(struct syminfo
*s
, uint64_t orig_addr
)
3654 #if ELF_CLASS == ELFCLASS32
3655 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
3657 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
3661 struct elf_sym
*sym
;
3663 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
3665 return s
->disas_strtab
+ sym
->st_name
;
3671 /* FIXME: This should use elf_ops.h */
3672 static int symcmp(const void *s0
, const void *s1
)
3674 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
3675 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
3676 return (sym0
->st_value
< sym1
->st_value
)
3678 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
3681 /* Best attempt to load symbols from this ELF object. */
3682 static void load_symbols(struct elfhdr
*hdr
, const ImageSource
*src
,
3683 abi_ulong load_bias
)
3685 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
3686 g_autofree
struct elf_shdr
*shdr
= NULL
;
3687 char *strings
= NULL
;
3688 struct elf_sym
*syms
= NULL
;
3689 struct elf_sym
*new_syms
;
3692 shnum
= hdr
->e_shnum
;
3693 shdr
= imgsrc_read_alloc(hdr
->e_shoff
, shnum
* sizeof(struct elf_shdr
),
3699 bswap_shdr(shdr
, shnum
);
3700 for (i
= 0; i
< shnum
; ++i
) {
3701 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
3703 str_idx
= shdr
[i
].sh_link
;
3708 /* There will be no symbol table if the file was stripped. */
3712 /* Now know where the strtab and symtab are. Snarf them. */
3714 segsz
= shdr
[str_idx
].sh_size
;
3715 strings
= g_try_malloc(segsz
);
3719 if (!imgsrc_read(strings
, shdr
[str_idx
].sh_offset
, segsz
, src
, NULL
)) {
3723 segsz
= shdr
[sym_idx
].sh_size
;
3724 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
3726 * Implausibly large symbol table: give up rather than ploughing
3727 * on with the number of symbols calculation overflowing.
3731 nsyms
= segsz
/ sizeof(struct elf_sym
);
3732 syms
= g_try_malloc(segsz
);
3736 if (!imgsrc_read(syms
, shdr
[sym_idx
].sh_offset
, segsz
, src
, NULL
)) {
3740 for (i
= 0; i
< nsyms
; ) {
3741 bswap_sym(syms
+ i
);
3742 /* Throw away entries which we do not need. */
3743 if (syms
[i
].st_shndx
== SHN_UNDEF
3744 || syms
[i
].st_shndx
>= SHN_LORESERVE
3745 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
3747 syms
[i
] = syms
[nsyms
];
3750 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3751 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3752 syms
[i
].st_value
&= ~(target_ulong
)1;
3754 syms
[i
].st_value
+= load_bias
;
3759 /* No "useful" symbol. */
3765 * Attempt to free the storage associated with the local symbols
3766 * that we threw away. Whether or not this has any effect on the
3767 * memory allocation depends on the malloc implementation and how
3768 * many symbols we managed to discard.
3770 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
3771 if (new_syms
== NULL
) {
3776 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
3779 struct syminfo
*s
= g_new(struct syminfo
, 1);
3781 s
->disas_strtab
= strings
;
3782 s
->disas_num_syms
= nsyms
;
3783 #if ELF_CLASS == ELFCLASS32
3784 s
->disas_symtab
.elf32
= syms
;
3786 s
->disas_symtab
.elf64
= syms
;
3788 s
->lookup_symbol
= lookup_symbolxx
;
3799 uint32_t get_elf_eflags(int fd
)
3805 /* Read ELF header */
3806 offset
= lseek(fd
, 0, SEEK_SET
);
3807 if (offset
== (off_t
) -1) {
3810 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
3811 if (ret
< sizeof(ehdr
)) {
3814 offset
= lseek(fd
, offset
, SEEK_SET
);
3815 if (offset
== (off_t
) -1) {
3819 /* Check ELF signature */
3820 if (!elf_check_ident(&ehdr
)) {
3826 if (!elf_check_ehdr(&ehdr
)) {
3830 /* return architecture id */
3831 return ehdr
.e_flags
;
3834 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
3837 * We need a copy of the elf header for passing to create_elf_tables.
