block: Ignore generated job QAPI files
[qemu/ar7.git] / hw / block / nvme.c
blob811084b6a7040735c0a246abaa43b44715b8106b
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>
23 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
24 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27 #include "qemu/osdep.h"
28 #include "hw/block/block.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci.h"
32 #include "sysemu/sysemu.h"
33 #include "qapi/error.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/block-backend.h"
37 #include "qemu/log.h"
38 #include "qemu/cutils.h"
39 #include "trace.h"
40 #include "nvme.h"
42 #define NVME_GUEST_ERR(trace, fmt, ...) \
43 do { \
44 (trace_##trace)(__VA_ARGS__); \
45 qemu_log_mask(LOG_GUEST_ERROR, #trace \
46 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
47 } while (0)
49 static void nvme_process_sq(void *opaque);
51 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
53 if (n->cmbsz && addr >= n->ctrl_mem.addr &&
54 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
55 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
56 } else {
57 pci_dma_read(&n->parent_obj, addr, buf, size);
61 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
63 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
66 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
68 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
71 static void nvme_inc_cq_tail(NvmeCQueue *cq)
73 cq->tail++;
74 if (cq->tail >= cq->size) {
75 cq->tail = 0;
76 cq->phase = !cq->phase;
80 static void nvme_inc_sq_head(NvmeSQueue *sq)
82 sq->head = (sq->head + 1) % sq->size;
85 static uint8_t nvme_cq_full(NvmeCQueue *cq)
87 return (cq->tail + 1) % cq->size == cq->head;
90 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
92 return sq->head == sq->tail;
95 static void nvme_irq_check(NvmeCtrl *n)
97 if (msix_enabled(&(n->parent_obj))) {
98 return;
100 if (~n->bar.intms & n->irq_status) {
101 pci_irq_assert(&n->parent_obj);
102 } else {
103 pci_irq_deassert(&n->parent_obj);
107 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
109 if (cq->irq_enabled) {
110 if (msix_enabled(&(n->parent_obj))) {
111 trace_nvme_irq_msix(cq->vector);
112 msix_notify(&(n->parent_obj), cq->vector);
113 } else {
114 trace_nvme_irq_pin();
115 assert(cq->cqid < 64);
116 n->irq_status |= 1 << cq->cqid;
117 nvme_irq_check(n);
119 } else {
120 trace_nvme_irq_masked();
124 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
126 if (cq->irq_enabled) {
127 if (msix_enabled(&(n->parent_obj))) {
128 return;
129 } else {
130 assert(cq->cqid < 64);
131 n->irq_status &= ~(1 << cq->cqid);
132 nvme_irq_check(n);
137 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
138 uint64_t prp2, uint32_t len, NvmeCtrl *n)
140 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
141 trans_len = MIN(len, trans_len);
142 int num_prps = (len >> n->page_bits) + 1;
144 if (unlikely(!prp1)) {
145 trace_nvme_err_invalid_prp();
146 return NVME_INVALID_FIELD | NVME_DNR;
147 } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
148 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
149 qsg->nsg = 0;
150 qemu_iovec_init(iov, num_prps);
151 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
152 } else {
153 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
154 qemu_sglist_add(qsg, prp1, trans_len);
156 len -= trans_len;
157 if (len) {
158 if (unlikely(!prp2)) {
159 trace_nvme_err_invalid_prp2_missing();
160 goto unmap;
162 if (len > n->page_size) {
163 uint64_t prp_list[n->max_prp_ents];
164 uint32_t nents, prp_trans;
165 int i = 0;
167 nents = (len + n->page_size - 1) >> n->page_bits;
168 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
169 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
170 while (len != 0) {
171 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
173 if (i == n->max_prp_ents - 1 && len > n->page_size) {
174 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
175 trace_nvme_err_invalid_prplist_ent(prp_ent);
176 goto unmap;
179 i = 0;
180 nents = (len + n->page_size - 1) >> n->page_bits;
181 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
182 nvme_addr_read(n, prp_ent, (void *)prp_list,
183 prp_trans);
184 prp_ent = le64_to_cpu(prp_list[i]);
187 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
188 trace_nvme_err_invalid_prplist_ent(prp_ent);
189 goto unmap;
192 trans_len = MIN(len, n->page_size);
193 if (qsg->nsg){
194 qemu_sglist_add(qsg, prp_ent, trans_len);
195 } else {
196 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
198 len -= trans_len;
199 i++;
201 } else {
202 if (unlikely(prp2 & (n->page_size - 1))) {
203 trace_nvme_err_invalid_prp2_align(prp2);
204 goto unmap;
206 if (qsg->nsg) {
207 qemu_sglist_add(qsg, prp2, len);
208 } else {
209 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
213 return NVME_SUCCESS;
215 unmap:
