block: Ignore generated job QAPI files
[qemu/ar7.git] / hw / block / fdc.c
blobcd29e27d8f594338463d4b858eeda12253e32b17
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
44 /********************************************************/
45 /* debug Floppy devices */
47 #define DEBUG_FLOPPY 0
49 #define FLOPPY_DPRINTF(fmt, ...) \
50 do { \
51 if (DEBUG_FLOPPY) { \
52 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
53 } \
54 } while (0)
57 /********************************************************/
58 /* qdev floppy bus */
60 #define TYPE_FLOPPY_BUS "floppy-bus"
61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
63 typedef struct FDCtrl FDCtrl;
64 typedef struct FDrive FDrive;
65 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
67 typedef struct FloppyBus {
68 BusState bus;
69 FDCtrl *fdc;
70 } FloppyBus;
72 static const TypeInfo floppy_bus_info = {
73 .name = TYPE_FLOPPY_BUS,
74 .parent = TYPE_BUS,
75 .instance_size = sizeof(FloppyBus),
78 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
80 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
81 bus->fdc = fdc;
85 /********************************************************/
86 /* Floppy drive emulation */
88 typedef enum FDriveRate {
89 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
90 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
91 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
92 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
93 } FDriveRate;
95 typedef enum FDriveSize {
96 FDRIVE_SIZE_UNKNOWN,
97 FDRIVE_SIZE_350,
98 FDRIVE_SIZE_525,
99 } FDriveSize;
101 typedef struct FDFormat {
102 FloppyDriveType drive;
103 uint8_t last_sect;
104 uint8_t max_track;
105 uint8_t max_head;
106 FDriveRate rate;
107 } FDFormat;
109 /* In many cases, the total sector size of a format is enough to uniquely
110 * identify it. However, there are some total sector collisions between
111 * formats of different physical size, and these are noted below by
112 * highlighting the total sector size for entries with collisions. */
113 static const FDFormat fd_formats[] = {
114 /* First entry is default format */
115 /* 1.44 MB 3"1/2 floppy disks */
116 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
117 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
118 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
119 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
120 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
121 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
122 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
123 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
124 /* 2.88 MB 3"1/2 floppy disks */
125 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
126 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
127 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
128 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
129 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
130 /* 720 kB 3"1/2 floppy disks */
131 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
132 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
133 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
134 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
135 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
136 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
137 /* 1.2 MB 5"1/4 floppy disks */
138 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
139 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
140 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
141 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
142 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
143 /* 720 kB 5"1/4 floppy disks */
144 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
145 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
146 /* 360 kB 5"1/4 floppy disks */
147 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
148 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
149 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
150 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
151 /* 320 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
153 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
154 /* 360 kB must match 5"1/4 better than 3"1/2... */
155 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
156 /* end */
157 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
160 static FDriveSize drive_size(FloppyDriveType drive)
162 switch (drive) {
163 case FLOPPY_DRIVE_TYPE_120:
164 return FDRIVE_SIZE_525;
165 case FLOPPY_DRIVE_TYPE_144:
166 case FLOPPY_DRIVE_TYPE_288:
167 return FDRIVE_SIZE_350;
168 default:
169 return FDRIVE_SIZE_UNKNOWN;
173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
176 /* Will always be a fixed parameter for us */
177 #define FD_SECTOR_LEN 512
178 #define FD_SECTOR_SC 2 /* Sector size code */
179 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
181 /* Floppy disk drive emulation */
182 typedef enum FDiskFlags {
183 FDISK_DBL_SIDES = 0x01,
184 } FDiskFlags;
186 struct FDrive {
187 FDCtrl *fdctrl;
188 BlockBackend *blk;
189 BlockConf *conf;
190 /* Drive status */
191 FloppyDriveType drive; /* CMOS drive type */
192 uint8_t perpendicular; /* 2.88 MB access mode */
193 /* Position */
194 uint8_t head;
195 uint8_t track;
196 uint8_t sect;
197 /* Media */
198 FloppyDriveType disk; /* Current disk type */
199 FDiskFlags flags;
200 uint8_t last_sect; /* Nb sector per track */
201 uint8_t max_track; /* Nb of tracks */
202 uint16_t bps; /* Bytes per sector */
203 uint8_t ro; /* Is read-only */
204 uint8_t media_changed; /* Is media changed */
205 uint8_t media_rate; /* Data rate of medium */
207 bool media_validated; /* Have we validated the media? */
211 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
213 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
214 * currently goes through some pains to keep seeks within the bounds
215 * established by last_sect and max_track. Correcting this is difficult,
216 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
218 * For now: allow empty drives to have large bounds so we can seek around,
219 * with the understanding that when a diskette is inserted, the bounds will
220 * properly tighten to match the geometry of that inserted medium.
222 static void fd_empty_seek_hack(FDrive *drv)
224 drv->last_sect = 0xFF;
225 drv->max_track = 0xFF;
228 static void fd_init(FDrive *drv)
230 /* Drive */
231 drv->perpendicular = 0;
232 /* Disk */
233 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
234 drv->last_sect = 0;
235 drv->max_track = 0;
236 drv->ro = true;
237 drv->media_changed = 1;
240 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
242 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
243 uint8_t last_sect, uint8_t num_sides)
245 return (((track * num_sides) + head) * last_sect) + sect - 1;
248 /* Returns current position, in sectors, for given drive */
249 static int fd_sector(FDrive *drv)
251 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
252 NUM_SIDES(drv));
255 /* Returns current position, in bytes, for given drive */
256 static int fd_offset(FDrive *drv)
258 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
259 return fd_sector(drv) << BDRV_SECTOR_BITS;
262 /* Seek to a new position:
263 * returns 0 if already on right track
264 * returns 1 if track changed
265 * returns 2 if track is invalid
266 * returns 3 if sector is invalid
267 * returns 4 if seek is disabled
269 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
270 int enable_seek)
272 uint32_t sector;
273 int ret;
275 if (track > drv->max_track ||
276 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
277 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
278 head, track, sect, 1,
279 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
280 drv->max_track, drv->last_sect);
281 return 2;
283 if (sect > drv->last_sect) {
284 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
285 head, track, sect, 1,
286 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
287 drv->max_track, drv->last_sect);
288 return 3;
290 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
291 ret = 0;
292 if (sector != fd_sector(drv)) {
293 #if 0
294 if (!enable_seek) {
295 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
296 " (max=%d %02x %02x)\n",
297 head, track, sect, 1, drv->max_track,
298 drv->last_sect);
299 return 4;
301 #endif
302 drv->head = head;
303 if (drv->track != track) {
304 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
305 drv->media_changed = 0;
307 ret = 1;
309 drv->track = track;
310 drv->sect = sect;
313 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
314 ret = 2;
317 return ret;
320 /* Set drive back to track 0 */
321 static void fd_recalibrate(FDrive *drv)
323 FLOPPY_DPRINTF("recalibrate\n");
324 fd_seek(drv, 0, 0, 1, 1);
328 * Determine geometry based on inserted diskette.
329 * Will not operate on an empty drive.
331 * @return: 0 on success, -1 if the drive is empty.
333 static int pick_geometry(FDrive *drv)
335 BlockBackend *blk = drv->blk;
336 const FDFormat *parse;
337 uint64_t nb_sectors, size;
338 int i;
339 int match, size_match, type_match;
340 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
342 /* We can only pick a geometry if we have a diskette. */
343 if (!drv->blk || !blk_is_inserted(drv->blk) ||
344 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
346 return -1;
349 /* We need to determine the likely geometry of the inserted medium.
350 * In order of preference, we look for:
351 * (1) The same drive type and number of sectors,
352 * (2) The same diskette size and number of sectors,
353 * (3) The same drive type.
355 * In all cases, matches that occur higher in the drive table will take
356 * precedence over matches that occur later in the table.
