hw/pci: Have safer pcie_bus_realize() by checking error path
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob84c943fcdb2167a990c7f6d752c9dc76b94e5c6d
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
50 #include "hw/boards.h"
52 /* This check must be after config-host.h is included */
53 #ifdef CONFIG_EVENTFD
54 #include <sys/eventfd.h>
55 #endif
57 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
58 * need to use the real host PAGE_SIZE, as that's what KVM will use.
60 #ifdef PAGE_SIZE
61 #undef PAGE_SIZE
62 #endif
63 #define PAGE_SIZE qemu_real_host_page_size
65 //#define DEBUG_KVM
67 #ifdef DEBUG_KVM
68 #define DPRINTF(fmt, ...) \
69 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
70 #else
71 #define DPRINTF(fmt, ...) \
72 do { } while (0)
73 #endif
75 #define KVM_MSI_HASHTAB_SIZE 256
77 struct KVMParkedVcpu {
78 unsigned long vcpu_id;
79 int kvm_fd;
80 QLIST_ENTRY(KVMParkedVcpu) node;
83 struct KVMState
85 AccelState parent_obj;
87 int nr_slots;
88 int fd;
89 int vmfd;
90 int coalesced_mmio;
91 int coalesced_pio;
92 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
93 bool coalesced_flush_in_progress;
94 int vcpu_events;
95 int robust_singlestep;
96 int debugregs;
97 #ifdef KVM_CAP_SET_GUEST_DEBUG
98 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
99 #endif
100 int max_nested_state_len;
101 int many_ioeventfds;
102 int intx_set_mask;
103 int kvm_shadow_mem;
104 bool kernel_irqchip_allowed;
105 bool kernel_irqchip_required;
106 OnOffAuto kernel_irqchip_split;
107 bool sync_mmu;
108 uint64_t manual_dirty_log_protect;
109 /* The man page (and posix) say ioctl numbers are signed int, but
110 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
111 * unsigned, and treating them as signed here can break things */
112 unsigned irq_set_ioctl;
113 unsigned int sigmask_len;
114 GHashTable *gsimap;
115 #ifdef KVM_CAP_IRQ_ROUTING
116 struct kvm_irq_routing *irq_routes;
117 int nr_allocated_irq_routes;
118 unsigned long *used_gsi_bitmap;
119 unsigned int gsi_count;
120 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
121 #endif
122 KVMMemoryListener memory_listener;
123 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
125 /* For "info mtree -f" to tell if an MR is registered in KVM */
126 int nr_as;
127 struct KVMAs {
128 KVMMemoryListener *ml;
129 AddressSpace *as;
130 } *as;
133 KVMState *kvm_state;
134 bool kvm_kernel_irqchip;
135 bool kvm_split_irqchip;
136 bool kvm_async_interrupts_allowed;
137 bool kvm_halt_in_kernel_allowed;
138 bool kvm_eventfds_allowed;
139 bool kvm_irqfds_allowed;
140 bool kvm_resamplefds_allowed;
141 bool kvm_msi_via_irqfd_allowed;
142 bool kvm_gsi_routing_allowed;
143 bool kvm_gsi_direct_mapping;
144 bool kvm_allowed;
145 bool kvm_readonly_mem_allowed;
146 bool kvm_vm_attributes_allowed;
147 bool kvm_direct_msi_allowed;
148 bool kvm_ioeventfd_any_length_allowed;
149 bool kvm_msi_use_devid;
150 static bool kvm_immediate_exit;
151 static hwaddr kvm_max_slot_size = ~0;
153 static const KVMCapabilityInfo kvm_required_capabilites[] = {
154 KVM_CAP_INFO(USER_MEMORY),
155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
157 KVM_CAP_LAST_INFO
160 static NotifierList kvm_irqchip_change_notifiers =
161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
163 struct KVMResampleFd {
164 int gsi;
165 EventNotifier *resample_event;
166 QLIST_ENTRY(KVMResampleFd) node;
168 typedef struct KVMResampleFd KVMResampleFd;
171 * Only used with split irqchip where we need to do the resample fd
172 * kick for the kernel from userspace.
174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
180 static inline void kvm_resample_fd_remove(int gsi)
182 KVMResampleFd *rfd;
184 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
185 if (rfd->gsi == gsi) {
186 QLIST_REMOVE(rfd, node);
187 g_free(rfd);
188 break;
193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
195 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
197 rfd->gsi = gsi;
198 rfd->resample_event = event;
200 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
203 void kvm_resample_fd_notify(int gsi)
205 KVMResampleFd *rfd;
207 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
208 if (rfd->gsi == gsi) {
209 event_notifier_set(rfd->resample_event);
210 trace_kvm_resample_fd_notify(gsi);
211 return;
216 int kvm_get_max_memslots(void)
218 KVMState *s = KVM_STATE(current_accel());
220 return s->nr_slots;
223 /* Called with KVMMemoryListener.slots_lock held */
224 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
226 KVMState *s = kvm_state;
227 int i;
229 for (i = 0; i < s->nr_slots; i++) {
230 if (kml->slots[i].memory_size == 0) {
231 return &kml->slots[i];
235 return NULL;
238 bool kvm_has_free_slot(MachineState *ms)
240 KVMState *s = KVM_STATE(ms->accelerator);
241 bool result;
242 KVMMemoryListener *kml = &s->memory_listener;
244 kvm_slots_lock(kml);
245 result = !!kvm_get_free_slot(kml);
246 kvm_slots_unlock(kml);
248 return result;
251 /* Called with KVMMemoryListener.slots_lock held */
252 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
254 KVMSlot *slot = kvm_get_free_slot(kml);
256 if (slot) {
257 return slot;
260 fprintf(stderr, "%s: no free slot available\n", __func__);
261 abort();
264 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
265 hwaddr start_addr,
266 hwaddr size)
268 KVMState *s = kvm_state;
269 int i;
271 for (i = 0; i < s->nr_slots; i++) {
272 KVMSlot *mem = &kml->slots[i];
274 if (start_addr == mem->start_addr && size == mem->memory_size) {
275 return mem;
279 return NULL;
283 * Calculate and align the start address and the size of the section.
284 * Return the size. If the size is 0, the aligned section is empty.
286 static hwaddr kvm_align_section(MemoryRegionSection *section,
287 hwaddr *start)
289 hwaddr size = int128_get64(section->size);
290 hwaddr delta, aligned;
292 /* kvm works in page size chunks, but the function may be called
293 with sub-page size and unaligned start address. Pad the start
294 address to next and truncate size to previous page boundary. */
295 aligned = ROUND_UP(section->offset_within_address_space,
296 qemu_real_host_page_size);
297 delta = aligned - section->offset_within_address_space;
298 *start = aligned;
299 if (delta > size) {
300 return 0;
303 return (size - delta) & qemu_real_host_page_mask;
306 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
307 hwaddr *phys_addr)
309 KVMMemoryListener *kml = &s->memory_listener;
310 int i, ret = 0;
312 kvm_slots_lock(kml);
313 for (i = 0; i < s->nr_slots; i++) {
314 KVMSlot *mem = &kml->slots[i];
316 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
317 *phys_addr = mem->start_addr + (ram - mem->ram);
318 ret = 1;
319 break;
322 kvm_slots_unlock(kml);
324 return ret;
327 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
329 KVMState *s = kvm_state;
330 struct kvm_userspace_memory_region mem;
331 int ret;
333 mem.slot = slot->slot | (kml->as_id << 16);
334 mem.guest_phys_addr = slot->start_addr;
335 mem.userspace_addr = (unsigned long)slot->ram;
336 mem.flags = slot->flags;
338 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
339 /* Set the slot size to 0 before setting the slot to the desired
340 * value. This is needed based on KVM commit 75d61fbc. */
341 mem.memory_size = 0;
342 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
343 if (ret < 0) {
344 goto err;
347 mem.memory_size = slot->memory_size;
348 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
349 slot->old_flags = mem.flags;
350 err:
351 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
352 mem.memory_size, mem.userspace_addr, ret);
353 if (ret < 0) {
354 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
355 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
356 __func__, mem.slot, slot->start_addr,
357 (uint64_t)mem.memory_size, strerror(errno));
359 return ret;
362 static int do_kvm_destroy_vcpu(CPUState *cpu)
364 KVMState *s = kvm_state;
365 long mmap_size;
366 struct KVMParkedVcpu *vcpu = NULL;
367 int ret = 0;
369 DPRINTF("kvm_destroy_vcpu\n");
371 ret = kvm_arch_destroy_vcpu(cpu);
372 if (ret < 0) {
373 goto err;
376 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
377 if (mmap_size < 0) {
378 ret = mmap_size;
379 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
380 goto err;
383 ret = munmap(cpu->kvm_run, mmap_size);
384 if (ret < 0) {
385 goto err;
388 vcpu = g_malloc0(sizeof(*vcpu));
389 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
390 vcpu->kvm_fd = cpu->kvm_fd;
391 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
392 err:
393 return ret;
396 void kvm_destroy_vcpu(CPUState *cpu)
398 if (do_kvm_destroy_vcpu(cpu) < 0) {
399 error_report("kvm_destroy_vcpu failed");
400 exit(EXIT_FAILURE);
404 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
406 struct KVMParkedVcpu *cpu;
408 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
409 if (cpu->vcpu_id == vcpu_id) {
410 int kvm_fd;
412 QLIST_REMOVE(cpu, node);
413 kvm_fd = cpu->kvm_fd;
414 g_free(cpu);
415 return kvm_fd;
419 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
422 int kvm_init_vcpu(CPUState *cpu, Error **errp)
424 KVMState *s = kvm_state;
425 long mmap_size;
426 int ret;
428 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
430 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
431 if (ret < 0) {
432 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
433 kvm_arch_vcpu_id(cpu));
434 goto err;
437 cpu->kvm_fd = ret;
438 cpu->kvm_state = s;
439 cpu->vcpu_dirty = true;
441 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
442 if (mmap_size < 0) {
443 ret = mmap_size;