3838 * We will have overwritten the original when we re-use bprm->buf
3839 * while loading the interpreter. Allocate the storage for this now
3840 * and let elf_load_image do any swapping that may be required.
3843 struct image_info interp_info
, vdso_info
;
3844 char *elf_interpreter
= NULL
;
3847 memset(&interp_info
, 0, sizeof(interp_info
));
3849 interp_info
.fp_abi
= MIPS_ABI_FP_UNKNOWN
;
3852 load_elf_image(bprm
->filename
, &bprm
->src
, info
, &ehdr
, &elf_interpreter
);
3854 /* Do this so that we can load the interpreter, if need be. We will
3855 change some of these later */
3856 bprm
->p
= setup_arg_pages(bprm
, info
);
3858 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
3859 if (STACK_GROWS_DOWN
) {
3860 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
3861 bprm
->p
, info
->stack_limit
);
3862 info
->file_string
= bprm
->p
;
3863 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
3864 bprm
->p
, info
->stack_limit
);
3865 info
->env_strings
= bprm
->p
;
3866 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
3867 bprm
->p
, info
->stack_limit
);
3868 info
->arg_strings
= bprm
->p
;
3870 info
->arg_strings
= bprm
->p
;
3871 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
3872 bprm
->p
, info
->stack_limit
);
3873 info
->env_strings
= bprm
->p
;
3874 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
3875 bprm
->p
, info
->stack_limit
);
3876 info
->file_string
= bprm
->p
;
3877 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
3878 bprm
->p
, info
->stack_limit
);
3884 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
3888 if (elf_interpreter
) {
3889 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
3892 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3893 * with the mappings the interpreter can be loaded above but
3894 * near the main executable, which can leave very little room
3896 * If the current brk has less than 16MB, use the end of the
3899 if (interp_info
.brk
> info
->brk
&&
3900 interp_info
.load_bias
- info
->brk
< 16 * MiB
) {
3901 info
->brk
= interp_info
.brk
;
3904 /* If the program interpreter is one of these two, then assume
3905 an iBCS2 image. Otherwise assume a native linux image. */
3907 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
3908 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
3909 info
->personality
= PER_SVR4
;
3911 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3912 and some applications "depend" upon this behavior. Since
3913 we do not have the power to recompile these, we emulate
3914 the SVr4 behavior. Sigh. */
3915 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
3916 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
3919 info
->interp_fp_abi
= interp_info
.fp_abi
;
3924 * Load a vdso if available, which will amongst other things contain the
3925 * signal trampolines. Otherwise, allocate a separate page for them.
3927 const VdsoImageInfo
*vdso
= vdso_image_info();
3929 load_elf_vdso(&vdso_info
, vdso
);
3930 info
->vdso
= vdso_info
.load_bias
;
3931 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE
) {
3932 abi_long tramp_page
= target_mmap(0, TARGET_PAGE_SIZE
,
3933 PROT_READ
| PROT_WRITE
,
3934 MAP_PRIVATE
| MAP_ANON
, -1, 0);
3935 if (tramp_page
== -1) {
3939 setup_sigtramp(tramp_page
);
3940 target_mprotect(tramp_page
, TARGET_PAGE_SIZE
, PROT_READ
| PROT_EXEC
);
3943 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &ehdr
, info
,
3944 elf_interpreter
? &interp_info
: NULL
,
3945 vdso
? &vdso_info
: NULL
);
3946 info
->start_stack
= bprm
->p
;
3948 /* If we have an interpreter, set that as the program's entry point.
3949 Copy the load_bias as well, to help PPC64 interpret the entry
3950 point as a function descriptor. Do this after creating elf tables
3951 so that we copy the original program entry point into the AUXV. */
3952 if (elf_interpreter
) {
3953 info
->load_bias
= interp_info
.load_bias
;
3954 info
->entry
= interp_info
.entry
;
3955 g_free(elf_interpreter
);
3958 #ifdef USE_ELF_CORE_DUMP
3959 bprm
->core_dump
= &elf_core_dump
;
3965 #ifdef USE_ELF_CORE_DUMP
3967 * Definitions to generate Intel SVR4-like core files.