358 blk_get_geometry(blk, &nb_sectors);
359 match = size_match = type_match = -1;
360 for (i = 0; ; i++) {
361 parse = &fd_formats[i];
362 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
363 break;
365 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
366 if (nb_sectors == size) {
367 if (magic || parse->drive == drv->drive) {
368 /* (1) perfect match -- nb_sectors and drive type */
369 goto out;
370 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
371 /* (2) size match -- nb_sectors and physical medium size */
372 match = (match == -1) ? i : match;
373 } else {
374 /* This is suspicious -- Did the user misconfigure? */
375 size_match = (size_match == -1) ? i : size_match;
377 } else if (type_match == -1) {
378 if ((parse->drive == drv->drive) ||
379 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
380 /* (3) type match -- nb_sectors mismatch, but matches the type
381 * specified explicitly by the user, or matches the fallback
382 * default type when using the drive autodetect mechanism */
383 type_match = i;
388 /* No exact match found */
389 if (match == -1) {
390 if (size_match != -1) {
391 parse = &fd_formats[size_match];
392 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
393 "but inserted medium appears to be a "
394 "%"PRId64" sector '%s' type\n",
395 FloppyDriveType_str(drv->drive),
396 nb_sectors,
397 FloppyDriveType_str(parse->drive));
399 match = type_match;
402 /* No match of any kind found -- fd_format is misconfigured, abort. */
403 if (match == -1) {
404 error_setg(&error_abort, "No candidate geometries present in table "
405 " for floppy drive type '%s'",
406 FloppyDriveType_str(drv->drive));
409 parse = &(fd_formats[match]);
411 out:
412 if (parse->max_head == 0) {
413 drv->flags &= ~FDISK_DBL_SIDES;
414 } else {
415 drv->flags |= FDISK_DBL_SIDES;
417 drv->max_track = parse->max_track;
418 drv->last_sect = parse->last_sect;
419 drv->disk = parse->drive;
420 drv->media_rate = parse->rate;
421 return 0;
424 static void pick_drive_type(FDrive *drv)
426 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
427 return;
430 if (pick_geometry(drv) == 0) {
431 drv->drive = drv->disk;
432 } else {
433 drv->drive = get_fallback_drive_type(drv);
436 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
439 /* Revalidate a disk drive after a disk change */
440 static void fd_revalidate(FDrive *drv)
442 int rc;
444 FLOPPY_DPRINTF("revalidate\n");
445 if (drv->blk != NULL) {
446 drv->ro = blk_is_read_only(drv->blk);
447 if (!blk_is_inserted(drv->blk)) {
448 FLOPPY_DPRINTF("No disk in drive\n");
449 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
450 fd_empty_seek_hack(drv);
451 } else if (!drv->media_validated) {
452 rc = pick_geometry(drv);
453 if (rc) {
454 FLOPPY_DPRINTF("Could not validate floppy drive media");
455 } else {
456 drv->media_validated = true;
457 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
458 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
459 drv->max_track, drv->last_sect,
460 drv->ro ? "ro" : "rw");
463 } else {
464 FLOPPY_DPRINTF("No drive connected\n");
465 drv->last_sect = 0;
466 drv->max_track = 0;
467 drv->flags &= ~FDISK_DBL_SIDES;
468 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
469 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
473 static void fd_change_cb(void *opaque, bool load, Error **errp)
475 FDrive *drive = opaque;
477 if (!load) {
478 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
479 } else {
480 if (!blkconf_apply_backend_options(drive->conf,
481 blk_is_read_only(drive->blk), false,
482 errp)) {
483 return;
487 drive->media_changed = 1;
488 drive->media_validated = false;
489 fd_revalidate(drive);
492 static const BlockDevOps fd_block_ops = {
493 .change_media_cb = fd_change_cb,
497 #define TYPE_FLOPPY_DRIVE "floppy"
498 #define FLOPPY_DRIVE(obj) \
499 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
501 typedef struct FloppyDrive {
502 DeviceState qdev;
503 uint32_t unit;
504 BlockConf conf;
505 FloppyDriveType type;
506 } FloppyDrive;
508 static Property floppy_drive_properties[] = {
509 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
510 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
511 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
512 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
513 FloppyDriveType),
514 DEFINE_PROP_END_OF_LIST(),
517 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
519 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
520 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
521 FDrive *drive;
522 int ret;
524 if (dev->unit == -1) {
525 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
526 drive = get_drv(bus->fdc, dev->unit);
527 if (!drive->blk) {
528 break;
533 if (dev->unit >= MAX_FD) {
534 error_setg(errp, "Can't create floppy unit %d, bus supports "
535 "only %d units", dev->unit, MAX_FD);
536 return;
539 drive = get_drv(bus->fdc, dev->unit);
540 if (drive->blk) {
541 error_setg(errp, "Floppy unit %d is in use", dev->unit);
542 return;
545 if (!dev->conf.blk) {
546 /* Anonymous BlockBackend for an empty drive */
547 dev->conf.blk = blk_new(0, BLK_PERM_ALL);
548 ret = blk_attach_dev(dev->conf.blk, qdev);
549 assert(ret == 0);
552 blkconf_blocksizes(&dev->conf);
553 if (dev->conf.logical_block_size != 512 ||
554 dev->conf.physical_block_size != 512)
556 error_setg(errp, "Physical and logical block size must "
557 "be 512 for floppy");
558 return;
561 /* rerror/werror aren't supported by fdc and therefore not even registered
562 * with qdev. So set the defaults manually before they are used in
563 * blkconf_apply_backend_options(). */
564 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
565 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
567 if (!blkconf_apply_backend_options(&dev->conf,
568 blk_is_read_only(dev->conf.blk),
569 false, errp)) {
570 return;
573 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
574 * for empty drives. */
575 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
576 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
577 error_setg(errp, "fdc doesn't support drive option werror");
578 return;
580 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
581 error_setg(errp, "fdc doesn't support drive option rerror");
582 return;
585 drive->conf = &dev->conf;
586 drive->blk = dev->conf.blk;
587 drive->fdctrl = bus->fdc;
589 fd_init(drive);
590 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
592 /* Keep 'type' qdev property and FDrive->drive in sync */
593 drive->drive = dev->type;
594 pick_drive_type(drive);
595 dev->type = drive->drive;
597 fd_revalidate(drive);
600 static void floppy_drive_class_init(ObjectClass *klass, void *data)
602 DeviceClass *k = DEVICE_CLASS(klass);
603 k->realize = floppy_drive_realize;
604 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
605 k->bus_type = TYPE_FLOPPY_BUS;
606 k->props = floppy_drive_properties;
607 k->desc = "virtual floppy drive";
610 static const TypeInfo floppy_drive_info = {
611 .name = TYPE_FLOPPY_DRIVE,
612 .parent = TYPE_DEVICE,
613 .instance_size = sizeof(FloppyDrive),
614 .class_init = floppy_drive_class_init,
617 /********************************************************/
618 /* Intel 82078 floppy disk controller emulation */
620 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
621 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
622 static int fdctrl_transfer_handler (void *opaque, int nchan,
623 int dma_pos, int dma_len);
624 static void fdctrl_raise_irq(FDCtrl *fdctrl);
625 static FDrive *get_cur_drv(FDCtrl *fdctrl);
627 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
628 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
629 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
630 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
631 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
632 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
633 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
634 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
635 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
636 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
637 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
638 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
640 enum {
641 FD_DIR_WRITE = 0,
642 FD_DIR_READ = 1,
643 FD_DIR_SCANE = 2,
644 FD_DIR_SCANL = 3,
645 FD_DIR_SCANH = 4,
646 FD_DIR_VERIFY = 5,
649 enum {
650 FD_STATE_MULTI = 0x01, /* multi track flag */
651 FD_STATE_FORMAT = 0x02, /* format flag */
654 enum {
655 FD_REG_SRA = 0x00,
656 FD_REG_SRB = 0x01,
657 FD_REG_DOR = 0x02,
658 FD_REG_TDR = 0x03,
659 FD_REG_MSR = 0x04,
660 FD_REG_DSR = 0x04,
661 FD_REG_FIFO = 0x05,
662 FD_REG_DIR = 0x07,
663 FD_REG_CCR = 0x07,
666 enum {
667 FD_CMD_READ_TRACK = 0x02,
668 FD_CMD_SPECIFY = 0x03,
669 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
670 FD_CMD_WRITE = 0x05,
671 FD_CMD_READ = 0x06,
672 FD_CMD_RECALIBRATE = 0x07,
673 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
674 FD_CMD_WRITE_DELETED = 0x09,
675 FD_CMD_READ_ID = 0x0a,
676 FD_CMD_READ_DELETED = 0x0c,
677 FD_CMD_FORMAT_TRACK = 0x0d,
678 FD_CMD_DUMPREG = 0x0e,
679 FD_CMD_SEEK = 0x0f,
680 FD_CMD_VERSION = 0x10,
681 FD_CMD_SCAN_EQUAL = 0x11,
682 FD_CMD_PERPENDICULAR_MODE = 0x12,
683 FD_CMD_CONFIGURE = 0x13,
684 FD_CMD_LOCK = 0x14,
685 FD_CMD_VERIFY = 0x16,
686 FD_CMD_POWERDOWN_MODE = 0x17,
687 FD_CMD_PART_ID = 0x18,
688 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
689 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
690 FD_CMD_SAVE = 0x2e,
691 FD_CMD_OPTION = 0x33,
692 FD_CMD_RESTORE = 0x4e,
693 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
694 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
695 FD_CMD_FORMAT_AND_WRITE = 0xcd,
696 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
699 enum {
700 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
701 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
702 FD_CONFIG_POLL = 0x10, /* Poll enabled */
703 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
704 FD_CONFIG_EIS = 0x40, /* No implied seeks */
707 enum {
708 FD_SR0_DS0 = 0x01,
709 FD_SR0_DS1 = 0x02,
710 FD_SR0_HEAD = 0x04,
711 FD_SR0_EQPMT = 0x10,
712 FD_SR0_SEEK = 0x20,
713 FD_SR0_ABNTERM = 0x40,
714 FD_SR0_INVCMD = 0x80,
715 FD_SR0_RDYCHG = 0xc0,
718 enum {
719 FD_SR1_MA = 0x01, /* Missing address mark */
720 FD_SR1_NW = 0x02, /* Not writable */
721 FD_SR1_EC = 0x80, /* End of cylinder */
724 enum {
725 FD_SR2_SNS = 0x04, /* Scan not satisfied */
726 FD_SR2_SEH = 0x08, /* Scan equal hit */
729 enum {
730 FD_SRA_DIR = 0x01,
731 FD_SRA_nWP = 0x02,
732 FD_SRA_nINDX = 0x04,
733 FD_SRA_HDSEL = 0x08,
734 FD_SRA_nTRK0 = 0x10,
735 FD_SRA_STEP = 0x20,
736 FD_SRA_nDRV2 = 0x40,
737 FD_SRA_INTPEND = 0x80,
740 enum {
741 FD_SRB_MTR0 = 0x01,
742 FD_SRB_MTR1 = 0x02,
743 FD_SRB_WGATE = 0x04,
744 FD_SRB_RDATA = 0x08,
745 FD_SRB_WDATA = 0x10,
746 FD_SRB_DR0 = 0x20,
749 enum {
750 #if MAX_FD == 4
751 FD_DOR_SELMASK = 0x03,
752 #else
753 FD_DOR_SELMASK = 0x01,
754 #endif
755 FD_DOR_nRESET = 0x04,
756 FD_DOR_DMAEN = 0x08,
757 FD_DOR_MOTEN0 = 0x10,
758 FD_DOR_MOTEN1 = 0x20,
759 FD_DOR_MOTEN2 = 0x40,
760 FD_DOR_MOTEN3 = 0x80,
763 enum {
764 #if MAX_FD == 4
765 FD_TDR_BOOTSEL = 0x0c,
766 #else
767 FD_TDR_BOOTSEL = 0x04,
768 #endif
771 enum {
772 FD_DSR_DRATEMASK= 0x03,
773 FD_DSR_PWRDOWN = 0x40,
774 FD_DSR_SWRESET = 0x80,
777 enum {
778 FD_MSR_DRV0BUSY = 0x01,
779 FD_MSR_DRV1BUSY = 0x02,
780 FD_MSR_DRV2BUSY = 0x04,
781 FD_MSR_DRV3BUSY = 0x08,
782 FD_MSR_CMDBUSY = 0x10,
783 FD_MSR_NONDMA = 0x20,
784 FD_MSR_DIO = 0x40,
785 FD_MSR_RQM = 0x80,
788 enum {
789 FD_DIR_DSKCHG = 0x80,
793 * See chapter 5.0 "Controller phases" of the spec:
795 * Command phase:
796 * The host writes a command and its parameters into the FIFO. The command
797 * phase is completed when all parameters for the command have been supplied,
798 * and execution phase is entered.
