block: prefer aio_poll to qemu_aio_wait
[qemu/ar7.git] / target-arm / helper.c
blobd3438560e6eff6966bb3a948941fed533467f2bc
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, int is_user,
17 hwaddr *phys_ptr, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
21 #define PMCRD 0x8
22 #define PMCRC 0x4
23 #define PMCRE 0x1
24 #endif
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 int nregs;
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 return 0;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 int nregs;
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
75 return 0;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 if (cpreg_field_is_64bit(ri)) {
123 return CPREG_FIELD64(env, ri);
124 } else {
125 return CPREG_FIELD32(env, ri);
129 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
130 uint64_t value)
132 if (cpreg_field_is_64bit(ri)) {
133 CPREG_FIELD64(env, ri) = value;
134 } else {
135 CPREG_FIELD32(env, ri) = value;
139 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri->type & ARM_CP_CONST) {
143 return ri->resetvalue;
144 } else if (ri->raw_readfn) {
145 return ri->raw_readfn(env, ri);
146 } else if (ri->readfn) {
147 return ri->readfn(env, ri);
148 } else {
149 return raw_read(env, ri);
153 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
154 uint64_t v)
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
159 * value written.
161 if (ri->type & ARM_CP_CONST) {
162 return;
163 } else if (ri->raw_writefn) {
164 ri->raw_writefn(env, ri, v);
165 } else if (ri->writefn) {
166 ri->writefn(env, ri, v);
167 } else {
168 raw_write(env, ri, v);
172 bool write_cpustate_to_list(ARMCPU *cpu)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
175 int i;
176 bool ok = true;
178 for (i = 0; i < cpu->cpreg_array_len; i++) {
179 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
180 const ARMCPRegInfo *ri;
182 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
183 if (!ri) {
184 ok = false;
185 continue;
187 if (ri->type & ARM_CP_NO_MIGRATE) {
188 continue;
190 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
192 return ok;
195 bool write_list_to_cpustate(ARMCPU *cpu)
197 int i;
198 bool ok = true;
200 for (i = 0; i < cpu->cpreg_array_len; i++) {
201 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
202 uint64_t v = cpu->cpreg_values[i];
203 const ARMCPRegInfo *ri;
205 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
206 if (!ri) {
207 ok = false;
208 continue;
210 if (ri->type & ARM_CP_NO_MIGRATE) {
211 continue;
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu->env, ri, v);
218 if (read_raw_cp_reg(&cpu->env, ri) != v) {
219 ok = false;
222 return ok;
225 static void add_cpreg_to_list(gpointer key, gpointer opaque)
227 ARMCPU *cpu = opaque;
228 uint64_t regidx;
229 const ARMCPRegInfo *ri;
231 regidx = *(uint32_t *)key;
232 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
235 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
236 /* The value array need not be initialized at this point */
237 cpu->cpreg_array_len++;
241 static void count_cpreg(gpointer key, gpointer opaque)
243 ARMCPU *cpu = opaque;
244 uint64_t regidx;
245 const ARMCPRegInfo *ri;
247 regidx = *(uint32_t *)key;
248 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
250 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
251 cpu->cpreg_array_len++;
255 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
257 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
258 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
260 if (aidx > bidx) {
261 return 1;
263 if (aidx < bidx) {
264 return -1;
266 return 0;
269 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
271 GList **plist = udata;
273 *plist = g_list_prepend(*plist, key);
276 void init_cpreg_list(ARMCPU *cpu)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
281 GList *keys = NULL;
282 int arraylen;
284 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
286 keys = g_list_sort(keys, cpreg_key_compare);
288 cpu->cpreg_array_len = 0;
290 g_list_foreach(keys, count_cpreg, cpu);
292 arraylen = cpu->cpreg_array_len;
293 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
294 cpu->cpreg_values = g_new(uint64_t, arraylen);
295 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
296 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
297 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
298 cpu->cpreg_array_len = 0;
300 g_list_foreach(keys, add_cpreg_to_list, cpu);
302 assert(cpu->cpreg_array_len == arraylen);
304 g_list_free(keys);
307 /* Return true if extended addresses are enabled.
308 * This is always the case if our translation regime is 64 bit,
309 * but depends on TTBCR.EAE for 32 bit.
311 static inline bool extended_addresses_enabled(CPUARMState *env)
313 return arm_el_is_aa64(env, 1)
314 || ((arm_feature(env, ARM_FEATURE_LPAE)
315 && (env->cp15.c2_control & TTBCR_EAE)));
318 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
320 ARMCPU *cpu = arm_env_get_cpu(env);
322 raw_write(env, ri, value);
323 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
326 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
328 ARMCPU *cpu = arm_env_get_cpu(env);
330 if (raw_read(env, ri) != value) {
331 /* Unlike real hardware the qemu TLB uses virtual addresses,
332 * not modified virtual addresses, so this causes a TLB flush.
334 tlb_flush(CPU(cpu), 1);
335 raw_write(env, ri, value);
339 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
340 uint64_t value)
342 ARMCPU *cpu = arm_env_get_cpu(env);
344 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
345 && !extended_addresses_enabled(env)) {
346 /* For VMSA (when not using the LPAE long descriptor page table
347 * format) this register includes the ASID, so do a TLB flush.
348 * For PMSA it is purely a process ID and no action is needed.
350 tlb_flush(CPU(cpu), 1);
352 raw_write(env, ri, value);
355 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
356 uint64_t value)
358 /* Invalidate all (TLBIALL) */
359 ARMCPU *cpu = arm_env_get_cpu(env);
361 tlb_flush(CPU(cpu), 1);
364 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
365 uint64_t value)
367 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 ARMCPU *cpu = arm_env_get_cpu(env);
370 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
373 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
374 uint64_t value)
376 /* Invalidate by ASID (TLBIASID) */
377 ARMCPU *cpu = arm_env_get_cpu(env);
379 tlb_flush(CPU(cpu), value == 0);
382 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
383 uint64_t value)
385 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 ARMCPU *cpu = arm_env_get_cpu(env);
388 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
391 static const ARMCPRegInfo cp_reginfo[] = {
392 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
393 * version" bits will read as a reserved value, which should cause
394 * Linux to not try to use the debug hardware.
396 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
398 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
400 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
401 { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH,
402 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
403 .access = PL1_RW,
404 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1),
405 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
406 REGINFO_SENTINEL
409 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
410 /* NB: Some of these registers exist in v8 but with more precise
411 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
413 /* MMU Domain access control / MPU write buffer control */
414 { .name = "DACR", .cp = 15,
415 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
416 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
417 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
418 /* ??? This covers not just the impdef TLB lockdown registers but also
419 * some v7VMSA registers relating to TEX remap, so it is overly broad.
421 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
422 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
423 /* MMU TLB control. Note that the wildcarding means we cover not just
424 * the unified TLB ops but also the dside/iside/inner-shareable variants.
426 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
427 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
428 .type = ARM_CP_NO_MIGRATE },
429 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
430 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
431 .type = ARM_CP_NO_MIGRATE },
432 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
433 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
434 .type = ARM_CP_NO_MIGRATE },
435 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
436 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
437 .type = ARM_CP_NO_MIGRATE },
438 /* Cache maintenance ops; some of this space may be overridden later. */
439 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
440 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
441 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
442 REGINFO_SENTINEL
445 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
446 /* Not all pre-v6 cores implemented this WFI, so this is slightly
447 * over-broad.
449 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
450 .access = PL1_W, .type = ARM_CP_WFI },
451 REGINFO_SENTINEL
454 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
455 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
456 * is UNPREDICTABLE; we choose to NOP as most implementations do).
458 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
459 .access = PL1_W, .type = ARM_CP_WFI },
460 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
461 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
462 * OMAPCP will override this space.
464 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
465 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
466 .resetvalue = 0 },
467 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
468 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
469 .resetvalue = 0 },
470 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
471 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
472 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
473 .resetvalue = 0 },
474 REGINFO_SENTINEL
477 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
478 uint64_t value)
480 uint32_t mask = 0;
482 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
483 if (!arm_feature(env, ARM_FEATURE_V8)) {
484 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
485 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
486 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
488 if (arm_feature(env, ARM_FEATURE_VFP)) {
489 /* VFP coprocessor: cp10 & cp11 [23:20] */
490 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
492 if (!arm_feature(env, ARM_FEATURE_NEON)) {
493 /* ASEDIS [31] bit is RAO/WI */
494 value |= (1 << 31);
497 /* VFPv3 and upwards with NEON implement 32 double precision
498 * registers (D0-D31).
500 if (!arm_feature(env, ARM_FEATURE_NEON) ||
501 !arm_feature(env, ARM_FEATURE_VFP3)) {
502 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
503 value |= (1 << 30);
506 value &= mask;
508 env->cp15.c1_coproc = value;
511 static const ARMCPRegInfo v6_cp_reginfo[] = {
512 /* prefetch by MVA in v6, NOP in v7 */
513 { .name = "MVA_prefetch",
514 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
515 .access = PL1_W, .type = ARM_CP_NOP },
516 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
517 .access = PL0_W, .type = ARM_CP_NOP },
518 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
519 .access = PL0_W, .type = ARM_CP_NOP },
520 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
521 .access = PL0_W, .type = ARM_CP_NOP },
522 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
523 .access = PL1_RW,
524 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el1),
525 .resetvalue = 0, },
526 /* Watchpoint Fault Address Register : should actually only be present
527 * for 1136, 1176, 11MPCore.
529 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
530 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
531 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
532 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
533 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
534 .resetvalue = 0, .writefn = cpacr_write },
535 REGINFO_SENTINEL
538 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
540 /* Performance monitor registers user accessibility is controlled
541 * by PMUSERENR.
543 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
544 return CP_ACCESS_TRAP;
546 return CP_ACCESS_OK;
549 #ifndef CONFIG_USER_ONLY
550 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
551 uint64_t value)
553 /* Don't computer the number of ticks in user mode */
554 uint32_t temp_ticks;
556 temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
557 get_ticks_per_sec() / 1000000;
559 if (env->cp15.c9_pmcr & PMCRE) {
560 /* If the counter is enabled */
561 if (env->cp15.c9_pmcr & PMCRD) {
562 /* Increment once every 64 processor clock cycles */
563 env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
564 } else {
565 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
569 if (value & PMCRC) {
570 /* The counter has been reset */
571 env->cp15.c15_ccnt = 0;
574 /* only the DP, X, D and E bits are writable */
575 env->cp15.c9_pmcr &= ~0x39;
576 env->cp15.c9_pmcr |= (value & 0x39);
578 if (env->cp15.c9_pmcr & PMCRE) {
579 if (env->cp15.c9_pmcr & PMCRD) {
580 /* Increment once every 64 processor clock cycles */
581 temp_ticks /= 64;
583 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
587 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
589 uint32_t total_ticks;
591 if (!(env->cp15.c9_pmcr & PMCRE)) {
592 /* Counter is disabled, do not change value */
593 return env->cp15.c15_ccnt;
596 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
597 get_ticks_per_sec() / 1000000;
599 if (env->cp15.c9_pmcr & PMCRD) {
600 /* Increment once every 64 processor clock cycles */
601 total_ticks /= 64;
603 return total_ticks - env->cp15.c15_ccnt;
606 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 uint64_t value)
609 uint32_t total_ticks;
611 if (!(env->cp15.c9_pmcr & PMCRE)) {
612 /* Counter is disabled, set the absolute value */
613 env->cp15.c15_ccnt = value;
614 return;
617 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
618 get_ticks_per_sec() / 1000000;
620 if (env->cp15.c9_pmcr & PMCRD) {
621 /* Increment once every 64 processor clock cycles */
622 total_ticks /= 64;
624 env->cp15.c15_ccnt = total_ticks - value;
626 #endif
628 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
629 uint64_t value)
631 value &= (1 << 31);
632 env->cp15.c9_pmcnten |= value;
635 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 value &= (1 << 31);
639 env->cp15.c9_pmcnten &= ~value;
642 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
643 uint64_t value)
645 env->cp15.c9_pmovsr &= ~value;
648 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
649 uint64_t value)
651 env->cp15.c9_pmxevtyper = value & 0xff;
654 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
655 uint64_t value)
657 env->cp15.c9_pmuserenr = value & 1;
660 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
661 uint64_t value)
663 /* We have no event counters so only the C bit can be changed */
664 value &= (1 << 31);
665 env->cp15.c9_pminten |= value;
668 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
669 uint64_t value)
671 value &= (1 << 31);
672 env->cp15.c9_pminten &= ~value;
675 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
676 uint64_t value)
678 /* Note that even though the AArch64 view of this register has bits
679 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
680 * architectural requirements for bits which are RES0 only in some
681 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
682 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
684 raw_write(env, ri, value & ~0x1FULL);
687 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
689 ARMCPU *cpu = arm_env_get_cpu(env);
690 return cpu->ccsidr[env->cp15.c0_cssel];
693 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 raw_write(env, ri, value & 0xf);
699 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
701 CPUState *cs = ENV_GET_CPU(env);
702 uint64_t ret = 0;
704 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
705 ret |= CPSR_I;
707 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
708 ret |= CPSR_F;
710 /* External aborts are not possible in QEMU so A bit is always clear */
711 return ret;
714 static const ARMCPRegInfo v7_cp_reginfo[] = {
715 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
716 * debug components
718 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
719 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
720 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
721 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
722 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
723 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
724 .access = PL1_W, .type = ARM_CP_NOP },
725 /* Performance monitors are implementation defined in v7,
726 * but with an ARM recommended set of registers, which we
727 * follow (although we don't actually implement any counters)
729 * Performance registers fall into three categories:
730 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
731 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
732 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
733 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
734 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
736 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
737 .access = PL0_RW, .resetvalue = 0,
738 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
739 .writefn = pmcntenset_write,
740 .accessfn = pmreg_access,
741 .raw_writefn = raw_write },
742 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
743 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
744 .accessfn = pmreg_access,
745 .writefn = pmcntenclr_write,
746 .type = ARM_CP_NO_MIGRATE },
747 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
748 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
749 .accessfn = pmreg_access,
750 .writefn = pmovsr_write,
751 .raw_writefn = raw_write },
752 /* Unimplemented so WI. */
753 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
754 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
755 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
756 * We choose to RAZ/WI.