216 qemu_sglist_destroy(qsg);
217 return NVME_INVALID_FIELD | NVME_DNR;
220 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
221 uint64_t prp1, uint64_t prp2)
223 QEMUSGList qsg;
224 QEMUIOVector iov;
225 uint16_t status = NVME_SUCCESS;
227 trace_nvme_dma_read(prp1, prp2);
229 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
230 return NVME_INVALID_FIELD | NVME_DNR;
232 if (qsg.nsg > 0) {
233 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
234 trace_nvme_err_invalid_dma();
235 status = NVME_INVALID_FIELD | NVME_DNR;
237 qemu_sglist_destroy(&qsg);
238 } else {
239 if (unlikely(qemu_iovec_to_buf(&iov, 0, ptr, len) != len)) {
240 trace_nvme_err_invalid_dma();
241 status = NVME_INVALID_FIELD | NVME_DNR;
243 qemu_iovec_destroy(&iov);
245 return status;
248 static void nvme_post_cqes(void *opaque)
250 NvmeCQueue *cq = opaque;
251 NvmeCtrl *n = cq->ctrl;
252 NvmeRequest *req, *next;
254 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
255 NvmeSQueue *sq;
256 hwaddr addr;
258 if (nvme_cq_full(cq)) {
259 break;
262 QTAILQ_REMOVE(&cq->req_list, req, entry);
263 sq = req->sq;
264 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
265 req->cqe.sq_id = cpu_to_le16(sq->sqid);
266 req->cqe.sq_head = cpu_to_le16(sq->head);
267 addr = cq->dma_addr + cq->tail * n->cqe_size;
268 nvme_inc_cq_tail(cq);
269 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
270 sizeof(req->cqe));
271 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
273 nvme_irq_assert(n, cq);
276 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
278 assert(cq->cqid == req->sq->cqid);
279 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
280 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
281 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
284 static void nvme_rw_cb(void *opaque, int ret)
286 NvmeRequest *req = opaque;
287 NvmeSQueue *sq = req->sq;
288 NvmeCtrl *n = sq->ctrl;
289 NvmeCQueue *cq = n->cq[sq->cqid];
291 if (!ret) {
292 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
293 req->status = NVME_SUCCESS;
294 } else {
295 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
296 req->status = NVME_INTERNAL_DEV_ERROR;
298 if (req->has_sg) {
299 qemu_sglist_destroy(&req->qsg);
301 nvme_enqueue_req_completion(cq, req);
304 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
305 NvmeRequest *req)
307 req->has_sg = false;
308 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
309 BLOCK_ACCT_FLUSH);
310 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
312 return NVME_NO_COMPLETE;
315 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
316 NvmeRequest *req)
318 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
319 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
320 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
321 uint64_t slba = le64_to_cpu(rw->slba);
322 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
323 uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
324 uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
326 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
327 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
328 return NVME_LBA_RANGE | NVME_DNR;
331 req->has_sg = false;
332 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
333 BLOCK_ACCT_WRITE);
334 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
335 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
336 return NVME_NO_COMPLETE;
339 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
340 NvmeRequest *req)
342 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
343 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
344 uint64_t slba = le64_to_cpu(rw->slba);
345 uint64_t prp1 = le64_to_cpu(rw->prp1);
346 uint64_t prp2 = le64_to_cpu(rw->prp2);
348 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
349 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
350 uint64_t data_size = (uint64_t)nlb << data_shift;
351 uint64_t data_offset = slba << data_shift;
352 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
353 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
355 trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
357 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
358 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
359 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
360 return NVME_LBA_RANGE | NVME_DNR;
363 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
364 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
365 return NVME_INVALID_FIELD | NVME_DNR;
368 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
369 if (req->qsg.nsg > 0) {
370 req->has_sg = true;
371 req->aiocb = is_write ?
372 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
373 nvme_rw_cb, req) :
374 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
375 nvme_rw_cb, req);
376 } else {
377 req->has_sg = false;
378 req->aiocb = is_write ?