444 error_setg_errno(errp, -mmap_size,
445 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
446 goto err;
449 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
450 cpu->kvm_fd, 0);
451 if (cpu->kvm_run == MAP_FAILED) {
452 ret = -errno;
453 error_setg_errno(errp, ret,
454 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
455 kvm_arch_vcpu_id(cpu));
456 goto err;
459 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
460 s->coalesced_mmio_ring =
461 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
464 ret = kvm_arch_init_vcpu(cpu);
465 if (ret < 0) {
466 error_setg_errno(errp, -ret,
467 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
468 kvm_arch_vcpu_id(cpu));
470 err:
471 return ret;
475 * dirty pages logging control
478 static int kvm_mem_flags(MemoryRegion *mr)
480 bool readonly = mr->readonly || memory_region_is_romd(mr);
481 int flags = 0;
483 if (memory_region_get_dirty_log_mask(mr) != 0) {
484 flags |= KVM_MEM_LOG_DIRTY_PAGES;
486 if (readonly && kvm_readonly_mem_allowed) {
487 flags |= KVM_MEM_READONLY;
489 return flags;
492 /* Called with KVMMemoryListener.slots_lock held */
493 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
494 MemoryRegion *mr)
496 mem->flags = kvm_mem_flags(mr);
498 /* If nothing changed effectively, no need to issue ioctl */
499 if (mem->flags == mem->old_flags) {
500 return 0;
503 return kvm_set_user_memory_region(kml, mem, false);
506 static int kvm_section_update_flags(KVMMemoryListener *kml,
507 MemoryRegionSection *section)
509 hwaddr start_addr, size, slot_size;
510 KVMSlot *mem;
511 int ret = 0;
513 size = kvm_align_section(section, &start_addr);
514 if (!size) {
515 return 0;
518 kvm_slots_lock(kml);
520 while (size && !ret) {
521 slot_size = MIN(kvm_max_slot_size, size);
522 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
523 if (!mem) {
524 /* We don't have a slot if we want to trap every access. */
525 goto out;
528 ret = kvm_slot_update_flags(kml, mem, section->mr);
529 start_addr += slot_size;
530 size -= slot_size;
533 out:
534 kvm_slots_unlock(kml);
535 return ret;
538 static void kvm_log_start(MemoryListener *listener,
539 MemoryRegionSection *section,
540 int old, int new)
542 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
543 int r;
545 if (old != 0) {
546 return;
549 r = kvm_section_update_flags(kml, section);
550 if (r < 0) {
551 abort();
555 static void kvm_log_stop(MemoryListener *listener,
556 MemoryRegionSection *section,
557 int old, int new)
559 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
560 int r;
562 if (new != 0) {
563 return;
566 r = kvm_section_update_flags(kml, section);
567 if (r < 0) {
568 abort();
572 /* get kvm's dirty pages bitmap and update qemu's */
573 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
574 unsigned long *bitmap)
576 ram_addr_t start = section->offset_within_region +
577 memory_region_get_ram_addr(section->mr);
578 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
580 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
581 return 0;
584 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
586 /* Allocate the dirty bitmap for a slot */
587 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
590 * XXX bad kernel interface alert
591 * For dirty bitmap, kernel allocates array of size aligned to
592 * bits-per-long. But for case when the kernel is 64bits and
593 * the userspace is 32bits, userspace can't align to the same
594 * bits-per-long, since sizeof(long) is different between kernel
595 * and user space. This way, userspace will provide buffer which
596 * may be 4 bytes less than the kernel will use, resulting in
597 * userspace memory corruption (which is not detectable by valgrind
598 * too, in most cases).
599 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
600 * a hope that sizeof(long) won't become >8 any time soon.
602 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
603 /*HOST_LONG_BITS*/ 64) / 8;
604 mem->dirty_bmap = g_malloc0(bitmap_size);
608 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
610 * This function will first try to fetch dirty bitmap from the kernel,
611 * and then updates qemu's dirty bitmap.
613 * NOTE: caller must be with kml->slots_lock held.
615 * @kml: the KVM memory listener object
616 * @section: the memory section to sync the dirty bitmap with
618 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
619 MemoryRegionSection *section)
621 KVMState *s = kvm_state;
622 struct kvm_dirty_log d = {};
623 KVMSlot *mem;
624 hwaddr start_addr, size;
625 hwaddr slot_size, slot_offset = 0;
626 int ret = 0;
628 size = kvm_align_section(section, &start_addr);
629 while (size) {
630 MemoryRegionSection subsection = *section;
632 slot_size = MIN(kvm_max_slot_size, size);
633 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
634 if (!mem) {
635 /* We don't have a slot if we want to trap every access. */
636 goto out;
639 if (!mem->dirty_bmap) {
640 /* Allocate on the first log_sync, once and for all */
641 kvm_memslot_init_dirty_bitmap(mem);
644 d.dirty_bitmap = mem->dirty_bmap;
645 d.slot = mem->slot | (kml->as_id << 16);
646 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
647 if (ret == -ENOENT) {
648 /* kernel does not have dirty bitmap in this slot */
649 ret = 0;
650 } else if (ret < 0) {
651 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
652 goto out;
653 } else {
654 subsection.offset_within_region += slot_offset;
655 subsection.size = int128_make64(slot_size);
656 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
659 slot_offset += slot_size;
660 start_addr += slot_size;
661 size -= slot_size;
663 out:
664 return ret;
667 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
668 #define KVM_CLEAR_LOG_SHIFT 6
669 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
670 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
672 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
673 uint64_t size)
675 KVMState *s = kvm_state;
676 uint64_t end, bmap_start, start_delta, bmap_npages;
677 struct kvm_clear_dirty_log d;
678 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
679 int ret;
682 * We need to extend either the start or the size or both to
683 * satisfy the KVM interface requirement. Firstly, do the start
684 * page alignment on 64 host pages
686 bmap_start = start & KVM_CLEAR_LOG_MASK;
687 start_delta = start - bmap_start;
688 bmap_start /= psize;
691 * The kernel interface has restriction on the size too, that either:
693 * (1) the size is 64 host pages aligned (just like the start), or
694 * (2) the size fills up until the end of the KVM memslot.
696 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
697 << KVM_CLEAR_LOG_SHIFT;
698 end = mem->memory_size / psize;
699 if (bmap_npages > end - bmap_start) {
700 bmap_npages = end - bmap_start;
702 start_delta /= psize;
705 * Prepare the bitmap to clear dirty bits. Here we must guarantee
706 * that we won't clear any unknown dirty bits otherwise we might
707 * accidentally clear some set bits which are not yet synced from
708 * the kernel into QEMU's bitmap, then we'll lose track of the
709 * guest modifications upon those pages (which can directly lead
710 * to guest data loss or panic after migration).
712 * Layout of the KVMSlot.dirty_bmap:
714 * |<-------- bmap_npages -----------..>|
715 * [1]
716 * start_delta size
717 * |----------------|-------------|------------------|------------|
718 * ^ ^ ^ ^
719 * | | | |
720 * start bmap_start (start) end
721 * of memslot of memslot
723 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
726 assert(bmap_start % BITS_PER_LONG == 0);
727 /* We should never do log_clear before log_sync */
728 assert(mem->dirty_bmap);
729 if (start_delta || bmap_npages - size / psize) {
730 /* Slow path - we need to manipulate a temp bitmap */
731 bmap_clear = bitmap_new(bmap_npages);
732 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
733 bmap_start, start_delta + size / psize);
735 * We need to fill the holes at start because that was not
736 * specified by the caller and we extended the bitmap only for
737 * 64 pages alignment
739 bitmap_clear(bmap_clear, 0, start_delta);
740 d.dirty_bitmap = bmap_clear;
741 } else {
743 * Fast path - both start and size align well with BITS_PER_LONG
744 * (or the end of memory slot)
746 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
749 d.first_page = bmap_start;
750 /* It should never overflow. If it happens, say something */
751 assert(bmap_npages <= UINT32_MAX);
752 d.num_pages = bmap_npages;
753 d.slot = mem->slot | (as_id << 16);
755 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
756 if (ret < 0 && ret != -ENOENT) {
757 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
758 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
759 __func__, d.slot, (uint64_t)d.first_page,
760 (uint32_t)d.num_pages, ret);
761 } else {
762 ret = 0;
763 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
767 * After we have updated the remote dirty bitmap, we update the
768 * cached bitmap as well for the memslot, then if another user
769 * clears the same region we know we shouldn't clear it again on
770 * the remote otherwise it's data loss as well.
772 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
773 size / psize);
774 /* This handles the NULL case well */
775 g_free(bmap_clear);
776 return ret;
781 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
783 * NOTE: this will be a no-op if we haven't enabled manual dirty log
784 * protection in the host kernel because in that case this operation
785 * will be done within log_sync().