3968 * These mostly have the same names as the SVR4 types with "target_elf_"
3969 * tacked on the front to prevent clashes with linux definitions,
3970 * and the typedef forms have been avoided. This is mostly like
3971 * the SVR4 structure, but more Linuxy, with things that Linux does
3972 * not support and which gdb doesn't really use excluded.
3974 * Fields we don't dump (their contents is zero) in linux-user qemu
3975 * are marked with XXX.
3977 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3979 * Porting ELF coredump for target is (quite) simple process. First you
3980 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3981 * the target resides):
3983 * #define USE_ELF_CORE_DUMP
3985 * Next you define type of register set used for dumping. ELF specification
3986 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3988 * typedef <target_regtype> target_elf_greg_t;
3989 * #define ELF_NREG <number of registers>
3990 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3992 * Last step is to implement target specific function that copies registers
3993 * from given cpu into just specified register set. Prototype is:
3995 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3996 * const CPUArchState *env);
3999 * regs - copy register values into here (allocated and zeroed by caller)
4000 * env - copy registers from here
4002 * Example for ARM target is provided in this file.
4005 /* An ELF note in memory */
4009 size_t namesz_rounded
;
4012 size_t datasz_rounded
;
4017 struct target_elf_siginfo
{
4018 abi_int si_signo
; /* signal number */
4019 abi_int si_code
; /* extra code */
4020 abi_int si_errno
; /* errno */
4023 struct target_elf_prstatus
{
4024 struct target_elf_siginfo pr_info
; /* Info associated with signal */
4025 abi_short pr_cursig
; /* Current signal */
4026 abi_ulong pr_sigpend
; /* XXX */
4027 abi_ulong pr_sighold
; /* XXX */
4028 target_pid_t pr_pid
;
4029 target_pid_t pr_ppid
;
4030 target_pid_t pr_pgrp
;
4031 target_pid_t pr_sid
;
4032 struct target_timeval pr_utime
; /* XXX User time */
4033 struct target_timeval pr_stime
; /* XXX System time */
4034 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
4035 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
4036 target_elf_gregset_t pr_reg
; /* GP registers */
4037 abi_int pr_fpvalid
; /* XXX */
4040 #define ELF_PRARGSZ (80) /* Number of chars for args */
4042 struct target_elf_prpsinfo
{
4043 char pr_state
; /* numeric process state */
4044 char pr_sname
; /* char for pr_state */
4045 char pr_zomb
; /* zombie */
4046 char pr_nice
; /* nice val */
4047 abi_ulong pr_flag
; /* flags */
4048 target_uid_t pr_uid
;
4049 target_gid_t pr_gid
;
4050 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
4052 char pr_fname
[16] QEMU_NONSTRING
; /* filename of executable */
4053 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
4056 /* Here is the structure in which status of each thread is captured. */
4057 struct elf_thread_status
{
4058 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
4059 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
4061 elf_fpregset_t fpu
; /* NT_PRFPREG */
4062 struct task_struct
*thread
;
4063 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
4065 struct memelfnote notes
[1];
4069 struct elf_note_info
{
4070 struct memelfnote
*notes
;
4071 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
4072 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
4074 QTAILQ_HEAD(, elf_thread_status
) thread_list
;
4077 * Current version of ELF coredump doesn't support
4078 * dumping fp regs etc.