379 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
380 req) :
381 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
382 req);
385 return NVME_NO_COMPLETE;
388 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
390 NvmeNamespace *ns;
391 uint32_t nsid = le32_to_cpu(cmd->nsid);
393 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
394 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
395 return NVME_INVALID_NSID | NVME_DNR;
398 ns = &n->namespaces[nsid - 1];
399 switch (cmd->opcode) {
400 case NVME_CMD_FLUSH:
401 return nvme_flush(n, ns, cmd, req);
402 case NVME_CMD_WRITE_ZEROS:
403 return nvme_write_zeros(n, ns, cmd, req);
404 case NVME_CMD_WRITE:
405 case NVME_CMD_READ:
406 return nvme_rw(n, ns, cmd, req);
407 default:
408 trace_nvme_err_invalid_opc(cmd->opcode);
409 return NVME_INVALID_OPCODE | NVME_DNR;
413 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
415 n->sq[sq->sqid] = NULL;
416 timer_del(sq->timer);
417 timer_free(sq->timer);
418 g_free(sq->io_req);
419 if (sq->sqid) {
420 g_free(sq);
424 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
426 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
427 NvmeRequest *req, *next;
428 NvmeSQueue *sq;
429 NvmeCQueue *cq;
430 uint16_t qid = le16_to_cpu(c->qid);
432 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
433 trace_nvme_err_invalid_del_sq(qid);
434 return NVME_INVALID_QID | NVME_DNR;
437 trace_nvme_del_sq(qid);
439 sq = n->sq[qid];
440 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
441 req = QTAILQ_FIRST(&sq->out_req_list);
442 assert(req->aiocb);
443 blk_aio_cancel(req->aiocb);
445 if (!nvme_check_cqid(n, sq->cqid)) {
446 cq = n->cq[sq->cqid];
447 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
449 nvme_post_cqes(cq);
450 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
451 if (req->sq == sq) {
452 QTAILQ_REMOVE(&cq->req_list, req, entry);
453 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
458 nvme_free_sq(sq, n);
459 return NVME_SUCCESS;
462 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
463 uint16_t sqid, uint16_t cqid, uint16_t size)
465 int i;
466 NvmeCQueue *cq;
468 sq->ctrl = n;
469 sq->dma_addr = dma_addr;
470 sq->sqid = sqid;
471 sq->size = size;
472 sq->cqid = cqid;
473 sq->head = sq->tail = 0;
474 sq->io_req = g_new(NvmeRequest, sq->size);
476 QTAILQ_INIT(&sq->req_list);
477 QTAILQ_INIT(&sq->out_req_list);
478 for (i = 0; i < sq->size; i++) {
479 sq->io_req[i].sq = sq;
480 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
482 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
484 assert(n->cq[cqid]);
485 cq = n->cq[cqid];
486 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
487 n->sq[sqid] = sq;
490 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
492 NvmeSQueue *sq;
493 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
495 uint16_t cqid = le16_to_cpu(c->cqid);
496 uint16_t sqid = le16_to_cpu(c->sqid);
497 uint16_t qsize = le16_to_cpu(c->qsize);
498 uint16_t qflags = le16_to_cpu(c->sq_flags);
499 uint64_t prp1 = le64_to_cpu(c->prp1);
501 trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
503 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
504 trace_nvme_err_invalid_create_sq_cqid(cqid);
505 return NVME_INVALID_CQID | NVME_DNR;
507 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
508 trace_nvme_err_invalid_create_sq_sqid(sqid);
509 return NVME_INVALID_QID | NVME_DNR;
511 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
512 trace_nvme_err_invalid_create_sq_size(qsize);
513 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
515 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
516 trace_nvme_err_invalid_create_sq_addr(prp1);
517 return NVME_INVALID_FIELD | NVME_DNR;
519 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
520 trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
521 return NVME_INVALID_FIELD | NVME_DNR;
523 sq = g_malloc0(sizeof(*sq));
524 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
525 return NVME_SUCCESS;
528 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
530 n->cq[cq->cqid] = NULL;
531 timer_del(cq->timer);
532 timer_free(cq->timer);
533 msix_vector_unuse(&n->parent_obj, cq->vector);
534 if (cq->cqid) {
535 g_free(cq);
539 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
541 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
542 NvmeCQueue *cq;
543 uint16_t qid = le16_to_cpu(c->qid);
545 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
546 trace_nvme_err_invalid_del_cq_cqid(qid);
547 return NVME_INVALID_CQID | NVME_DNR;
550 cq = n->cq[qid];
551 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
552 trace_nvme_err_invalid_del_cq_notempty(qid);
553 return NVME_INVALID_QUEUE_DEL;
555 trace_nvme_del_cq(qid);