787 * @kml: the kvm memory listener
788 * @section: the memory range to clear dirty bitmap
790 static int kvm_physical_log_clear(KVMMemoryListener *kml,
791 MemoryRegionSection *section)
793 KVMState *s = kvm_state;
794 uint64_t start, size, offset, count;
795 KVMSlot *mem;
796 int ret = 0, i;
798 if (!s->manual_dirty_log_protect) {
799 /* No need to do explicit clear */
800 return ret;
803 start = section->offset_within_address_space;
804 size = int128_get64(section->size);
806 if (!size) {
807 /* Nothing more we can do... */
808 return ret;
811 kvm_slots_lock(kml);
813 for (i = 0; i < s->nr_slots; i++) {
814 mem = &kml->slots[i];
815 /* Discard slots that are empty or do not overlap the section */
816 if (!mem->memory_size ||
817 mem->start_addr > start + size - 1 ||
818 start > mem->start_addr + mem->memory_size - 1) {
819 continue;
822 if (start >= mem->start_addr) {
823 /* The slot starts before section or is aligned to it. */
824 offset = start - mem->start_addr;
825 count = MIN(mem->memory_size - offset, size);
826 } else {
827 /* The slot starts after section. */
828 offset = 0;
829 count = MIN(mem->memory_size, size - (mem->start_addr - start));
831 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
832 if (ret < 0) {
833 break;
837 kvm_slots_unlock(kml);
839 return ret;
842 static void kvm_coalesce_mmio_region(MemoryListener *listener,
843 MemoryRegionSection *secion,
844 hwaddr start, hwaddr size)
846 KVMState *s = kvm_state;
848 if (s->coalesced_mmio) {
849 struct kvm_coalesced_mmio_zone zone;
851 zone.addr = start;
852 zone.size = size;
853 zone.pad = 0;
855 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
859 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
860 MemoryRegionSection *secion,
861 hwaddr start, hwaddr size)
863 KVMState *s = kvm_state;
865 if (s->coalesced_mmio) {
866 struct kvm_coalesced_mmio_zone zone;
868 zone.addr = start;
869 zone.size = size;
870 zone.pad = 0;
872 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
876 static void kvm_coalesce_pio_add(MemoryListener *listener,
877 MemoryRegionSection *section,
878 hwaddr start, hwaddr size)
880 KVMState *s = kvm_state;
882 if (s->coalesced_pio) {
883 struct kvm_coalesced_mmio_zone zone;
885 zone.addr = start;
886 zone.size = size;
887 zone.pio = 1;
889 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
893 static void kvm_coalesce_pio_del(MemoryListener *listener,
894 MemoryRegionSection *section,
895 hwaddr start, hwaddr size)
897 KVMState *s = kvm_state;
899 if (s->coalesced_pio) {
900 struct kvm_coalesced_mmio_zone zone;
902 zone.addr = start;
903 zone.size = size;
904 zone.pio = 1;
906 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
910 static MemoryListener kvm_coalesced_pio_listener = {
911 .coalesced_io_add = kvm_coalesce_pio_add,
912 .coalesced_io_del = kvm_coalesce_pio_del,
915 int kvm_check_extension(KVMState *s, unsigned int extension)
917 int ret;
919 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
920 if (ret < 0) {
921 ret = 0;
924 return ret;
927 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
929 int ret;
931 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
932 if (ret < 0) {
933 /* VM wide version not implemented, use global one instead */
934 ret = kvm_check_extension(s, extension);
937 return ret;
940 typedef struct HWPoisonPage {
941 ram_addr_t ram_addr;
942 QLIST_ENTRY(HWPoisonPage) list;
943 } HWPoisonPage;
945 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
946 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
948 static void kvm_unpoison_all(void *param)
950 HWPoisonPage *page, *next_page;
952 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
953 QLIST_REMOVE(page, list);
954 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
955 g_free(page);
959 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
961 HWPoisonPage *page;
963 QLIST_FOREACH(page, &hwpoison_page_list, list) {
964 if (page->ram_addr == ram_addr) {
965 return;
968 page = g_new(HWPoisonPage, 1);
969 page->ram_addr = ram_addr;
970 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
973 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
975 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
976 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
977 * endianness, but the memory core hands them in target endianness.
978 * For example, PPC is always treated as big-endian even if running
979 * on KVM and on PPC64LE. Correct here.
981 switch (size) {
982 case 2:
983 val = bswap16(val);
984 break;
985 case 4:
986 val = bswap32(val);
987 break;
989 #endif
990 return val;
993 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
994 bool assign, uint32_t size, bool datamatch)
996 int ret;
997 struct kvm_ioeventfd iofd = {
998 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
999 .addr = addr,
1000 .len = size,
1001 .flags = 0,
1002 .fd = fd,
1005 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1006 datamatch);
1007 if (!kvm_enabled()) {
1008 return -ENOSYS;
1011 if (datamatch) {
1012 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1014 if (!assign) {
1015 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1018 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1020 if (ret < 0) {
1021 return -errno;
1024 return 0;
1027 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1028 bool assign, uint32_t size, bool datamatch)
1030 struct kvm_ioeventfd kick = {
1031 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1032 .addr = addr,
1033 .flags = KVM_IOEVENTFD_FLAG_PIO,
1034 .len = size,
1035 .fd = fd,
1037 int r;
1038 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1039 if (!kvm_enabled()) {
1040 return -ENOSYS;
1042 if (datamatch) {
1043 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1045 if (!assign) {
1046 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1048 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1049 if (r < 0) {
1050 return r;
1052 return 0;
1056 static int kvm_check_many_ioeventfds(void)
1058 /* Userspace can use ioeventfd for io notification. This requires a host
1059 * that supports eventfd(2) and an I/O thread; since eventfd does not
1060 * support SIGIO it cannot interrupt the vcpu.
1062 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1063 * can avoid creating too many ioeventfds.
1065 #if defined(CONFIG_EVENTFD)
1066 int ioeventfds[7];
1067 int i, ret = 0;
1068 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1069 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1070 if (ioeventfds[i] < 0) {
1071 break;
1073 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1074 if (ret < 0) {
1075 close(ioeventfds[i]);
1076 break;
1080 /* Decide whether many devices are supported or not */
1081 ret = i == ARRAY_SIZE(ioeventfds);
1083 while (i-- > 0) {
1084 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1085 close(ioeventfds[i]);
1087 return ret;
1088 #else
1089 return 0;
1090 #endif
1093 static const KVMCapabilityInfo *
1094 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1096 while (list->name) {
1097 if (!kvm_check_extension(s, list->value)) {
1098 return list;
1100 list++;
1102 return NULL;
1105 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1107 g_assert(
1108 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1110 kvm_max_slot_size = max_slot_size;
1113 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1114 MemoryRegionSection *section, bool add)
1116 KVMSlot *mem;
1117 int err;
1118 MemoryRegion *mr = section->mr;
1119 bool writeable = !mr->readonly && !mr->rom_device;
1120 hwaddr start_addr, size, slot_size;
1121 void *ram;
1123 if (!memory_region_is_ram(mr)) {
1124 if (writeable || !kvm_readonly_mem_allowed) {
1125 return;
1126 } else if (!mr->romd_mode) {
1127 /* If the memory device is not in romd_mode, then we actually want
1128 * to remove the kvm memory slot so all accesses will trap. */
1129 add = false;
1133 size = kvm_align_section(section, &start_addr);
1134 if (!size) {
1135 return;
1138 /* use aligned delta to align the ram address */
1139 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1140 (start_addr - section->offset_within_address_space);
1142 kvm_slots_lock(kml);
1144 if (!add) {
1145 do {
1146 slot_size = MIN(kvm_max_slot_size, size);
1147 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1148 if (!mem) {
1149 goto out;
1151 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1152 kvm_physical_sync_dirty_bitmap(kml, section);
1155 /* unregister the slot */
1156 g_free(mem->dirty_bmap);
1157 mem->dirty_bmap = NULL;
1158 mem->memory_size = 0;
1159 mem->flags = 0;
1160 err = kvm_set_user_memory_region(kml, mem, false);
1161 if (err) {
1162 fprintf(stderr, "%s: error unregistering slot: %s\n",
1163 __func__, strerror(-err));
1164 abort();
1166 start_addr += slot_size;
1167 size -= slot_size;
1168 } while (size);
1169 goto out;
1172 /* register the new slot */
1173 do {
1174 slot_size = MIN(kvm_max_slot_size, size);
1175 mem = kvm_alloc_slot(kml);
1176 mem->memory_size = slot_size;
1177 mem->start_addr = start_addr;
1178 mem->ram = ram;
1179 mem->flags = kvm_mem_flags(mr);
1181 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1183 * Reallocate the bmap; it means it doesn't disappear in
1184 * middle of a migrate.