800 * Execution phase:
801 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
802 * contains the payload now, otherwise it's unused. When all bytes of the
803 * required data have been transferred, the state is switched to either result
804 * phase (if the command produces status bytes) or directly back into the
805 * command phase for the next command.
807 * Result phase:
808 * The host reads out the FIFO, which contains one or more result bytes now.
810 enum {
811 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
812 FD_PHASE_RECONSTRUCT = 0,
814 FD_PHASE_COMMAND = 1,
815 FD_PHASE_EXECUTION = 2,
816 FD_PHASE_RESULT = 3,
819 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
820 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
822 struct FDCtrl {
823 MemoryRegion iomem;
824 qemu_irq irq;
825 /* Controller state */
826 QEMUTimer *result_timer;
827 int dma_chann;
828 uint8_t phase;
829 IsaDma *dma;
830 /* Controller's identification */
831 uint8_t version;
832 /* HW */
833 uint8_t sra;
834 uint8_t srb;
835 uint8_t dor;
836 uint8_t dor_vmstate; /* only used as temp during vmstate */
837 uint8_t tdr;
838 uint8_t dsr;
839 uint8_t msr;
840 uint8_t cur_drv;
841 uint8_t status0;
842 uint8_t status1;
843 uint8_t status2;
844 /* Command FIFO */
845 uint8_t *fifo;
846 int32_t fifo_size;
847 uint32_t data_pos;
848 uint32_t data_len;
849 uint8_t data_state;
850 uint8_t data_dir;
851 uint8_t eot; /* last wanted sector */
852 /* States kept only to be returned back */
853 /* precompensation */
854 uint8_t precomp_trk;
855 uint8_t config;
856 uint8_t lock;
857 /* Power down config (also with status regB access mode */
858 uint8_t pwrd;
859 /* Floppy drives */
860 FloppyBus bus;
861 uint8_t num_floppies;
862 FDrive drives[MAX_FD];
863 struct {
864 BlockBackend *blk;
865 FloppyDriveType type;
866 } qdev_for_drives[MAX_FD];
867 int reset_sensei;
868 uint32_t check_media_rate;
869 FloppyDriveType fallback; /* type=auto failure fallback */
870 /* Timers state */
871 uint8_t timer0;
872 uint8_t timer1;
873 PortioList portio_list;
876 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
878 return drv->fdctrl->fallback;
881 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
882 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
884 typedef struct FDCtrlSysBus {
885 /*< private >*/
886 SysBusDevice parent_obj;
887 /*< public >*/
889 struct FDCtrl state;
890 } FDCtrlSysBus;
892 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
894 typedef struct FDCtrlISABus {
895 ISADevice parent_obj;
897 uint32_t iobase;
898 uint32_t irq;
899 uint32_t dma;
900 struct FDCtrl state;
901 int32_t bootindexA;
902 int32_t bootindexB;
903 } FDCtrlISABus;
905 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
907 FDCtrl *fdctrl = opaque;
908 uint32_t retval;
910 reg &= 7;
911 switch (reg) {
912 case FD_REG_SRA:
913 retval = fdctrl_read_statusA(fdctrl);
914 break;
915 case FD_REG_SRB:
916 retval = fdctrl_read_statusB(fdctrl);
917 break;
918 case FD_REG_DOR:
919 retval = fdctrl_read_dor(fdctrl);
920 break;
921 case FD_REG_TDR:
922 retval = fdctrl_read_tape(fdctrl);
923 break;
924 case FD_REG_MSR:
925 retval = fdctrl_read_main_status(fdctrl);
926 break;
927 case FD_REG_FIFO:
928 retval = fdctrl_read_data(fdctrl);
929 break;
930 case FD_REG_DIR:
931 retval = fdctrl_read_dir(fdctrl);
932 break;
933 default:
934 retval = (uint32_t)(-1);
935 break;
937 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
939 return retval;
942 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
944 FDCtrl *fdctrl = opaque;
946 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
948 reg &= 7;
949 switch (reg) {
950 case FD_REG_DOR:
951 fdctrl_write_dor(fdctrl, value);
952 break;
953 case FD_REG_TDR:
954 fdctrl_write_tape(fdctrl, value);
955 break;
956 case FD_REG_DSR:
957 fdctrl_write_rate(fdctrl, value);
958 break;
959 case FD_REG_FIFO:
960 fdctrl_write_data(fdctrl, value);
961 break;
962 case FD_REG_CCR:
963 fdctrl_write_ccr(fdctrl, value);
964 break;
965 default:
966 break;
970 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
971 unsigned ize)
973 return fdctrl_read(opaque, (uint32_t)reg);
976 static void fdctrl_write_mem (void *opaque, hwaddr reg,
977 uint64_t value, unsigned size)
979 fdctrl_write(opaque, (uint32_t)reg, value);
982 static const MemoryRegionOps fdctrl_mem_ops = {
983 .read = fdctrl_read_mem,
984 .write = fdctrl_write_mem,
985 .endianness = DEVICE_NATIVE_ENDIAN,
988 static const MemoryRegionOps fdctrl_mem_strict_ops = {
989 .read = fdctrl_read_mem,
990 .write = fdctrl_write_mem,
991 .endianness = DEVICE_NATIVE_ENDIAN,
992 .valid = {
993 .min_access_size = 1,
994 .max_access_size = 1,
998 static bool fdrive_media_changed_needed(void *opaque)
1000 FDrive *drive = opaque;
1002 return (drive->blk != NULL && drive->media_changed != 1);
1005 static const VMStateDescription vmstate_fdrive_media_changed = {
1006 .name = "fdrive/media_changed",
1007 .version_id = 1,
1008 .minimum_version_id = 1,
1009 .needed = fdrive_media_changed_needed,
1010 .fields = (VMStateField[]) {
1011 VMSTATE_UINT8(media_changed, FDrive),
1012 VMSTATE_END_OF_LIST()
1016 static bool fdrive_media_rate_needed(void *opaque)
1018 FDrive *drive = opaque;
1020 return drive->fdctrl->check_media_rate;
1023 static const VMStateDescription vmstate_fdrive_media_rate = {
1024 .name = "fdrive/media_rate",
1025 .version_id = 1,
1026 .minimum_version_id = 1,
1027 .needed = fdrive_media_rate_needed,
1028 .fields = (VMStateField[]) {
1029 VMSTATE_UINT8(media_rate, FDrive),
1030 VMSTATE_END_OF_LIST()
1034 static bool fdrive_perpendicular_needed(void *opaque)
1036 FDrive *drive = opaque;
1038 return drive->perpendicular != 0;
1041 static const VMStateDescription vmstate_fdrive_perpendicular = {
1042 .name = "fdrive/perpendicular",
1043 .version_id = 1,
1044 .minimum_version_id = 1,
1045 .needed = fdrive_perpendicular_needed,
1046 .fields = (VMStateField[]) {
1047 VMSTATE_UINT8(perpendicular, FDrive),
1048 VMSTATE_END_OF_LIST()
1052 static int fdrive_post_load(void *opaque, int version_id)
1054 fd_revalidate(opaque);
1055 return 0;
1058 static const VMStateDescription vmstate_fdrive = {
1059 .name = "fdrive",
1060 .version_id = 1,
1061 .minimum_version_id = 1,
1062 .post_load = fdrive_post_load,
1063 .fields = (VMStateField[]) {
1064 VMSTATE_UINT8(head, FDrive),
1065 VMSTATE_UINT8(track, FDrive),
1066 VMSTATE_UINT8(sect, FDrive),
1067 VMSTATE_END_OF_LIST()
1069 .subsections = (const VMStateDescription*[]) {
1070 &vmstate_fdrive_media_changed,
1071 &vmstate_fdrive_media_rate,
1072 &vmstate_fdrive_perpendicular,
1073 NULL
1078 * Reconstructs the phase from register values according to the logic that was
1079 * implemented in qemu 2.3. This is the default value that is used if the phase
1080 * subsection is not present on migration.
1082 * Don't change this function to reflect newer qemu versions, it is part of
1083 * the migration ABI.