556 nvme_free_cq(cq, n);
557 return NVME_SUCCESS;
560 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
561 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
563 cq->ctrl = n;
564 cq->cqid = cqid;
565 cq->size = size;
566 cq->dma_addr = dma_addr;
567 cq->phase = 1;
568 cq->irq_enabled = irq_enabled;
569 cq->vector = vector;
570 cq->head = cq->tail = 0;
571 QTAILQ_INIT(&cq->req_list);
572 QTAILQ_INIT(&cq->sq_list);
573 msix_vector_use(&n->parent_obj, cq->vector);
574 n->cq[cqid] = cq;
575 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
578 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
580 NvmeCQueue *cq;
581 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
582 uint16_t cqid = le16_to_cpu(c->cqid);
583 uint16_t vector = le16_to_cpu(c->irq_vector);
584 uint16_t qsize = le16_to_cpu(c->qsize);
585 uint16_t qflags = le16_to_cpu(c->cq_flags);
586 uint64_t prp1 = le64_to_cpu(c->prp1);
588 trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
589 NVME_CQ_FLAGS_IEN(qflags) != 0);
591 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
592 trace_nvme_err_invalid_create_cq_cqid(cqid);
593 return NVME_INVALID_CQID | NVME_DNR;
595 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
596 trace_nvme_err_invalid_create_cq_size(qsize);
597 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
599 if (unlikely(!prp1)) {
600 trace_nvme_err_invalid_create_cq_addr(prp1);
601 return NVME_INVALID_FIELD | NVME_DNR;
603 if (unlikely(vector > n->num_queues)) {
604 trace_nvme_err_invalid_create_cq_vector(vector);
605 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
607 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
608 trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
609 return NVME_INVALID_FIELD | NVME_DNR;
612 cq = g_malloc0(sizeof(*cq));
613 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
614 NVME_CQ_FLAGS_IEN(qflags));
615 return NVME_SUCCESS;
618 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
620 uint64_t prp1 = le64_to_cpu(c->prp1);
621 uint64_t prp2 = le64_to_cpu(c->prp2);
623 trace_nvme_identify_ctrl();
625 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
626 prp1, prp2);
629 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
631 NvmeNamespace *ns;
632 uint32_t nsid = le32_to_cpu(c->nsid);
633 uint64_t prp1 = le64_to_cpu(c->prp1);
634 uint64_t prp2 = le64_to_cpu(c->prp2);
636 trace_nvme_identify_ns(nsid);
638 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
639 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
640 return NVME_INVALID_NSID | NVME_DNR;
643 ns = &n->namespaces[nsid - 1];
645 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
646 prp1, prp2);
649 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
651 static const int data_len = 4096;
652 uint32_t min_nsid = le32_to_cpu(c->nsid);
653 uint64_t prp1 = le64_to_cpu(c->prp1);
654 uint64_t prp2 = le64_to_cpu(c->prp2);
655 uint32_t *list;
656 uint16_t ret;
657 int i, j = 0;
659 trace_nvme_identify_nslist(min_nsid);
661 list = g_malloc0(data_len);
662 for (i = 0; i < n->num_namespaces; i++) {
663 if (i < min_nsid) {
664 continue;
666 list[j++] = cpu_to_le32(i + 1);
667 if (j == data_len / sizeof(uint32_t)) {
668 break;
671 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
672 g_free(list);
673 return ret;
677 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
679 NvmeIdentify *c = (NvmeIdentify *)cmd;
681 switch (le32_to_cpu(c->cns)) {
682 case 0x00:
683 return nvme_identify_ns(n, c);
684 case 0x01:
685 return nvme_identify_ctrl(n, c);
686 case 0x02:
687 return nvme_identify_nslist(n, c);
688 default:
689 trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
690 return NVME_INVALID_FIELD | NVME_DNR;
694 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
696 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
697 uint32_t result;
699 switch (dw10) {
700 case NVME_VOLATILE_WRITE_CACHE:
701 result = blk_enable_write_cache(n->conf.blk);
702 trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
703 break;
704 case NVME_NUMBER_OF_QUEUES:
705 result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
706 trace_nvme_getfeat_numq(result);
707 break;
708 default:
709 trace_nvme_err_invalid_getfeat(dw10);
710 return NVME_INVALID_FIELD | NVME_DNR;
713 req->cqe.result = result;
714 return NVME_SUCCESS;
717 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
719 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
720 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
722 switch (dw10) {
723 case NVME_VOLATILE_WRITE_CACHE:
724 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
725 break;
726 case NVME_NUMBER_OF_QUEUES:
727 trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
728 ((dw11 >> 16) & 0xFFFF) + 1,