1186 kvm_memslot_init_dirty_bitmap(mem);
1188 err = kvm_set_user_memory_region(kml, mem, true);
1189 if (err) {
1190 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1191 strerror(-err));
1192 abort();
1194 start_addr += slot_size;
1195 ram += slot_size;
1196 size -= slot_size;
1197 } while (size);
1199 out:
1200 kvm_slots_unlock(kml);
1203 static void kvm_region_add(MemoryListener *listener,
1204 MemoryRegionSection *section)
1206 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1208 memory_region_ref(section->mr);
1209 kvm_set_phys_mem(kml, section, true);
1212 static void kvm_region_del(MemoryListener *listener,
1213 MemoryRegionSection *section)
1215 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1217 kvm_set_phys_mem(kml, section, false);
1218 memory_region_unref(section->mr);
1221 static void kvm_log_sync(MemoryListener *listener,
1222 MemoryRegionSection *section)
1224 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1225 int r;
1227 kvm_slots_lock(kml);
1228 r = kvm_physical_sync_dirty_bitmap(kml, section);
1229 kvm_slots_unlock(kml);
1230 if (r < 0) {
1231 abort();
1235 static void kvm_log_clear(MemoryListener *listener,
1236 MemoryRegionSection *section)
1238 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1239 int r;
1241 r = kvm_physical_log_clear(kml, section);
1242 if (r < 0) {
1243 error_report_once("%s: kvm log clear failed: mr=%s "
1244 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1245 section->mr->name, section->offset_within_region,
1246 int128_get64(section->size));
1247 abort();
1251 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1252 MemoryRegionSection *section,
1253 bool match_data, uint64_t data,
1254 EventNotifier *e)
1256 int fd = event_notifier_get_fd(e);
1257 int r;
1259 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1260 data, true, int128_get64(section->size),
1261 match_data);
1262 if (r < 0) {
1263 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1264 __func__, strerror(-r), -r);
1265 abort();
1269 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1270 MemoryRegionSection *section,
1271 bool match_data, uint64_t data,
1272 EventNotifier *e)
1274 int fd = event_notifier_get_fd(e);
1275 int r;
1277 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1278 data, false, int128_get64(section->size),
1279 match_data);
1280 if (r < 0) {
1281 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1282 __func__, strerror(-r), -r);
1283 abort();
1287 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1288 MemoryRegionSection *section,
1289 bool match_data, uint64_t data,
1290 EventNotifier *e)
1292 int fd = event_notifier_get_fd(e);
1293 int r;
1295 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1296 data, true, int128_get64(section->size),
1297 match_data);
1298 if (r < 0) {
1299 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1300 __func__, strerror(-r), -r);
1301 abort();
1305 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1306 MemoryRegionSection *section,
1307 bool match_data, uint64_t data,
1308 EventNotifier *e)
1311 int fd = event_notifier_get_fd(e);
1312 int r;
1314 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1315 data, false, int128_get64(section->size),
1316 match_data);
1317 if (r < 0) {
1318 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1319 __func__, strerror(-r), -r);
1320 abort();
1324 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1325 AddressSpace *as, int as_id)
1327 int i;
1329 qemu_mutex_init(&kml->slots_lock);
1330 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1331 kml->as_id = as_id;
1333 for (i = 0; i < s->nr_slots; i++) {
1334 kml->slots[i].slot = i;
1337 kml->listener.region_add = kvm_region_add;
1338 kml->listener.region_del = kvm_region_del;
1339 kml->listener.log_start = kvm_log_start;
1340 kml->listener.log_stop = kvm_log_stop;
1341 kml->listener.log_sync = kvm_log_sync;
1342 kml->listener.log_clear = kvm_log_clear;
1343 kml->listener.priority = 10;
1345 memory_listener_register(&kml->listener, as);
1347 for (i = 0; i < s->nr_as; ++i) {
1348 if (!s->as[i].as) {
1349 s->as[i].as = as;
1350 s->as[i].ml = kml;
1351 break;
1356 static MemoryListener kvm_io_listener = {
1357 .eventfd_add = kvm_io_ioeventfd_add,
1358 .eventfd_del = kvm_io_ioeventfd_del,
1359 .priority = 10,
1362 int kvm_set_irq(KVMState *s, int irq, int level)
1364 struct kvm_irq_level event;
1365 int ret;
1367 assert(kvm_async_interrupts_enabled());
1369 event.level = level;
1370 event.irq = irq;
1371 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1372 if (ret < 0) {
1373 perror("kvm_set_irq");
1374 abort();
1377 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1380 #ifdef KVM_CAP_IRQ_ROUTING
1381 typedef struct KVMMSIRoute {
1382 struct kvm_irq_routing_entry kroute;
1383 QTAILQ_ENTRY(KVMMSIRoute) entry;
1384 } KVMMSIRoute;
1386 static void set_gsi(KVMState *s, unsigned int gsi)
1388 set_bit(gsi, s->used_gsi_bitmap);
1391 static void clear_gsi(KVMState *s, unsigned int gsi)
1393 clear_bit(gsi, s->used_gsi_bitmap);
1396 void kvm_init_irq_routing(KVMState *s)
1398 int gsi_count, i;
1400 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1401 if (gsi_count > 0) {
1402 /* Round up so we can search ints using ffs */
1403 s->used_gsi_bitmap = bitmap_new(gsi_count);
1404 s->gsi_count = gsi_count;
1407 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1408 s->nr_allocated_irq_routes = 0;
1410 if (!kvm_direct_msi_allowed) {
1411 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1412 QTAILQ_INIT(&s->msi_hashtab[i]);
1416 kvm_arch_init_irq_routing(s);
1419 void kvm_irqchip_commit_routes(KVMState *s)
1421 int ret;
1423 if (kvm_gsi_direct_mapping()) {
1424 return;
1427 if (!kvm_gsi_routing_enabled()) {
1428 return;
1431 s->irq_routes->flags = 0;
1432 trace_kvm_irqchip_commit_routes();
1433 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1434 assert(ret == 0);
1437 static void kvm_add_routing_entry(KVMState *s,
1438 struct kvm_irq_routing_entry *entry)
1440 struct kvm_irq_routing_entry *new;
1441 int n, size;
1443 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1444 n = s->nr_allocated_irq_routes * 2;
1445 if (n < 64) {
1446 n = 64;
1448 size = sizeof(struct kvm_irq_routing);
1449 size += n * sizeof(*new);
1450 s->irq_routes = g_realloc(s->irq_routes, size);
1451 s->nr_allocated_irq_routes = n;
1453 n = s->irq_routes->nr++;
1454 new = &s->irq_routes->entries[n];
1456 *new = *entry;
1458 set_gsi(s, entry->gsi);
1461 static int kvm_update_routing_entry(KVMState *s,
1462 struct kvm_irq_routing_entry *new_entry)
1464 struct kvm_irq_routing_entry *entry;
1465 int n;
1467 for (n = 0; n < s->irq_routes->nr; n++) {
1468 entry = &s->irq_routes->entries[n];
1469 if (entry->gsi != new_entry->gsi) {
1470 continue;
1473 if(!memcmp(entry, new_entry, sizeof *entry)) {
1474 return 0;
1477 *entry = *new_entry;
1479 return 0;
1482 return -ESRCH;
1485 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1487 struct kvm_irq_routing_entry e = {};
1489 assert(pin < s->gsi_count);
1491 e.gsi = irq;
1492 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1493 e.flags = 0;
1494 e.u.irqchip.irqchip = irqchip;
1495 e.u.irqchip.pin = pin;
1496 kvm_add_routing_entry(s, &e);
1499 void kvm_irqchip_release_virq(KVMState *s, int virq)
1501 struct kvm_irq_routing_entry *e;
1502 int i;
1504 if (kvm_gsi_direct_mapping()) {
1505 return;
1508 for (i = 0; i < s->irq_routes->nr; i++) {
1509 e = &s->irq_routes->entries[i];
1510 if (e->gsi == virq) {
1511 s->irq_routes->nr--;
1512 *e = s->irq_routes->entries[s->irq_routes->nr];
1515 clear_gsi(s, virq);
1516 kvm_arch_release_virq_post(virq);
1517 trace_kvm_irqchip_release_virq(virq);
1520 void kvm_irqchip_add_change_notifier(Notifier *n)
1522 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1525 void kvm_irqchip_remove_change_notifier(Notifier *n)
1527 notifier_remove(n);
1530 void kvm_irqchip_change_notify(void)
1532 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1535 static unsigned int kvm_hash_msi(uint32_t data)
1537 /* This is optimized for IA32 MSI layout. However, no other arch shall
1538 * repeat the mistake of not providing a direct MSI injection API. */
1539 return data & 0xff;
1542 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1544 KVMMSIRoute *route, *next;
1545 unsigned int hash;
1547 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1548 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1549 kvm_irqchip_release_virq(s, route->kroute.gsi);
1550 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1551 g_free(route);
1556 static int kvm_irqchip_get_virq(KVMState *s)
1558 int next_virq;
1561 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1562 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1563 * number can succeed even though a new route entry cannot be added.