1085 static int reconstruct_phase(FDCtrl *fdctrl)
1087 if (fdctrl->msr & FD_MSR_NONDMA) {
1088 return FD_PHASE_EXECUTION;
1089 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1090 /* qemu 2.3 disabled RQM only during DMA transfers */
1091 return FD_PHASE_EXECUTION;
1092 } else if (fdctrl->msr & FD_MSR_DIO) {
1093 return FD_PHASE_RESULT;
1094 } else {
1095 return FD_PHASE_COMMAND;
1099 static int fdc_pre_save(void *opaque)
1101 FDCtrl *s = opaque;
1103 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1105 return 0;
1108 static int fdc_pre_load(void *opaque)
1110 FDCtrl *s = opaque;
1111 s->phase = FD_PHASE_RECONSTRUCT;
1112 return 0;
1115 static int fdc_post_load(void *opaque, int version_id)
1117 FDCtrl *s = opaque;
1119 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1120 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1122 if (s->phase == FD_PHASE_RECONSTRUCT) {
1123 s->phase = reconstruct_phase(s);
1126 return 0;
1129 static bool fdc_reset_sensei_needed(void *opaque)
1131 FDCtrl *s = opaque;
1133 return s->reset_sensei != 0;
1136 static const VMStateDescription vmstate_fdc_reset_sensei = {
1137 .name = "fdc/reset_sensei",
1138 .version_id = 1,
1139 .minimum_version_id = 1,
1140 .needed = fdc_reset_sensei_needed,
1141 .fields = (VMStateField[]) {
1142 VMSTATE_INT32(reset_sensei, FDCtrl),
1143 VMSTATE_END_OF_LIST()
1147 static bool fdc_result_timer_needed(void *opaque)
1149 FDCtrl *s = opaque;
1151 return timer_pending(s->result_timer);
1154 static const VMStateDescription vmstate_fdc_result_timer = {
1155 .name = "fdc/result_timer",
1156 .version_id = 1,
1157 .minimum_version_id = 1,
1158 .needed = fdc_result_timer_needed,
1159 .fields = (VMStateField[]) {
1160 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1161 VMSTATE_END_OF_LIST()
1165 static bool fdc_phase_needed(void *opaque)
1167 FDCtrl *fdctrl = opaque;
1169 return reconstruct_phase(fdctrl) != fdctrl->phase;
1172 static const VMStateDescription vmstate_fdc_phase = {
1173 .name = "fdc/phase",
1174 .version_id = 1,
1175 .minimum_version_id = 1,
1176 .needed = fdc_phase_needed,
1177 .fields = (VMStateField[]) {
1178 VMSTATE_UINT8(phase, FDCtrl),
1179 VMSTATE_END_OF_LIST()
1183 static const VMStateDescription vmstate_fdc = {
1184 .name = "fdc",
1185 .version_id = 2,
1186 .minimum_version_id = 2,
1187 .pre_save = fdc_pre_save,
1188 .pre_load = fdc_pre_load,
1189 .post_load = fdc_post_load,
1190 .fields = (VMStateField[]) {
1191 /* Controller State */
1192 VMSTATE_UINT8(sra, FDCtrl),
1193 VMSTATE_UINT8(srb, FDCtrl),
1194 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1195 VMSTATE_UINT8(tdr, FDCtrl),
1196 VMSTATE_UINT8(dsr, FDCtrl),
1197 VMSTATE_UINT8(msr, FDCtrl),
1198 VMSTATE_UINT8(status0, FDCtrl),
1199 VMSTATE_UINT8(status1, FDCtrl),
1200 VMSTATE_UINT8(status2, FDCtrl),
1201 /* Command FIFO */
1202 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1203 uint8_t),
1204 VMSTATE_UINT32(data_pos, FDCtrl),
1205 VMSTATE_UINT32(data_len, FDCtrl),
1206 VMSTATE_UINT8(data_state, FDCtrl),
1207 VMSTATE_UINT8(data_dir, FDCtrl),
1208 VMSTATE_UINT8(eot, FDCtrl),
1209 /* States kept only to be returned back */
1210 VMSTATE_UINT8(timer0, FDCtrl),
1211 VMSTATE_UINT8(timer1, FDCtrl),
1212 VMSTATE_UINT8(precomp_trk, FDCtrl),
1213 VMSTATE_UINT8(config, FDCtrl),
1214 VMSTATE_UINT8(lock, FDCtrl),
1215 VMSTATE_UINT8(pwrd, FDCtrl),
1216 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1217 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1218 vmstate_fdrive, FDrive),
1219 VMSTATE_END_OF_LIST()
1221 .subsections = (const VMStateDescription*[]) {
1222 &vmstate_fdc_reset_sensei,
1223 &vmstate_fdc_result_timer,
1224 &vmstate_fdc_phase,
1225 NULL
1229 static void fdctrl_external_reset_sysbus(DeviceState *d)
1231 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1232 FDCtrl *s = &sys->state;
1234 fdctrl_reset(s, 0);
1237 static void fdctrl_external_reset_isa(DeviceState *d)
1239 FDCtrlISABus *isa = ISA_FDC(d);
1240 FDCtrl *s = &isa->state;
1242 fdctrl_reset(s, 0);
1245 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1247 //FDCtrl *s = opaque;
1249 if (level) {
1250 // XXX
1251 FLOPPY_DPRINTF("TC pulsed\n");
1255 /* Change IRQ state */
1256 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1258 fdctrl->status0 = 0;
1259 if (!(fdctrl->sra & FD_SRA_INTPEND))
1260 return;
1261 FLOPPY_DPRINTF("Reset interrupt\n");
1262 qemu_set_irq(fdctrl->irq, 0);
1263 fdctrl->sra &= ~FD_SRA_INTPEND;
1266 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1268 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1269 qemu_set_irq(fdctrl->irq, 1);
1270 fdctrl->sra |= FD_SRA_INTPEND;
1273 fdctrl->reset_sensei = 0;
1274 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1277 /* Reset controller */
1278 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1280 int i;
1282 FLOPPY_DPRINTF("reset controller\n");
1283 fdctrl_reset_irq(fdctrl);
1284 /* Initialise controller */
1285 fdctrl->sra = 0;
1286 fdctrl->srb = 0xc0;
1287 if (!fdctrl->drives[1].blk) {
1288 fdctrl->sra |= FD_SRA_nDRV2;
1290 fdctrl->cur_drv = 0;
1291 fdctrl->dor = FD_DOR_nRESET;
1292 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1293 fdctrl->msr = FD_MSR_RQM;
1294 fdctrl->reset_sensei = 0;
1295 timer_del(fdctrl->result_timer);
1296 /* FIFO state */
1297 fdctrl->data_pos = 0;
1298 fdctrl->data_len = 0;
1299 fdctrl->data_state = 0;
1300 fdctrl->data_dir = FD_DIR_WRITE;
1301 for (i = 0; i < MAX_FD; i++)
1302 fd_recalibrate(&fdctrl->drives[i]);
1303 fdctrl_to_command_phase(fdctrl);
1304 if (do_irq) {
1305 fdctrl->status0 |= FD_SR0_RDYCHG;
1306 fdctrl_raise_irq(fdctrl);
1307 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1311 static inline FDrive *drv0(FDCtrl *fdctrl)
1313 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1316 static inline FDrive *drv1(FDCtrl *fdctrl)
1318 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1319 return &fdctrl->drives[1];
1320 else
1321 return &fdctrl->drives[0];
1324 #if MAX_FD == 4
1325 static inline FDrive *drv2(FDCtrl *fdctrl)
1327 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1328 return &fdctrl->drives[2];
1329 else
1330 return &fdctrl->drives[1];
1333 static inline FDrive *drv3(FDCtrl *fdctrl)
1335 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1336 return &fdctrl->drives[3];
1337 else
1338 return &fdctrl->drives[2];
1340 #endif
1342 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1344 switch (unit) {
1345 case 0: return drv0(fdctrl);
1346 case 1: return drv1(fdctrl);
1347 #if MAX_FD == 4
1348 case 2: return drv2(fdctrl);
1349 case 3: return drv3(fdctrl);
1350 #endif
1351 default: return NULL;
1355 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1357 return get_drv(fdctrl, fdctrl->cur_drv);
1360 /* Status A register : 0x00 (read-only) */
1361 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1363 uint32_t retval = fdctrl->sra;
1365 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1367 return retval;
1370 /* Status B register : 0x01 (read-only) */
1371 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1373 uint32_t retval = fdctrl->srb;
1375 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1377 return retval;
1380 /* Digital output register : 0x02 */
1381 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1383 uint32_t retval = fdctrl->dor;
1385 /* Selected drive */
1386 retval |= fdctrl->cur_drv;
1387 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1389 return retval;
1392 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1394 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1396 /* Motors */
1397 if (value & FD_DOR_MOTEN0)
1398 fdctrl->srb |= FD_SRB_MTR0;
1399 else
1400 fdctrl->srb &= ~FD_SRB_MTR0;
1401 if (value & FD_DOR_MOTEN1)
1402 fdctrl->srb |= FD_SRB_MTR1;
1403 else
1404 fdctrl->srb &= ~FD_SRB_MTR1;
1406 /* Drive */
1407 if (value & 1)
1408 fdctrl->srb |= FD_SRB_DR0;
1409 else
1410 fdctrl->srb &= ~FD_SRB_DR0;
1412 /* Reset */
1413 if (!(value & FD_DOR_nRESET)) {
1414 if (fdctrl->dor & FD_DOR_nRESET) {
1415 FLOPPY_DPRINTF("controller enter RESET state\n");
1417 } else {
1418 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1419 FLOPPY_DPRINTF("controller out of RESET state\n");
1420 fdctrl_reset(fdctrl, 1);
1421 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1424 /* Selected drive */
1425 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1427 fdctrl->dor = value;
1430 /* Tape drive register : 0x03 */
1431 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1433 uint32_t retval = fdctrl->tdr;
1435 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1437 return retval;
1440 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1442 /* Reset mode */
1443 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1444 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1445 return;
1447 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1448 /* Disk boot selection indicator */
1449 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1450 /* Tape indicators: never allow */
1453 /* Main status register : 0x04 (read) */
1454 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1456 uint32_t retval = fdctrl->msr;
1458 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1459 fdctrl->dor |= FD_DOR_nRESET;
1461 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1463 return retval;
1466 /* Data select rate register : 0x04 (write) */
1467 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1469 /* Reset mode */
1470 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1471 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1472 return;
1474 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1475 /* Reset: autoclear */
1476 if (value & FD_DSR_SWRESET) {
1477 fdctrl->dor &= ~FD_DOR_nRESET;
1478 fdctrl_reset(fdctrl, 1);
1479 fdctrl->dor |= FD_DOR_nRESET;
1481 if (value & FD_DSR_PWRDOWN) {
1482 fdctrl_reset(fdctrl, 1);
1484 fdctrl->dsr = value;
1487 /* Configuration control register: 0x07 (write) */
1488 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1490 /* Reset mode */
1491 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1492 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1493 return;
1495 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1497 /* Only the rate selection bits used in AT mode, and we
1498 * store those in the DSR.
