block: Ignore generated job QAPI files
[qemu/ar7.git] / hw / block / pflash_cfi01.c
blobe4b5b3c2730967de6a97881d0a1c40c097bf78c6
1 /*
2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
24 * - flash read
25 * - flash write
26 * - flash ID read
27 * - sector erase
28 * - CFI queries
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "qemu/osdep.h"
40 #include "hw/hw.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "qapi/error.h"
44 #include "qemu/timer.h"
45 #include "qemu/bitops.h"
46 #include "qemu/host-utils.h"
47 #include "qemu/log.h"
48 #include "hw/sysbus.h"
49 #include "sysemu/sysemu.h"
51 #define PFLASH_BUG(fmt, ...) \
52 do { \
53 fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
54 exit(1); \
55 } while(0)
57 /* #define PFLASH_DEBUG */
58 #ifdef PFLASH_DEBUG
59 #define DPRINTF(fmt, ...) \
60 do { \
61 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
62 } while (0)
63 #else
64 #define DPRINTF(fmt, ...) do { } while (0)
65 #endif
67 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
69 #define PFLASH_BE 0
70 #define PFLASH_SECURE 1
72 struct pflash_t {
73 /*< private >*/
74 SysBusDevice parent_obj;
75 /*< public >*/
77 BlockBackend *blk;
78 uint32_t nb_blocs;
79 uint64_t sector_len;
80 uint8_t bank_width;
81 uint8_t device_width; /* If 0, device width not specified. */
82 uint8_t max_device_width; /* max device width in bytes */
83 uint32_t features;
84 uint8_t wcycle; /* if 0, the flash is read normally */
85 int ro;
86 uint8_t cmd;
87 uint8_t status;
88 uint16_t ident0;
89 uint16_t ident1;
90 uint16_t ident2;
91 uint16_t ident3;
92 uint8_t cfi_table[0x52];
93 uint64_t counter;
94 unsigned int writeblock_size;
95 QEMUTimer *timer;
96 MemoryRegion mem;
97 char *name;
98 void *storage;
99 VMChangeStateEntry *vmstate;
100 bool old_multiple_chip_handling;
103 static int pflash_post_load(void *opaque, int version_id);
105 static const VMStateDescription vmstate_pflash = {
106 .name = "pflash_cfi01",
107 .version_id = 1,
108 .minimum_version_id = 1,
109 .post_load = pflash_post_load,
110 .fields = (VMStateField[]) {
111 VMSTATE_UINT8(wcycle, pflash_t),
112 VMSTATE_UINT8(cmd, pflash_t),
113 VMSTATE_UINT8(status, pflash_t),
114 VMSTATE_UINT64(counter, pflash_t),
115 VMSTATE_END_OF_LIST()
119 static void pflash_timer (void *opaque)
121 pflash_t *pfl = opaque;
123 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
124 /* Reset flash */
125 pfl->status ^= 0x80;
126 memory_region_rom_device_set_romd(&pfl->mem, true);
127 pfl->wcycle = 0;
128 pfl->cmd = 0;
131 /* Perform a CFI query based on the bank width of the flash.
132 * If this code is called we know we have a device_width set for
133 * this flash.
135 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
137 int i;
138 uint32_t resp = 0;
139 hwaddr boff;
141 /* Adjust incoming offset to match expected device-width
142 * addressing. CFI query addresses are always specified in terms of
143 * the maximum supported width of the device. This means that x8
144 * devices and x8/x16 devices in x8 mode behave differently. For
145 * devices that are not used at their max width, we will be
146 * provided with addresses that use higher address bits than
147 * expected (based on the max width), so we will shift them lower
148 * so that they will match the addresses used when
149 * device_width==max_device_width.
151 boff = offset >> (ctz32(pfl->bank_width) +
152 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
154 if (boff >= sizeof(pfl->cfi_table)) {
155 return 0;
157 /* Now we will construct the CFI response generated by a single
158 * device, then replicate that for all devices that make up the
159 * bus. For wide parts used in x8 mode, CFI query responses
160 * are different than native byte-wide parts.
162 resp = pfl->cfi_table[boff];
163 if (pfl->device_width != pfl->max_device_width) {
164 /* The only case currently supported is x8 mode for a
165 * wider part.