1564 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1566 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1567 kvm_flush_dynamic_msi_routes(s);
1570 /* Return the lowest unused GSI in the bitmap */
1571 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1572 if (next_virq >= s->gsi_count) {
1573 return -ENOSPC;
1574 } else {
1575 return next_virq;
1579 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1581 unsigned int hash = kvm_hash_msi(msg.data);
1582 KVMMSIRoute *route;
1584 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1585 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1586 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1587 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1588 return route;
1591 return NULL;
1594 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1596 struct kvm_msi msi;
1597 KVMMSIRoute *route;
1599 if (kvm_direct_msi_allowed) {
1600 msi.address_lo = (uint32_t)msg.address;
1601 msi.address_hi = msg.address >> 32;
1602 msi.data = le32_to_cpu(msg.data);
1603 msi.flags = 0;
1604 memset(msi.pad, 0, sizeof(msi.pad));
1606 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1609 route = kvm_lookup_msi_route(s, msg);
1610 if (!route) {
1611 int virq;
1613 virq = kvm_irqchip_get_virq(s);
1614 if (virq < 0) {
1615 return virq;
1618 route = g_malloc0(sizeof(KVMMSIRoute));
1619 route->kroute.gsi = virq;
1620 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1621 route->kroute.flags = 0;
1622 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1623 route->kroute.u.msi.address_hi = msg.address >> 32;
1624 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1626 kvm_add_routing_entry(s, &route->kroute);
1627 kvm_irqchip_commit_routes(s);
1629 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1630 entry);
1633 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1635 return kvm_set_irq(s, route->kroute.gsi, 1);
1638 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1640 struct kvm_irq_routing_entry kroute = {};
1641 int virq;
1642 MSIMessage msg = {0, 0};
1644 if (pci_available && dev) {
1645 msg = pci_get_msi_message(dev, vector);
1648 if (kvm_gsi_direct_mapping()) {
1649 return kvm_arch_msi_data_to_gsi(msg.data);
1652 if (!kvm_gsi_routing_enabled()) {
1653 return -ENOSYS;
1656 virq = kvm_irqchip_get_virq(s);
1657 if (virq < 0) {
1658 return virq;
1661 kroute.gsi = virq;
1662 kroute.type = KVM_IRQ_ROUTING_MSI;
1663 kroute.flags = 0;
1664 kroute.u.msi.address_lo = (uint32_t)msg.address;
1665 kroute.u.msi.address_hi = msg.address >> 32;
1666 kroute.u.msi.data = le32_to_cpu(msg.data);
1667 if (pci_available && kvm_msi_devid_required()) {
1668 kroute.flags = KVM_MSI_VALID_DEVID;
1669 kroute.u.msi.devid = pci_requester_id(dev);
1671 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1672 kvm_irqchip_release_virq(s, virq);
1673 return -EINVAL;
1676 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1677 vector, virq);
1679 kvm_add_routing_entry(s, &kroute);
1680 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1681 kvm_irqchip_commit_routes(s);
1683 return virq;
1686 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1687 PCIDevice *dev)
1689 struct kvm_irq_routing_entry kroute = {};
1691 if (kvm_gsi_direct_mapping()) {
1692 return 0;
1695 if (!kvm_irqchip_in_kernel()) {
1696 return -ENOSYS;
1699 kroute.gsi = virq;
1700 kroute.type = KVM_IRQ_ROUTING_MSI;
1701 kroute.flags = 0;
1702 kroute.u.msi.address_lo = (uint32_t)msg.address;
1703 kroute.u.msi.address_hi = msg.address >> 32;
1704 kroute.u.msi.data = le32_to_cpu(msg.data);
1705 if (pci_available && kvm_msi_devid_required()) {
1706 kroute.flags = KVM_MSI_VALID_DEVID;
1707 kroute.u.msi.devid = pci_requester_id(dev);
1709 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1710 return -EINVAL;
1713 trace_kvm_irqchip_update_msi_route(virq);
1715 return kvm_update_routing_entry(s, &kroute);
1718 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1719 EventNotifier *resample, int virq,
1720 bool assign)
1722 int fd = event_notifier_get_fd(event);
1723 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1725 struct kvm_irqfd irqfd = {
1726 .fd = fd,
1727 .gsi = virq,
1728 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1731 if (rfd != -1) {
1732 assert(assign);
1733 if (kvm_irqchip_is_split()) {
1735 * When the slow irqchip (e.g. IOAPIC) is in the
1736 * userspace, KVM kernel resamplefd will not work because
1737 * the EOI of the interrupt will be delivered to userspace
1738 * instead, so the KVM kernel resamplefd kick will be
1739 * skipped. The userspace here mimics what the kernel
1740 * provides with resamplefd, remember the resamplefd and
1741 * kick it when we receive EOI of this IRQ.
1743 * This is hackery because IOAPIC is mostly bypassed
1744 * (except EOI broadcasts) when irqfd is used. However
1745 * this can bring much performance back for split irqchip
1746 * with INTx IRQs (for VFIO, this gives 93% perf of the
1747 * full fast path, which is 46% perf boost comparing to
1748 * the INTx slow path).
1750 kvm_resample_fd_insert(virq, resample);
1751 } else {
1752 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1753 irqfd.resamplefd = rfd;
1755 } else if (!assign) {
1756 if (kvm_irqchip_is_split()) {
1757 kvm_resample_fd_remove(virq);
1761 if (!kvm_irqfds_enabled()) {
1762 return -ENOSYS;
1765 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1768 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1770 struct kvm_irq_routing_entry kroute = {};
1771 int virq;
1773 if (!kvm_gsi_routing_enabled()) {
1774 return -ENOSYS;
1777 virq = kvm_irqchip_get_virq(s);
1778 if (virq < 0) {
1779 return virq;
1782 kroute.gsi = virq;
1783 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1784 kroute.flags = 0;
1785 kroute.u.adapter.summary_addr = adapter->summary_addr;
1786 kroute.u.adapter.ind_addr = adapter->ind_addr;
1787 kroute.u.adapter.summary_offset = adapter->summary_offset;
1788 kroute.u.adapter.ind_offset = adapter->ind_offset;
1789 kroute.u.adapter.adapter_id = adapter->adapter_id;
1791 kvm_add_routing_entry(s, &kroute);
1793 return virq;
1796 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1798 struct kvm_irq_routing_entry kroute = {};
1799 int virq;
1801 if (!kvm_gsi_routing_enabled()) {
1802 return -ENOSYS;
1804 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1805 return -ENOSYS;
1807 virq = kvm_irqchip_get_virq(s);
1808 if (virq < 0) {
1809 return virq;
1812 kroute.gsi = virq;
1813 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1814 kroute.flags = 0;
1815 kroute.u.hv_sint.vcpu = vcpu;
1816 kroute.u.hv_sint.sint = sint;
1818 kvm_add_routing_entry(s, &kroute);
1819 kvm_irqchip_commit_routes(s);
1821 return virq;
1824 #else /* !KVM_CAP_IRQ_ROUTING */
1826 void kvm_init_irq_routing(KVMState *s)
1830 void kvm_irqchip_release_virq(KVMState *s, int virq)
1834 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1836 abort();
1839 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1841 return -ENOSYS;
1844 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1846 return -ENOSYS;
1849 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1851 return -ENOSYS;
1854 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1855 EventNotifier *resample, int virq,
1856 bool assign)
1858 abort();
1861 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1863 return -ENOSYS;
1865 #endif /* !KVM_CAP_IRQ_ROUTING */
1867 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1868 EventNotifier *rn, int virq)
1870 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1873 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1874 int virq)
1876 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1879 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1880 EventNotifier *rn, qemu_irq irq)
1882 gpointer key, gsi;
1883 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1885 if (!found) {
1886 return -ENXIO;
1888 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1891 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1892 qemu_irq irq)
1894 gpointer key, gsi;
1895 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1897 if (!found) {
1898 return -ENXIO;
1900 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1903 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1905 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1908 static void kvm_irqchip_create(KVMState *s)
1910 int ret;
1912 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1913 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1915 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1916 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1917 if (ret < 0) {
1918 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1919 exit(1);
1921 } else {
1922 return;
1925 /* First probe and see if there's a arch-specific hook to create the
1926 * in-kernel irqchip for us */
1927 ret = kvm_arch_irqchip_create(s);
1928 if (ret == 0) {
1929 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1930 perror("Split IRQ chip mode not supported.");
1931 exit(1);
1932 } else {
1933 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1936 if (ret < 0) {
1937 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1938 exit(1);
1941 kvm_kernel_irqchip = true;
1942 /* If we have an in-kernel IRQ chip then we must have asynchronous
1943 * interrupt delivery (though the reverse is not necessarily true)
1945 kvm_async_interrupts_allowed = true;
1946 kvm_halt_in_kernel_allowed = true;
1948 kvm_init_irq_routing(s);
1950 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1953 /* Find number of supported CPUs using the recommended
1954 * procedure from the kernel API documentation to cope with
1955 * older kernels that may be missing capabilities.
1957 static int kvm_recommended_vcpus(KVMState *s)
1959 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1960 return (ret) ? ret : 4;
1963 static int kvm_max_vcpus(KVMState *s)
1965 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1966 return (ret) ? ret : kvm_recommended_vcpus(s);
1969 static int kvm_max_vcpu_id(KVMState *s)
1971 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1972 return (ret) ? ret : kvm_max_vcpus(s);
1975 bool kvm_vcpu_id_is_valid(int vcpu_id)
1977 KVMState *s = KVM_STATE(current_accel());
1978 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1981 static int kvm_init(MachineState *ms)
1983 MachineClass *mc = MACHINE_GET_CLASS(ms);
1984 static const char upgrade_note[] =
1985 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1986 "(see http://sourceforge.net/projects/kvm).\n";
1987 struct {
1988 const char *name;
1989 int num;
1990 } num_cpus[] = {
1991 { "SMP", ms->smp.cpus },
1992 { "hotpluggable", ms->smp.max_cpus },
1993 { NULL, }
1994 }, *nc = num_cpus;
1995 int soft_vcpus_limit, hard_vcpus_limit;
1996 KVMState *s;
1997 const KVMCapabilityInfo *missing_cap;
1998 int ret;
1999 int type = 0;
2000 uint64_t dirty_log_manual_caps;
2002 s = KVM_STATE(ms->accelerator);
2005 * On systems where the kernel can support different base page
2006 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2007 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2008 * page size for the system though.