729 n->num_queues - 1, n->num_queues - 1);
730 req->cqe.result =
731 cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
732 break;
733 default:
734 trace_nvme_err_invalid_setfeat(dw10);
735 return NVME_INVALID_FIELD | NVME_DNR;
737 return NVME_SUCCESS;
740 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
742 switch (cmd->opcode) {
743 case NVME_ADM_CMD_DELETE_SQ:
744 return nvme_del_sq(n, cmd);
745 case NVME_ADM_CMD_CREATE_SQ:
746 return nvme_create_sq(n, cmd);
747 case NVME_ADM_CMD_DELETE_CQ:
748 return nvme_del_cq(n, cmd);
749 case NVME_ADM_CMD_CREATE_CQ:
750 return nvme_create_cq(n, cmd);
751 case NVME_ADM_CMD_IDENTIFY:
752 return nvme_identify(n, cmd);
753 case NVME_ADM_CMD_SET_FEATURES:
754 return nvme_set_feature(n, cmd, req);
755 case NVME_ADM_CMD_GET_FEATURES:
756 return nvme_get_feature(n, cmd, req);
757 default:
758 trace_nvme_err_invalid_admin_opc(cmd->opcode);
759 return NVME_INVALID_OPCODE | NVME_DNR;
763 static void nvme_process_sq(void *opaque)
765 NvmeSQueue *sq = opaque;
766 NvmeCtrl *n = sq->ctrl;
767 NvmeCQueue *cq = n->cq[sq->cqid];
769 uint16_t status;
770 hwaddr addr;
771 NvmeCmd cmd;
772 NvmeRequest *req;
774 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
775 addr = sq->dma_addr + sq->head * n->sqe_size;
776 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
777 nvme_inc_sq_head(sq);
779 req = QTAILQ_FIRST(&sq->req_list);
780 QTAILQ_REMOVE(&sq->req_list, req, entry);
781 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
782 memset(&req->cqe, 0, sizeof(req->cqe));
783 req->cqe.cid = cmd.cid;
785 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
786 nvme_admin_cmd(n, &cmd, req);
787 if (status != NVME_NO_COMPLETE) {
788 req->status = status;
789 nvme_enqueue_req_completion(cq, req);
794 static void nvme_clear_ctrl(NvmeCtrl *n)
796 int i;
798 for (i = 0; i < n->num_queues; i++) {
799 if (n->sq[i] != NULL) {
800 nvme_free_sq(n->sq[i], n);
803 for (i = 0; i < n->num_queues; i++) {
804 if (n->cq[i] != NULL) {
805 nvme_free_cq(n->cq[i], n);
809 blk_flush(n->conf.blk);
810 n->bar.cc = 0;
813 static int nvme_start_ctrl(NvmeCtrl *n)
815 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
816 uint32_t page_size = 1 << page_bits;
818 if (unlikely(n->cq[0])) {
819 trace_nvme_err_startfail_cq();
820 return -1;
822 if (unlikely(n->sq[0])) {
823 trace_nvme_err_startfail_sq();
824 return -1;
826 if (unlikely(!n->bar.asq)) {
827 trace_nvme_err_startfail_nbarasq();
828 return -1;
830 if (unlikely(!n->bar.acq)) {
831 trace_nvme_err_startfail_nbaracq();
832 return -1;
834 if (unlikely(n->bar.asq & (page_size - 1))) {
835 trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
836 return -1;
838 if (unlikely(n->bar.acq & (page_size - 1))) {
839 trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
840 return -1;
842 if (unlikely(NVME_CC_MPS(n->bar.cc) <
843 NVME_CAP_MPSMIN(n->bar.cap))) {
844 trace_nvme_err_startfail_page_too_small(
845 NVME_CC_MPS(n->bar.cc),
846 NVME_CAP_MPSMIN(n->bar.cap));
847 return -1;
849 if (unlikely(NVME_CC_MPS(n->bar.cc) >
850 NVME_CAP_MPSMAX(n->bar.cap))) {
851 trace_nvme_err_startfail_page_too_large(
852 NVME_CC_MPS(n->bar.cc),
853 NVME_CAP_MPSMAX(n->bar.cap));
854 return -1;
856 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
857 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
858 trace_nvme_err_startfail_cqent_too_small(
859 NVME_CC_IOCQES(n->bar.cc),
860 NVME_CTRL_CQES_MIN(n->bar.cap));
861 return -1;
863 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
864 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
865 trace_nvme_err_startfail_cqent_too_large(
866 NVME_CC_IOCQES(n->bar.cc),
867 NVME_CTRL_CQES_MAX(n->bar.cap));
868 return -1;
870 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
871 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
872 trace_nvme_err_startfail_sqent_too_small(
873 NVME_CC_IOSQES(n->bar.cc),
874 NVME_CTRL_SQES_MIN(n->bar.cap));
875 return -1;
877 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
878 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
879 trace_nvme_err_startfail_sqent_too_large(
880 NVME_CC_IOSQES(n->bar.cc),
881 NVME_CTRL_SQES_MAX(n->bar.cap));
882 return -1;
884 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
885 trace_nvme_err_startfail_asqent_sz_zero();
886 return -1;
888 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
889 trace_nvme_err_startfail_acqent_sz_zero();
890 return -1;
893 n->page_bits = page_bits;
894 n->page_size = page_size;
895 n->max_prp_ents = n->page_size / sizeof(uint64_t);
896 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
897 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
898 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
899 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