167 if (pfl->device_width != 1 || pfl->bank_width > 4) {
168 DPRINTF("%s: Unsupported device configuration: "
169 "device_width=%d, max_device_width=%d\n",
170 __func__, pfl->device_width,
171 pfl->max_device_width);
172 return 0;
174 /* CFI query data is repeated, rather than zero padded for
175 * wide devices used in x8 mode.
177 for (i = 1; i < pfl->max_device_width; i++) {
178 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
181 /* Replicate responses for each device in bank. */
182 if (pfl->device_width < pfl->bank_width) {
183 for (i = pfl->device_width;
184 i < pfl->bank_width; i += pfl->device_width) {
185 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
189 return resp;
194 /* Perform a device id query based on the bank width of the flash. */
195 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
197 int i;
198 uint32_t resp;
199 hwaddr boff;
201 /* Adjust incoming offset to match expected device-width
202 * addressing. Device ID read addresses are always specified in
203 * terms of the maximum supported width of the device. This means
204 * that x8 devices and x8/x16 devices in x8 mode behave
205 * differently. For devices that are not used at their max width,
206 * we will be provided with addresses that use higher address bits
207 * than expected (based on the max width), so we will shift them
208 * lower so that they will match the addresses used when
209 * device_width==max_device_width.
211 boff = offset >> (ctz32(pfl->bank_width) +
212 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
214 /* Mask off upper bits which may be used in to query block
215 * or sector lock status at other addresses.
216 * Offsets 2/3 are block lock status, is not emulated.
218 switch (boff & 0xFF) {
219 case 0:
220 resp = pfl->ident0;
221 DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
222 break;
223 case 1:
224 resp = pfl->ident1;
225 DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
226 break;
227 default:
228 DPRINTF("%s: Read Device Information offset=%x\n", __func__,
229 (unsigned)offset);
230 return 0;
231 break;
233 /* Replicate responses for each device in bank. */
234 if (pfl->device_width < pfl->bank_width) {
235 for (i = pfl->device_width;
236 i < pfl->bank_width; i += pfl->device_width) {
237 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
241 return resp;
244 static uint32_t pflash_data_read(pflash_t *pfl, hwaddr offset,
245 int width, int be)
247 uint8_t *p;
248 uint32_t ret;
250 p = pfl->storage;
251 switch (width) {
252 case 1:
253 ret = p[offset];
254 DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
255 __func__, offset, ret);
256 break;
257 case 2:
258 if (be) {
259 ret = p[offset] << 8;
260 ret |= p[offset + 1];
261 } else {
262 ret = p[offset];
263 ret |= p[offset + 1] << 8;
265 DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
266 __func__, offset, ret);
267 break;
268 case 4:
269 if (be) {
270 ret = p[offset] << 24;
271 ret |= p[offset + 1] << 16;
272 ret |= p[offset + 2] << 8;
273 ret |= p[offset + 3];
274 } else {
275 ret = p[offset];
276 ret |= p[offset + 1] << 8;
277 ret |= p[offset + 2] << 16;
278 ret |= p[offset + 3] << 24;
280 DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
281 __func__, offset, ret);
282 break;
283 default:
284 DPRINTF("BUG in %s\n", __func__);
285 abort();
287 return ret;
290 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
291 int width, int be)
293 hwaddr boff;
294 uint32_t ret;
296 ret = -1;
298 #if 0
299 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
300 __func__, offset, pfl->cmd, width);
301 #endif
302 switch (pfl->cmd) {
303 default:
304 /* This should never happen : reset state & treat it as a read */
305 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
306 pfl->wcycle = 0;
307 pfl->cmd = 0;
308 /* fall through to read code */
309 case 0x00:
310 /* Flash area read */
311 ret = pflash_data_read(pfl, offset, width, be);
312 break;
313 case 0x10: /* Single byte program */
314 case 0x20: /* Block erase */
315 case 0x28: /* Block erase */
316 case 0x40: /* single byte program */
317 case 0x50: /* Clear status register */
318 case 0x60: /* Block /un)lock */
319 case 0x70: /* Status Register */
320 case 0xe8: /* Write block */
321 /* Status register read. Return status from each device in
322 * bank.