4080 elf_fpregset_t
*fpu
;
4081 elf_fpxregset_t
*xfpu
;
4082 int thread_status_size
;
4088 struct vm_area_struct
{
4089 target_ulong vma_start
; /* start vaddr of memory region */
4090 target_ulong vma_end
; /* end vaddr of memory region */
4091 abi_ulong vma_flags
; /* protection etc. flags for the region */
4092 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
4096 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
4097 int mm_count
; /* number of mappings */
4100 static struct mm_struct
*vma_init(void);
4101 static void vma_delete(struct mm_struct
*);
4102 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
4103 target_ulong
, abi_ulong
);
4104 static int vma_get_mapping_count(const struct mm_struct
*);
4105 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
4106 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
4107 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
4108 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
4109 unsigned long flags
);
4111 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
4112 static void fill_note(struct memelfnote
*, const char *, int,
4113 unsigned int, void *);
4114 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
4115 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
4116 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
4117 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
4118 static size_t note_size(const struct memelfnote
*);
4119 static void free_note_info(struct elf_note_info
*);
4120 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
4121 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
4123 static int dump_write(int, const void *, size_t);
4124 static int write_note(struct memelfnote
*, int);
4125 static int write_note_info(struct elf_note_info
*, int);
4128 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
4130 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
4131 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
4132 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
4133 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
4134 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
4135 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
4136 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
4137 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
4138 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
4139 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
4140 /* cpu times are not filled, so we skip them */
4141 /* regs should be in correct format already */
4142 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
4145 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
4147 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
4148 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
4149 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
4150 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
4151 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
4152 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
4153 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
4156 static void bswap_note(struct elf_note
*en
)
4158 bswap32s(&en
->n_namesz
);
4159 bswap32s(&en
->n_descsz
);
4160 bswap32s(&en
->n_type
);
4163 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
4164 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
4165 static inline void bswap_note(struct elf_note
*en
) { }
4166 #endif /* BSWAP_NEEDED */
4169 * Minimal support for linux memory regions. These are needed
4170 * when we are finding out what memory exactly belongs to
4171 * emulated process. No locks needed here, as long as
4172 * thread that received the signal is stopped.
4175 static struct mm_struct
*vma_init(void)
4177 struct mm_struct
*mm
;
4179 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
4183 QTAILQ_INIT(&mm
->mm_mmap
);
4188 static void vma_delete(struct mm_struct
*mm
)
4190 struct vm_area_struct
*vma
;
4192 while ((vma
= vma_first(mm
)) != NULL
) {
4193 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
4199 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
4200 target_ulong end
, abi_ulong flags
)
4202 struct vm_area_struct
*vma
;
4204 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
4207 vma
->vma_start
= start
;
4209 vma
->vma_flags
= flags
;
4211 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
4217 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
4219 return (QTAILQ_FIRST(&mm
->mm_mmap
));
4222 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
4224 return (QTAILQ_NEXT(vma
, vma_link
));
4227 static int vma_get_mapping_count(const struct mm_struct
*mm
)
4229 return (mm
->mm_count
);
4233 * Calculate file (dump) size of given memory region.
4235 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
4237 /* if we cannot even read the first page, skip it */
4238 if (!access_ok_untagged(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
4242 * Usually we don't dump executable pages as they contain
4243 * non-writable code that debugger can read directly from
4244 * target library etc. However, thread stacks are marked
4245 * also executable so we read in first page of given region
4246 * and check whether it contains elf header. If there is
4247 * no elf header, we dump it.