2010 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2012 s->sigmask_len = 8;
2014 #ifdef KVM_CAP_SET_GUEST_DEBUG
2015 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2016 #endif
2017 QLIST_INIT(&s->kvm_parked_vcpus);
2018 s->vmfd = -1;
2019 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2020 if (s->fd == -1) {
2021 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2022 ret = -errno;
2023 goto err;
2026 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2027 if (ret < KVM_API_VERSION) {
2028 if (ret >= 0) {
2029 ret = -EINVAL;
2031 fprintf(stderr, "kvm version too old\n");
2032 goto err;
2035 if (ret > KVM_API_VERSION) {
2036 ret = -EINVAL;
2037 fprintf(stderr, "kvm version not supported\n");
2038 goto err;
2041 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2042 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2044 /* If unspecified, use the default value */
2045 if (!s->nr_slots) {
2046 s->nr_slots = 32;
2049 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2050 if (s->nr_as <= 1) {
2051 s->nr_as = 1;
2053 s->as = g_new0(struct KVMAs, s->nr_as);
2055 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2056 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2057 "kvm-type",
2058 &error_abort);
2059 type = mc->kvm_type(ms, kvm_type);
2062 do {
2063 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2064 } while (ret == -EINTR);
2066 if (ret < 0) {
2067 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2068 strerror(-ret));
2070 #ifdef TARGET_S390X
2071 if (ret == -EINVAL) {
2072 fprintf(stderr,
2073 "Host kernel setup problem detected. Please verify:\n");
2074 fprintf(stderr, "- for kernels supporting the switch_amode or"
2075 " user_mode parameters, whether\n");
2076 fprintf(stderr,
2077 " user space is running in primary address space\n");
2078 fprintf(stderr,
2079 "- for kernels supporting the vm.allocate_pgste sysctl, "
2080 "whether it is enabled\n");
2082 #endif
2083 goto err;
2086 s->vmfd = ret;
2088 /* check the vcpu limits */
2089 soft_vcpus_limit = kvm_recommended_vcpus(s);
2090 hard_vcpus_limit = kvm_max_vcpus(s);
2092 while (nc->name) {
2093 if (nc->num > soft_vcpus_limit) {
2094 warn_report("Number of %s cpus requested (%d) exceeds "
2095 "the recommended cpus supported by KVM (%d)",
2096 nc->name, nc->num, soft_vcpus_limit);
2098 if (nc->num > hard_vcpus_limit) {
2099 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2100 "the maximum cpus supported by KVM (%d)\n",
2101 nc->name, nc->num, hard_vcpus_limit);
2102 exit(1);
2105 nc++;
2108 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2109 if (!missing_cap) {
2110 missing_cap =
2111 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2113 if (missing_cap) {
2114 ret = -EINVAL;
2115 fprintf(stderr, "kvm does not support %s\n%s",
2116 missing_cap->name, upgrade_note);
2117 goto err;
2120 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2121 s->coalesced_pio = s->coalesced_mmio &&
2122 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2124 dirty_log_manual_caps =
2125 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2126 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2127 KVM_DIRTY_LOG_INITIALLY_SET);
2128 s->manual_dirty_log_protect = dirty_log_manual_caps;
2129 if (dirty_log_manual_caps) {
2130 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2131 dirty_log_manual_caps);
2132 if (ret) {
2133 warn_report("Trying to enable capability %"PRIu64" of "
2134 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2135 "Falling back to the legacy mode. ",
2136 dirty_log_manual_caps);
2137 s->manual_dirty_log_protect = 0;
2141 #ifdef KVM_CAP_VCPU_EVENTS
2142 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2143 #endif
2145 s->robust_singlestep =
2146 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2148 #ifdef KVM_CAP_DEBUGREGS
2149 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2150 #endif
2152 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2154 #ifdef KVM_CAP_IRQ_ROUTING
2155 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2156 #endif
2158 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2160 s->irq_set_ioctl = KVM_IRQ_LINE;
2161 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2162 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2165 kvm_readonly_mem_allowed =
2166 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2168 kvm_eventfds_allowed =
2169 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2171 kvm_irqfds_allowed =
2172 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2174 kvm_resamplefds_allowed =
2175 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2177 kvm_vm_attributes_allowed =
2178 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2180 kvm_ioeventfd_any_length_allowed =
2181 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2183 kvm_state = s;
2185 ret = kvm_arch_init(ms, s);
2186 if (ret < 0) {
2187 goto err;
2190 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2191 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2194 qemu_register_reset(kvm_unpoison_all, NULL);
2196 if (s->kernel_irqchip_allowed) {
2197 kvm_irqchip_create(s);
2200 if (kvm_eventfds_allowed) {
2201 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2202 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2204 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2205 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2207 kvm_memory_listener_register(s, &s->memory_listener,
2208 &address_space_memory, 0);
2209 if (kvm_eventfds_allowed) {
2210 memory_listener_register(&kvm_io_listener,
2211 &address_space_io);
2213 memory_listener_register(&kvm_coalesced_pio_listener,
2214 &address_space_io);
2216 s->many_ioeventfds = kvm_check_many_ioeventfds();
2218 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2219 if (!s->sync_mmu) {
2220 ret = ram_block_discard_disable(true);
2221 assert(!ret);
2223 return 0;
2225 err:
2226 assert(ret < 0);
2227 if (s->vmfd >= 0) {
2228 close(s->vmfd);
2230 if (s->fd != -1) {
2231 close(s->fd);
2233 g_free(s->memory_listener.slots);
2235 return ret;
2238 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2240 s->sigmask_len = sigmask_len;
2243 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2244 int size, uint32_t count)
2246 int i;
2247 uint8_t *ptr = data;
2249 for (i = 0; i < count; i++) {
2250 address_space_rw(&address_space_io, port, attrs,
2251 ptr, size,
2252 direction == KVM_EXIT_IO_OUT);
2253 ptr += size;
2257 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2259 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2260 run->internal.suberror);
2262 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2263 int i;
2265 for (i = 0; i < run->internal.ndata; ++i) {
2266 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2267 i, (uint64_t)run->internal.data[i]);
2270 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2271 fprintf(stderr, "emulation failure\n");
2272 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2273 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2274 return EXCP_INTERRUPT;
2277 /* FIXME: Should trigger a qmp message to let management know
2278 * something went wrong.
2280 return -1;
2283 void kvm_flush_coalesced_mmio_buffer(void)
2285 KVMState *s = kvm_state;
2287 if (s->coalesced_flush_in_progress) {
2288 return;
2291 s->coalesced_flush_in_progress = true;
2293 if (s->coalesced_mmio_ring) {
2294 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2295 while (ring->first != ring->last) {
2296 struct kvm_coalesced_mmio *ent;
2298 ent = &ring->coalesced_mmio[ring->first];
2300 if (ent->pio == 1) {
2301 address_space_write(&address_space_io, ent->phys_addr,
2302 MEMTXATTRS_UNSPECIFIED, ent->data,
2303 ent->len);
2304 } else {
2305 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2307 smp_wmb();
2308 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2312 s->coalesced_flush_in_progress = false;
2315 bool kvm_cpu_check_are_resettable(void)
2317 return kvm_arch_cpu_check_are_resettable();
2320 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2322 if (!cpu->vcpu_dirty) {
2323 kvm_arch_get_registers(cpu);
2324 cpu->vcpu_dirty = true;
2328 void kvm_cpu_synchronize_state(CPUState *cpu)
2330 if (!cpu->vcpu_dirty) {
2331 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2335 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2337 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2338 cpu->vcpu_dirty = false;
2341 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2343 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2346 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2348 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2349 cpu->vcpu_dirty = false;
2352 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2354 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2357 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2359 cpu->vcpu_dirty = true;
2362 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2364 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2367 #ifdef KVM_HAVE_MCE_INJECTION
2368 static __thread void *pending_sigbus_addr;
2369 static __thread int pending_sigbus_code;
2370 static __thread bool have_sigbus_pending;
2371 #endif
2373 static void kvm_cpu_kick(CPUState *cpu)
2375 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2378 static void kvm_cpu_kick_self(void)
2380 if (kvm_immediate_exit) {
2381 kvm_cpu_kick(current_cpu);
2382 } else {
2383 qemu_cpu_kick_self();
2387 static void kvm_eat_signals(CPUState *cpu)
2389 struct timespec ts = { 0, 0 };
2390 siginfo_t siginfo;
2391 sigset_t waitset;
2392 sigset_t chkset;
2393 int r;
2395 if (kvm_immediate_exit) {
2396 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2397 /* Write kvm_run->immediate_exit before the cpu->exit_request
2398 * write in kvm_cpu_exec.