1500 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1501 (value & FD_DSR_DRATEMASK);
1504 static int fdctrl_media_changed(FDrive *drv)
1506 return drv->media_changed;
1509 /* Digital input register : 0x07 (read-only) */
1510 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1512 uint32_t retval = 0;
1514 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1515 retval |= FD_DIR_DSKCHG;
1517 if (retval != 0) {
1518 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1521 return retval;
1524 /* Clear the FIFO and update the state for receiving the next command */
1525 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1527 fdctrl->phase = FD_PHASE_COMMAND;
1528 fdctrl->data_dir = FD_DIR_WRITE;
1529 fdctrl->data_pos = 0;
1530 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1531 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1532 fdctrl->msr |= FD_MSR_RQM;
1535 /* Update the state to allow the guest to read out the command status.
1536 * @fifo_len is the number of result bytes to be read out. */
1537 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1539 fdctrl->phase = FD_PHASE_RESULT;
1540 fdctrl->data_dir = FD_DIR_READ;
1541 fdctrl->data_len = fifo_len;
1542 fdctrl->data_pos = 0;
1543 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1546 /* Set an error: unimplemented/unknown command */
1547 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1549 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1550 fdctrl->fifo[0]);
1551 fdctrl->fifo[0] = FD_SR0_INVCMD;
1552 fdctrl_to_result_phase(fdctrl, 1);
1555 /* Seek to next sector
1556 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1557 * otherwise returns 1
1559 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1561 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1562 cur_drv->head, cur_drv->track, cur_drv->sect,
1563 fd_sector(cur_drv));
1564 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1565 error in fact */
1566 uint8_t new_head = cur_drv->head;
1567 uint8_t new_track = cur_drv->track;
1568 uint8_t new_sect = cur_drv->sect;
1570 int ret = 1;
1572 if (new_sect >= cur_drv->last_sect ||
1573 new_sect == fdctrl->eot) {
1574 new_sect = 1;
1575 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1576 if (new_head == 0 &&
1577 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1578 new_head = 1;
1579 } else {
1580 new_head = 0;
1581 new_track++;
1582 fdctrl->status0 |= FD_SR0_SEEK;
1583 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1584 ret = 0;
1587 } else {
1588 fdctrl->status0 |= FD_SR0_SEEK;
1589 new_track++;
1590 ret = 0;
1592 if (ret == 1) {
1593 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1594 new_head, new_track, new_sect, fd_sector(cur_drv));
1596 } else {
1597 new_sect++;
1599 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1600 return ret;
1603 /* Callback for transfer end (stop or abort) */
1604 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1605 uint8_t status1, uint8_t status2)
1607 FDrive *cur_drv;
1608 cur_drv = get_cur_drv(fdctrl);
1610 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1611 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1612 if (cur_drv->head) {
1613 fdctrl->status0 |= FD_SR0_HEAD;
1615 fdctrl->status0 |= status0;
1617 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1618 status0, status1, status2, fdctrl->status0);
1619 fdctrl->fifo[0] = fdctrl->status0;
1620 fdctrl->fifo[1] = status1;
1621 fdctrl->fifo[2] = status2;
1622 fdctrl->fifo[3] = cur_drv->track;
1623 fdctrl->fifo[4] = cur_drv->head;
1624 fdctrl->fifo[5] = cur_drv->sect;
1625 fdctrl->fifo[6] = FD_SECTOR_SC;
1626 fdctrl->data_dir = FD_DIR_READ;
1627 if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1628 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1629 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1631 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1632 fdctrl->msr &= ~FD_MSR_NONDMA;
1634 fdctrl_to_result_phase(fdctrl, 7);
1635 fdctrl_raise_irq(fdctrl);
1638 /* Prepare a data transfer (either DMA or FIFO) */
1639 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1641 FDrive *cur_drv;
1642 uint8_t kh, kt, ks;
1644 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1645 cur_drv = get_cur_drv(fdctrl);
1646 kt = fdctrl->fifo[2];
1647 kh = fdctrl->fifo[3];
1648 ks = fdctrl->fifo[4];
1649 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1650 GET_CUR_DRV(fdctrl), kh, kt, ks,
1651 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1652 NUM_SIDES(cur_drv)));
1653 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1654 case 2:
1655 /* sect too big */
1656 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1657 fdctrl->fifo[3] = kt;
1658 fdctrl->fifo[4] = kh;
1659 fdctrl->fifo[5] = ks;
1660 return;
1661 case 3:
1662 /* track too big */
1663 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1664 fdctrl->fifo[3] = kt;
1665 fdctrl->fifo[4] = kh;
1666 fdctrl->fifo[5] = ks;
1667 return;
1668 case 4:
1669 /* No seek enabled */
1670 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1671 fdctrl->fifo[3] = kt;
1672 fdctrl->fifo[4] = kh;
1673 fdctrl->fifo[5] = ks;
1674 return;
1675 case 1:
1676 fdctrl->status0 |= FD_SR0_SEEK;
1677 break;
1678 default:
1679 break;
1682 /* Check the data rate. If the programmed data rate does not match
1683 * the currently inserted medium, the operation has to fail. */
1684 if (fdctrl->check_media_rate &&
1685 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1686 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1687 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1688 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1689 fdctrl->fifo[3] = kt;
1690 fdctrl->fifo[4] = kh;
1691 fdctrl->fifo[5] = ks;
1692 return;
1695 /* Set the FIFO state */
1696 fdctrl->data_dir = direction;
1697 fdctrl->data_pos = 0;
1698 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1699 if (fdctrl->fifo[0] & 0x80)
1700 fdctrl->data_state |= FD_STATE_MULTI;
1701 else
1702 fdctrl->data_state &= ~FD_STATE_MULTI;
1703 if (fdctrl->fifo[5] == 0) {
1704 fdctrl->data_len = fdctrl->fifo[8];
1705 } else {
1706 int tmp;
1707 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1708 tmp = (fdctrl->fifo[6] - ks + 1);
1709 if (fdctrl->fifo[0] & 0x80)
1710 tmp += fdctrl->fifo[6];
1711 fdctrl->data_len *= tmp;
1713 fdctrl->eot = fdctrl->fifo[6];
1714 if (fdctrl->dor & FD_DOR_DMAEN) {
1715 IsaDmaTransferMode dma_mode;
1716 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1717 bool dma_mode_ok;
1718 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1719 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1720 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1721 dma_mode, direction,
1722 (128 << fdctrl->fifo[5]) *
1723 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1724 switch (direction) {
1725 case FD_DIR_SCANE:
1726 case FD_DIR_SCANL:
1727 case FD_DIR_SCANH:
1728 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1729 break;
1730 case FD_DIR_WRITE:
1731 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1732 break;
1733 case FD_DIR_READ:
1734 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1735 break;
1736 case FD_DIR_VERIFY:
1737 dma_mode_ok = true;
1738 break;
1739 default:
1740 dma_mode_ok = false;
1741 break;
1743 if (dma_mode_ok) {
1744 /* No access is allowed until DMA transfer has completed */
1745 fdctrl->msr &= ~FD_MSR_RQM;
1746 if (direction != FD_DIR_VERIFY) {
1747 /* Now, we just have to wait for the DMA controller to
1748 * recall us...