4249 if (vma
->vma_flags
& PROT_EXEC
) {
4250 char page
[TARGET_PAGE_SIZE
];
4252 if (copy_from_user(page
, vma
->vma_start
, sizeof (page
))) {
4255 if ((page
[EI_MAG0
] == ELFMAG0
) &&
4256 (page
[EI_MAG1
] == ELFMAG1
) &&
4257 (page
[EI_MAG2
] == ELFMAG2
) &&
4258 (page
[EI_MAG3
] == ELFMAG3
)) {
4260 * Mappings are possibly from ELF binary. Don't dump
4267 return (vma
->vma_end
- vma
->vma_start
);
4270 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
4271 unsigned long flags
)
4273 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
4275 vma_add_mapping(mm
, start
, end
, flags
);
4279 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
4280 unsigned int sz
, void *data
)
4282 unsigned int namesz
;
4284 namesz
= strlen(name
) + 1;
4286 note
->namesz
= namesz
;
4287 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
4290 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
4295 * We calculate rounded up note size here as specified by
4298 note
->notesz
= sizeof (struct elf_note
) +
4299 note
->namesz_rounded
+ note
->datasz_rounded
;
4302 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
4305 (void) memset(elf
, 0, sizeof(*elf
));
4307 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
4308 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
4309 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
4310 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
4311 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
4313 elf
->e_type
= ET_CORE
;
4314 elf
->e_machine
= machine
;
4315 elf
->e_version
= EV_CURRENT
;
4316 elf
->e_phoff
= sizeof(struct elfhdr
);
4317 elf
->e_flags
= flags
;
4318 elf
->e_ehsize
= sizeof(struct elfhdr
);
4319 elf
->e_phentsize
= sizeof(struct elf_phdr
);
4320 elf
->e_phnum
= segs
;
4325 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
4327 phdr
->p_type
= PT_NOTE
;
4328 phdr
->p_offset
= offset
;
4331 phdr
->p_filesz
= sz
;
4336 bswap_phdr(phdr
, 1);
4339 static size_t note_size(const struct memelfnote
*note
)
4341 return (note
->notesz
);
4344 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
4345 const TaskState
*ts
, int signr
)
4347 (void) memset(prstatus
, 0, sizeof (*prstatus
));
4348 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
4349 prstatus
->pr_pid
= ts
->ts_tid
;
4350 prstatus
->pr_ppid
= getppid();
4351 prstatus
->pr_pgrp
= getpgrp();
4352 prstatus
->pr_sid
= getsid(0);
4354 bswap_prstatus(prstatus
);
4357 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
4359 char *base_filename
;
4360 unsigned int i
, len
;
4362 (void) memset(psinfo
, 0, sizeof (*psinfo
));
4364 len
= ts
->info
->env_strings
- ts
->info
->arg_strings
;
4365 if (len
>= ELF_PRARGSZ
)
4366 len
= ELF_PRARGSZ
- 1;
4367 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_strings
, len
)) {
4370 for (i
= 0; i
< len
; i
++)
4371 if (psinfo
->pr_psargs
[i
] == 0)
4372 psinfo
->pr_psargs
[i
] = ' ';
4373 psinfo
->pr_psargs
[len
] = 0;
4375 psinfo
->pr_pid
= getpid();
4376 psinfo
->pr_ppid
= getppid();
4377 psinfo
->pr_pgrp
= getpgrp();
4378 psinfo
->pr_sid
= getsid(0);
4379 psinfo
->pr_uid
= getuid();
4380 psinfo
->pr_gid
= getgid();
4382 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
4384 * Using strncpy here is fine: at max-length,
4385 * this field is not NUL-terminated.
4387 (void) strncpy(psinfo
->pr_fname
, base_filename
,
4388 sizeof(psinfo
->pr_fname
));
4390 g_free(base_filename
);
4391 bswap_psinfo(psinfo
);
4395 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
4397 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
4398 elf_addr_t orig_auxv
= auxv
;
4400 int len
= ts
->info
->auxv_len
;
4403 * Auxiliary vector is stored in target process stack. It contains
4404 * {type, value} pairs that we need to dump into note. This is not
4405 * strictly necessary but we do it here for sake of completeness.
4408 /* read in whole auxv vector and copy it to memelfnote */
4409 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
4411 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
4412 unlock_user(ptr
, auxv
, len
);
4417 * Constructs name of coredump file. We have following convention
4419 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4421 * Returns the filename
4423 static char *core_dump_filename(const TaskState
*ts
)
4425 g_autoptr(GDateTime
) now
= g_date_time_new_now_local();
4426 g_autofree
char *nowstr
= g_date_time_format(now
, "%Y%m%d-%H%M%S");
4427 g_autofree
char *base_filename
= g_path_get_basename(ts
->bprm
->filename
);
4429 return g_strdup_printf("qemu_%s_%s_%d.core",
4430 base_filename
, nowstr
, (int)getpid());
4433 static int dump_write(int fd
, const void *ptr
, size_t size
)
4435 const char *bufp
= (const char *)ptr
;
4436 ssize_t bytes_written
, bytes_left
;
4437 struct rlimit dumpsize
;
4441 getrlimit(RLIMIT_CORE
, &dumpsize
);
4442 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
4443 if (errno
== ESPIPE
) { /* not a seekable stream */
4449 if (dumpsize
.rlim_cur
<= pos
) {
4451 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
4454 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
4455 bytes_left
= limit_left
>= size
? size
: limit_left
;
4460 * In normal conditions, single write(2) should do but
4461 * in case of socket etc. this mechanism is more portable.