758 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
759 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
760 .accessfn = pmreg_access },
761 #ifndef CONFIG_USER_ONLY
762 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
763 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
764 .readfn = pmccntr_read, .writefn = pmccntr_write,
765 .accessfn = pmreg_access },
766 #endif
767 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
768 .access = PL0_RW,
769 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
770 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
771 .raw_writefn = raw_write },
772 /* Unimplemented, RAZ/WI. */
773 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
774 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
775 .accessfn = pmreg_access },
776 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
777 .access = PL0_R | PL1_RW,
778 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
779 .resetvalue = 0,
780 .writefn = pmuserenr_write, .raw_writefn = raw_write },
781 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
782 .access = PL1_RW,
783 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
784 .resetvalue = 0,
785 .writefn = pmintenset_write, .raw_writefn = raw_write },
786 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
787 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
788 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
789 .resetvalue = 0, .writefn = pmintenclr_write, },
790 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
791 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
792 .access = PL1_RW, .writefn = vbar_write,
793 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[1]),
794 .resetvalue = 0 },
795 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
797 .resetvalue = 0, },
798 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
799 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
800 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
801 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
802 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
803 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
804 .writefn = csselr_write, .resetvalue = 0 },
805 /* Auxiliary ID register: this actually has an IMPDEF value but for now
806 * just RAZ for all cores:
808 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
809 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
810 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
811 /* Auxiliary fault status registers: these also are IMPDEF, and we
812 * choose to RAZ/WI for all cores.
814 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
815 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
816 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
817 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
818 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
819 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
820 /* MAIR can just read-as-written because we don't implement caches
821 * and so don't need to care about memory attributes.
823 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
824 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
825 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
826 .resetvalue = 0 },
827 /* For non-long-descriptor page tables these are PRRR and NMRR;
828 * regardless they still act as reads-as-written for QEMU.
829 * The override is necessary because of the overly-broad TLB_LOCKDOWN
830 * definition.
832 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
833 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
835 .resetfn = arm_cp_reset_ignore },
836 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
837 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
839 .resetfn = arm_cp_reset_ignore },
840 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
841 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
842 .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read },
843 REGINFO_SENTINEL
846 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
847 uint64_t value)
849 value &= 1;
850 env->teecr = value;
853 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
855 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
856 return CP_ACCESS_TRAP;
858 return CP_ACCESS_OK;
861 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
862 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
863 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
864 .resetvalue = 0,
865 .writefn = teecr_write },
866 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
867 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
868 .accessfn = teehbr_access, .resetvalue = 0 },
869 REGINFO_SENTINEL
872 static const ARMCPRegInfo v6k_cp_reginfo[] = {
873 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
874 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
875 .access = PL0_RW,
876 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
877 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
878 .access = PL0_RW,
879 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
880 .resetfn = arm_cp_reset_ignore },
881 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
882 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
883 .access = PL0_R|PL1_W,
884 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
885 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
886 .access = PL0_R|PL1_W,
887 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
888 .resetfn = arm_cp_reset_ignore },
889 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
890 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
891 .access = PL1_RW,
892 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
893 REGINFO_SENTINEL
896 #ifndef CONFIG_USER_ONLY
898 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
900 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
901 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
902 return CP_ACCESS_TRAP;
904 return CP_ACCESS_OK;
907 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
909 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
910 if (arm_current_pl(env) == 0 &&
911 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
912 return CP_ACCESS_TRAP;
914 return CP_ACCESS_OK;
917 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
919 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
920 * EL0[PV]TEN is zero.
922 if (arm_current_pl(env) == 0 &&
923 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
924 return CP_ACCESS_TRAP;
926 return CP_ACCESS_OK;
929 static CPAccessResult gt_pct_access(CPUARMState *env,
930 const ARMCPRegInfo *ri)
932 return gt_counter_access(env, GTIMER_PHYS);
935 static CPAccessResult gt_vct_access(CPUARMState *env,
936 const ARMCPRegInfo *ri)
938 return gt_counter_access(env, GTIMER_VIRT);
941 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
943 return gt_timer_access(env, GTIMER_PHYS);
946 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
948 return gt_timer_access(env, GTIMER_VIRT);
951 static uint64_t gt_get_countervalue(CPUARMState *env)
953 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
956 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
958 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
960 if (gt->ctl & 1) {
961 /* Timer enabled: calculate and set current ISTATUS, irq, and
962 * reset timer to when ISTATUS next has to change
964 uint64_t count = gt_get_countervalue(&cpu->env);
965 /* Note that this must be unsigned 64 bit arithmetic: */
966 int istatus = count >= gt->cval;
967 uint64_t nexttick;
969 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
970 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
971 (istatus && !(gt->ctl & 2)));
972 if (istatus) {
973 /* Next transition is when count rolls back over to zero */
974 nexttick = UINT64_MAX;
975 } else {
976 /* Next transition is when we hit cval */
977 nexttick = gt->cval;
979 /* Note that the desired next expiry time might be beyond the
980 * signed-64-bit range of a QEMUTimer -- in this case we just
981 * set the timer for as far in the future as possible. When the
982 * timer expires we will reset the timer for any remaining period.
984 if (nexttick > INT64_MAX / GTIMER_SCALE) {
985 nexttick = INT64_MAX / GTIMER_SCALE;
987 timer_mod(cpu->gt_timer[timeridx], nexttick);
988 } else {
989 /* Timer disabled: ISTATUS and timer output always clear */
990 gt->ctl &= ~4;
991 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
992 timer_del(cpu->gt_timer[timeridx]);
996 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
998 ARMCPU *cpu = arm_env_get_cpu(env);
999 int timeridx = ri->opc1 & 1;
1001 timer_del(cpu->gt_timer[timeridx]);
1004 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1006 return gt_get_countervalue(env);
1009 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1010 uint64_t value)
1012 int timeridx = ri->opc1 & 1;
1014 env->cp15.c14_timer[timeridx].cval = value;
1015 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1018 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1020 int timeridx = ri->crm & 1;
1022 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1023 gt_get_countervalue(env));
1026 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1027 uint64_t value)
1029 int timeridx = ri->crm & 1;
1031 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1032 + sextract64(value, 0, 32);
1033 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1036 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1037 uint64_t value)
1039 ARMCPU *cpu = arm_env_get_cpu(env);
1040 int timeridx = ri->crm & 1;
1041 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1043 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1044 if ((oldval ^ value) & 1) {
1045 /* Enable toggled */
1046 gt_recalc_timer(cpu, timeridx);
1047 } else if ((oldval ^ value) & 2) {
1048 /* IMASK toggled: don't need to recalculate,
1049 * just set the interrupt line based on ISTATUS
1051 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1052 (oldval & 4) && !(value & 2));
1056 void arm_gt_ptimer_cb(void *opaque)
1058 ARMCPU *cpu = opaque;
1060 gt_recalc_timer(cpu, GTIMER_PHYS);
1063 void arm_gt_vtimer_cb(void *opaque)
1065 ARMCPU *cpu = opaque;
1067 gt_recalc_timer(cpu, GTIMER_VIRT);
1070 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1071 /* Note that CNTFRQ is purely reads-as-written for the benefit
1072 * of software; writing it doesn't actually change the timer frequency.
1073 * Our reset value matches the fixed frequency we implement the timer at.
1075 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1076 .type = ARM_CP_NO_MIGRATE,
1077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1078 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1079 .resetfn = arm_cp_reset_ignore,
1081 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1082 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1083 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1084 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1085 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1087 /* overall control: mostly access permissions */
1088 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1089 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1090 .access = PL1_RW,
1091 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1092 .resetvalue = 0,
1094 /* per-timer control */
1095 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1096 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1097 .accessfn = gt_ptimer_access,
1098 .fieldoffset = offsetoflow32(CPUARMState,
1099 cp15.c14_timer[GTIMER_PHYS].ctl),
1100 .resetfn = arm_cp_reset_ignore,
1101 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1103 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1104 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1105 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1106 .accessfn = gt_ptimer_access,
1107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1108 .resetvalue = 0,
1109 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1111 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1112 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1113 .accessfn = gt_vtimer_access,
1114 .fieldoffset = offsetoflow32(CPUARMState,
1115 cp15.c14_timer[GTIMER_VIRT].ctl),
1116 .resetfn = arm_cp_reset_ignore,
1117 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1119 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1120 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1121 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1122 .accessfn = gt_vtimer_access,
1123 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1124 .resetvalue = 0,
1125 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1127 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1128 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1129 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1130 .accessfn = gt_ptimer_access,
1131 .readfn = gt_tval_read, .writefn = gt_tval_write,
1133 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1134 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1135 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1136 .readfn = gt_tval_read, .writefn = gt_tval_write,
1138 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1139 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1140 .accessfn = gt_vtimer_access,
1141 .readfn = gt_tval_read, .writefn = gt_tval_write,
1143 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1144 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1145 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1146 .readfn = gt_tval_read, .writefn = gt_tval_write,
1148 /* The counter itself */
1149 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1150 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1151 .accessfn = gt_pct_access,
1152 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1154 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1155 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1156 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1157 .accessfn = gt_pct_access,
1158 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1160 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1161 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1162 .accessfn = gt_vct_access,
1163 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1165 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1166 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1167 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1168 .accessfn = gt_vct_access,
1169 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1171 /* Comparison value, indicating when the timer goes off */
1172 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1173 .access = PL1_RW | PL0_R,
1174 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1176 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1177 .writefn = gt_cval_write, .raw_writefn = raw_write,
1179 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1181 .access = PL1_RW | PL0_R,
1182 .type = ARM_CP_IO,
1183 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1184 .resetvalue = 0, .accessfn = gt_vtimer_access,
1185 .writefn = gt_cval_write, .raw_writefn = raw_write,
1187 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1188 .access = PL1_RW | PL0_R,
1189 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1191 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1192 .writefn = gt_cval_write, .raw_writefn = raw_write,
1194 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1195 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1196 .access = PL1_RW | PL0_R,
1197 .type = ARM_CP_IO,
1198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1199 .resetvalue = 0, .accessfn = gt_vtimer_access,
1200 .writefn = gt_cval_write, .raw_writefn = raw_write,
1202 REGINFO_SENTINEL
1205 #else
1206 /* In user-mode none of the generic timer registers are accessible,
1207 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1208 * so instead just don't register any of them.
1210 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1211 REGINFO_SENTINEL
1214 #endif
1216 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1218 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1219 raw_write(env, ri, value);
1220 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1221 raw_write(env, ri, value & 0xfffff6ff);
1222 } else {
1223 raw_write(env, ri, value & 0xfffff1ff);
1227 #ifndef CONFIG_USER_ONLY
1228 /* get_phys_addr() isn't present for user-mode-only targets */
1230 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1232 if (ri->opc2 & 4) {
1233 /* Other states are only available with TrustZone; in
1234 * a non-TZ implementation these registers don't exist
1235 * at all, which is an Uncategorized trap. This underdecoding
1236 * is safe because the reginfo is NO_MIGRATE.
1238 return CP_ACCESS_TRAP_UNCATEGORIZED;
1240 return CP_ACCESS_OK;
1243 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1245 hwaddr phys_addr;
1246 target_ulong page_size;
1247 int prot;
1248 int ret, is_user = ri->opc2 & 2;
1249 int access_type = ri->opc2 & 1;
1251 ret = get_phys_addr(env, value, access_type, is_user,
1252 &phys_addr, &prot, &page_size);
1253 if (extended_addresses_enabled(env)) {
1254 /* ret is a DFSR/IFSR value for the long descriptor
1255 * translation table format, but with WnR always clear.
1256 * Convert it to a 64-bit PAR.
1258 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1259 if (ret == 0) {
1260 par64 |= phys_addr & ~0xfffULL;
1261 /* We don't set the ATTR or SH fields in the PAR. */
1262 } else {
1263 par64 |= 1; /* F */
1264 par64 |= (ret & 0x3f) << 1; /* FS */
1265 /* Note that S2WLK and FSTAGE are always zero, because we don't
1266 * implement virtualization and therefore there can't be a stage 2
1267 * fault.
1270 env->cp15.par_el1 = par64;
1271 } else {
1272 /* ret is a DFSR/IFSR value for the short descriptor
1273 * translation table format (with WnR always clear).
1274 * Convert it to a 32-bit PAR.
1276 if (ret == 0) {
1277 /* We do not set any attribute bits in the PAR */
1278 if (page_size == (1 << 24)
1279 && arm_feature(env, ARM_FEATURE_V7)) {
1280 env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1;
1281 } else {
1282 env->cp15.par_el1 = phys_addr & 0xfffff000;
1284 } else {
1285 env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) |
1286 ((ret & (1 << 12)) >> 6) |
1287 ((ret & 0xf) << 1) | 1;
1291 #endif
1293 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1294 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1295 .access = PL1_RW, .resetvalue = 0,
1296 .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1),
1297 .writefn = par_write },
1298 #ifndef CONFIG_USER_ONLY
1299 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1300 .access = PL1_W, .accessfn = ats_access,
1301 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1302 #endif
1303 REGINFO_SENTINEL
1306 /* Return basic MPU access permission bits. */
1307 static uint32_t simple_mpu_ap_bits(uint32_t val)
1309 uint32_t ret;
1310 uint32_t mask;
1311 int i;
1312 ret = 0;
1313 mask = 3;
1314 for (i = 0; i < 16; i += 2) {
1315 ret |= (val >> i) & mask;
1316 mask <<= 2;
1318 return ret;
1321 /* Pad basic MPU access permission bits to extended format. */
1322 static uint32_t extended_mpu_ap_bits(uint32_t val)
1324 uint32_t ret;
1325 uint32_t mask;
1326 int i;
1327 ret = 0;
1328 mask = 3;
1329 for (i = 0; i < 16; i += 2) {
1330 ret |= (val & mask) << i;
1331 mask <<= 2;
1333 return ret;
1336 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1337 uint64_t value)
1339 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1342 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1344 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1347 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1348 uint64_t value)
1350 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1353 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1355 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1358 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1359 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1360 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1361 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1362 .resetvalue = 0,
1363 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1364 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1365 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1366 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1367 .resetvalue = 0,
1368 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1369 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1370 .access = PL1_RW,
1371 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1372 .resetvalue = 0, },
1373 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1374 .access = PL1_RW,
1375 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1376 .resetvalue = 0, },
1377 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1378 .access = PL1_RW,
1379 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1380 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1381 .access = PL1_RW,
1382 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1383 /* Protection region base and size registers */
1384 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1385 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1386 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1387 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1388 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1389 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1390 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1391 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1392 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1393 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1394 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1395 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1396 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1397 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1398 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1399 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1400 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1401 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1402 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1403 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1404 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1405 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1406 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1407 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1408 REGINFO_SENTINEL
1411 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1412 uint64_t value)
1414 int maskshift = extract32(value, 0, 3);
1416 if (!arm_feature(env, ARM_FEATURE_V8)) {
1417 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1418 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1419 * using Long-desciptor translation table format */
1420 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1421 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1422 /* In an implementation that includes the Security Extensions
1423 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1424 * Short-descriptor translation table format.