2400 smp_wmb();
2401 return;
2404 sigemptyset(&waitset);
2405 sigaddset(&waitset, SIG_IPI);
2407 do {
2408 r = sigtimedwait(&waitset, &siginfo, &ts);
2409 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2410 perror("sigtimedwait");
2411 exit(1);
2414 r = sigpending(&chkset);
2415 if (r == -1) {
2416 perror("sigpending");
2417 exit(1);
2419 } while (sigismember(&chkset, SIG_IPI));
2422 int kvm_cpu_exec(CPUState *cpu)
2424 struct kvm_run *run = cpu->kvm_run;
2425 int ret, run_ret;
2427 DPRINTF("kvm_cpu_exec()\n");
2429 if (kvm_arch_process_async_events(cpu)) {
2430 qatomic_set(&cpu->exit_request, 0);
2431 return EXCP_HLT;
2434 qemu_mutex_unlock_iothread();
2435 cpu_exec_start(cpu);
2437 do {
2438 MemTxAttrs attrs;
2440 if (cpu->vcpu_dirty) {
2441 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2442 cpu->vcpu_dirty = false;
2445 kvm_arch_pre_run(cpu, run);
2446 if (qatomic_read(&cpu->exit_request)) {
2447 DPRINTF("interrupt exit requested\n");
2449 * KVM requires us to reenter the kernel after IO exits to complete
2450 * instruction emulation. This self-signal will ensure that we
2451 * leave ASAP again.
2453 kvm_cpu_kick_self();
2456 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2457 * Matching barrier in kvm_eat_signals.
2459 smp_rmb();
2461 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2463 attrs = kvm_arch_post_run(cpu, run);
2465 #ifdef KVM_HAVE_MCE_INJECTION
2466 if (unlikely(have_sigbus_pending)) {
2467 qemu_mutex_lock_iothread();
2468 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2469 pending_sigbus_addr);
2470 have_sigbus_pending = false;
2471 qemu_mutex_unlock_iothread();
2473 #endif
2475 if (run_ret < 0) {
2476 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2477 DPRINTF("io window exit\n");
2478 kvm_eat_signals(cpu);
2479 ret = EXCP_INTERRUPT;
2480 break;
2482 fprintf(stderr, "error: kvm run failed %s\n",
2483 strerror(-run_ret));
2484 #ifdef TARGET_PPC
2485 if (run_ret == -EBUSY) {
2486 fprintf(stderr,
2487 "This is probably because your SMT is enabled.\n"
2488 "VCPU can only run on primary threads with all "
2489 "secondary threads offline.\n");
2491 #endif
2492 ret = -1;
2493 break;
2496 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2497 switch (run->exit_reason) {
2498 case KVM_EXIT_IO:
2499 DPRINTF("handle_io\n");
2500 /* Called outside BQL */
2501 kvm_handle_io(run->io.port, attrs,
2502 (uint8_t *)run + run->io.data_offset,
2503 run->io.direction,
2504 run->io.size,
2505 run->io.count);
2506 ret = 0;
2507 break;
2508 case KVM_EXIT_MMIO:
2509 DPRINTF("handle_mmio\n");
2510 /* Called outside BQL */
2511 address_space_rw(&address_space_memory,
2512 run->mmio.phys_addr, attrs,
2513 run->mmio.data,
2514 run->mmio.len,
2515 run->mmio.is_write);
2516 ret = 0;
2517 break;
2518 case KVM_EXIT_IRQ_WINDOW_OPEN:
2519 DPRINTF("irq_window_open\n");
2520 ret = EXCP_INTERRUPT;
2521 break;
2522 case KVM_EXIT_SHUTDOWN:
2523 DPRINTF("shutdown\n");
2524 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2525 ret = EXCP_INTERRUPT;
2526 break;
2527 case KVM_EXIT_UNKNOWN:
2528 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2529 (uint64_t)run->hw.hardware_exit_reason);
2530 ret = -1;
2531 break;
2532 case KVM_EXIT_INTERNAL_ERROR:
2533 ret = kvm_handle_internal_error(cpu, run);
2534 break;
2535 case KVM_EXIT_SYSTEM_EVENT:
2536 switch (run->system_event.type) {
2537 case KVM_SYSTEM_EVENT_SHUTDOWN:
2538 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2539 ret = EXCP_INTERRUPT;
2540 break;
2541 case KVM_SYSTEM_EVENT_RESET:
2542 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2543 ret = EXCP_INTERRUPT;
2544 break;
2545 case KVM_SYSTEM_EVENT_CRASH:
2546 kvm_cpu_synchronize_state(cpu);
2547 qemu_mutex_lock_iothread();
2548 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2549 qemu_mutex_unlock_iothread();
2550 ret = 0;
2551 break;
2552 default:
2553 DPRINTF("kvm_arch_handle_exit\n");
2554 ret = kvm_arch_handle_exit(cpu, run);
2555 break;
2557 break;
2558 default:
2559 DPRINTF("kvm_arch_handle_exit\n");
2560 ret = kvm_arch_handle_exit(cpu, run);
2561 break;
2563 } while (ret == 0);
2565 cpu_exec_end(cpu);
2566 qemu_mutex_lock_iothread();
2568 if (ret < 0) {
2569 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2570 vm_stop(RUN_STATE_INTERNAL_ERROR);
2573 qatomic_set(&cpu->exit_request, 0);
2574 return ret;
2577 int kvm_ioctl(KVMState *s, int type, ...)
2579 int ret;
2580 void *arg;
2581 va_list ap;
2583 va_start(ap, type);
2584 arg = va_arg(ap, void *);
2585 va_end(ap);
2587 trace_kvm_ioctl(type, arg);
2588 ret = ioctl(s->fd, type, arg);
2589 if (ret == -1) {
2590 ret = -errno;
2592 return ret;
2595 int kvm_vm_ioctl(KVMState *s, int type, ...)
2597 int ret;
2598 void *arg;
2599 va_list ap;
2601 va_start(ap, type);
2602 arg = va_arg(ap, void *);
2603 va_end(ap);
2605 trace_kvm_vm_ioctl(type, arg);
2606 ret = ioctl(s->vmfd, type, arg);
2607 if (ret == -1) {
2608 ret = -errno;
2610 return ret;
2613 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2615 int ret;
2616 void *arg;
2617 va_list ap;
2619 va_start(ap, type);
2620 arg = va_arg(ap, void *);
2621 va_end(ap);
2623 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2624 ret = ioctl(cpu->kvm_fd, type, arg);
2625 if (ret == -1) {
2626 ret = -errno;
2628 return ret;
2631 int kvm_device_ioctl(int fd, int type, ...)
2633 int ret;
2634 void *arg;
2635 va_list ap;
2637 va_start(ap, type);
2638 arg = va_arg(ap, void *);
2639 va_end(ap);
2641 trace_kvm_device_ioctl(fd, type, arg);
2642 ret = ioctl(fd, type, arg);
2643 if (ret == -1) {
2644 ret = -errno;
2646 return ret;
2649 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2651 int ret;
2652 struct kvm_device_attr attribute = {
2653 .group = group,
2654 .attr = attr,
2657 if (!kvm_vm_attributes_allowed) {
2658 return 0;
2661 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2662 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2663 return ret ? 0 : 1;
2666 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2668 struct kvm_device_attr attribute = {
2669 .group = group,
2670 .attr = attr,
2671 .flags = 0,
2674 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2677 int kvm_device_access(int fd, int group, uint64_t attr,
2678 void *val, bool write, Error **errp)
2680 struct kvm_device_attr kvmattr;
2681 int err;
2683 kvmattr.flags = 0;
2684 kvmattr.group = group;
2685 kvmattr.attr = attr;
2686 kvmattr.addr = (uintptr_t)val;
2688 err = kvm_device_ioctl(fd,
2689 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2690 &kvmattr);
2691 if (err < 0) {
2692 error_setg_errno(errp, -err,
2693 "KVM_%s_DEVICE_ATTR failed: Group %d "
2694 "attr 0x%016" PRIx64,
2695 write ? "SET" : "GET", group, attr);
2697 return err;
2700 bool kvm_has_sync_mmu(void)
2702 return kvm_state->sync_mmu;
2705 int kvm_has_vcpu_events(void)
2707 return kvm_state->vcpu_events;
2710 int kvm_has_robust_singlestep(void)
2712 return kvm_state->robust_singlestep;
2715 int kvm_has_debugregs(void)
2717 return kvm_state->debugregs;
2720 int kvm_max_nested_state_length(void)
2722 return kvm_state->max_nested_state_len;
2725 int kvm_has_many_ioeventfds(void)
2727 if (!kvm_enabled()) {
2728 return 0;
2730 return kvm_state->many_ioeventfds;
2733 int kvm_has_gsi_routing(void)
2735 #ifdef KVM_CAP_IRQ_ROUTING
2736 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2737 #else
2738 return false;
2739 #endif
2742 int kvm_has_intx_set_mask(void)
2744 return kvm_state->intx_set_mask;
2747 bool kvm_arm_supports_user_irq(void)
2749 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2752 #ifdef KVM_CAP_SET_GUEST_DEBUG
2753 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2754 target_ulong pc)
2756 struct kvm_sw_breakpoint *bp;
2758 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2759 if (bp->pc == pc) {
2760 return bp;
2763 return NULL;
2766 int kvm_sw_breakpoints_active(CPUState *cpu)
2768 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2771 struct kvm_set_guest_debug_data {
2772 struct kvm_guest_debug dbg;
2773 int err;
2776 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2778 struct kvm_set_guest_debug_data *dbg_data =
2779 (struct kvm_set_guest_debug_data *) data.host_ptr;
2781 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2782 &dbg_data->dbg);
2785 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2787 struct kvm_set_guest_debug_data data;
2789 data.dbg.control = reinject_trap;
2791 if (cpu->singlestep_enabled) {
2792 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2794 kvm_arch_update_guest_debug(cpu, &data.dbg);
2796 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2797 RUN_ON_CPU_HOST_PTR(&data));
2798 return data.err;
2801 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2802 target_ulong len, int type)
2804 struct kvm_sw_breakpoint *bp;
2805 int err;
2807 if (type == GDB_BREAKPOINT_SW) {
2808 bp = kvm_find_sw_breakpoint(cpu, addr);
2809 if (bp) {
2810 bp->use_count++;
2811 return 0;