4464 bytes_written
= write(fd
, bufp
, bytes_left
);
4465 if (bytes_written
< 0) {
4469 } else if (bytes_written
== 0) { /* eof */
4472 bufp
+= bytes_written
;
4473 bytes_left
-= bytes_written
;
4474 } while (bytes_left
> 0);
4479 static int write_note(struct memelfnote
*men
, int fd
)
4483 en
.n_namesz
= men
->namesz
;
4484 en
.n_type
= men
->type
;
4485 en
.n_descsz
= men
->datasz
;
4489 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
4491 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
4493 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
4499 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
4501 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
4502 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
4503 struct elf_thread_status
*ets
;
4505 ets
= g_malloc0(sizeof (*ets
));
4506 ets
->num_notes
= 1; /* only prstatus is dumped */
4507 fill_prstatus(&ets
->prstatus
, ts
, 0);
4508 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
4509 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
4512 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
4514 info
->notes_size
+= note_size(&ets
->notes
[0]);
4517 static void init_note_info(struct elf_note_info
*info
)
4519 /* Initialize the elf_note_info structure so that it is at
4520 * least safe to call free_note_info() on it. Must be
4521 * called before calling fill_note_info().
4523 memset(info
, 0, sizeof (*info
));
4524 QTAILQ_INIT(&info
->thread_list
);
4527 static int fill_note_info(struct elf_note_info
*info
,
4528 long signr
, const CPUArchState
*env
)
4531 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
4532 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
4535 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
4536 if (info
->notes
== NULL
)
4538 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
4539 if (info
->prstatus
== NULL
)
4541 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
4542 if (info
->prstatus
== NULL
)
4546 * First fill in status (and registers) of current thread
4547 * including process info & aux vector.
4549 fill_prstatus(info
->prstatus
, ts
, signr
);
4550 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
4551 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
4552 sizeof (*info
->prstatus
), info
->prstatus
);
4553 fill_psinfo(info
->psinfo
, ts
);
4554 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
4555 sizeof (*info
->psinfo
), info
->psinfo
);
4556 fill_auxv_note(&info
->notes
[2], ts
);
4559 info
->notes_size
= 0;
4560 for (i
= 0; i
< info
->numnote
; i
++)
4561 info
->notes_size
+= note_size(&info
->notes
[i
]);
4563 /* read and fill status of all threads */
4564 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock
) {
4566 if (cpu
== thread_cpu
) {
4569 fill_thread_info(info
, cpu_env(cpu
));
4576 static void free_note_info(struct elf_note_info
*info
)
4578 struct elf_thread_status
*ets
;
4580 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
4581 ets
= QTAILQ_FIRST(&info
->thread_list
);
4582 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
4586 g_free(info
->prstatus
);
4587 g_free(info
->psinfo
);
4588 g_free(info
->notes
);
4591 static int write_note_info(struct elf_note_info
*info
, int fd
)
4593 struct elf_thread_status
*ets
;
4596 /* write prstatus, psinfo and auxv for current thread */
4597 for (i
= 0; i
< info
->numnote
; i
++)
4598 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
4601 /* write prstatus for each thread */
4602 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
4603 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
4611 * Write out ELF coredump.