324 ret = pfl->status;
325 if (pfl->device_width && width > pfl->device_width) {
326 int shift = pfl->device_width * 8;
327 while (shift + pfl->device_width * 8 <= width * 8) {
328 ret |= pfl->status << shift;
329 shift += pfl->device_width * 8;
331 } else if (!pfl->device_width && width > 2) {
332 /* Handle 32 bit flash cases where device width is not
333 * set. (Existing behavior before device width added.)
335 ret |= pfl->status << 16;
337 DPRINTF("%s: status %x\n", __func__, ret);
338 break;
339 case 0x90:
340 if (!pfl->device_width) {
341 /* Preserve old behavior if device width not specified */
342 boff = offset & 0xFF;
343 if (pfl->bank_width == 2) {
344 boff = boff >> 1;
345 } else if (pfl->bank_width == 4) {
346 boff = boff >> 2;
349 switch (boff) {
350 case 0:
351 ret = pfl->ident0 << 8 | pfl->ident1;
352 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
353 break;
354 case 1:
355 ret = pfl->ident2 << 8 | pfl->ident3;
356 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
357 break;
358 default:
359 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
360 (unsigned)boff);
361 ret = 0;
362 break;
364 } else {
365 /* If we have a read larger than the bank_width, combine multiple
366 * manufacturer/device ID queries into a single response.
368 int i;
369 for (i = 0; i < width; i += pfl->bank_width) {
370 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
371 pflash_devid_query(pfl,
372 offset + i * pfl->bank_width));
375 break;
376 case 0x98: /* Query mode */
377 if (!pfl->device_width) {
378 /* Preserve old behavior if device width not specified */
379 boff = offset & 0xFF;
380 if (pfl->bank_width == 2) {
381 boff = boff >> 1;
382 } else if (pfl->bank_width == 4) {
383 boff = boff >> 2;
386 if (boff < sizeof(pfl->cfi_table)) {
387 ret = pfl->cfi_table[boff];
388 } else {
389 ret = 0;
391 } else {
392 /* If we have a read larger than the bank_width, combine multiple
393 * CFI queries into a single response.
395 int i;
396 for (i = 0; i < width; i += pfl->bank_width) {
397 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
398 pflash_cfi_query(pfl,
399 offset + i * pfl->bank_width));
403 break;
405 return ret;
408 /* update flash content on disk */
409 static void pflash_update(pflash_t *pfl, int offset,
410 int size)
412 int offset_end;
413 if (pfl->blk) {
414 offset_end = offset + size;
415 /* widen to sector boundaries */
416 offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
417 offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
418 blk_pwrite(pfl->blk, offset, pfl->storage + offset,
419 offset_end - offset, 0);
423 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
424 uint32_t value, int width, int be)
426 uint8_t *p = pfl->storage;
428 DPRINTF("%s: block write offset " TARGET_FMT_plx
429 " value %x counter %016" PRIx64 "\n",
430 __func__, offset, value, pfl->counter);
431 switch (width) {
432 case 1:
433 p[offset] = value;
434 break;
435 case 2:
436 if (be) {
437 p[offset] = value >> 8;
438 p[offset + 1] = value;
439 } else {
440 p[offset] = value;
441 p[offset + 1] = value >> 8;
443 break;
444 case 4:
445 if (be) {