1426 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1427 } else {
1428 value &= TTBCR_N;
1432 /* Note that we always calculate c2_mask and c2_base_mask, but
1433 * they are only used for short-descriptor tables (ie if EAE is 0);
1434 * for long-descriptor tables the TTBCR fields are used differently
1435 * and the c2_mask and c2_base_mask values are meaningless.
1437 raw_write(env, ri, value);
1438 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1439 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1442 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1443 uint64_t value)
1445 ARMCPU *cpu = arm_env_get_cpu(env);
1447 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1448 /* With LPAE the TTBCR could result in a change of ASID
1449 * via the TTBCR.A1 bit, so do a TLB flush.
1451 tlb_flush(CPU(cpu), 1);
1453 vmsa_ttbcr_raw_write(env, ri, value);
1456 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1458 env->cp15.c2_base_mask = 0xffffc000u;
1459 raw_write(env, ri, 0);
1460 env->cp15.c2_mask = 0;
1463 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1464 uint64_t value)
1466 ARMCPU *cpu = arm_env_get_cpu(env);
1468 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1469 tlb_flush(CPU(cpu), 1);
1470 raw_write(env, ri, value);
1473 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1474 uint64_t value)
1476 /* 64 bit accesses to the TTBRs can change the ASID and so we
1477 * must flush the TLB.
1479 if (cpreg_field_is_64bit(ri)) {
1480 ARMCPU *cpu = arm_env_get_cpu(env);
1482 tlb_flush(CPU(cpu), 1);
1484 raw_write(env, ri, value);
1487 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1488 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1489 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1490 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1491 .resetfn = arm_cp_reset_ignore, },
1492 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1493 .access = PL1_RW,
1494 .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, },
1495 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1496 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1497 .access = PL1_RW,
1498 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1499 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1500 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1501 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1502 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1503 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1504 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1505 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1506 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1507 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1508 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1509 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1510 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1511 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1512 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1513 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1514 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1515 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1516 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1517 { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH,
1518 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1519 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el1),
1520 .resetvalue = 0, },
1521 REGINFO_SENTINEL
1524 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1525 uint64_t value)
1527 env->cp15.c15_ticonfig = value & 0xe7;
1528 /* The OS_TYPE bit in this register changes the reported CPUID! */
1529 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1530 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1533 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1534 uint64_t value)
1536 env->cp15.c15_threadid = value & 0xffff;
1539 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1540 uint64_t value)
1542 /* Wait-for-interrupt (deprecated) */
1543 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1546 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547 uint64_t value)
1549 /* On OMAP there are registers indicating the max/min index of dcache lines
1550 * containing a dirty line; cache flush operations have to reset these.
1552 env->cp15.c15_i_max = 0x000;
1553 env->cp15.c15_i_min = 0xff0;
1556 static const ARMCPRegInfo omap_cp_reginfo[] = {
1557 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1558 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1559 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1560 .resetvalue = 0, },
1561 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1562 .access = PL1_RW, .type = ARM_CP_NOP },
1563 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1564 .access = PL1_RW,
1565 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1566 .writefn = omap_ticonfig_write },
1567 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1568 .access = PL1_RW,
1569 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1570 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1571 .access = PL1_RW, .resetvalue = 0xff0,
1572 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1573 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1574 .access = PL1_RW,
1575 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1576 .writefn = omap_threadid_write },
1577 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1578 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1579 .type = ARM_CP_NO_MIGRATE,
1580 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1581 /* TODO: Peripheral port remap register:
1582 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1583 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1584 * when MMU is off.
1586 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1587 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1588 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1589 .writefn = omap_cachemaint_write },
1590 { .name = "C9", .cp = 15, .crn = 9,
1591 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1592 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1593 REGINFO_SENTINEL
1596 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1597 uint64_t value)
1599 value &= 0x3fff;
1600 if (env->cp15.c15_cpar != value) {
1601 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1602 tb_flush(env);
1603 env->cp15.c15_cpar = value;
1607 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1608 { .name = "XSCALE_CPAR",
1609 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1610 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1611 .writefn = xscale_cpar_write, },
1612 { .name = "XSCALE_AUXCR",
1613 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1614 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1615 .resetvalue = 0, },
1616 /* XScale specific cache-lockdown: since we have no cache we NOP these
1617 * and hope the guest does not really rely on cache behaviour.
1619 { .name = "XSCALE_LOCK_ICACHE_LINE",
1620 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1621 .access = PL1_W, .type = ARM_CP_NOP },
1622 { .name = "XSCALE_UNLOCK_ICACHE",
1623 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1624 .access = PL1_W, .type = ARM_CP_NOP },
1625 { .name = "XSCALE_DCACHE_LOCK",
1626 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
1627 .access = PL1_RW, .type = ARM_CP_NOP },
1628 { .name = "XSCALE_UNLOCK_DCACHE",
1629 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
1630 .access = PL1_W, .type = ARM_CP_NOP },
1631 REGINFO_SENTINEL
1634 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1635 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1636 * implementation of this implementation-defined space.
1637 * Ideally this should eventually disappear in favour of actually
1638 * implementing the correct behaviour for all cores.
1640 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1641 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1642 .access = PL1_RW,
1643 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1644 .resetvalue = 0 },
1645 REGINFO_SENTINEL
1648 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1649 /* Cache status: RAZ because we have no cache so it's always clean */
1650 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1651 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1652 .resetvalue = 0 },
1653 REGINFO_SENTINEL
1656 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1657 /* We never have a a block transfer operation in progress */
1658 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1659 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1660 .resetvalue = 0 },
1661 /* The cache ops themselves: these all NOP for QEMU */
1662 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1663 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1664 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1665 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1666 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1667 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1668 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1669 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1670 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1671 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1672 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1673 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1674 REGINFO_SENTINEL
1677 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1678 /* The cache test-and-clean instructions always return (1 << 30)
1679 * to indicate that there are no dirty cache lines.
1681 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1682 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1683 .resetvalue = (1 << 30) },
1684 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1685 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1686 .resetvalue = (1 << 30) },
1687 REGINFO_SENTINEL
1690 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1691 /* Ignore ReadBuffer accesses */
1692 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1693 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1694 .access = PL1_RW, .resetvalue = 0,
1695 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1696 REGINFO_SENTINEL
1699 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701 CPUState *cs = CPU(arm_env_get_cpu(env));
1702 uint32_t mpidr = cs->cpu_index;
1703 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1704 * in later ARM ARM versions), or any of the higher affinity level fields,
1705 * so these bits always RAZ.
1707 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1708 mpidr |= (1U << 31);
1709 /* Cores which are uniprocessor (non-coherent)
1710 * but still implement the MP extensions set
1711 * bit 30. (For instance, A9UP.) However we do
1712 * not currently model any of those cores.
1715 return mpidr;
1718 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1719 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1720 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1721 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1722 REGINFO_SENTINEL
1725 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1726 /* NOP AMAIR0/1: the override is because these clash with the rather
1727 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1729 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1730 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1731 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1732 .resetvalue = 0 },
1733 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1734 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1735 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1736 .resetvalue = 0 },
1737 /* 64 bit access versions of the (dummy) debug registers */
1738 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1739 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1740 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1741 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1742 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1743 .access = PL1_RW, .type = ARM_CP_64BIT,
1744 .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 },
1745 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1746 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1747 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1748 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1749 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1750 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1751 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1752 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1753 REGINFO_SENTINEL
1756 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1758 return vfp_get_fpcr(env);
1761 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1764 vfp_set_fpcr(env, value);
1767 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1769 return vfp_get_fpsr(env);
1772 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 vfp_set_fpsr(env, value);
1778 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
1780 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
1781 return CP_ACCESS_TRAP;
1783 return CP_ACCESS_OK;
1786 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
1787 uint64_t value)
1789 env->daif = value & PSTATE_DAIF;
1792 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1793 const ARMCPRegInfo *ri)
1795 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1796 * SCTLR_EL1.UCI is set.
1798 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1799 return CP_ACCESS_TRAP;
1801 return CP_ACCESS_OK;
1804 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 uint64_t value)
1807 /* Invalidate by VA (AArch64 version) */
1808 ARMCPU *cpu = arm_env_get_cpu(env);
1809 uint64_t pageaddr = value << 12;
1810 tlb_flush_page(CPU(cpu), pageaddr);
1813 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1814 uint64_t value)
1816 /* Invalidate by VA, all ASIDs (AArch64 version) */
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1818 uint64_t pageaddr = value << 12;
1819 tlb_flush_page(CPU(cpu), pageaddr);
1822 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1825 /* Invalidate by ASID (AArch64 version) */
1826 ARMCPU *cpu = arm_env_get_cpu(env);
1827 int asid = extract64(value, 48, 16);
1828 tlb_flush(CPU(cpu), asid == 0);
1831 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
1833 /* We don't implement EL2, so the only control on DC ZVA is the
1834 * bit in the SCTLR which can prohibit access for EL0.
1836 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
1837 return CP_ACCESS_TRAP;
1839 return CP_ACCESS_OK;
1842 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
1844 ARMCPU *cpu = arm_env_get_cpu(env);
1845 int dzp_bit = 1 << 4;
1847 /* DZP indicates whether DC ZVA access is allowed */
1848 if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) {
1849 dzp_bit = 0;
1851 return cpu->dcz_blocksize | dzp_bit;
1854 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1856 if (!env->pstate & PSTATE_SP) {
1857 /* Access to SP_EL0 is undefined if it's being used as
1858 * the stack pointer.
1860 return CP_ACCESS_TRAP_UNCATEGORIZED;
1862 return CP_ACCESS_OK;
1865 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
1867 return env->pstate & PSTATE_SP;
1870 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
1872 update_spsel(env, val);
1875 static const ARMCPRegInfo v8_cp_reginfo[] = {
1876 /* Minimal set of EL0-visible registers. This will need to be expanded
1877 * significantly for system emulation of AArch64 CPUs.
1879 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1880 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1881 .access = PL0_RW, .type = ARM_CP_NZCV },
1882 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
1883 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
1884 .type = ARM_CP_NO_MIGRATE,
1885 .access = PL0_RW, .accessfn = aa64_daif_access,
1886 .fieldoffset = offsetof(CPUARMState, daif),
1887 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
1888 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1889 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1890 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1891 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1892 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1893 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1894 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1895 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1896 .access = PL0_R, .type = ARM_CP_NO_MIGRATE,
1897 .readfn = aa64_dczid_read },
1898 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
1899 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
1900 .access = PL0_W, .type = ARM_CP_DC_ZVA,
1901 #ifndef CONFIG_USER_ONLY
1902 /* Avoid overhead of an access check that always passes in user-mode */
1903 .accessfn = aa64_zva_access,
1904 #endif
1906 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1907 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1908 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1909 /* Cache ops: all NOPs since we don't emulate caches */
1910 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1911 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1912 .access = PL1_W, .type = ARM_CP_NOP },
1913 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1914 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1915 .access = PL1_W, .type = ARM_CP_NOP },
1916 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1917 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1918 .access = PL0_W, .type = ARM_CP_NOP,
1919 .accessfn = aa64_cacheop_access },
1920 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1921 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1922 .access = PL1_W, .type = ARM_CP_NOP },
1923 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1925 .access = PL1_W, .type = ARM_CP_NOP },
1926 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1927 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1928 .access = PL0_W, .type = ARM_CP_NOP,
1929 .accessfn = aa64_cacheop_access },
1930 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1931 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1932 .access = PL1_W, .type = ARM_CP_NOP },
1933 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1934 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1935 .access = PL0_W, .type = ARM_CP_NOP,
1936 .accessfn = aa64_cacheop_access },
1937 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1938 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1939 .access = PL0_W, .type = ARM_CP_NOP,
1940 .accessfn = aa64_cacheop_access },
1941 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1942 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1943 .access = PL1_W, .type = ARM_CP_NOP },
1944 /* TLBI operations */
1945 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1946 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1947 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1948 .writefn = tlbiall_write },
1949 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1951 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1952 .writefn = tlbi_aa64_va_write },
1953 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1954 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1955 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1956 .writefn = tlbi_aa64_asid_write },
1957 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1958 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1959 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1960 .writefn = tlbi_aa64_vaa_write },
1961 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1962 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1963 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1964 .writefn = tlbi_aa64_va_write },
1965 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1966 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1967 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1968 .writefn = tlbi_aa64_vaa_write },
1969 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1971 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1972 .writefn = tlbiall_write },
1973 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1974 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1975 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1976 .writefn = tlbi_aa64_va_write },
1977 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1978 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1979 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1980 .writefn = tlbi_aa64_asid_write },
1981 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1982 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1983 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1984 .writefn = tlbi_aa64_vaa_write },
1985 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1987 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1988 .writefn = tlbi_aa64_va_write },
1989 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1991 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1992 .writefn = tlbi_aa64_vaa_write },
1993 #ifndef CONFIG_USER_ONLY
1994 /* 64 bit address translation operations */
1995 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
1996 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
1997 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
1998 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
1999 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2000 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2001 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2002 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2003 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2004 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2005 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2006 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2007 #endif
2008 /* 32 bit TLB invalidates, Inner Shareable */
2009 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2010 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2011 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2012 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2013 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2014 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2015 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2016 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2017 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2018 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2019 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2020 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2021 /* 32 bit ITLB invalidates */
2022 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2023 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2024 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2025 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2026 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2027 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2028 /* 32 bit DTLB invalidates */
2029 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2030 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2031 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2032 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2033 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2034 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2035 /* 32 bit TLB invalidates */
2036 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2037 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2038 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2039 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2040 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2041 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2042 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2043 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2044 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2045 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2046 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2047 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2048 /* 32 bit cache operations */
2049 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2050 .type = ARM_CP_NOP, .access = PL1_W },
2051 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2052 .type = ARM_CP_NOP, .access = PL1_W },
2053 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2054 .type = ARM_CP_NOP, .access = PL1_W },
2055 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2056 .type = ARM_CP_NOP, .access = PL1_W },
2057 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2058 .type = ARM_CP_NOP, .access = PL1_W },
2059 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2060 .type = ARM_CP_NOP, .access = PL1_W },
2061 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2062 .type = ARM_CP_NOP, .access = PL1_W },
2063 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2064 .type = ARM_CP_NOP, .access = PL1_W },
2065 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2066 .type = ARM_CP_NOP, .access = PL1_W },
2067 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2068 .type = ARM_CP_NOP, .access = PL1_W },
2069 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2070 .type = ARM_CP_NOP, .access = PL1_W },
2071 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2072 .type = ARM_CP_NOP, .access = PL1_W },
2073 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2074 .type = ARM_CP_NOP, .access = PL1_W },
2075 /* MMU Domain access control / MPU write buffer control */
2076 { .name = "DACR", .cp = 15,
2077 .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2078 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
2079 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
2080 /* Dummy implementation of monitor debug system control register:
2081 * we don't support debug.