4613 * See documentation of ELF object file format in:
4614 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4616 * Coredump format in linux is following:
4618 * 0 +----------------------+ \
4619 * | ELF header | ET_CORE |
4620 * +----------------------+ |
4621 * | ELF program headers | |--- headers
4622 * | - NOTE section | |
4623 * | - PT_LOAD sections | |
4624 * +----------------------+ /
4629 * +----------------------+ <-- aligned to target page
4630 * | Process memory dump |
4635 * +----------------------+
4637 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4638 * NT_PRSINFO -> struct elf_prpsinfo
4639 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4641 * Format follows System V format as close as possible. Current
4642 * version limitations are as follows:
4643 * - no floating point registers are dumped
4645 * Function returns 0 in case of success, negative errno otherwise.
4647 * TODO: make this work also during runtime: it should be
4648 * possible to force coredump from running process and then
4649 * continue processing. For example qemu could set up SIGUSR2
4650 * handler (provided that target process haven't registered
4651 * handler for that) that does the dump when signal is received.
4653 static int elf_core_dump(int signr
, const CPUArchState
*env
)
4655 const CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
4656 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
4657 struct vm_area_struct
*vma
= NULL
;
4658 g_autofree
char *corefile
= NULL
;
4659 struct elf_note_info info
;
4661 struct elf_phdr phdr
;
4662 struct rlimit dumpsize
;
4663 struct mm_struct
*mm
= NULL
;
4664 off_t offset
= 0, data_offset
= 0;
4668 init_note_info(&info
);
4672 if (prctl(PR_GET_DUMPABLE
) == 0) {
4676 if (getrlimit(RLIMIT_CORE
, &dumpsize
) == 0 && dumpsize
.rlim_cur
== 0) {
4680 corefile
= core_dump_filename(ts
);
4682 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
4683 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
4687 * Walk through target process memory mappings and
4688 * set up structure containing this information. After
4689 * this point vma_xxx functions can be used.
4691 if ((mm
= vma_init()) == NULL
)
4694 walk_memory_regions(mm
, vma_walker
);
4695 segs
= vma_get_mapping_count(mm
);
4698 * Construct valid coredump ELF header. We also
4699 * add one more segment for notes.
4701 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
4702 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
4705 /* fill in the in-memory version of notes */
4706 if (fill_note_info(&info
, signr
, env
) < 0)
4709 offset
+= sizeof (elf
); /* elf header */
4710 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
4712 /* write out notes program header */
4713 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
4715 offset
+= info
.notes_size
;
4716 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
4720 * ELF specification wants data to start at page boundary so
4723 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
4726 * Write program headers for memory regions mapped in
4727 * the target process.
4729 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
4730 (void) memset(&phdr
, 0, sizeof (phdr
));
4732 phdr
.p_type
= PT_LOAD
;
4733 phdr
.p_offset
= offset
;
4734 phdr
.p_vaddr
= vma
->vma_start
;
4736 phdr
.p_filesz
= vma_dump_size(vma
);
4737 offset
+= phdr
.p_filesz
;
4738 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
4739 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
4740 if (vma
->vma_flags
& PROT_WRITE
)
4741 phdr
.p_flags
|= PF_W
;
4742 if (vma
->vma_flags
& PROT_EXEC
)
4743 phdr
.p_flags
|= PF_X
;
4744 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
4746 bswap_phdr(&phdr
, 1);
4747 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
4753 * Next we write notes just after program headers. No
4754 * alignment needed here.
4756 if (write_note_info(&info
, fd
) < 0)
4759 /* align data to page boundary */
4760 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
4764 * Finally we can dump process memory into corefile as well.
4766 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
4770 end
= vma
->vma_start
+ vma_dump_size(vma
);
4772 for (addr
= vma
->vma_start
; addr
< end
;
4773 addr
+= TARGET_PAGE_SIZE
) {
4774 char page
[TARGET_PAGE_SIZE
];
4778 * Read in page from target process memory and
4779 * write it to coredump file.
4781 error
= copy_from_user(page
, addr
, sizeof (page
));
4783 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
4788 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
4794 free_note_info(&info
);
4803 #endif /* USE_ELF_CORE_DUMP */
4805 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
4807 init_thread(regs
, infop
);