1750 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1751 k->schedule(fdctrl->dma);
1752 } else {
1753 /* Start transfer */
1754 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1755 fdctrl->data_len);
1757 return;
1758 } else {
1759 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1760 direction);
1763 FLOPPY_DPRINTF("start non-DMA transfer\n");
1764 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1765 if (direction != FD_DIR_WRITE)
1766 fdctrl->msr |= FD_MSR_DIO;
1767 /* IO based transfer: calculate len */
1768 fdctrl_raise_irq(fdctrl);
1771 /* Prepare a transfer of deleted data */
1772 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1774 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1776 /* We don't handle deleted data,
1777 * so we don't return *ANYTHING*
1779 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1782 /* handlers for DMA transfers */
1783 static int fdctrl_transfer_handler (void *opaque, int nchan,
1784 int dma_pos, int dma_len)
1786 FDCtrl *fdctrl;
1787 FDrive *cur_drv;
1788 int len, start_pos, rel_pos;
1789 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1790 IsaDmaClass *k;
1792 fdctrl = opaque;
1793 if (fdctrl->msr & FD_MSR_RQM) {
1794 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1795 return 0;
1797 k = ISADMA_GET_CLASS(fdctrl->dma);
1798 cur_drv = get_cur_drv(fdctrl);
1799 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1800 fdctrl->data_dir == FD_DIR_SCANH)
1801 status2 = FD_SR2_SNS;
1802 if (dma_len > fdctrl->data_len)
1803 dma_len = fdctrl->data_len;
1804 if (cur_drv->blk == NULL) {
1805 if (fdctrl->data_dir == FD_DIR_WRITE)
1806 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1807 else
1808 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1809 len = 0;
1810 goto transfer_error;
1812 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1813 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1814 len = dma_len - fdctrl->data_pos;
1815 if (len + rel_pos > FD_SECTOR_LEN)
1816 len = FD_SECTOR_LEN - rel_pos;
1817 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1818 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1819 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1820 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1821 fd_sector(cur_drv) * FD_SECTOR_LEN);
1822 if (fdctrl->data_dir != FD_DIR_WRITE ||
1823 len < FD_SECTOR_LEN || rel_pos != 0) {
1824 /* READ & SCAN commands and realign to a sector for WRITE */
1825 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1826 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1827 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1828 fd_sector(cur_drv));
1829 /* Sure, image size is too small... */
1830 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1833 switch (fdctrl->data_dir) {
1834 case FD_DIR_READ:
1835 /* READ commands */
1836 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1837 fdctrl->data_pos, len);
1838 break;
1839 case FD_DIR_WRITE:
1840 /* WRITE commands */
1841 if (cur_drv->ro) {
1842 /* Handle readonly medium early, no need to do DMA, touch the
1843 * LED or attempt any writes. A real floppy doesn't attempt
1844 * to write to readonly media either. */
1845 fdctrl_stop_transfer(fdctrl,
1846 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1847 0x00);
1848 goto transfer_error;
1851 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1852 fdctrl->data_pos, len);
1853 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1854 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1855 FLOPPY_DPRINTF("error writing sector %d\n",
1856 fd_sector(cur_drv));
1857 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1858 goto transfer_error;
1860 break;
1861 case FD_DIR_VERIFY:
1862 /* VERIFY commands */
1863 break;
1864 default:
1865 /* SCAN commands */
1867 uint8_t tmpbuf[FD_SECTOR_LEN];
1868 int ret;
1869 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1870 len);
1871 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1872 if (ret == 0) {
1873 status2 = FD_SR2_SEH;
1874 goto end_transfer;
1876 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1877 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1878 status2 = 0x00;
1879 goto end_transfer;
1882 break;
1884 fdctrl->data_pos += len;
1885 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1886 if (rel_pos == 0) {
1887 /* Seek to next sector */
1888 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1889 break;
1892 end_transfer:
1893 len = fdctrl->data_pos - start_pos;
1894 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1895 fdctrl->data_pos, len, fdctrl->data_len);
1896 if (fdctrl->data_dir == FD_DIR_SCANE ||
1897 fdctrl->data_dir == FD_DIR_SCANL ||
1898 fdctrl->data_dir == FD_DIR_SCANH)
1899 status2 = FD_SR2_SEH;
1900 fdctrl->data_len -= len;
1901 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1902 transfer_error:
1904 return len;
1907 /* Data register : 0x05 */
1908 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1910 FDrive *cur_drv;
1911 uint32_t retval = 0;
1912 uint32_t pos;
1914 cur_drv = get_cur_drv(fdctrl);
1915 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1916 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1917 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1918 return 0;
1921 /* If data_len spans multiple sectors, the current position in the FIFO
1922 * wraps around while fdctrl->data_pos is the real position in the whole
1923 * request. */
1924 pos = fdctrl->data_pos;
1925 pos %= FD_SECTOR_LEN;
1927 switch (fdctrl->phase) {
1928 case FD_PHASE_EXECUTION:
1929 assert(fdctrl->msr & FD_MSR_NONDMA);
1930 if (pos == 0) {
1931 if (fdctrl->data_pos != 0)
1932 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1933 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1934 fd_sector(cur_drv));
1935 return 0;
1937 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1938 BDRV_SECTOR_SIZE)
1939 < 0) {
1940 FLOPPY_DPRINTF("error getting sector %d\n",
1941 fd_sector(cur_drv));
1942 /* Sure, image size is too small... */
1943 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1947 if (++fdctrl->data_pos == fdctrl->data_len) {
1948 fdctrl->msr &= ~FD_MSR_RQM;
1949 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1951 break;
1953 case FD_PHASE_RESULT:
1954 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1955 if (++fdctrl->data_pos == fdctrl->data_len) {
1956 fdctrl->msr &= ~FD_MSR_RQM;
1957 fdctrl_to_command_phase(fdctrl);
1958 fdctrl_reset_irq(fdctrl);
1960 break;
1962 case FD_PHASE_COMMAND:
1963 default:
1964 abort();
1967 retval = fdctrl->fifo[pos];
1968 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1970 return retval;
1973 static void fdctrl_format_sector(FDCtrl *fdctrl)
1975 FDrive *cur_drv;
1976 uint8_t kh, kt, ks;
1978 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1979 cur_drv = get_cur_drv(fdctrl);
1980 kt = fdctrl->fifo[6];
1981 kh = fdctrl->fifo[7];
1982 ks = fdctrl->fifo[8];
1983 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1984 GET_CUR_DRV(fdctrl), kh, kt, ks,
1985 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1986 NUM_SIDES(cur_drv)));
1987 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1988 case 2:
1989 /* sect too big */
1990 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1991 fdctrl->fifo[3] = kt;
1992 fdctrl->fifo[4] = kh;
1993 fdctrl->fifo[5] = ks;
1994 return;
1995 case 3:
1996 /* track too big */
1997 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1998 fdctrl->fifo[3] = kt;
1999 fdctrl->fifo[4] = kh;
2000 fdctrl->fifo[5] = ks;
2001 return;
2002 case 4:
2003 /* No seek enabled */
2004 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
2005 fdctrl->fifo[3] = kt;
2006 fdctrl->fifo[4] = kh;
2007 fdctrl->fifo[5] = ks;
2008 return;
2009 case 1:
2010 fdctrl->status0 |= FD_SR0_SEEK;
2011 break;
2012 default:
2013 break;
2015 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2016 if (cur_drv->blk == NULL ||
2017 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2018 BDRV_SECTOR_SIZE, 0) < 0) {
2019 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2020 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2021 } else {
2022 if (cur_drv->sect == cur_drv->last_sect) {
2023 fdctrl->data_state &= ~FD_STATE_FORMAT;
2024 /* Last sector done */
2025 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2026 } else {
2027 /* More to do */
2028 fdctrl->data_pos = 0;
2029 fdctrl->data_len = 4;
2034 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2036 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2037 fdctrl->fifo[0] = fdctrl->lock << 4;
2038 fdctrl_to_result_phase(fdctrl, 1);
2041 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2043 FDrive *cur_drv = get_cur_drv(fdctrl);
2045 /* Drives position */
2046 fdctrl->fifo[0] = drv0(fdctrl)->track;
2047 fdctrl->fifo[1] = drv1(fdctrl)->track;
2048 #if MAX_FD == 4
2049 fdctrl->fifo[2] = drv2(fdctrl)->track;
2050 fdctrl->fifo[3] = drv3(fdctrl)->track;
2051 #else
2052 fdctrl->fifo[2] = 0;
2053 fdctrl->fifo[3] = 0;
2054 #endif
2055 /* timers */
2056 fdctrl->fifo[4] = fdctrl->timer0;
2057 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2058 fdctrl->fifo[6] = cur_drv->last_sect;
2059 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2060 (cur_drv->perpendicular << 2);
2061 fdctrl->fifo[8] = fdctrl->config;
2062 fdctrl->fifo[9] = fdctrl->precomp_trk;
2063 fdctrl_to_result_phase(fdctrl, 10);
2066 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2068 /* Controller's version */
2069 fdctrl->fifo[0] = fdctrl->version;
2070 fdctrl_to_result_phase(fdctrl, 1);
2073 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2075 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2076 fdctrl_to_result_phase(fdctrl, 1);
2079 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2081 FDrive *cur_drv = get_cur_drv(fdctrl);
2083 /* Drives position */
2084 drv0(fdctrl)->track = fdctrl->fifo[3];
2085 drv1(fdctrl)->track = fdctrl->fifo[4];
2086 #if MAX_FD == 4
2087 drv2(fdctrl)->track = fdctrl->fifo[5];
2088 drv3(fdctrl)->track = fdctrl->fifo[6];
2089 #endif
2090 /* timers */
2091 fdctrl->timer0 = fdctrl->fifo[7];
2092 fdctrl->timer1 = fdctrl->fifo[8];
2093 cur_drv->last_sect = fdctrl->fifo[9];
2094 fdctrl->lock = fdctrl->fifo[10] >> 7;
2095 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2096 fdctrl->config = fdctrl->fifo[11];
2097 fdctrl->precomp_trk = fdctrl->fifo[12];
2098 fdctrl->pwrd = fdctrl->fifo[13];
2099 fdctrl_to_command_phase(fdctrl);
2102 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2104 FDrive *cur_drv = get_cur_drv(fdctrl);
2106 fdctrl->fifo[0] = 0;
2107 fdctrl->fifo[1] = 0;
2108 /* Drives position */
2109 fdctrl->fifo[2] = drv0(fdctrl)->track;
2110 fdctrl->fifo[3] = drv1(fdctrl)->track;
2111 #if MAX_FD == 4
2112 fdctrl->fifo[4] = drv2(fdctrl)->track;
2113 fdctrl->fifo[5] = drv3(fdctrl)->track;
2114 #else
2115 fdctrl->fifo[4] = 0;
2116 fdctrl->fifo[5] = 0;
2117 #endif
2118 /* timers */
2119 fdctrl->fifo[6] = fdctrl->timer0;
2120 fdctrl->fifo[7] = fdctrl->timer1;
2121 fdctrl->fifo[8] = cur_drv->last_sect;
2122 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2123 (cur_drv->perpendicular << 2);
2124 fdctrl->fifo[10] = fdctrl->config;
2125 fdctrl->fifo[11] = fdctrl->precomp_trk;
2126 fdctrl->fifo[12] = fdctrl->pwrd;
2127 fdctrl->fifo[13] = 0;
2128 fdctrl->fifo[14] = 0;
2129 fdctrl_to_result_phase(fdctrl, 15);
2132 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2134 FDrive *cur_drv = get_cur_drv(fdctrl);
2136 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2137 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2138 (NANOSECONDS_PER_SECOND / 50));
2141 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2143 FDrive *cur_drv;
2145 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2146 cur_drv = get_cur_drv(fdctrl);
2147 fdctrl->data_state |= FD_STATE_FORMAT;
2148 if (fdctrl->fifo[0] & 0x80)
2149 fdctrl->data_state |= FD_STATE_MULTI;
2150 else
2151 fdctrl->data_state &= ~FD_STATE_MULTI;
2152 cur_drv->bps =
2153 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2154 #if 0
2155 cur_drv->last_sect =
2156 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2157 fdctrl->fifo[3] / 2;
2158 #else
2159 cur_drv->last_sect = fdctrl->fifo[3];
2160 #endif
2161 /* TODO: implement format using DMA expected by the Bochs BIOS
2162 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2163 * the sector with the specified fill byte
2165 fdctrl->data_state &= ~FD_STATE_FORMAT;
2166 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2169 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2171 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2172 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2173 if (fdctrl->fifo[2] & 1)
2174 fdctrl->dor &= ~FD_DOR_DMAEN;
2175 else
2176 fdctrl->dor |= FD_DOR_DMAEN;
2177 /* No result back */
2178 fdctrl_to_command_phase(fdctrl);
2181 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2183 FDrive *cur_drv;
2185 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2186 cur_drv = get_cur_drv(fdctrl);
2187 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2188 /* 1 Byte status back */
2189 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2190 (cur_drv->track == 0 ? 0x10 : 0x00) |
2191 (cur_drv->head << 2) |
2192 GET_CUR_DRV(fdctrl) |
2193 0x28;
2194 fdctrl_to_result_phase(fdctrl, 1);
2197 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2199 FDrive *cur_drv;
2201 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2202 cur_drv = get_cur_drv(fdctrl);
2203 fd_recalibrate(cur_drv);
2204 fdctrl_to_command_phase(fdctrl);
2205 /* Raise Interrupt */
2206 fdctrl->status0 |= FD_SR0_SEEK;
2207 fdctrl_raise_irq(fdctrl);
2210 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2212 FDrive *cur_drv = get_cur_drv(fdctrl);
2214 if (fdctrl->reset_sensei > 0) {
2215 fdctrl->fifo[0] =
2216 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2217 fdctrl->reset_sensei--;
2218 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2219 fdctrl->fifo[0] = FD_SR0_INVCMD;
2220 fdctrl_to_result_phase(fdctrl, 1);
2221 return;
2222 } else {
2223 fdctrl->fifo[0] =
2224 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2225 | GET_CUR_DRV(fdctrl);
2228 fdctrl->fifo[1] = cur_drv->track;
2229 fdctrl_to_result_phase(fdctrl, 2);
2230 fdctrl_reset_irq(fdctrl);
2231 fdctrl->status0 = FD_SR0_RDYCHG;
2234 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2236 FDrive *cur_drv;
2238 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2239 cur_drv = get_cur_drv(fdctrl);
2240 fdctrl_to_command_phase(fdctrl);
2241 /* The seek command just sends step pulses to the drive and doesn't care if
2242 * there is a medium inserted of if it's banging the head against the drive.