2083 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2085 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2086 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2087 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2089 .access = PL1_W, .type = ARM_CP_NOP },
2090 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2091 .type = ARM_CP_NO_MIGRATE,
2092 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2093 .access = PL1_RW,
2094 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2095 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2096 .type = ARM_CP_NO_MIGRATE,
2097 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2098 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) },
2099 /* We rely on the access checks not allowing the guest to write to the
2100 * state field when SPSel indicates that it's being used as the stack
2101 * pointer.
2103 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2105 .access = PL1_RW, .accessfn = sp_el0_access,
2106 .type = ARM_CP_NO_MIGRATE,
2107 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2108 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2109 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2110 .type = ARM_CP_NO_MIGRATE,
2111 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2112 REGINFO_SENTINEL
2115 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2116 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
2117 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2118 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2119 .access = PL2_RW,
2120 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2121 REGINFO_SENTINEL
2124 static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
2125 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2126 .type = ARM_CP_NO_MIGRATE,
2127 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2128 .access = PL2_RW,
2129 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2130 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2131 .type = ARM_CP_NO_MIGRATE,
2132 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2133 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2134 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2135 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2136 .access = PL2_RW, .writefn = vbar_write,
2137 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2138 .resetvalue = 0 },
2139 REGINFO_SENTINEL
2142 static const ARMCPRegInfo v8_el3_cp_reginfo[] = {
2143 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2144 .type = ARM_CP_NO_MIGRATE,
2145 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2146 .access = PL3_RW,
2147 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2148 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2149 .type = ARM_CP_NO_MIGRATE,
2150 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2151 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2152 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2153 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2154 .access = PL3_RW, .writefn = vbar_write,
2155 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2156 .resetvalue = 0 },
2157 REGINFO_SENTINEL
2160 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2161 uint64_t value)
2163 ARMCPU *cpu = arm_env_get_cpu(env);
2165 if (raw_read(env, ri) == value) {
2166 /* Skip the TLB flush if nothing actually changed; Linux likes
2167 * to do a lot of pointless SCTLR writes.
2169 return;
2172 raw_write(env, ri, value);
2173 /* ??? Lots of these bits are not implemented. */
2174 /* This may enable/disable the MMU, so do a TLB flush. */
2175 tlb_flush(CPU(cpu), 1);
2178 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2180 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2181 * but the AArch32 CTR has its own reginfo struct)
2183 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
2184 return CP_ACCESS_TRAP;
2186 return CP_ACCESS_OK;
2189 static void define_aarch64_debug_regs(ARMCPU *cpu)
2191 /* Define breakpoint and watchpoint registers. These do nothing
2192 * but read as written, for now.
2194 int i;
2196 for (i = 0; i < 16; i++) {
2197 ARMCPRegInfo dbgregs[] = {
2198 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
2199 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2200 .access = PL1_RW,
2201 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
2202 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
2203 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2204 .access = PL1_RW,
2205 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
2206 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
2207 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2208 .access = PL1_RW,
2209 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
2210 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
2211 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2212 .access = PL1_RW,
2213 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
2214 REGINFO_SENTINEL
2216 define_arm_cp_regs(cpu, dbgregs);
2220 void register_cp_regs_for_features(ARMCPU *cpu)
2222 /* Register all the coprocessor registers based on feature bits */
2223 CPUARMState *env = &cpu->env;
2224 if (arm_feature(env, ARM_FEATURE_M)) {
2225 /* M profile has no coprocessor registers */
2226 return;
2229 define_arm_cp_regs(cpu, cp_reginfo);
2230 if (!arm_feature(env, ARM_FEATURE_V8)) {
2231 /* Must go early as it is full of wildcards that may be
2232 * overridden by later definitions.
2234 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
2237 if (arm_feature(env, ARM_FEATURE_V6)) {
2238 /* The ID registers all have impdef reset values */
2239 ARMCPRegInfo v6_idregs[] = {
2240 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
2241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2242 .access = PL1_R, .type = ARM_CP_CONST,
2243 .resetvalue = cpu->id_pfr0 },
2244 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
2245 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
2246 .access = PL1_R, .type = ARM_CP_CONST,
2247 .resetvalue = cpu->id_pfr1 },
2248 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
2249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
2250 .access = PL1_R, .type = ARM_CP_CONST,
2251 .resetvalue = cpu->id_dfr0 },
2252 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
2253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
2254 .access = PL1_R, .type = ARM_CP_CONST,
2255 .resetvalue = cpu->id_afr0 },
2256 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
2257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
2258 .access = PL1_R, .type = ARM_CP_CONST,
2259 .resetvalue = cpu->id_mmfr0 },
2260 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
2262 .access = PL1_R, .type = ARM_CP_CONST,
2263 .resetvalue = cpu->id_mmfr1 },
2264 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
2265 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
2266 .access = PL1_R, .type = ARM_CP_CONST,
2267 .resetvalue = cpu->id_mmfr2 },
2268 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
2269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
2270 .access = PL1_R, .type = ARM_CP_CONST,
2271 .resetvalue = cpu->id_mmfr3 },
2272 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
2273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
2274 .access = PL1_R, .type = ARM_CP_CONST,
2275 .resetvalue = cpu->id_isar0 },
2276 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
2277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
2278 .access = PL1_R, .type = ARM_CP_CONST,
2279 .resetvalue = cpu->id_isar1 },
2280 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
2281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2282 .access = PL1_R, .type = ARM_CP_CONST,
2283 .resetvalue = cpu->id_isar2 },
2284 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
2285 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
2286 .access = PL1_R, .type = ARM_CP_CONST,
2287 .resetvalue = cpu->id_isar3 },
2288 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
2289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
2290 .access = PL1_R, .type = ARM_CP_CONST,
2291 .resetvalue = cpu->id_isar4 },
2292 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
2293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
2294 .access = PL1_R, .type = ARM_CP_CONST,
2295 .resetvalue = cpu->id_isar5 },
2296 /* 6..7 are as yet unallocated and must RAZ */
2297 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
2298 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
2299 .resetvalue = 0 },
2300 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
2301 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
2302 .resetvalue = 0 },
2303 REGINFO_SENTINEL
2305 define_arm_cp_regs(cpu, v6_idregs);
2306 define_arm_cp_regs(cpu, v6_cp_reginfo);
2307 } else {
2308 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
2310 if (arm_feature(env, ARM_FEATURE_V6K)) {
2311 define_arm_cp_regs(cpu, v6k_cp_reginfo);
2313 if (arm_feature(env, ARM_FEATURE_V7)) {
2314 /* v7 performance monitor control register: same implementor
2315 * field as main ID register, and we implement only the cycle
2316 * count register.
2318 #ifndef CONFIG_USER_ONLY
2319 ARMCPRegInfo pmcr = {
2320 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
2321 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
2322 .type = ARM_CP_IO,
2323 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
2324 .accessfn = pmreg_access, .writefn = pmcr_write,
2325 .raw_writefn = raw_write,
2327 define_one_arm_cp_reg(cpu, &pmcr);
2328 #endif
2329 ARMCPRegInfo clidr = {
2330 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
2331 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
2332 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
2334 define_one_arm_cp_reg(cpu, &clidr);
2335 define_arm_cp_regs(cpu, v7_cp_reginfo);
2336 } else {
2337 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2339 if (arm_feature(env, ARM_FEATURE_V8)) {
2340 /* AArch64 ID registers, which all have impdef reset values */
2341 ARMCPRegInfo v8_idregs[] = {
2342 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
2343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
2344 .access = PL1_R, .type = ARM_CP_CONST,
2345 .resetvalue = cpu->id_aa64pfr0 },
2346 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
2347 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
2348 .access = PL1_R, .type = ARM_CP_CONST,
2349 .resetvalue = cpu->id_aa64pfr1},
2350 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
2351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
2352 .access = PL1_R, .type = ARM_CP_CONST,
2353 /* We mask out the PMUVer field, because we don't currently
2354 * implement the PMU. Not advertising it prevents the guest
2355 * from trying to use it and getting UNDEFs on registers we
2356 * don't implement.
2358 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
2359 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
2360 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
2361 .access = PL1_R, .type = ARM_CP_CONST,
2362 .resetvalue = cpu->id_aa64dfr1 },
2363 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
2364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
2365 .access = PL1_R, .type = ARM_CP_CONST,
2366 .resetvalue = cpu->id_aa64afr0 },
2367 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2369 .access = PL1_R, .type = ARM_CP_CONST,
2370 .resetvalue = cpu->id_aa64afr1 },
2371 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2373 .access = PL1_R, .type = ARM_CP_CONST,
2374 .resetvalue = cpu->id_aa64isar0 },
2375 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2377 .access = PL1_R, .type = ARM_CP_CONST,
2378 .resetvalue = cpu->id_aa64isar1 },
2379 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2380 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2381 .access = PL1_R, .type = ARM_CP_CONST,
2382 .resetvalue = cpu->id_aa64mmfr0 },
2383 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2384 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2385 .access = PL1_R, .type = ARM_CP_CONST,
2386 .resetvalue = cpu->id_aa64mmfr1 },
2387 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
2388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
2389 .access = PL1_R, .type = ARM_CP_CONST,
2390 .resetvalue = cpu->mvfr0 },
2391 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
2393 .access = PL1_R, .type = ARM_CP_CONST,
2394 .resetvalue = cpu->mvfr1 },
2395 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
2396 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
2397 .access = PL1_R, .type = ARM_CP_CONST,
2398 .resetvalue = cpu->mvfr2 },
2399 REGINFO_SENTINEL
2401 ARMCPRegInfo rvbar = {
2402 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
2403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
2404 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
2406 define_one_arm_cp_reg(cpu, &rvbar);
2407 define_arm_cp_regs(cpu, v8_idregs);
2408 define_arm_cp_regs(cpu, v8_cp_reginfo);
2409 define_aarch64_debug_regs(cpu);
2411 if (arm_feature(env, ARM_FEATURE_EL2)) {
2412 define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
2413 } else {
2414 /* If EL2 is missing but higher ELs are enabled, we need to
2415 * register the no_el2 reginfos.
2417 if (arm_feature(env, ARM_FEATURE_EL3)) {
2418 define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
2421 if (arm_feature(env, ARM_FEATURE_EL3)) {
2422 define_arm_cp_regs(cpu, v8_el3_cp_reginfo);
2424 if (arm_feature(env, ARM_FEATURE_MPU)) {
2425 /* These are the MPU registers prior to PMSAv6. Any new
2426 * PMSA core later than the ARM946 will require that we
2427 * implement the PMSAv6 or PMSAv7 registers, which are
2428 * completely different.
2430 assert(!arm_feature(env, ARM_FEATURE_V6));
2431 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2432 } else {
2433 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2435 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2436 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2438 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2439 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2441 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2442 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2444 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2445 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2447 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2448 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2450 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2451 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2453 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2454 define_arm_cp_regs(cpu, omap_cp_reginfo);
2456 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2457 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2459 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2460 define_arm_cp_regs(cpu, xscale_cp_reginfo);
2462 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
2463 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
2465 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2466 define_arm_cp_regs(cpu, lpae_cp_reginfo);
2468 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2469 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2470 * be read-only (ie write causes UNDEF exception).
2473 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
2474 /* Pre-v8 MIDR space.
2475 * Note that the MIDR isn't a simple constant register because
2476 * of the TI925 behaviour where writes to another register can
2477 * cause the MIDR value to change.
2479 * Unimplemented registers in the c15 0 0 0 space default to
2480 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2481 * and friends override accordingly.
2483 { .name = "MIDR",
2484 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2485 .access = PL1_R, .resetvalue = cpu->midr,
2486 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2487 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2488 .type = ARM_CP_OVERRIDE },
2489 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2490 { .name = "DUMMY",
2491 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2492 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2493 { .name = "DUMMY",
2494 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2495 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2496 { .name = "DUMMY",
2497 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2498 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2499 { .name = "DUMMY",
2500 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2501 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2502 { .name = "DUMMY",
2503 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2504 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2505 REGINFO_SENTINEL
2507 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
2508 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
2509 * variable-MIDR TI925 behaviour. Instead we have a single
2510 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
2512 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
2513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
2514 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
2515 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
2516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
2517 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
2518 REGINFO_SENTINEL
2520 ARMCPRegInfo id_cp_reginfo[] = {
2521 /* These are common to v8 and pre-v8 */
2522 { .name = "CTR",
2523 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2524 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2525 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2526 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2527 .access = PL0_R, .accessfn = ctr_el0_access,
2528 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2529 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
2530 { .name = "TCMTR",
2531 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2532 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2533 { .name = "TLBTR",
2534 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2535 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2536 REGINFO_SENTINEL
2538 ARMCPRegInfo crn0_wi_reginfo = {
2539 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2540 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2541 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2543 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2544 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2545 ARMCPRegInfo *r;
2546 /* Register the blanket "writes ignored" value first to cover the
2547 * whole space. Then update the specific ID registers to allow write
2548 * access, so that they ignore writes rather than causing them to
2549 * UNDEF.