900 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
901 NVME_AQA_ASQS(n->bar.aqa) + 1);
903 return 0;
906 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
907 unsigned size)
909 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
910 NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
911 "MMIO write not 32-bit aligned,"
912 " offset=0x%"PRIx64"", offset);
913 /* should be ignored, fall through for now */
916 if (unlikely(size < sizeof(uint32_t))) {
917 NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
918 "MMIO write smaller than 32-bits,"
919 " offset=0x%"PRIx64", size=%u",
920 offset, size);
921 /* should be ignored, fall through for now */
924 switch (offset) {
925 case 0xc: /* INTMS */
926 if (unlikely(msix_enabled(&(n->parent_obj)))) {
927 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
928 "undefined access to interrupt mask set"
929 " when MSI-X is enabled");
930 /* should be ignored, fall through for now */
932 n->bar.intms |= data & 0xffffffff;
933 n->bar.intmc = n->bar.intms;
934 trace_nvme_mmio_intm_set(data & 0xffffffff,
935 n->bar.intmc);
936 nvme_irq_check(n);
937 break;
938 case 0x10: /* INTMC */
939 if (unlikely(msix_enabled(&(n->parent_obj)))) {
940 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
941 "undefined access to interrupt mask clr"
942 " when MSI-X is enabled");
943 /* should be ignored, fall through for now */
945 n->bar.intms &= ~(data & 0xffffffff);
946 n->bar.intmc = n->bar.intms;
947 trace_nvme_mmio_intm_clr(data & 0xffffffff,
948 n->bar.intmc);
949 nvme_irq_check(n);
950 break;
951 case 0x14: /* CC */
952 trace_nvme_mmio_cfg(data & 0xffffffff);
953 /* Windows first sends data, then sends enable bit */
954 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
955 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
957 n->bar.cc = data;
960 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
961 n->bar.cc = data;
962 if (unlikely(nvme_start_ctrl(n))) {
963 trace_nvme_err_startfail();
964 n->bar.csts = NVME_CSTS_FAILED;
965 } else {
966 trace_nvme_mmio_start_success();
967 n->bar.csts = NVME_CSTS_READY;
969 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
970 trace_nvme_mmio_stopped();
971 nvme_clear_ctrl(n);
972 n->bar.csts &= ~NVME_CSTS_READY;
974 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
975 trace_nvme_mmio_shutdown_set();
976 nvme_clear_ctrl(n);
977 n->bar.cc = data;
978 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
979 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
980 trace_nvme_mmio_shutdown_cleared();
981 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
982 n->bar.cc = data;
984 break;
985 case 0x1C: /* CSTS */
986 if (data & (1 << 4)) {
987 NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
988 "attempted to W1C CSTS.NSSRO"
989 " but CAP.NSSRS is zero (not supported)");
990 } else if (data != 0) {
991 NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
992 "attempted to set a read only bit"
993 " of controller status");
995 break;
996 case 0x20: /* NSSR */
997 if (data == 0x4E564D65) {
998 trace_nvme_ub_mmiowr_ssreset_unsupported();
999 } else {
1000 /* The spec says that writes of other values have no effect */
1001 return;
1003 break;
1004 case 0x24: /* AQA */
1005 n->bar.aqa = data & 0xffffffff;
1006 trace_nvme_mmio_aqattr(data & 0xffffffff);
1007 break;
1008 case 0x28: /* ASQ */
1009 n->bar.asq = data;
1010 trace_nvme_mmio_asqaddr(data);
1011 break;
1012 case 0x2c: /* ASQ hi */
1013 n->bar.asq |= data << 32;
1014 trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1015 break;
1016 case 0x30: /* ACQ */
1017 trace_nvme_mmio_acqaddr(data);
1018 n->bar.acq = data;
1019 break;
1020 case 0x34: /* ACQ hi */
1021 n->bar.acq |= data << 32;
1022 trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1023 break;
1024 case 0x38: /* CMBLOC */
1025 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1026 "invalid write to reserved CMBLOC"
1027 " when CMBSZ is zero, ignored");
1028 return;
1029 case 0x3C: /* CMBSZ */
1030 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1031 "invalid write to read only CMBSZ, ignored");
1032 return;
1033 default:
1034 NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1035 "invalid MMIO write,"
1036 " offset=0x%"PRIx64", data=%"PRIx64"",
1037 offset, data);
1038 break;
1042 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1044 NvmeCtrl *n = (NvmeCtrl *)opaque;
1045 uint8_t *ptr = (uint8_t *)&n->bar;
1046 uint64_t val = 0;
1048 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1049 NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1050 "MMIO read not 32-bit aligned,"
1051 " offset=0x%"PRIx64"", addr);
1052 /* should RAZ, fall through for now */
1053 } else if (unlikely(size < sizeof(uint32_t))) {