2244 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2245 /* Raise Interrupt */
2246 fdctrl->status0 |= FD_SR0_SEEK;
2247 fdctrl_raise_irq(fdctrl);
2250 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2252 FDrive *cur_drv = get_cur_drv(fdctrl);
2254 if (fdctrl->fifo[1] & 0x80)
2255 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2256 /* No result back */
2257 fdctrl_to_command_phase(fdctrl);
2260 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2262 fdctrl->config = fdctrl->fifo[2];
2263 fdctrl->precomp_trk = fdctrl->fifo[3];
2264 /* No result back */
2265 fdctrl_to_command_phase(fdctrl);
2268 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2270 fdctrl->pwrd = fdctrl->fifo[1];
2271 fdctrl->fifo[0] = fdctrl->fifo[1];
2272 fdctrl_to_result_phase(fdctrl, 1);
2275 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2277 /* No result back */
2278 fdctrl_to_command_phase(fdctrl);
2281 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2283 FDrive *cur_drv = get_cur_drv(fdctrl);
2284 uint32_t pos;
2286 pos = fdctrl->data_pos - 1;
2287 pos %= FD_SECTOR_LEN;
2288 if (fdctrl->fifo[pos] & 0x80) {
2289 /* Command parameters done */
2290 if (fdctrl->fifo[pos] & 0x40) {
2291 fdctrl->fifo[0] = fdctrl->fifo[1];
2292 fdctrl->fifo[2] = 0;
2293 fdctrl->fifo[3] = 0;
2294 fdctrl_to_result_phase(fdctrl, 4);
2295 } else {
2296 fdctrl_to_command_phase(fdctrl);
2298 } else if (fdctrl->data_len > 7) {
2299 /* ERROR */
2300 fdctrl->fifo[0] = 0x80 |
2301 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2302 fdctrl_to_result_phase(fdctrl, 1);
2306 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2308 FDrive *cur_drv;
2310 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2311 cur_drv = get_cur_drv(fdctrl);
2312 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2313 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2314 cur_drv->sect, 1);
2315 } else {
2316 fd_seek(cur_drv, cur_drv->head,
2317 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2319 fdctrl_to_command_phase(fdctrl);
2320 /* Raise Interrupt */
2321 fdctrl->status0 |= FD_SR0_SEEK;
2322 fdctrl_raise_irq(fdctrl);
2325 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2327 FDrive *cur_drv;
2329 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2330 cur_drv = get_cur_drv(fdctrl);
2331 if (fdctrl->fifo[2] > cur_drv->track) {
2332 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2333 } else {
2334 fd_seek(cur_drv, cur_drv->head,
2335 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2337 fdctrl_to_command_phase(fdctrl);
2338 /* Raise Interrupt */
2339 fdctrl->status0 |= FD_SR0_SEEK;
2340 fdctrl_raise_irq(fdctrl);
2344 * Handlers for the execution phase of each command
2346 typedef struct FDCtrlCommand {
2347 uint8_t value;
2348 uint8_t mask;
2349 const char* name;
2350 int parameters;
2351 void (*handler)(FDCtrl *fdctrl, int direction);
2352 int direction;
2353 } FDCtrlCommand;
2355 static const FDCtrlCommand handlers[] = {
2356 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2357 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2358 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2359 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2360 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2361 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2362 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2363 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2364 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2365 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2366 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2367 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2368 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2369 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2370 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2371 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2372 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2373 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2374 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2375 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2376 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2377 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2378 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2379 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2380 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2381 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2382 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2383 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2384 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2385 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2386 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2387 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2389 /* Associate command to an index in the 'handlers' array */
2390 static uint8_t command_to_handler[256];
2392 static const FDCtrlCommand *get_command(uint8_t cmd)
2394 int idx;
2396 idx = command_to_handler[cmd];
2397 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2398 return &handlers[idx];
2401 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2403 FDrive *cur_drv;
2404 const FDCtrlCommand *cmd;
2405 uint32_t pos;
2407 /* Reset mode */
2408 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2409 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2410 return;
2412 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2413 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2414 return;
2416 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2418 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2420 /* If data_len spans multiple sectors, the current position in the FIFO
2421 * wraps around while fdctrl->data_pos is the real position in the whole
2422 * request. */
2423 pos = fdctrl->data_pos++;
2424 pos %= FD_SECTOR_LEN;
2425 fdctrl->fifo[pos] = value;
2427 if (fdctrl->data_pos == fdctrl->data_len) {
2428 fdctrl->msr &= ~FD_MSR_RQM;
2431 switch (fdctrl->phase) {
2432 case FD_PHASE_EXECUTION:
2433 /* For DMA requests, RQM should be cleared during execution phase, so
2434 * we would have errored out above. */
2435 assert(fdctrl->msr & FD_MSR_NONDMA);
2437 /* FIFO data write */
2438 if (pos == FD_SECTOR_LEN - 1 ||
2439 fdctrl->data_pos == fdctrl->data_len) {
2440 cur_drv = get_cur_drv(fdctrl);
2441 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2442 BDRV_SECTOR_SIZE, 0) < 0) {
2443 FLOPPY_DPRINTF("error writing sector %d\n",
2444 fd_sector(cur_drv));
2445 break;
2447 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2448 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2449 fd_sector(cur_drv));
2450 break;
2454 /* Switch to result phase when done with the transfer */
2455 if (fdctrl->data_pos == fdctrl->data_len) {
2456 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2458 break;
2460 case FD_PHASE_COMMAND:
2461 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2462 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2464 if (pos == 0) {
2465 /* The first byte specifies the command. Now we start reading
2466 * as many parameters as this command requires. */
2467 cmd = get_command(value);
2468 fdctrl->data_len = cmd->parameters + 1;
2469 if (cmd->parameters) {
2470 fdctrl->msr |= FD_MSR_RQM;
2472 fdctrl->msr |= FD_MSR_CMDBUSY;
2475 if (fdctrl->data_pos == fdctrl->data_len) {
2476 /* We have all parameters now, execute the command */
2477 fdctrl->phase = FD_PHASE_EXECUTION;
2479 if (fdctrl->data_state & FD_STATE_FORMAT) {
2480 fdctrl_format_sector(fdctrl);
2481 break;
2484 cmd = get_command(fdctrl->fifo[0]);
2485 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2486 cmd->handler(fdctrl, cmd->direction);
2488 break;
2490 case FD_PHASE_RESULT:
2491 default:
2492 abort();
2496 static void fdctrl_result_timer(void *opaque)
2498 FDCtrl *fdctrl = opaque;
2499 FDrive *cur_drv = get_cur_drv(fdctrl);
2501 /* Pretend we are spinning.
2502 * This is needed for Coherent, which uses READ ID to check for
2503 * sector interleaving.