446 p[offset] = value >> 24;
447 p[offset + 1] = value >> 16;
448 p[offset + 2] = value >> 8;
449 p[offset + 3] = value;
450 } else {
451 p[offset] = value;
452 p[offset + 1] = value >> 8;
453 p[offset + 2] = value >> 16;
454 p[offset + 3] = value >> 24;
456 break;
461 static void pflash_write(pflash_t *pfl, hwaddr offset,
462 uint32_t value, int width, int be)
464 uint8_t *p;
465 uint8_t cmd;
467 cmd = value;
469 DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
470 __func__, offset, value, width, pfl->wcycle);
472 if (!pfl->wcycle) {
473 /* Set the device in I/O access mode */
474 memory_region_rom_device_set_romd(&pfl->mem, false);
477 switch (pfl->wcycle) {
478 case 0:
479 /* read mode */
480 switch (cmd) {
481 case 0x00: /* ??? */
482 goto reset_flash;
483 case 0x10: /* Single Byte Program */
484 case 0x40: /* Single Byte Program */
485 DPRINTF("%s: Single Byte Program\n", __func__);
486 break;
487 case 0x20: /* Block erase */
488 p = pfl->storage;
489 offset &= ~(pfl->sector_len - 1);
491 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
492 __func__, offset, (unsigned)pfl->sector_len);
494 if (!pfl->ro) {
495 memset(p + offset, 0xff, pfl->sector_len);
496 pflash_update(pfl, offset, pfl->sector_len);
497 } else {
498 pfl->status |= 0x20; /* Block erase error */
500 pfl->status |= 0x80; /* Ready! */
501 break;
502 case 0x50: /* Clear status bits */
503 DPRINTF("%s: Clear status bits\n", __func__);
504 pfl->status = 0x0;
505 goto reset_flash;
506 case 0x60: /* Block (un)lock */
507 DPRINTF("%s: Block unlock\n", __func__);
508 break;
509 case 0x70: /* Status Register */
510 DPRINTF("%s: Read status register\n", __func__);
511 pfl->cmd = cmd;
512 return;
513 case 0x90: /* Read Device ID */
514 DPRINTF("%s: Read Device information\n", __func__);
515 pfl->cmd = cmd;
516 return;
517 case 0x98: /* CFI query */
518 DPRINTF("%s: CFI query\n", __func__);
519 break;
520 case 0xe8: /* Write to buffer */
521 DPRINTF("%s: Write to buffer\n", __func__);
522 pfl->status |= 0x80; /* Ready! */
523 break;
524 case 0xf0: /* Probe for AMD flash */
525 DPRINTF("%s: Probe for AMD flash\n", __func__);
526 goto reset_flash;
527 case 0xff: /* Read array mode */
528 DPRINTF("%s: Read array mode\n", __func__);
529 goto reset_flash;
530 default:
531 goto error_flash;
533 pfl->wcycle++;
534 pfl->cmd = cmd;
535 break;
536 case 1:
537 switch (pfl->cmd) {
538 case 0x10: /* Single Byte Program */
539 case 0x40: /* Single Byte Program */
540 DPRINTF("%s: Single Byte Program\n", __func__);
541 if (!pfl->ro) {
542 pflash_data_write(pfl, offset, value, width, be);
543 pflash_update(pfl, offset, width);
544 } else {
545 pfl->status |= 0x10; /* Programming error */
547 pfl->status |= 0x80; /* Ready! */
548 pfl->wcycle = 0;
549 break;
550 case 0x20: /* Block erase */
551 case 0x28:
552 if (cmd == 0xd0) { /* confirm */
553 pfl->wcycle = 0;
554 pfl->status |= 0x80;
555 } else if (cmd == 0xff) { /* read array mode */
556 goto reset_flash;
557 } else
558 goto error_flash;
560 break;
561 case 0xe8:
562 /* Mask writeblock size based on device width, or bank width if
563 * device width not specified.