1054 NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1055 "MMIO read smaller than 32-bits,"
1056 " offset=0x%"PRIx64"", addr);
1057 /* should RAZ, fall through for now */
1060 if (addr < sizeof(n->bar)) {
1061 memcpy(&val, ptr + addr, size);
1062 } else {
1063 NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1064 "MMIO read beyond last register,"
1065 " offset=0x%"PRIx64", returning 0", addr);
1068 return val;
1071 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1073 uint32_t qid;
1075 if (unlikely(addr & ((1 << 2) - 1))) {
1076 NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1077 "doorbell write not 32-bit aligned,"
1078 " offset=0x%"PRIx64", ignoring", addr);
1079 return;
1082 if (((addr - 0x1000) >> 2) & 1) {
1083 /* Completion queue doorbell write */
1085 uint16_t new_head = val & 0xffff;
1086 int start_sqs;
1087 NvmeCQueue *cq;
1089 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1090 if (unlikely(nvme_check_cqid(n, qid))) {
1091 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1092 "completion queue doorbell write"
1093 " for nonexistent queue,"
1094 " sqid=%"PRIu32", ignoring", qid);
1095 return;
1098 cq = n->cq[qid];
1099 if (unlikely(new_head >= cq->size)) {
1100 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1101 "completion queue doorbell write value"
1102 " beyond queue size, sqid=%"PRIu32","
1103 " new_head=%"PRIu16", ignoring",
1104 qid, new_head);
1105 return;
1108 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1109 cq->head = new_head;
1110 if (start_sqs) {
1111 NvmeSQueue *sq;
1112 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1113 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1115 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1118 if (cq->tail == cq->head) {
1119 nvme_irq_deassert(n, cq);
1121 } else {
1122 /* Submission queue doorbell write */
1124 uint16_t new_tail = val & 0xffff;
1125 NvmeSQueue *sq;
1127 qid = (addr - 0x1000) >> 3;
1128 if (unlikely(nvme_check_sqid(n, qid))) {
1129 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1130 "submission queue doorbell write"
1131 " for nonexistent queue,"
1132 " sqid=%"PRIu32", ignoring", qid);
1133 return;
1136 sq = n->sq[qid];
1137 if (unlikely(new_tail >= sq->size)) {
1138 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1139 "submission queue doorbell write value"
1140 " beyond queue size, sqid=%"PRIu32","
1141 " new_tail=%"PRIu16", ignoring",
1142 qid, new_tail);
1143 return;
1146 sq->tail = new_tail;
1147 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1151 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1152 unsigned size)
1154 NvmeCtrl *n = (NvmeCtrl *)opaque;
1155 if (addr < sizeof(n->bar)) {
1156 nvme_write_bar(n, addr, data, size);
1157 } else if (addr >= 0x1000) {
1158 nvme_process_db(n, addr, data);
1162 static const MemoryRegionOps nvme_mmio_ops = {
1163 .read = nvme_mmio_read,
1164 .write = nvme_mmio_write,
1165 .endianness = DEVICE_LITTLE_ENDIAN,
1166 .impl = {
1167 .min_access_size = 2,
1168 .max_access_size = 8,
1172 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1173 unsigned size)
1175 NvmeCtrl *n = (NvmeCtrl *)opaque;
1176 memcpy(&n->cmbuf[addr], &data, size);
1179 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1181 uint64_t val;
1182 NvmeCtrl *n = (NvmeCtrl *)opaque;
1184 memcpy(&val, &n->cmbuf[addr], size);
1185 return val;
1188 static const MemoryRegionOps nvme_cmb_ops = {
1189 .read = nvme_cmb_read,
1190 .write = nvme_cmb_write,
1191 .endianness = DEVICE_LITTLE_ENDIAN,
1192 .impl = {
1193 .min_access_size = 2,
1194 .max_access_size = 8,
1198 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1200 NvmeCtrl *n = NVME(pci_dev);
1201 NvmeIdCtrl *id = &n->id_ctrl;
1203 int i;
1204 int64_t bs_size;
1205 uint8_t *pci_conf;
1207 if (!n->conf.blk) {
1208 error_setg(errp, "drive property not set");
1209 return;
1212 bs_size = blk_getlength(n->conf.blk);
1213 if (bs_size < 0) {
1214 error_setg(errp, "could not get backing file size");
1215 return;
1218 blkconf_serial(&n->conf, &n->serial);
1219 if (!n->serial) {
1220 error_setg(errp, "serial property not set");
1221 return;
1223 blkconf_blocksizes(&n->conf);
1224 if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1225 false, errp)) {
1226 return;
1229 pci_conf = pci_dev->config;
1230 pci_conf[PCI_INTERRUPT_PIN] = 1;
1231 pci_config_set_prog_interface(pci_dev->config, 0x2);
1232 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1233 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
1235 n->num_namespaces = 1;
1236 n->num_queues = 64;
1237 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1238 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1240 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1241 n->sq = g_new0(NvmeSQueue *, n->num_queues);