2551 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2552 for (r = id_pre_v8_midr_cp_reginfo;
2553 r->type != ARM_CP_SENTINEL; r++) {
2554 r->access = PL1_RW;
2556 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2557 r->access = PL1_RW;
2560 if (arm_feature(env, ARM_FEATURE_V8)) {
2561 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
2562 } else {
2563 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
2565 define_arm_cp_regs(cpu, id_cp_reginfo);
2568 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2569 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2572 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2573 ARMCPRegInfo auxcr = {
2574 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
2575 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
2576 .access = PL1_RW, .type = ARM_CP_CONST,
2577 .resetvalue = cpu->reset_auxcr
2579 define_one_arm_cp_reg(cpu, &auxcr);
2582 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2583 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2584 /* 32 bit view is [31:18] 0...0 [43:32]. */
2585 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
2586 | extract64(cpu->reset_cbar, 32, 12);
2587 ARMCPRegInfo cbar_reginfo[] = {
2588 { .name = "CBAR",
2589 .type = ARM_CP_CONST,
2590 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2591 .access = PL1_R, .resetvalue = cpu->reset_cbar },
2592 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
2593 .type = ARM_CP_CONST,
2594 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
2595 .access = PL1_R, .resetvalue = cbar32 },
2596 REGINFO_SENTINEL
2598 /* We don't implement a r/w 64 bit CBAR currently */
2599 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
2600 define_arm_cp_regs(cpu, cbar_reginfo);
2601 } else {
2602 ARMCPRegInfo cbar = {
2603 .name = "CBAR",
2604 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2605 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2606 .fieldoffset = offsetof(CPUARMState,
2607 cp15.c15_config_base_address)
2609 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
2610 cbar.access = PL1_R;
2611 cbar.fieldoffset = 0;
2612 cbar.type = ARM_CP_CONST;
2614 define_one_arm_cp_reg(cpu, &cbar);
2618 /* Generic registers whose values depend on the implementation */
2620 ARMCPRegInfo sctlr = {
2621 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2622 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2623 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2624 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2625 .raw_writefn = raw_write,
2627 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2628 /* Normally we would always end the TB on an SCTLR write, but Linux
2629 * arch/arm/mach-pxa/sleep.S expects two instructions following
2630 * an MMU enable to execute from cache. Imitate this behaviour.
2632 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2634 define_one_arm_cp_reg(cpu, &sctlr);
2638 ARMCPU *cpu_arm_init(const char *cpu_model)
2640 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2643 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2645 CPUState *cs = CPU(cpu);
2646 CPUARMState *env = &cpu->env;
2648 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2649 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2650 aarch64_fpu_gdb_set_reg,
2651 34, "aarch64-fpu.xml", 0);
2652 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2653 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2654 51, "arm-neon.xml", 0);
2655 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2656 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2657 35, "arm-vfp3.xml", 0);
2658 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2659 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2660 19, "arm-vfp.xml", 0);
2664 /* Sort alphabetically by type name, except for "any". */
2665 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
2667 ObjectClass *class_a = (ObjectClass *)a;
2668 ObjectClass *class_b = (ObjectClass *)b;
2669 const char *name_a, *name_b;
2671 name_a = object_class_get_name(class_a);
2672 name_b = object_class_get_name(class_b);
2673 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2674 return 1;
2675 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2676 return -1;
2677 } else {
2678 return strcmp(name_a, name_b);
2682 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
2684 ObjectClass *oc = data;
2685 CPUListState *s = user_data;
2686 const char *typename;
2687 char *name;
2689 typename = object_class_get_name(oc);
2690 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2691 (*s->cpu_fprintf)(s->file, " %s\n",
2692 name);
2693 g_free(name);
2696 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2698 CPUListState s = {
2699 .file = f,
2700 .cpu_fprintf = cpu_fprintf,
2702 GSList *list;
2704 list = object_class_get_list(TYPE_ARM_CPU, false);
2705 list = g_slist_sort(list, arm_cpu_list_compare);
2706 (*cpu_fprintf)(f, "Available CPUs:\n");
2707 g_slist_foreach(list, arm_cpu_list_entry, &s);
2708 g_slist_free(list);
2709 #ifdef CONFIG_KVM
2710 /* The 'host' CPU type is dynamically registered only if KVM is
2711 * enabled, so we have to special-case it here:
2713 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2714 #endif
2717 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2719 ObjectClass *oc = data;
2720 CpuDefinitionInfoList **cpu_list = user_data;
2721 CpuDefinitionInfoList *entry;
2722 CpuDefinitionInfo *info;
2723 const char *typename;
2725 typename = object_class_get_name(oc);
2726 info = g_malloc0(sizeof(*info));
2727 info->name = g_strndup(typename,
2728 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2730 entry = g_malloc0(sizeof(*entry));
2731 entry->value = info;
2732 entry->next = *cpu_list;
2733 *cpu_list = entry;
2736 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2738 CpuDefinitionInfoList *cpu_list = NULL;
2739 GSList *list;
2741 list = object_class_get_list(TYPE_ARM_CPU, false);
2742 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2743 g_slist_free(list);
2745 return cpu_list;
2748 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2749 void *opaque, int state,
2750 int crm, int opc1, int opc2)
2752 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2753 * add a single reginfo struct to the hash table.
2755 uint32_t *key = g_new(uint32_t, 1);
2756 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2757 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2758 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2759 /* The AArch32 view of a shared register sees the lower 32 bits
2760 * of a 64 bit backing field. It is not migratable as the AArch64
2761 * view handles that. AArch64 also handles reset.
2762 * We assume it is a cp15 register.
2764 r2->cp = 15;
2765 r2->type |= ARM_CP_NO_MIGRATE;
2766 r2->resetfn = arm_cp_reset_ignore;
2767 #ifdef HOST_WORDS_BIGENDIAN
2768 if (r2->fieldoffset) {
2769 r2->fieldoffset += sizeof(uint32_t);
2771 #endif
2773 if (state == ARM_CP_STATE_AA64) {
2774 /* To allow abbreviation of ARMCPRegInfo
2775 * definitions, we treat cp == 0 as equivalent to
2776 * the value for "standard guest-visible sysreg".
2778 if (r->cp == 0) {
2779 r2->cp = CP_REG_ARM64_SYSREG_CP;
2781 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2782 r2->opc0, opc1, opc2);
2783 } else {
2784 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2786 if (opaque) {
2787 r2->opaque = opaque;
2789 /* reginfo passed to helpers is correct for the actual access,
2790 * and is never ARM_CP_STATE_BOTH:
2792 r2->state = state;
2793 /* Make sure reginfo passed to helpers for wildcarded regs
2794 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2796 r2->crm = crm;
2797 r2->opc1 = opc1;
2798 r2->opc2 = opc2;
2799 /* By convention, for wildcarded registers only the first
2800 * entry is used for migration; the others are marked as
2801 * NO_MIGRATE so we don't try to transfer the register
2802 * multiple times. Special registers (ie NOP/WFI) are
2803 * never migratable.
2805 if ((r->type & ARM_CP_SPECIAL) ||
2806 ((r->crm == CP_ANY) && crm != 0) ||
2807 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2808 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2809 r2->type |= ARM_CP_NO_MIGRATE;
2812 /* Overriding of an existing definition must be explicitly
2813 * requested.
2815 if (!(r->type & ARM_CP_OVERRIDE)) {
2816 ARMCPRegInfo *oldreg;
2817 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2818 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2819 fprintf(stderr, "Register redefined: cp=%d %d bit "
2820 "crn=%d crm=%d opc1=%d opc2=%d, "
2821 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2822 r2->crn, r2->crm, r2->opc1, r2->opc2,
2823 oldreg->name, r2->name);
2824 g_assert_not_reached();
2827 g_hash_table_insert(cpu->cp_regs, key, r2);
2831 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2832 const ARMCPRegInfo *r, void *opaque)
2834 /* Define implementations of coprocessor registers.
2835 * We store these in a hashtable because typically
2836 * there are less than 150 registers in a space which
2837 * is 16*16*16*8*8 = 262144 in size.
2838 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2839 * If a register is defined twice then the second definition is
2840 * used, so this can be used to define some generic registers and
2841 * then override them with implementation specific variations.
2842 * At least one of the original and the second definition should
2843 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2844 * against accidental use.
2846 * The state field defines whether the register is to be
2847 * visible in the AArch32 or AArch64 execution state. If the
2848 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2849 * reginfo structure for the AArch32 view, which sees the lower
2850 * 32 bits of the 64 bit register.
2852 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2853 * be wildcarded. AArch64 registers are always considered to be 64
2854 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2855 * the register, if any.
2857 int crm, opc1, opc2, state;
2858 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2859 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2860 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2861 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2862 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2863 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2864 /* 64 bit registers have only CRm and Opc1 fields */
2865 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2866 /* op0 only exists in the AArch64 encodings */
2867 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2868 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2869 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2870 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2871 * encodes a minimum access level for the register. We roll this
2872 * runtime check into our general permission check code, so check
2873 * here that the reginfo's specified permissions are strict enough
2874 * to encompass the generic architectural permission check.
2876 if (r->state != ARM_CP_STATE_AA32) {
2877 int mask = 0;
2878 switch (r->opc1) {
2879 case 0: case 1: case 2:
2880 /* min_EL EL1 */
2881 mask = PL1_RW;
2882 break;
2883 case 3:
2884 /* min_EL EL0 */
2885 mask = PL0_RW;
2886 break;
2887 case 4:
2888 /* min_EL EL2 */
2889 mask = PL2_RW;
2890 break;
2891 case 5:
2892 /* unallocated encoding, so not possible */
2893 assert(false);
2894 break;
2895 case 6:
2896 /* min_EL EL3 */
2897 mask = PL3_RW;
2898 break;
2899 case 7:
2900 /* min_EL EL1, secure mode only (we don't check the latter) */
2901 mask = PL1_RW;
2902 break;
2903 default:
2904 /* broken reginfo with out-of-range opc1 */
2905 assert(false);
2906 break;
2908 /* assert our permissions are not too lax (stricter is fine) */
2909 assert((r->access & ~mask) == 0);
2912 /* Check that the register definition has enough info to handle
2913 * reads and writes if they are permitted.
2915 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2916 if (r->access & PL3_R) {
2917 assert(r->fieldoffset || r->readfn);
2919 if (r->access & PL3_W) {
2920 assert(r->fieldoffset || r->writefn);
2923 /* Bad type field probably means missing sentinel at end of reg list */
2924 assert(cptype_valid(r->type));
2925 for (crm = crmmin; crm <= crmmax; crm++) {
2926 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2927 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2928 for (state = ARM_CP_STATE_AA32;
2929 state <= ARM_CP_STATE_AA64; state++) {
2930 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2931 continue;
2933 add_cpreg_to_hashtable(cpu, r, opaque, state,
2934 crm, opc1, opc2);
2941 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2942 const ARMCPRegInfo *regs, void *opaque)
2944 /* Define a whole list of registers */
2945 const ARMCPRegInfo *r;
2946 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2947 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2951 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2953 return g_hash_table_lookup(cpregs, &encoded_cp);
2956 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2957 uint64_t value)
2959 /* Helper coprocessor write function for write-ignore registers */
2962 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2964 /* Helper coprocessor write function for read-as-zero registers */
2965 return 0;
2968 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2970 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2973 static int bad_mode_switch(CPUARMState *env, int mode)
2975 /* Return true if it is not valid for us to switch to
2976 * this CPU mode (ie all the UNPREDICTABLE cases in
2977 * the ARM ARM CPSRWriteByInstr pseudocode).
2979 switch (mode) {
2980 case ARM_CPU_MODE_USR:
2981 case ARM_CPU_MODE_SYS:
2982 case ARM_CPU_MODE_SVC:
2983 case ARM_CPU_MODE_ABT:
2984 case ARM_CPU_MODE_UND:
2985 case ARM_CPU_MODE_IRQ:
2986 case ARM_CPU_MODE_FIQ:
2987 return 0;
2988 default:
2989 return 1;
2993 uint32_t cpsr_read(CPUARMState *env)
2995 int ZF;
2996 ZF = (env->ZF == 0);
2997 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2998 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2999 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
3000 | ((env->condexec_bits & 0xfc) << 8)
3001 | (env->GE << 16) | (env->daif & CPSR_AIF);
3004 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
3006 if (mask & CPSR_NZCV) {
3007 env->ZF = (~val) & CPSR_Z;
3008 env->NF = val;
3009 env->CF = (val >> 29) & 1;
3010 env->VF = (val << 3) & 0x80000000;
3012 if (mask & CPSR_Q)
3013 env->QF = ((val & CPSR_Q) != 0);
3014 if (mask & CPSR_T)
3015 env->thumb = ((val & CPSR_T) != 0);
3016 if (mask & CPSR_IT_0_1) {
3017 env->condexec_bits &= ~3;
3018 env->condexec_bits |= (val >> 25) & 3;
3020 if (mask & CPSR_IT_2_7) {
3021 env->condexec_bits &= 3;
3022 env->condexec_bits |= (val >> 8) & 0xfc;
3024 if (mask & CPSR_GE) {
3025 env->GE = (val >> 16) & 0xf;
3028 env->daif &= ~(CPSR_AIF & mask);
3029 env->daif |= val & CPSR_AIF & mask;
3031 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
3032 if (bad_mode_switch(env, val & CPSR_M)) {
3033 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3034 * We choose to ignore the attempt and leave the CPSR M field
3035 * untouched.