565 if (pfl->device_width) {
566 value = extract32(value, 0, pfl->device_width * 8);
567 } else {
568 value = extract32(value, 0, pfl->bank_width * 8);
570 DPRINTF("%s: block write of %x bytes\n", __func__, value);
571 pfl->counter = value;
572 pfl->wcycle++;
573 break;
574 case 0x60:
575 if (cmd == 0xd0) {
576 pfl->wcycle = 0;
577 pfl->status |= 0x80;
578 } else if (cmd == 0x01) {
579 pfl->wcycle = 0;
580 pfl->status |= 0x80;
581 } else if (cmd == 0xff) {
582 goto reset_flash;
583 } else {
584 DPRINTF("%s: Unknown (un)locking command\n", __func__);
585 goto reset_flash;
587 break;
588 case 0x98:
589 if (cmd == 0xff) {
590 goto reset_flash;
591 } else {
592 DPRINTF("%s: leaving query mode\n", __func__);
594 break;
595 default:
596 goto error_flash;
598 break;
599 case 2:
600 switch (pfl->cmd) {
601 case 0xe8: /* Block write */
602 if (!pfl->ro) {
603 pflash_data_write(pfl, offset, value, width, be);
604 } else {
605 pfl->status |= 0x10; /* Programming error */
608 pfl->status |= 0x80;
610 if (!pfl->counter) {
611 hwaddr mask = pfl->writeblock_size - 1;
612 mask = ~mask;
614 DPRINTF("%s: block write finished\n", __func__);
615 pfl->wcycle++;
616 if (!pfl->ro) {
617 /* Flush the entire write buffer onto backing storage. */
618 pflash_update(pfl, offset & mask, pfl->writeblock_size);
619 } else {
620 pfl->status |= 0x10; /* Programming error */
624 pfl->counter--;
625 break;
626 default:
627 goto error_flash;
629 break;
630 case 3: /* Confirm mode */
631 switch (pfl->cmd) {
632 case 0xe8: /* Block write */
633 if (cmd == 0xd0) {
634 pfl->wcycle = 0;
635 pfl->status |= 0x80;
636 } else {
637 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
638 PFLASH_BUG("Write block confirm");
639 goto reset_flash;
641 break;
642 default:
643 goto error_flash;
645 break;
646 default:
647 /* Should never happen */
648 DPRINTF("%s: invalid write state\n", __func__);
649 goto reset_flash;
651 return;
653 error_flash:
654 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
655 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
656 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
658 reset_flash:
659 memory_region_rom_device_set_romd(&pfl->mem, true);
661 pfl->wcycle = 0;
662 pfl->cmd = 0;
666 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
667 unsigned len, MemTxAttrs attrs)
669 pflash_t *pfl = opaque;
670 bool be = !!(pfl->features & (1 << PFLASH_BE));
672 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
673 *value = pflash_data_read(opaque, addr, len, be);
674 } else {
675 *value = pflash_read(opaque, addr, len, be);
677 return MEMTX_OK;
680 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
681 unsigned len, MemTxAttrs attrs)
683 pflash_t *pfl = opaque;
684 bool be = !!(pfl->features & (1 << PFLASH_BE));
686 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
687 return MEMTX_ERROR;
688 } else {
689 pflash_write(opaque, addr, value, len, be);
690 return MEMTX_OK;
694 static const MemoryRegionOps pflash_cfi01_ops = {
695 .read_with_attrs = pflash_mem_read_with_attrs,
696 .write_with_attrs = pflash_mem_write_with_attrs,
697 .endianness = DEVICE_NATIVE_ENDIAN,
700 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
702 pflash_t *pfl = CFI_PFLASH01(dev);
703 uint64_t total_len;
704 int ret;
705 uint64_t blocks_per_device, sector_len_per_device, device_len;
706 int num_devices;
707 Error *local_err = NULL;
709 if (pfl->sector_len == 0) {
710 error_setg(errp, "attribute \"sector-length\" not specified or zero.");
711 return;
713 if (pfl->nb_blocs == 0) {
714 error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
715 return;
717 if (pfl->name == NULL) {
718 error_setg(errp, "attribute \"name\" not specified.");
719 return;
722 total_len = pfl->sector_len * pfl->nb_blocs;
724 /* These are only used to expose the parameters of each device
725 * in the cfi_table[].
727 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
728 if (pfl->old_multiple_chip_handling) {
729 blocks_per_device = pfl->nb_blocs / num_devices;
730 sector_len_per_device = pfl->sector_len;
731 } else {
732 blocks_per_device = pfl->nb_blocs;
733 sector_len_per_device = pfl->sector_len / num_devices;
735 device_len = sector_len_per_device * blocks_per_device;
737 /* XXX: to be fixed */
738 #if 0
739 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
740 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
741 return NULL;
742 #endif
744 memory_region_init_rom_device(
745 &pfl->mem, OBJECT(dev),
746 &pflash_cfi01_ops,
747 pfl,
748 pfl->name, total_len, &local_err);
749 if (local_err) {
750 error_propagate(errp, local_err);
751 return;
754 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
755 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
757 if (pfl->blk) {
758 uint64_t perm;
759 pfl->ro = blk_is_read_only(pfl->blk);
760 perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
761 ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
762 if (ret < 0) {
763 return;
765 } else {
766 pfl->ro = 0;
769 if (pfl->blk) {
770 /* read the initial flash content */
771 ret = blk_pread(pfl->blk, 0, pfl->storage, total_len);
773 if (ret < 0) {
774 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
775 error_setg(errp, "failed to read the initial flash content");
776 return;
780 /* Default to devices being used at their maximum device width. This was
781 * assumed before the device_width support was added.