2814 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2815 bp->pc = addr;
2816 bp->use_count = 1;
2817 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2818 if (err) {
2819 g_free(bp);
2820 return err;
2823 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2824 } else {
2825 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2826 if (err) {
2827 return err;
2831 CPU_FOREACH(cpu) {
2832 err = kvm_update_guest_debug(cpu, 0);
2833 if (err) {
2834 return err;
2837 return 0;
2840 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2841 target_ulong len, int type)
2843 struct kvm_sw_breakpoint *bp;
2844 int err;
2846 if (type == GDB_BREAKPOINT_SW) {
2847 bp = kvm_find_sw_breakpoint(cpu, addr);
2848 if (!bp) {
2849 return -ENOENT;
2852 if (bp->use_count > 1) {
2853 bp->use_count--;
2854 return 0;
2857 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2858 if (err) {
2859 return err;
2862 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2863 g_free(bp);
2864 } else {
2865 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2866 if (err) {
2867 return err;
2871 CPU_FOREACH(cpu) {
2872 err = kvm_update_guest_debug(cpu, 0);
2873 if (err) {
2874 return err;
2877 return 0;
2880 void kvm_remove_all_breakpoints(CPUState *cpu)
2882 struct kvm_sw_breakpoint *bp, *next;
2883 KVMState *s = cpu->kvm_state;
2884 CPUState *tmpcpu;
2886 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2887 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2888 /* Try harder to find a CPU that currently sees the breakpoint. */
2889 CPU_FOREACH(tmpcpu) {
2890 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2891 break;
2895 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2896 g_free(bp);
2898 kvm_arch_remove_all_hw_breakpoints();
2900 CPU_FOREACH(cpu) {
2901 kvm_update_guest_debug(cpu, 0);
2905 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2907 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2909 return -EINVAL;
2912 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2913 target_ulong len, int type)
2915 return -EINVAL;
2918 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2919 target_ulong len, int type)
2921 return -EINVAL;
2924 void kvm_remove_all_breakpoints(CPUState *cpu)
2927 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2929 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2931 KVMState *s = kvm_state;
2932 struct kvm_signal_mask *sigmask;
2933 int r;
2935 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2937 sigmask->len = s->sigmask_len;
2938 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2939 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2940 g_free(sigmask);
2942 return r;
2945 static void kvm_ipi_signal(int sig)
2947 if (current_cpu) {
2948 assert(kvm_immediate_exit);
2949 kvm_cpu_kick(current_cpu);
2953 void kvm_init_cpu_signals(CPUState *cpu)
2955 int r;
2956 sigset_t set;
2957 struct sigaction sigact;
2959 memset(&sigact, 0, sizeof(sigact));
2960 sigact.sa_handler = kvm_ipi_signal;
2961 sigaction(SIG_IPI, &sigact, NULL);
2963 pthread_sigmask(SIG_BLOCK, NULL, &set);
2964 #if defined KVM_HAVE_MCE_INJECTION
2965 sigdelset(&set, SIGBUS);
2966 pthread_sigmask(SIG_SETMASK, &set, NULL);
2967 #endif
2968 sigdelset(&set, SIG_IPI);
2969 if (kvm_immediate_exit) {
2970 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2971 } else {
2972 r = kvm_set_signal_mask(cpu, &set);
2974 if (r) {
2975 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2976 exit(1);
2980 /* Called asynchronously in VCPU thread. */
2981 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2983 #ifdef KVM_HAVE_MCE_INJECTION
2984 if (have_sigbus_pending) {
2985 return 1;
2987 have_sigbus_pending = true;
2988 pending_sigbus_addr = addr;
2989 pending_sigbus_code = code;
2990 qatomic_set(&cpu->exit_request, 1);
2991 return 0;
2992 #else
2993 return 1;
2994 #endif
2997 /* Called synchronously (via signalfd) in main thread. */
2998 int kvm_on_sigbus(int code, void *addr)
3000 #ifdef KVM_HAVE_MCE_INJECTION
3001 /* Action required MCE kills the process if SIGBUS is blocked. Because
3002 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3003 * we can only get action optional here.
3005 assert(code != BUS_MCEERR_AR);
3006 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3007 return 0;
3008 #else
3009 return 1;
3010 #endif
3013 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3015 int ret;
3016 struct kvm_create_device create_dev;
3018 create_dev.type = type;
3019 create_dev.fd = -1;
3020 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3022 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3023 return -ENOTSUP;
3026 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3027 if (ret) {
3028 return ret;
3031 return test ? 0 : create_dev.fd;
3034 bool kvm_device_supported(int vmfd, uint64_t type)
3036 struct kvm_create_device create_dev = {
3037 .type = type,
3038 .fd = -1,
3039 .flags = KVM_CREATE_DEVICE_TEST,
3042 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3043 return false;
3046 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3049 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3051 struct kvm_one_reg reg;
3052 int r;
3054 reg.id = id;
3055 reg.addr = (uintptr_t) source;
3056 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3057 if (r) {
3058 trace_kvm_failed_reg_set(id, strerror(-r));
3060 return r;
3063 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3065 struct kvm_one_reg reg;
3066 int r;
3068 reg.id = id;
3069 reg.addr = (uintptr_t) target;
3070 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3071 if (r) {
3072 trace_kvm_failed_reg_get(id, strerror(-r));
3074 return r;
3077 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3078 hwaddr start_addr, hwaddr size)
3080 KVMState *kvm = KVM_STATE(ms->accelerator);
3081 int i;
3083 for (i = 0; i < kvm->nr_as; ++i) {
3084 if (kvm->as[i].as == as && kvm->as[i].ml) {
3085 size = MIN(kvm_max_slot_size, size);
3086 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3087 start_addr, size);
3091 return false;
3094 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3095 const char *name, void *opaque,
3096 Error **errp)
3098 KVMState *s = KVM_STATE(obj);
3099 int64_t value = s->kvm_shadow_mem;
3101 visit_type_int(v, name, &value, errp);
3104 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3105 const char *name, void *opaque,
3106 Error **errp)
3108 KVMState *s = KVM_STATE(obj);
3109 int64_t value;
3111 if (!visit_type_int(v, name, &value, errp)) {
3112 return;
3115 s->kvm_shadow_mem = value;
3118 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3119 const char *name, void *opaque,
3120 Error **errp)
3122 KVMState *s = KVM_STATE(obj);
3123 OnOffSplit mode;
3125 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3126 return;
3128 switch (mode) {
3129 case ON_OFF_SPLIT_ON:
3130 s->kernel_irqchip_allowed = true;
3131 s->kernel_irqchip_required = true;
3132 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3133 break;
3134 case ON_OFF_SPLIT_OFF:
3135 s->kernel_irqchip_allowed = false;
3136 s->kernel_irqchip_required = false;
3137 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3138 break;
3139 case ON_OFF_SPLIT_SPLIT:
3140 s->kernel_irqchip_allowed = true;
3141 s->kernel_irqchip_required = true;
3142 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3143 break;
3144 default:
3145 /* The value was checked in visit_type_OnOffSplit() above. If
3146 * we get here, then something is wrong in QEMU.
3148 abort();
3152 bool kvm_kernel_irqchip_allowed(void)
3154 return kvm_state->kernel_irqchip_allowed;
3157 bool kvm_kernel_irqchip_required(void)
3159 return kvm_state->kernel_irqchip_required;
3162 bool kvm_kernel_irqchip_split(void)
3164 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3167 static void kvm_accel_instance_init(Object *obj)
3169 KVMState *s = KVM_STATE(obj);
3171 s->kvm_shadow_mem = -1;
3172 s->kernel_irqchip_allowed = true;
3173 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3176 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3178 AccelClass *ac = ACCEL_CLASS(oc);
3179 ac->name = "KVM";
3180 ac->init_machine = kvm_init;
3181 ac->has_memory = kvm_accel_has_memory;
3182 ac->allowed = &kvm_allowed;
3184 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3185 NULL, kvm_set_kernel_irqchip,
3186 NULL, NULL);
3187 object_class_property_set_description(oc, "kernel-irqchip",
3188 "Configure KVM in-kernel irqchip");
3190 object_class_property_add(oc, "kvm-shadow-mem", "int",
3191 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3192 NULL, NULL);
3193 object_class_property_set_description(oc, "kvm-shadow-mem",
3194 "KVM shadow MMU size");
3197 static const TypeInfo kvm_accel_type = {
3198 .name = TYPE_KVM_ACCEL,
3199 .parent = TYPE_ACCEL,
3200 .instance_init = kvm_accel_instance_init,
3201 .class_init = kvm_accel_class_init,
3202 .instance_size = sizeof(KVMState),
3205 static void kvm_type_init(void)
3207 type_register_static(&kvm_accel_type);
3210 type_init(kvm_type_init);