3037 mask &= ~CPSR_M;
3038 } else {
3039 switch_mode(env, val & CPSR_M);
3042 mask &= ~CACHED_CPSR_BITS;
3043 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
3046 /* Sign/zero extend */
3047 uint32_t HELPER(sxtb16)(uint32_t x)
3049 uint32_t res;
3050 res = (uint16_t)(int8_t)x;
3051 res |= (uint32_t)(int8_t)(x >> 16) << 16;
3052 return res;
3055 uint32_t HELPER(uxtb16)(uint32_t x)
3057 uint32_t res;
3058 res = (uint16_t)(uint8_t)x;
3059 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
3060 return res;
3063 uint32_t HELPER(clz)(uint32_t x)
3065 return clz32(x);
3068 int32_t HELPER(sdiv)(int32_t num, int32_t den)
3070 if (den == 0)
3071 return 0;
3072 if (num == INT_MIN && den == -1)
3073 return INT_MIN;
3074 return num / den;
3077 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
3079 if (den == 0)
3080 return 0;
3081 return num / den;
3084 uint32_t HELPER(rbit)(uint32_t x)
3086 x = ((x & 0xff000000) >> 24)
3087 | ((x & 0x00ff0000) >> 8)
3088 | ((x & 0x0000ff00) << 8)
3089 | ((x & 0x000000ff) << 24);
3090 x = ((x & 0xf0f0f0f0) >> 4)
3091 | ((x & 0x0f0f0f0f) << 4);
3092 x = ((x & 0x88888888) >> 3)
3093 | ((x & 0x44444444) >> 1)
3094 | ((x & 0x22222222) << 1)
3095 | ((x & 0x11111111) << 3);
3096 return x;
3099 #if defined(CONFIG_USER_ONLY)
3101 void arm_cpu_do_interrupt(CPUState *cs)
3103 cs->exception_index = -1;
3106 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
3107 int mmu_idx)
3109 ARMCPU *cpu = ARM_CPU(cs);
3110 CPUARMState *env = &cpu->env;
3112 env->exception.vaddress = address;
3113 if (rw == 2) {
3114 cs->exception_index = EXCP_PREFETCH_ABORT;
3115 } else {
3116 cs->exception_index = EXCP_DATA_ABORT;
3118 return 1;
3121 /* These should probably raise undefined insn exceptions. */
3122 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3124 ARMCPU *cpu = arm_env_get_cpu(env);
3126 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
3129 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3131 ARMCPU *cpu = arm_env_get_cpu(env);
3133 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
3134 return 0;
3137 void switch_mode(CPUARMState *env, int mode)
3139 ARMCPU *cpu = arm_env_get_cpu(env);
3141 if (mode != ARM_CPU_MODE_USR) {
3142 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
3146 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3148 ARMCPU *cpu = arm_env_get_cpu(env);
3150 cpu_abort(CPU(cpu), "banked r13 write\n");
3153 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3155 ARMCPU *cpu = arm_env_get_cpu(env);
3157 cpu_abort(CPU(cpu), "banked r13 read\n");
3158 return 0;
3161 #else
3163 /* Map CPU modes onto saved register banks. */
3164 int bank_number(int mode)
3166 switch (mode) {
3167 case ARM_CPU_MODE_USR:
3168 case ARM_CPU_MODE_SYS:
3169 return 0;
3170 case ARM_CPU_MODE_SVC:
3171 return 1;
3172 case ARM_CPU_MODE_ABT:
3173 return 2;
3174 case ARM_CPU_MODE_UND:
3175 return 3;
3176 case ARM_CPU_MODE_IRQ:
3177 return 4;
3178 case ARM_CPU_MODE_FIQ:
3179 return 5;
3180 case ARM_CPU_MODE_HYP:
3181 return 6;
3182 case ARM_CPU_MODE_MON:
3183 return 7;
3185 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
3188 void switch_mode(CPUARMState *env, int mode)
3190 int old_mode;
3191 int i;
3193 old_mode = env->uncached_cpsr & CPSR_M;
3194 if (mode == old_mode)
3195 return;
3197 if (old_mode == ARM_CPU_MODE_FIQ) {
3198 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
3199 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
3200 } else if (mode == ARM_CPU_MODE_FIQ) {
3201 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
3202 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
3205 i = bank_number(old_mode);
3206 env->banked_r13[i] = env->regs[13];
3207 env->banked_r14[i] = env->regs[14];
3208 env->banked_spsr[i] = env->spsr;
3210 i = bank_number(mode);
3211 env->regs[13] = env->banked_r13[i];
3212 env->regs[14] = env->banked_r14[i];
3213 env->spsr = env->banked_spsr[i];
3216 static void v7m_push(CPUARMState *env, uint32_t val)
3218 CPUState *cs = CPU(arm_env_get_cpu(env));
3220 env->regs[13] -= 4;
3221 stl_phys(cs->as, env->regs[13], val);
3224 static uint32_t v7m_pop(CPUARMState *env)
3226 CPUState *cs = CPU(arm_env_get_cpu(env));
3227 uint32_t val;
3229 val = ldl_phys(cs->as, env->regs[13]);
3230 env->regs[13] += 4;
3231 return val;
3234 /* Switch to V7M main or process stack pointer. */
3235 static void switch_v7m_sp(CPUARMState *env, int process)
3237 uint32_t tmp;
3238 if (env->v7m.current_sp != process) {
3239 tmp = env->v7m.other_sp;
3240 env->v7m.other_sp = env->regs[13];
3241 env->regs[13] = tmp;
3242 env->v7m.current_sp = process;
3246 static void do_v7m_exception_exit(CPUARMState *env)
3248 uint32_t type;
3249 uint32_t xpsr;
3251 type = env->regs[15];
3252 if (env->v7m.exception != 0)
3253 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
3255 /* Switch to the target stack. */
3256 switch_v7m_sp(env, (type & 4) != 0);
3257 /* Pop registers. */
3258 env->regs[0] = v7m_pop(env);
3259 env->regs[1] = v7m_pop(env);
3260 env->regs[2] = v7m_pop(env);
3261 env->regs[3] = v7m_pop(env);
3262 env->regs[12] = v7m_pop(env);
3263 env->regs[14] = v7m_pop(env);
3264 env->regs[15] = v7m_pop(env);
3265 xpsr = v7m_pop(env);
3266 xpsr_write(env, xpsr, 0xfffffdff);
3267 /* Undo stack alignment. */
3268 if (xpsr & 0x200)
3269 env->regs[13] |= 4;
3270 /* ??? The exception return type specifies Thread/Handler mode. However
3271 this is also implied by the xPSR value. Not sure what to do
3272 if there is a mismatch. */
3273 /* ??? Likewise for mismatches between the CONTROL register and the stack
3274 pointer. */
3277 void arm_v7m_cpu_do_interrupt(CPUState *cs)
3279 ARMCPU *cpu = ARM_CPU(cs);
3280 CPUARMState *env = &cpu->env;
3281 uint32_t xpsr = xpsr_read(env);
3282 uint32_t lr;
3283 uint32_t addr;
3285 arm_log_exception(cs->exception_index);
3287 lr = 0xfffffff1;
3288 if (env->v7m.current_sp)
3289 lr |= 4;
3290 if (env->v7m.exception == 0)
3291 lr |= 8;
3293 /* For exceptions we just mark as pending on the NVIC, and let that
3294 handle it. */
3295 /* TODO: Need to escalate if the current priority is higher than the
3296 one we're raising. */
3297 switch (cs->exception_index) {
3298 case EXCP_UDEF:
3299 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
3300 return;
3301 case EXCP_SWI:
3302 /* The PC already points to the next instruction. */
3303 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
3304 return;
3305 case EXCP_PREFETCH_ABORT:
3306 case EXCP_DATA_ABORT:
3307 /* TODO: if we implemented the MPU registers, this is where we
3308 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3310 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
3311 return;
3312 case EXCP_BKPT:
3313 if (semihosting_enabled) {
3314 int nr;
3315 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3316 if (nr == 0xab) {
3317 env->regs[15] += 2;
3318 env->regs[0] = do_arm_semihosting(env);
3319 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3320 return;
3323 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
3324 return;
3325 case EXCP_IRQ:
3326 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
3327 break;
3328 case EXCP_EXCEPTION_EXIT:
3329 do_v7m_exception_exit(env);
3330 return;
3331 default:
3332 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3333 return; /* Never happens. Keep compiler happy. */
3336 /* Align stack pointer. */
3337 /* ??? Should only do this if Configuration Control Register
3338 STACKALIGN bit is set. */
3339 if (env->regs[13] & 4) {
3340 env->regs[13] -= 4;
3341 xpsr |= 0x200;
3343 /* Switch to the handler mode. */
3344 v7m_push(env, xpsr);
3345 v7m_push(env, env->regs[15]);
3346 v7m_push(env, env->regs[14]);
3347 v7m_push(env, env->regs[12]);
3348 v7m_push(env, env->regs[3]);
3349 v7m_push(env, env->regs[2]);
3350 v7m_push(env, env->regs[1]);
3351 v7m_push(env, env->regs[0]);
3352 switch_v7m_sp(env, 0);
3353 /* Clear IT bits */
3354 env->condexec_bits = 0;
3355 env->regs[14] = lr;
3356 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
3357 env->regs[15] = addr & 0xfffffffe;
3358 env->thumb = addr & 1;
3361 /* Handle a CPU exception. */
3362 void arm_cpu_do_interrupt(CPUState *cs)
3364 ARMCPU *cpu = ARM_CPU(cs);
3365 CPUARMState *env = &cpu->env;
3366 uint32_t addr;
3367 uint32_t mask;
3368 int new_mode;
3369 uint32_t offset;
3371 assert(!IS_M(env));
3373 arm_log_exception(cs->exception_index);
3375 /* TODO: Vectored interrupt controller. */
3376 switch (cs->exception_index) {
3377 case EXCP_UDEF:
3378 new_mode = ARM_CPU_MODE_UND;
3379 addr = 0x04;
3380 mask = CPSR_I;
3381 if (env->thumb)
3382 offset = 2;
3383 else
3384 offset = 4;
3385 break;
3386 case EXCP_SWI:
3387 if (semihosting_enabled) {
3388 /* Check for semihosting interrupt. */
3389 if (env->thumb) {
3390 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
3391 & 0xff;
3392 } else {
3393 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
3394 & 0xffffff;
3396 /* Only intercept calls from privileged modes, to provide some
3397 semblance of security. */
3398 if (((mask == 0x123456 && !env->thumb)
3399 || (mask == 0xab && env->thumb))
3400 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3401 env->regs[0] = do_arm_semihosting(env);
3402 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3403 return;
3406 new_mode = ARM_CPU_MODE_SVC;
3407 addr = 0x08;
3408 mask = CPSR_I;
3409 /* The PC already points to the next instruction. */
3410 offset = 0;
3411 break;
3412 case EXCP_BKPT:
3413 /* See if this is a semihosting syscall. */
3414 if (env->thumb && semihosting_enabled) {
3415 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3416 if (mask == 0xab
3417 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3418 env->regs[15] += 2;
3419 env->regs[0] = do_arm_semihosting(env);
3420 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3421 return;
3424 env->exception.fsr = 2;
3425 /* Fall through to prefetch abort. */
3426 case EXCP_PREFETCH_ABORT:
3427 env->cp15.ifsr_el2 = env->exception.fsr;
3428 env->cp15.far_el1 = deposit64(env->cp15.far_el1, 32, 32,
3429 env->exception.vaddress);
3430 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3431 env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress);
3432 new_mode = ARM_CPU_MODE_ABT;
3433 addr = 0x0c;
3434 mask = CPSR_A | CPSR_I;
3435 offset = 4;
3436 break;
3437 case EXCP_DATA_ABORT:
3438 env->cp15.esr_el[1] = env->exception.fsr;
3439 env->cp15.far_el1 = deposit64(env->cp15.far_el1, 0, 32,
3440 env->exception.vaddress);
3441 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3442 (uint32_t)env->cp15.esr_el[1],
3443 (uint32_t)env->exception.vaddress);
3444 new_mode = ARM_CPU_MODE_ABT;
3445 addr = 0x10;
3446 mask = CPSR_A | CPSR_I;
3447 offset = 8;
3448 break;
3449 case EXCP_IRQ:
3450 new_mode = ARM_CPU_MODE_IRQ;
3451 addr = 0x18;
3452 /* Disable IRQ and imprecise data aborts. */
3453 mask = CPSR_A | CPSR_I;
3454 offset = 4;
3455 break;
3456 case EXCP_FIQ:
3457 new_mode = ARM_CPU_MODE_FIQ;
3458 addr = 0x1c;
3459 /* Disable FIQ, IRQ and imprecise data aborts. */
3460 mask = CPSR_A | CPSR_I | CPSR_F;
3461 offset = 4;
3462 break;
3463 default:
3464 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3465 return; /* Never happens. Keep compiler happy. */
3467 /* High vectors. */
3468 if (env->cp15.c1_sys & SCTLR_V) {
3469 /* when enabled, base address cannot be remapped. */
3470 addr += 0xffff0000;
3471 } else {
3472 /* ARM v7 architectures provide a vector base address register to remap
3473 * the interrupt vector table.
3474 * This register is only followed in non-monitor mode, and has a secure
3475 * and un-secure copy. Since the cpu is always in a un-secure operation
3476 * and is never in monitor mode this feature is always active.
3477 * Note: only bits 31:5 are valid.
3479 addr += env->cp15.vbar_el[1];
3481 switch_mode (env, new_mode);
3482 env->spsr = cpsr_read(env);
3483 /* Clear IT bits. */
3484 env->condexec_bits = 0;
3485 /* Switch to the new mode, and to the correct instruction set. */
3486 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3487 env->daif |= mask;
3488 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3489 * and we should just guard the thumb mode on V4 */
3490 if (arm_feature(env, ARM_FEATURE_V4T)) {
3491 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3493 env->regs[14] = env->regs[15] + offset;
3494 env->regs[15] = addr;
3495 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
3498 /* Check section/page access permissions.