783 if (!pfl->max_device_width) {
784 pfl->max_device_width = pfl->device_width;
787 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
788 pfl->wcycle = 0;
789 pfl->cmd = 0;
790 pfl->status = 0;
791 /* Hardcoded CFI table */
792 /* Standard "QRY" string */
793 pfl->cfi_table[0x10] = 'Q';
794 pfl->cfi_table[0x11] = 'R';
795 pfl->cfi_table[0x12] = 'Y';
796 /* Command set (Intel) */
797 pfl->cfi_table[0x13] = 0x01;
798 pfl->cfi_table[0x14] = 0x00;
799 /* Primary extended table address (none) */
800 pfl->cfi_table[0x15] = 0x31;
801 pfl->cfi_table[0x16] = 0x00;
802 /* Alternate command set (none) */
803 pfl->cfi_table[0x17] = 0x00;
804 pfl->cfi_table[0x18] = 0x00;
805 /* Alternate extended table (none) */
806 pfl->cfi_table[0x19] = 0x00;
807 pfl->cfi_table[0x1A] = 0x00;
808 /* Vcc min */
809 pfl->cfi_table[0x1B] = 0x45;
810 /* Vcc max */
811 pfl->cfi_table[0x1C] = 0x55;
812 /* Vpp min (no Vpp pin) */
813 pfl->cfi_table[0x1D] = 0x00;
814 /* Vpp max (no Vpp pin) */
815 pfl->cfi_table[0x1E] = 0x00;
816 /* Reserved */
817 pfl->cfi_table[0x1F] = 0x07;
818 /* Timeout for min size buffer write */
819 pfl->cfi_table[0x20] = 0x07;
820 /* Typical timeout for block erase */
821 pfl->cfi_table[0x21] = 0x0a;
822 /* Typical timeout for full chip erase (4096 ms) */
823 pfl->cfi_table[0x22] = 0x00;
824 /* Reserved */
825 pfl->cfi_table[0x23] = 0x04;
826 /* Max timeout for buffer write */
827 pfl->cfi_table[0x24] = 0x04;
828 /* Max timeout for block erase */
829 pfl->cfi_table[0x25] = 0x04;
830 /* Max timeout for chip erase */
831 pfl->cfi_table[0x26] = 0x00;
832 /* Device size */
833 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
834 /* Flash device interface (8 & 16 bits) */
835 pfl->cfi_table[0x28] = 0x02;
836 pfl->cfi_table[0x29] = 0x00;
837 /* Max number of bytes in multi-bytes write */
838 if (pfl->bank_width == 1) {
839 pfl->cfi_table[0x2A] = 0x08;
840 } else {
841 pfl->cfi_table[0x2A] = 0x0B;
843 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
844 if (!pfl->old_multiple_chip_handling && num_devices > 1) {
845 pfl->writeblock_size *= num_devices;
848 pfl->cfi_table[0x2B] = 0x00;
849 /* Number of erase block regions (uniform) */
850 pfl->cfi_table[0x2C] = 0x01;
851 /* Erase block region 1 */
852 pfl->cfi_table[0x2D] = blocks_per_device - 1;
853 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
854 pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
855 pfl->cfi_table[0x30] = sector_len_per_device >> 16;
857 /* Extended */
858 pfl->cfi_table[0x31] = 'P';
859 pfl->cfi_table[0x32] = 'R';
860 pfl->cfi_table[0x33] = 'I';
862 pfl->cfi_table[0x34] = '1';
863 pfl->cfi_table[0x35] = '0';
865 pfl->cfi_table[0x36] = 0x00;
866 pfl->cfi_table[0x37] = 0x00;
867 pfl->cfi_table[0x38] = 0x00;
868 pfl->cfi_table[0x39] = 0x00;
870 pfl->cfi_table[0x3a] = 0x00;
872 pfl->cfi_table[0x3b] = 0x00;
873 pfl->cfi_table[0x3c] = 0x00;
875 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
878 static Property pflash_cfi01_properties[] = {
879 DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
880 /* num-blocks is the number of blocks actually visible to the guest,
881 * ie the total size of the device divided by the sector length.