1242 n->cq = g_new0(NvmeCQueue *, n->num_queues);
1244 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1245 "nvme", n->reg_size);
1246 pci_register_bar(&n->parent_obj, 0,
1247 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1248 &n->iomem);
1249 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
1251 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1252 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1253 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1254 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1255 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1256 id->rab = 6;
1257 id->ieee[0] = 0x00;
1258 id->ieee[1] = 0x02;
1259 id->ieee[2] = 0xb3;
1260 id->oacs = cpu_to_le16(0);
1261 id->frmw = 7 << 1;
1262 id->lpa = 1 << 0;
1263 id->sqes = (0x6 << 4) | 0x6;
1264 id->cqes = (0x4 << 4) | 0x4;
1265 id->nn = cpu_to_le32(n->num_namespaces);
1266 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
1267 id->psd[0].mp = cpu_to_le16(0x9c4);
1268 id->psd[0].enlat = cpu_to_le32(0x10);
1269 id->psd[0].exlat = cpu_to_le32(0x4);
1270 if (blk_enable_write_cache(n->conf.blk)) {
1271 id->vwc = 1;
1274 n->bar.cap = 0;
1275 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1276 NVME_CAP_SET_CQR(n->bar.cap, 1);
1277 NVME_CAP_SET_AMS(n->bar.cap, 1);
1278 NVME_CAP_SET_TO(n->bar.cap, 0xf);
1279 NVME_CAP_SET_CSS(n->bar.cap, 1);
1280 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1282 n->bar.vs = 0x00010200;
1283 n->bar.intmc = n->bar.intms = 0;
1285 if (n->cmb_size_mb) {
1287 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1288 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1290 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1291 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1292 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1293 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1294 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1295 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1296 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1298 n->cmbloc = n->bar.cmbloc;
1299 n->cmbsz = n->bar.cmbsz;
1301 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1302 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1303 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1304 pci_register_bar(&n->parent_obj, NVME_CMBLOC_BIR(n->bar.cmbloc),
1305 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1306 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1310 for (i = 0; i < n->num_namespaces; i++) {
1311 NvmeNamespace *ns = &n->namespaces[i];
1312 NvmeIdNs *id_ns = &ns->id_ns;
1313 id_ns->nsfeat = 0;
1314 id_ns->nlbaf = 0;
1315 id_ns->flbas = 0;
1316 id_ns->mc = 0;
1317 id_ns->dpc = 0;
1318 id_ns->dps = 0;
1319 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1320 id_ns->ncap = id_ns->nuse = id_ns->nsze =
1321 cpu_to_le64(n->ns_size >>
1322 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1326 static void nvme_exit(PCIDevice *pci_dev)
1328 NvmeCtrl *n = NVME(pci_dev);
1330 nvme_clear_ctrl(n);
1331 g_free(n->namespaces);
1332 g_free(n->cq);
1333 g_free(n->sq);
1334 if (n->cmbsz) {
1335 memory_region_unref(&n->ctrl_mem);
1338 msix_uninit_exclusive_bar(pci_dev);
1341 static Property nvme_props[] = {
1342 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1343 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1344 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1345 DEFINE_PROP_END_OF_LIST(),
1348 static const VMStateDescription nvme_vmstate = {
1349 .name = "nvme",
1350 .unmigratable = 1,
1353 static void nvme_class_init(ObjectClass *oc, void *data)
1355 DeviceClass *dc = DEVICE_CLASS(oc);
1356 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1358 pc->realize = nvme_realize;
1359 pc->exit = nvme_exit;
1360 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1361 pc->vendor_id = PCI_VENDOR_ID_INTEL;
1362 pc->device_id = 0x5845;
1363 pc->revision = 2;
1365 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1366 dc->desc = "Non-Volatile Memory Express";
1367 dc->props = nvme_props;
1368 dc->vmsd = &nvme_vmstate;
1371 static void nvme_instance_init(Object *obj)
1373 NvmeCtrl *s = NVME(obj);
1375 device_add_bootindex_property(obj, &s->conf.bootindex,
1376 "bootindex", "/namespace@1,0",
1377 DEVICE(obj), &error_abort);
1380 static const TypeInfo nvme_info = {
1381 .name = "nvme",
1382 .parent = TYPE_PCI_DEVICE,
1383 .instance_size = sizeof(NvmeCtrl),
1384 .class_init = nvme_class_init,
1385 .instance_init = nvme_instance_init,
1386 .interfaces = (InterfaceInfo[]) {
1387 { INTERFACE_PCIE_DEVICE },
1392 static void nvme_register_types(void)
1394 type_register_static(&nvme_info);
1397 type_init(nvme_register_types)