3499 Returns the page protection flags, or zero if the access is not
3500 permitted. */
3501 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3502 int access_type, int is_user)
3504 int prot_ro;
3506 if (domain_prot == 3) {
3507 return PAGE_READ | PAGE_WRITE;
3510 if (access_type == 1)
3511 prot_ro = 0;
3512 else
3513 prot_ro = PAGE_READ;
3515 switch (ap) {
3516 case 0:
3517 if (arm_feature(env, ARM_FEATURE_V7)) {
3518 return 0;
3520 if (access_type == 1)
3521 return 0;
3522 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3523 case SCTLR_S:
3524 return is_user ? 0 : PAGE_READ;
3525 case SCTLR_R:
3526 return PAGE_READ;
3527 default:
3528 return 0;
3530 case 1:
3531 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3532 case 2:
3533 if (is_user)
3534 return prot_ro;
3535 else
3536 return PAGE_READ | PAGE_WRITE;
3537 case 3:
3538 return PAGE_READ | PAGE_WRITE;
3539 case 4: /* Reserved. */
3540 return 0;
3541 case 5:
3542 return is_user ? 0 : prot_ro;
3543 case 6:
3544 return prot_ro;
3545 case 7:
3546 if (!arm_feature (env, ARM_FEATURE_V6K))
3547 return 0;
3548 return prot_ro;
3549 default:
3550 abort();
3554 static bool get_level1_table_address(CPUARMState *env, uint32_t *table,
3555 uint32_t address)
3557 if (address & env->cp15.c2_mask) {
3558 if ((env->cp15.c2_control & TTBCR_PD1)) {
3559 /* Translation table walk disabled for TTBR1 */
3560 return false;
3562 *table = env->cp15.ttbr1_el1 & 0xffffc000;
3563 } else {
3564 if ((env->cp15.c2_control & TTBCR_PD0)) {
3565 /* Translation table walk disabled for TTBR0 */
3566 return false;
3568 *table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3570 *table |= (address >> 18) & 0x3ffc;
3571 return true;
3574 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
3575 int is_user, hwaddr *phys_ptr,
3576 int *prot, target_ulong *page_size)
3578 CPUState *cs = CPU(arm_env_get_cpu(env));
3579 int code;
3580 uint32_t table;
3581 uint32_t desc;
3582 int type;
3583 int ap;
3584 int domain = 0;
3585 int domain_prot;
3586 hwaddr phys_addr;
3588 /* Pagetable walk. */
3589 /* Lookup l1 descriptor. */
3590 if (!get_level1_table_address(env, &table, address)) {
3591 /* Section translation fault if page walk is disabled by PD0 or PD1 */
3592 code = 5;
3593 goto do_fault;
3595 desc = ldl_phys(cs->as, table);
3596 type = (desc & 3);
3597 domain = (desc >> 5) & 0x0f;
3598 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3599 if (type == 0) {
3600 /* Section translation fault. */
3601 code = 5;
3602 goto do_fault;
3604 if (domain_prot == 0 || domain_prot == 2) {
3605 if (type == 2)
3606 code = 9; /* Section domain fault. */
3607 else
3608 code = 11; /* Page domain fault. */
3609 goto do_fault;
3611 if (type == 2) {
3612 /* 1Mb section. */
3613 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3614 ap = (desc >> 10) & 3;
3615 code = 13;
3616 *page_size = 1024 * 1024;
3617 } else {
3618 /* Lookup l2 entry. */
3619 if (type == 1) {
3620 /* Coarse pagetable. */
3621 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3622 } else {
3623 /* Fine pagetable. */
3624 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3626 desc = ldl_phys(cs->as, table);
3627 switch (desc & 3) {
3628 case 0: /* Page translation fault. */
3629 code = 7;
3630 goto do_fault;
3631 case 1: /* 64k page. */
3632 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3633 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
3634 *page_size = 0x10000;
3635 break;
3636 case 2: /* 4k page. */
3637 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3638 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
3639 *page_size = 0x1000;
3640 break;
3641 case 3: /* 1k page. */
3642 if (type == 1) {
3643 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3644 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3645 } else {
3646 /* Page translation fault. */
3647 code = 7;
3648 goto do_fault;
3650 } else {
3651 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3653 ap = (desc >> 4) & 3;
3654 *page_size = 0x400;
3655 break;
3656 default:
3657 /* Never happens, but compiler isn't smart enough to tell. */
3658 abort();
3660 code = 15;
3662 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3663 if (!*prot) {
3664 /* Access permission fault. */
3665 goto do_fault;
3667 *prot |= PAGE_EXEC;
3668 *phys_ptr = phys_addr;
3669 return 0;
3670 do_fault:
3671 return code | (domain << 4);
3674 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
3675 int is_user, hwaddr *phys_ptr,
3676 int *prot, target_ulong *page_size)
3678 CPUState *cs = CPU(arm_env_get_cpu(env));
3679 int code;
3680 uint32_t table;
3681 uint32_t desc;
3682 uint32_t xn;
3683 uint32_t pxn = 0;
3684 int type;
3685 int ap;
3686 int domain = 0;
3687 int domain_prot;
3688 hwaddr phys_addr;
3690 /* Pagetable walk. */
3691 /* Lookup l1 descriptor. */
3692 if (!get_level1_table_address(env, &table, address)) {
3693 /* Section translation fault if page walk is disabled by PD0 or PD1 */
3694 code = 5;
3695 goto do_fault;
3697 desc = ldl_phys(cs->as, table);
3698 type = (desc & 3);
3699 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3700 /* Section translation fault, or attempt to use the encoding
3701 * which is Reserved on implementations without PXN.
3703 code = 5;
3704 goto do_fault;
3706 if ((type == 1) || !(desc & (1 << 18))) {
3707 /* Page or Section. */
3708 domain = (desc >> 5) & 0x0f;
3710 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3711 if (domain_prot == 0 || domain_prot == 2) {
3712 if (type != 1) {
3713 code = 9; /* Section domain fault. */
3714 } else {
3715 code = 11; /* Page domain fault. */
3717 goto do_fault;
3719 if (type != 1) {
3720 if (desc & (1 << 18)) {
3721 /* Supersection. */
3722 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
3723 *page_size = 0x1000000;
3724 } else {
3725 /* Section. */
3726 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3727 *page_size = 0x100000;
3729 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3730 xn = desc & (1 << 4);
3731 pxn = desc & 1;
3732 code = 13;
3733 } else {
3734 if (arm_feature(env, ARM_FEATURE_PXN)) {
3735 pxn = (desc >> 2) & 1;
3737 /* Lookup l2 entry. */
3738 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3739 desc = ldl_phys(cs->as, table);
3740 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3741 switch (desc & 3) {
3742 case 0: /* Page translation fault. */
3743 code = 7;
3744 goto do_fault;
3745 case 1: /* 64k page. */
3746 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3747 xn = desc & (1 << 15);
3748 *page_size = 0x10000;
3749 break;
3750 case 2: case 3: /* 4k page. */
3751 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3752 xn = desc & 1;
3753 *page_size = 0x1000;
3754 break;
3755 default:
3756 /* Never happens, but compiler isn't smart enough to tell. */
3757 abort();
3759 code = 15;
3761 if (domain_prot == 3) {
3762 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3763 } else {
3764 if (pxn && !is_user) {
3765 xn = 1;
3767 if (xn && access_type == 2)
3768 goto do_fault;
3770 /* The simplified model uses AP[0] as an access control bit. */
3771 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3772 /* Access flag fault. */
3773 code = (code == 15) ? 6 : 3;
3774 goto do_fault;
3776 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3777 if (!*prot) {
3778 /* Access permission fault. */
3779 goto do_fault;
3781 if (!xn) {
3782 *prot |= PAGE_EXEC;
3785 *phys_ptr = phys_addr;
3786 return 0;
3787 do_fault:
3788 return code | (domain << 4);
3791 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3792 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3794 typedef enum {
3795 translation_fault = 1,
3796 access_fault = 2,
3797 permission_fault = 3,
3798 } MMUFaultType;
3800 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
3801 int access_type, int is_user,
3802 hwaddr *phys_ptr, int *prot,
3803 target_ulong *page_size_ptr)
3805 CPUState *cs = CPU(arm_env_get_cpu(env));
3806 /* Read an LPAE long-descriptor translation table. */
3807 MMUFaultType fault_type = translation_fault;
3808 uint32_t level = 1;
3809 uint32_t epd;
3810 int32_t tsz;
3811 uint32_t tg;
3812 uint64_t ttbr;
3813 int ttbr_select;
3814 hwaddr descaddr, descmask;
3815 uint32_t tableattrs;
3816 target_ulong page_size;
3817 uint32_t attrs;
3818 int32_t granule_sz = 9;
3819 int32_t va_size = 32;
3820 int32_t tbi = 0;
3822 if (arm_el_is_aa64(env, 1)) {
3823 va_size = 64;
3824 if (extract64(address, 55, 1))
3825 tbi = extract64(env->cp15.c2_control, 38, 1);
3826 else
3827 tbi = extract64(env->cp15.c2_control, 37, 1);
3828 tbi *= 8;
3831 /* Determine whether this address is in the region controlled by
3832 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3833 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3834 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3836 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6);
3837 if (arm_el_is_aa64(env, 1)) {
3838 t0sz = MIN(t0sz, 39);
3839 t0sz = MAX(t0sz, 16);
3841 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6);
3842 if (arm_el_is_aa64(env, 1)) {
3843 t1sz = MIN(t1sz, 39);
3844 t1sz = MAX(t1sz, 16);
3846 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3847 /* there is a ttbr0 region and we are in it (high bits all zero) */
3848 ttbr_select = 0;
3849 } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3850 /* there is a ttbr1 region and we are in it (high bits all one) */
3851 ttbr_select = 1;
3852 } else if (!t0sz) {
3853 /* ttbr0 region is "everything not in the ttbr1 region" */
3854 ttbr_select = 0;
3855 } else if (!t1sz) {
3856 /* ttbr1 region is "everything not in the ttbr0 region" */
3857 ttbr_select = 1;
3858 } else {
3859 /* in the gap between the two regions, this is a Translation fault */
3860 fault_type = translation_fault;
3861 goto do_fault;
3864 /* Note that QEMU ignores shareability and cacheability attributes,
3865 * so we don't need to do anything with the SH, ORGN, IRGN fields
3866 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3867 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3868 * implement any ASID-like capability so we can ignore it (instead
3869 * we will always flush the TLB any time the ASID is changed).
3871 if (ttbr_select == 0) {
3872 ttbr = env->cp15.ttbr0_el1;
3873 epd = extract32(env->cp15.c2_control, 7, 1);
3874 tsz = t0sz;
3876 tg = extract32(env->cp15.c2_control, 14, 2);
3877 if (tg == 1) { /* 64KB pages */
3878 granule_sz = 13;
3880 if (tg == 2) { /* 16KB pages */
3881 granule_sz = 11;
3883 } else {
3884 ttbr = env->cp15.ttbr1_el1;
3885 epd = extract32(env->cp15.c2_control, 23, 1);
3886 tsz = t1sz;
3888 tg = extract32(env->cp15.c2_control, 30, 2);
3889 if (tg == 3) { /* 64KB pages */
3890 granule_sz = 13;
3892 if (tg == 1) { /* 16KB pages */
3893 granule_sz = 11;
3897 if (epd) {
3898 /* Translation table walk disabled => Translation fault on TLB miss */
3899 goto do_fault;
3902 /* The starting level depends on the virtual address size which can be
3903 * up to 48-bits and the translation granule size.
3905 if ((va_size - tsz) > (granule_sz * 4 + 3)) {
3906 level = 0;
3907 } else if ((va_size - tsz) > (granule_sz * 3 + 3)) {
3908 level = 1;
3909 } else {
3910 level = 2;
3913 /* Clear the vaddr bits which aren't part of the within-region address,
3914 * so that we don't have to special case things when calculating the
3915 * first descriptor address.
3917 if (tsz) {
3918 address &= (1ULL << (va_size - tsz)) - 1;
3921 descmask = (1ULL << (granule_sz + 3)) - 1;
3923 /* Now we can extract the actual base address from the TTBR */
3924 descaddr = extract64(ttbr, 0, 48);
3925 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3927 tableattrs = 0;
3928 for (;;) {
3929 uint64_t descriptor;
3931 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
3932 descaddr &= ~7ULL;
3933 descriptor = ldq_phys(cs->as, descaddr);
3934 if (!(descriptor & 1) ||
3935 (!(descriptor & 2) && (level == 3))) {
3936 /* Invalid, or the Reserved level 3 encoding */
3937 goto do_fault;
3939 descaddr = descriptor & 0xfffffff000ULL;
3941 if ((descriptor & 2) && (level < 3)) {
3942 /* Table entry. The top five bits are attributes which may
3943 * propagate down through lower levels of the table (and
3944 * which are all arranged so that 0 means "no effect", so
3945 * we can gather them up by ORing in the bits at each level).
3947 tableattrs |= extract64(descriptor, 59, 5);
3948 level++;
3949 continue;
3951 /* Block entry at level 1 or 2, or page entry at level 3.
3952 * These are basically the same thing, although the number
3953 * of bits we pull in from the vaddr varies.
3955 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
3956 descaddr |= (address & (page_size - 1));
3957 /* Extract attributes from the descriptor and merge with table attrs */
3958 attrs = extract64(descriptor, 2, 10)
3959 | (extract64(descriptor, 52, 12) << 10);
3960 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3961 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3962 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3963 * means "force PL1 access only", which means forcing AP[1] to 0.
3965 if (extract32(tableattrs, 2, 1)) {
3966 attrs &= ~(1 << 4);
3968 /* Since we're always in the Non-secure state, NSTable is ignored. */
3969 break;
3971 /* Here descaddr is the final physical address, and attributes
3972 * are all in attrs.
3974 fault_type = access_fault;
3975 if ((attrs & (1 << 8)) == 0) {
3976 /* Access flag */
3977 goto do_fault;
3979 fault_type = permission_fault;
3980 if (is_user && !(attrs & (1 << 4))) {
3981 /* Unprivileged access not enabled */
3982 goto do_fault;
3984 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3985 if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) ||
3986 (!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) ||
3987 (!is_user && (attrs & (1 << 11)))) {
3988 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
3989 * treat XN/UXN as UXN for v8.