2505 if (cur_drv->last_sect != 0) {
2506 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2508 /* READ_ID can't automatically succeed! */
2509 if (fdctrl->check_media_rate &&
2510 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2511 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2512 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2513 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2514 } else {
2515 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2519 /* Init functions */
2520 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2521 Error **errp)
2523 unsigned int i;
2524 FDrive *drive;
2525 DeviceState *dev;
2526 BlockBackend *blk;
2527 Error *local_err = NULL;
2529 for (i = 0; i < MAX_FD; i++) {
2530 drive = &fdctrl->drives[i];
2531 drive->fdctrl = fdctrl;
2533 /* If the drive is not present, we skip creating the qdev device, but
2534 * still have to initialise the controller. */
2535 blk = fdctrl->qdev_for_drives[i].blk;
2536 if (!blk) {
2537 fd_init(drive);
2538 fd_revalidate(drive);
2539 continue;
2542 dev = qdev_create(&fdctrl->bus.bus, "floppy");
2543 qdev_prop_set_uint32(dev, "unit", i);
2544 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2546 blk_ref(blk);
2547 blk_detach_dev(blk, fdc_dev);
2548 fdctrl->qdev_for_drives[i].blk = NULL;
2549 qdev_prop_set_drive(dev, "drive", blk, &local_err);
2550 blk_unref(blk);
2552 if (local_err) {
2553 error_propagate(errp, local_err);
2554 return;
2557 object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2558 if (local_err) {
2559 error_propagate(errp, local_err);
2560 return;
2565 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2567 DeviceState *dev;
2568 ISADevice *isadev;
2570 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2571 if (!isadev) {
2572 return NULL;
2574 dev = DEVICE(isadev);
2576 if (fds[0]) {
2577 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2578 &error_fatal);
2580 if (fds[1]) {
2581 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2582 &error_fatal);
2584 qdev_init_nofail(dev);
2586 return isadev;
2589 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2590 hwaddr mmio_base, DriveInfo **fds)
2592 FDCtrl *fdctrl;
2593 DeviceState *dev;
2594 SysBusDevice *sbd;
2595 FDCtrlSysBus *sys;
2597 dev = qdev_create(NULL, "sysbus-fdc");
2598 sys = SYSBUS_FDC(dev);
2599 fdctrl = &sys->state;
2600 fdctrl->dma_chann = dma_chann; /* FIXME */
2601 if (fds[0]) {
2602 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2603 &error_fatal);
2605 if (fds[1]) {
2606 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2607 &error_fatal);
2609 qdev_init_nofail(dev);
2610 sbd = SYS_BUS_DEVICE(dev);
2611 sysbus_connect_irq(sbd, 0, irq);
2612 sysbus_mmio_map(sbd, 0, mmio_base);
2615 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2616 DriveInfo **fds, qemu_irq *fdc_tc)
2618 DeviceState *dev;
2619 FDCtrlSysBus *sys;
2621 dev = qdev_create(NULL, "SUNW,fdtwo");
2622 if (fds[0]) {
2623 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2624 &error_fatal);
2626 qdev_init_nofail(dev);
2627 sys = SYSBUS_FDC(dev);
2628 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2629 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2630 *fdc_tc = qdev_get_gpio_in(dev, 0);
2633 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2634 Error **errp)
2636 int i, j;
2637 static int command_tables_inited = 0;
2639 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2640 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2643 /* Fill 'command_to_handler' lookup table */
2644 if (!command_tables_inited) {
2645 command_tables_inited = 1;
2646 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2647 for (j = 0; j < sizeof(command_to_handler); j++) {
2648 if ((j & handlers[i].mask) == handlers[i].value) {
2649 command_to_handler[j] = i;
2655 FLOPPY_DPRINTF("init controller\n");
2656 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2657 fdctrl->fifo_size = 512;
2658 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2659 fdctrl_result_timer, fdctrl);
2661 fdctrl->version = 0x90; /* Intel 82078 controller */
2662 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2663 fdctrl->num_floppies = MAX_FD;
2665 if (fdctrl->dma_chann != -1) {
2666 IsaDmaClass *k;
2667 assert(fdctrl->dma);
2668 k = ISADMA_GET_CLASS(fdctrl->dma);
2669 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2670 &fdctrl_transfer_handler, fdctrl);
2673 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2674 fdctrl_connect_drives(fdctrl, dev, errp);
2677 static const MemoryRegionPortio fdc_portio_list[] = {
2678 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2679 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2680 PORTIO_END_OF_LIST(),
2683 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2685 ISADevice *isadev = ISA_DEVICE(dev);
2686 FDCtrlISABus *isa = ISA_FDC(dev);
2687 FDCtrl *fdctrl = &isa->state;
2688 Error *err = NULL;
2690 isa_register_portio_list(isadev, &fdctrl->portio_list,
2691 isa->iobase, fdc_portio_list, fdctrl,
2692 "fdc");
2694 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2695 fdctrl->dma_chann = isa->dma;
2696 if (fdctrl->dma_chann != -1) {
2697 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2698 if (!fdctrl->dma) {
2699 error_setg(errp, "ISA controller does not support DMA");
2700 return;
2704 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2705 fdctrl_realize_common(dev, fdctrl, &err);
2706 if (err != NULL) {
2707 error_propagate(errp, err);
2708 return;
2712 static void sysbus_fdc_initfn(Object *obj)
2714 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2715 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2716 FDCtrl *fdctrl = &sys->state;
2718 fdctrl->dma_chann = -1;
2720 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2721 "fdc", 0x08);
2722 sysbus_init_mmio(sbd, &fdctrl->iomem);
2725 static void sun4m_fdc_initfn(Object *obj)
2727 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2728 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2729 FDCtrl *fdctrl = &sys->state;
2731 fdctrl->dma_chann = -1;
2733 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2734 fdctrl, "fdctrl", 0x08);
2735 sysbus_init_mmio(sbd, &fdctrl->iomem);
2738 static void sysbus_fdc_common_initfn(Object *obj)
2740 DeviceState *dev = DEVICE(obj);
2741 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2742 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2743 FDCtrl *fdctrl = &sys->state;
2745 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2747 sysbus_init_irq(sbd, &fdctrl->irq);
2748 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2751 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2753 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2754 FDCtrl *fdctrl = &sys->state;
2756 fdctrl_realize_common(dev, fdctrl, errp);
2759 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2761 FDCtrlISABus *isa = ISA_FDC(fdc);
2763 return isa->state.drives[i].drive;
2766 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2767 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2769 const FDFormat *fdf;
2771 *maxc = *maxh = *maxs = 0;
2772 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2773 if (fdf->drive != type) {
2774 continue;
2776 if (*maxc < fdf->max_track) {
2777 *maxc = fdf->max_track;
2779 if (*maxh < fdf->max_head) {
2780 *maxh = fdf->max_head;
2782 if (*maxs < fdf->last_sect) {
2783 *maxs = fdf->last_sect;
2786 (*maxc)--;
2789 static const VMStateDescription vmstate_isa_fdc ={
2790 .name = "fdc",
2791 .version_id = 2,
2792 .minimum_version_id = 2,
2793 .fields = (VMStateField[]) {
2794 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2795 VMSTATE_END_OF_LIST()
2799 static Property isa_fdc_properties[] = {
2800 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2801 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2802 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2803 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2804 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2805 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2806 0, true),
2807 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2808 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2809 FloppyDriveType),
2810 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2811 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2812 FloppyDriveType),
2813 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2814 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2815 FloppyDriveType),
2816 DEFINE_PROP_END_OF_LIST(),
2819 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2821 DeviceClass *dc = DEVICE_CLASS(klass);
2823 dc->realize = isabus_fdc_realize;
2824 dc->fw_name = "fdc";
2825 dc->reset = fdctrl_external_reset_isa;
2826 dc->vmsd = &vmstate_isa_fdc;
2827 dc->props = isa_fdc_properties;
2828 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2831 static void isabus_fdc_instance_init(Object *obj)
2833 FDCtrlISABus *isa = ISA_FDC(obj);
2835 device_add_bootindex_property(obj, &isa->bootindexA,
2836 "bootindexA", "/floppy@0",
2837 DEVICE(obj), NULL);
2838 device_add_bootindex_property(obj, &isa->bootindexB,
2839 "bootindexB", "/floppy@1",
2840 DEVICE(obj), NULL);
2843 static const TypeInfo isa_fdc_info = {
2844 .name = TYPE_ISA_FDC,
2845 .parent = TYPE_ISA_DEVICE,
2846 .instance_size = sizeof(FDCtrlISABus),
2847 .class_init = isabus_fdc_class_init,
2848 .instance_init = isabus_fdc_instance_init,
2851 static const VMStateDescription vmstate_sysbus_fdc ={
2852 .name = "fdc",
2853 .version_id = 2,
2854 .minimum_version_id = 2,
2855 .fields = (VMStateField[]) {
2856 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2857 VMSTATE_END_OF_LIST()
2861 static Property sysbus_fdc_properties[] = {
2862 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2863 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2864 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2865 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2866 FloppyDriveType),
2867 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2868 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2869 FloppyDriveType),
2870 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2871 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2872 FloppyDriveType),
2873 DEFINE_PROP_END_OF_LIST(),
2876 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2878 DeviceClass *dc = DEVICE_CLASS(klass);
2880 dc->props = sysbus_fdc_properties;
2881 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2884 static const TypeInfo sysbus_fdc_info = {
2885 .name = "sysbus-fdc",
2886 .parent = TYPE_SYSBUS_FDC,
2887 .instance_init = sysbus_fdc_initfn,
2888 .class_init = sysbus_fdc_class_init,
2891 static Property sun4m_fdc_properties[] = {
2892 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2893 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2894 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2895 FloppyDriveType),
2896 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2897 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2898 FloppyDriveType),
2899 DEFINE_PROP_END_OF_LIST(),
2902 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2904 DeviceClass *dc = DEVICE_CLASS(klass);
2906 dc->props = sun4m_fdc_properties;
2907 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2910 static const TypeInfo sun4m_fdc_info = {
2911 .name = "SUNW,fdtwo",
2912 .parent = TYPE_SYSBUS_FDC,
2913 .instance_init = sun4m_fdc_initfn,
2914 .class_init = sun4m_fdc_class_init,
2917 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2919 DeviceClass *dc = DEVICE_CLASS(klass);
2921 dc->realize = sysbus_fdc_common_realize;
2922 dc->reset = fdctrl_external_reset_sysbus;
2923 dc->vmsd = &vmstate_sysbus_fdc;
2926 static const TypeInfo sysbus_fdc_type_info = {
2927 .name = TYPE_SYSBUS_FDC,
2928 .parent = TYPE_SYS_BUS_DEVICE,
2929 .instance_size = sizeof(FDCtrlSysBus),
2930 .instance_init = sysbus_fdc_common_initfn,
2931 .abstract = true,
2932 .class_init = sysbus_fdc_common_class_init,
2935 static void fdc_register_types(void)
2937 type_register_static(&isa_fdc_info);
2938 type_register_static(&sysbus_fdc_type_info);
2939 type_register_static(&sysbus_fdc_info);
2940 type_register_static(&sun4m_fdc_info);
2941 type_register_static(&floppy_bus_info);
2942 type_register_static(&floppy_drive_info);
2945 type_init(fdc_register_types)