882 * If we're emulating flash devices wired in parallel the actual
883 * number of blocks per indvidual device will differ.
885 DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
886 DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
887 /* width here is the overall width of this QEMU device in bytes.
888 * The QEMU device may be emulating a number of flash devices
889 * wired up in parallel; the width of each individual flash
890 * device should be specified via device-width. If the individual
891 * devices have a maximum width which is greater than the width
892 * they are being used for, this maximum width should be set via
893 * max-device-width (which otherwise defaults to device-width).
894 * So for instance a 32-bit wide QEMU flash device made from four
895 * 16-bit flash devices used in 8-bit wide mode would be configured
896 * with width = 4, device-width = 1, max-device-width = 2.
898 * If device-width is not specified we default to backwards
899 * compatible behaviour which is a bad emulation of two
900 * 16 bit devices making up a 32 bit wide QEMU device. This
901 * is deprecated for new uses of this device.
903 DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
904 DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
905 DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
906 DEFINE_PROP_BIT("big-endian", struct pflash_t, features, PFLASH_BE, 0),
907 DEFINE_PROP_BIT("secure", struct pflash_t, features, PFLASH_SECURE, 0),
908 DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
909 DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
910 DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
911 DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
912 DEFINE_PROP_STRING("name", struct pflash_t, name),
913 DEFINE_PROP_BOOL("old-multiple-chip-handling", struct pflash_t,
914 old_multiple_chip_handling, false),
915 DEFINE_PROP_END_OF_LIST(),
918 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
920 DeviceClass *dc = DEVICE_CLASS(klass);
922 dc->realize = pflash_cfi01_realize;
923 dc->props = pflash_cfi01_properties;
924 dc->vmsd = &vmstate_pflash;
925 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
929 static const TypeInfo pflash_cfi01_info = {
930 .name = TYPE_CFI_PFLASH01,
931 .parent = TYPE_SYS_BUS_DEVICE,
932 .instance_size = sizeof(struct pflash_t),
933 .class_init = pflash_cfi01_class_init,
936 static void pflash_cfi01_register_types(void)
938 type_register_static(&pflash_cfi01_info);
941 type_init(pflash_cfi01_register_types)
943 pflash_t *pflash_cfi01_register(hwaddr base,
944 DeviceState *qdev, const char *name,
945 hwaddr size,
946 BlockBackend *blk,
947 uint32_t sector_len, int nb_blocs,
948 int bank_width, uint16_t id0, uint16_t id1,
949 uint16_t id2, uint16_t id3, int be)
951 DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
953 if (blk) {
954 qdev_prop_set_drive(dev, "drive", blk, &error_abort);
956 qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
957 qdev_prop_set_uint64(dev, "sector-length", sector_len);
958 qdev_prop_set_uint8(dev, "width", bank_width);
959 qdev_prop_set_bit(dev, "big-endian", !!be);
960 qdev_prop_set_uint16(dev, "id0", id0);
961 qdev_prop_set_uint16(dev, "id1", id1);
962 qdev_prop_set_uint16(dev, "id2", id2);
963 qdev_prop_set_uint16(dev, "id3", id3);
964 qdev_prop_set_string(dev, "name", name);
965 qdev_init_nofail(dev);
967 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
968 return CFI_PFLASH01(dev);
971 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
973 return &fl->mem;
976 static void postload_update_cb(void *opaque, int running, RunState state)
978 pflash_t *pfl = opaque;
980 /* This is called after bdrv_invalidate_cache_all. */
981 qemu_del_vm_change_state_handler(pfl->vmstate);
982 pfl->vmstate = NULL;
984 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
985 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
988 static int pflash_post_load(void *opaque, int version_id)
990 pflash_t *pfl = opaque;
992 if (!pfl->ro) {
993 pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
994 pfl);
996 return 0;