3991 if (access_type == 2) {
3992 goto do_fault;
3994 *prot &= ~PAGE_EXEC;
3996 if (attrs & (1 << 5)) {
3997 /* Write access forbidden */
3998 if (access_type == 1) {
3999 goto do_fault;
4001 *prot &= ~PAGE_WRITE;
4004 *phys_ptr = descaddr;
4005 *page_size_ptr = page_size;
4006 return 0;
4008 do_fault:
4009 /* Long-descriptor format IFSR/DFSR value */
4010 return (1 << 9) | (fault_type << 2) | level;
4013 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
4014 int access_type, int is_user,
4015 hwaddr *phys_ptr, int *prot)
4017 int n;
4018 uint32_t mask;
4019 uint32_t base;
4021 *phys_ptr = address;
4022 for (n = 7; n >= 0; n--) {
4023 base = env->cp15.c6_region[n];
4024 if ((base & 1) == 0)
4025 continue;
4026 mask = 1 << ((base >> 1) & 0x1f);
4027 /* Keep this shift separate from the above to avoid an
4028 (undefined) << 32. */
4029 mask = (mask << 1) - 1;
4030 if (((base ^ address) & ~mask) == 0)
4031 break;
4033 if (n < 0)
4034 return 2;
4036 if (access_type == 2) {
4037 mask = env->cp15.pmsav5_insn_ap;
4038 } else {
4039 mask = env->cp15.pmsav5_data_ap;
4041 mask = (mask >> (n * 4)) & 0xf;
4042 switch (mask) {
4043 case 0:
4044 return 1;
4045 case 1:
4046 if (is_user)
4047 return 1;
4048 *prot = PAGE_READ | PAGE_WRITE;
4049 break;
4050 case 2:
4051 *prot = PAGE_READ;
4052 if (!is_user)
4053 *prot |= PAGE_WRITE;
4054 break;
4055 case 3:
4056 *prot = PAGE_READ | PAGE_WRITE;
4057 break;
4058 case 5:
4059 if (is_user)
4060 return 1;
4061 *prot = PAGE_READ;
4062 break;
4063 case 6:
4064 *prot = PAGE_READ;
4065 break;
4066 default:
4067 /* Bad permission. */
4068 return 1;
4070 *prot |= PAGE_EXEC;
4071 return 0;
4074 /* get_phys_addr - get the physical address for this virtual address
4076 * Find the physical address corresponding to the given virtual address,
4077 * by doing a translation table walk on MMU based systems or using the
4078 * MPU state on MPU based systems.
4080 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
4081 * prot and page_size are not filled in, and the return value provides
4082 * information on why the translation aborted, in the format of a
4083 * DFSR/IFSR fault register, with the following caveats:
4084 * * we honour the short vs long DFSR format differences.
4085 * * the WnR bit is never set (the caller must do this).
4086 * * for MPU based systems we don't bother to return a full FSR format
4087 * value.
4089 * @env: CPUARMState
4090 * @address: virtual address to get physical address for
4091 * @access_type: 0 for read, 1 for write, 2 for execute
4092 * @is_user: 0 for privileged access, 1 for user
4093 * @phys_ptr: set to the physical address corresponding to the virtual address
4094 * @prot: set to the permissions for the page containing phys_ptr
4095 * @page_size: set to the size of the page containing phys_ptr
4097 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
4098 int access_type, int is_user,
4099 hwaddr *phys_ptr, int *prot,
4100 target_ulong *page_size)
4102 /* Fast Context Switch Extension. */
4103 if (address < 0x02000000)
4104 address += env->cp15.c13_fcse;
4106 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
4107 /* MMU/MPU disabled. */
4108 *phys_ptr = address;
4109 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
4110 *page_size = TARGET_PAGE_SIZE;
4111 return 0;
4112 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
4113 *page_size = TARGET_PAGE_SIZE;
4114 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
4115 prot);
4116 } else if (extended_addresses_enabled(env)) {
4117 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
4118 prot, page_size);
4119 } else if (env->cp15.c1_sys & SCTLR_XP) {
4120 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
4121 prot, page_size);
4122 } else {
4123 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
4124 prot, page_size);
4128 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
4129 int access_type, int mmu_idx)
4131 ARMCPU *cpu = ARM_CPU(cs);
4132 CPUARMState *env = &cpu->env;
4133 hwaddr phys_addr;
4134 target_ulong page_size;
4135 int prot;
4136 int ret, is_user;
4137 uint32_t syn;
4138 bool same_el = (arm_current_pl(env) != 0);
4140 is_user = mmu_idx == MMU_USER_IDX;
4141 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
4142 &page_size);
4143 if (ret == 0) {
4144 /* Map a single [sub]page. */
4145 phys_addr &= ~(hwaddr)0x3ff;
4146 address &= ~(target_ulong)0x3ff;
4147 tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
4148 return 0;
4151 /* AArch64 syndrome does not have an LPAE bit */
4152 syn = ret & ~(1 << 9);
4154 /* For insn and data aborts we assume there is no instruction syndrome
4155 * information; this is always true for exceptions reported to EL1.
4157 if (access_type == 2) {
4158 syn = syn_insn_abort(same_el, 0, 0, syn);
4159 cs->exception_index = EXCP_PREFETCH_ABORT;
4160 } else {
4161 syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
4162 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
4163 ret |= (1 << 11);
4165 cs->exception_index = EXCP_DATA_ABORT;
4168 env->exception.syndrome = syn;
4169 env->exception.vaddress = address;
4170 env->exception.fsr = ret;
4171 return 1;
4174 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
4176 ARMCPU *cpu = ARM_CPU(cs);
4177 hwaddr phys_addr;
4178 target_ulong page_size;
4179 int prot;
4180 int ret;
4182 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
4184 if (ret != 0) {
4185 return -1;
4188 return phys_addr;
4191 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4193 if ((env->uncached_cpsr & CPSR_M) == mode) {
4194 env->regs[13] = val;
4195 } else {
4196 env->banked_r13[bank_number(mode)] = val;
4200 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4202 if ((env->uncached_cpsr & CPSR_M) == mode) {
4203 return env->regs[13];
4204 } else {
4205 return env->banked_r13[bank_number(mode)];
4209 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4211 ARMCPU *cpu = arm_env_get_cpu(env);
4213 switch (reg) {
4214 case 0: /* APSR */
4215 return xpsr_read(env) & 0xf8000000;
4216 case 1: /* IAPSR */
4217 return xpsr_read(env) & 0xf80001ff;
4218 case 2: /* EAPSR */
4219 return xpsr_read(env) & 0xff00fc00;
4220 case 3: /* xPSR */
4221 return xpsr_read(env) & 0xff00fdff;
4222 case 5: /* IPSR */
4223 return xpsr_read(env) & 0x000001ff;
4224 case 6: /* EPSR */
4225 return xpsr_read(env) & 0x0700fc00;
4226 case 7: /* IEPSR */
4227 return xpsr_read(env) & 0x0700edff;
4228 case 8: /* MSP */
4229 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
4230 case 9: /* PSP */
4231 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
4232 case 16: /* PRIMASK */
4233 return (env->daif & PSTATE_I) != 0;
4234 case 17: /* BASEPRI */
4235 case 18: /* BASEPRI_MAX */
4236 return env->v7m.basepri;
4237 case 19: /* FAULTMASK */
4238 return (env->daif & PSTATE_F) != 0;
4239 case 20: /* CONTROL */
4240 return env->v7m.control;
4241 default:
4242 /* ??? For debugging only. */
4243 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
4244 return 0;
4248 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4250 ARMCPU *cpu = arm_env_get_cpu(env);
4252 switch (reg) {
4253 case 0: /* APSR */
4254 xpsr_write(env, val, 0xf8000000);
4255 break;
4256 case 1: /* IAPSR */
4257 xpsr_write(env, val, 0xf8000000);
4258 break;
4259 case 2: /* EAPSR */
4260 xpsr_write(env, val, 0xfe00fc00);
4261 break;
4262 case 3: /* xPSR */
4263 xpsr_write(env, val, 0xfe00fc00);
4264 break;
4265 case 5: /* IPSR */
4266 /* IPSR bits are readonly. */
4267 break;
4268 case 6: /* EPSR */
4269 xpsr_write(env, val, 0x0600fc00);
4270 break;
4271 case 7: /* IEPSR */
4272 xpsr_write(env, val, 0x0600fc00);
4273 break;
4274 case 8: /* MSP */
4275 if (env->v7m.current_sp)
4276 env->v7m.other_sp = val;
4277 else
4278 env->regs[13] = val;
4279 break;
4280 case 9: /* PSP */
4281 if (env->v7m.current_sp)
4282 env->regs[13] = val;
4283 else
4284 env->v7m.other_sp = val;
4285 break;
4286 case 16: /* PRIMASK */
4287 if (val & 1) {
4288 env->daif |= PSTATE_I;
4289 } else {
4290 env->daif &= ~PSTATE_I;
4292 break;
4293 case 17: /* BASEPRI */
4294 env->v7m.basepri = val & 0xff;
4295 break;
4296 case 18: /* BASEPRI_MAX */
4297 val &= 0xff;
4298 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
4299 env->v7m.basepri = val;
4300 break;
4301 case 19: /* FAULTMASK */
4302 if (val & 1) {
4303 env->daif |= PSTATE_F;
4304 } else {
4305 env->daif &= ~PSTATE_F;
4307 break;
4308 case 20: /* CONTROL */
4309 env->v7m.control = val & 3;
4310 switch_v7m_sp(env, (val & 2) != 0);
4311 break;
4312 default:
4313 /* ??? For debugging only. */
4314 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
4315 return;
4319 #endif
4321 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
4323 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4324 * Note that we do not implement the (architecturally mandated)
4325 * alignment fault for attempts to use this on Device memory
4326 * (which matches the usual QEMU behaviour of not implementing either
4327 * alignment faults or any memory attribute handling).
4330 ARMCPU *cpu = arm_env_get_cpu(env);
4331 uint64_t blocklen = 4 << cpu->dcz_blocksize;
4332 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
4334 #ifndef CONFIG_USER_ONLY
4336 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4337 * the block size so we might have to do more than one TLB lookup.
4338 * We know that in fact for any v8 CPU the page size is at least 4K
4339 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4340 * 1K as an artefact of legacy v5 subpage support being present in the
4341 * same QEMU executable.
4343 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
4344 void *hostaddr[maxidx];
4345 int try, i;
4347 for (try = 0; try < 2; try++) {
4349 for (i = 0; i < maxidx; i++) {
4350 hostaddr[i] = tlb_vaddr_to_host(env,
4351 vaddr + TARGET_PAGE_SIZE * i,
4352 1, cpu_mmu_index(env));
4353 if (!hostaddr[i]) {
4354 break;
4357 if (i == maxidx) {
4358 /* If it's all in the TLB it's fair game for just writing to;
4359 * we know we don't need to update dirty status, etc.
4361 for (i = 0; i < maxidx - 1; i++) {
4362 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
4364 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
4365 return;
4367 /* OK, try a store and see if we can populate the tlb. This
4368 * might cause an exception if the memory isn't writable,
4369 * in which case we will longjmp out of here. We must for
4370 * this purpose use the actual register value passed to us
4371 * so that we get the fault address right.
4373 helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
4374 /* Now we can populate the other TLB entries, if any */
4375 for (i = 0; i < maxidx; i++) {
4376 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
4377 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
4378 helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
4383 /* Slow path (probably attempt to do this to an I/O device or
4384 * similar, or clearing of a block of code we have translations
4385 * cached for). Just do a series of byte writes as the architecture
4386 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4387 * memset(), unmap() sequence here because:
4388 * + we'd need to account for the blocksize being larger than a page
4389 * + the direct-RAM access case is almost always going to be dealt
4390 * with in the fastpath code above, so there's no speed benefit
4391 * + we would have to deal with the map returning NULL because the
4392 * bounce buffer was in use
4394 for (i = 0; i < blocklen; i++) {
4395 helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
4398 #else
4399 memset(g2h(vaddr), 0, blocklen);
4400 #endif
4403 /* Note that signed overflow is undefined in C. The following routines are
4404 careful to use unsigned types where modulo arithmetic is required.
4405 Failure to do so _will_ break on newer gcc. */
4407 /* Signed saturating arithmetic. */
4409 /* Perform 16-bit signed saturating addition. */
4410 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
4412 uint16_t res;
4414 res = a + b;
4415 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
4416 if (a & 0x8000)
4417 res = 0x8000;
4418 else
4419 res = 0x7fff;
4421 return res;
4424 /* Perform 8-bit signed saturating addition. */
4425 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
4427 uint8_t res;
4429 res = a + b;
4430 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
4431 if (a & 0x80)
4432 res = 0x80;
4433 else
4434 res = 0x7f;
4436 return res;
4439 /* Perform 16-bit signed saturating subtraction. */
4440 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
4442 uint16_t res;
4444 res = a - b;
4445 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
4446 if (a & 0x8000)
4447 res = 0x8000;
4448 else
4449 res = 0x7fff;
4451 return res;
4454 /* Perform 8-bit signed saturating subtraction. */
4455 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
4457 uint8_t res;
4459 res = a - b;
4460 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
4461 if (a & 0x80)
4462 res = 0x80;
4463 else
4464 res = 0x7f;
4466 return res;
4469 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
4470 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
4471 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
4472 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
4473 #define PFX q
4475 #include "op_addsub.h"
4477 /* Unsigned saturating arithmetic. */
4478 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
4480 uint16_t res;
4481 res = a + b;
4482 if (res < a)
4483 res = 0xffff;
4484 return res;
4487 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
4489 if (a > b)
4490 return a - b;
4491 else
4492 return 0;
4495 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
4497 uint8_t res;
4498 res = a + b;
4499 if (res < a)
4500 res = 0xff;
4501 return res;
4504 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
4506 if (a > b)
4507 return a - b;
4508 else
4509 return 0;
4512 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
4513 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
4514 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
4515 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
4516 #define PFX uq
4518 #include "op_addsub.h"
4520 /* Signed modulo arithmetic. */
4521 #define SARITH16(a, b, n, op) do { \
4522 int32_t sum; \
4523 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
4524 RESULT(sum, n, 16); \
4525 if (sum >= 0) \
4526 ge |= 3 << (n * 2); \
4527 } while(0)
4529 #define SARITH8(a, b, n, op) do { \
4530 int32_t sum; \
4531 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
4532 RESULT(sum, n, 8); \
4533 if (sum >= 0) \
4534 ge |= 1 << n; \
4535 } while(0)
4538 #define ADD16(a, b, n) SARITH16(a, b, n, +)
4539 #define SUB16(a, b, n) SARITH16(a, b, n, -)
4540 #define ADD8(a, b, n) SARITH8(a, b, n, +)
4541 #define SUB8(a, b, n) SARITH8(a, b, n, -)
4542 #define PFX s
4543 #define ARITH_GE
4545 #include "op_addsub.h"
4547 /* Unsigned modulo arithmetic. */
4548 #define ADD16(a, b, n) do { \
4549 uint32_t sum; \
4550 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
4551 RESULT(sum, n, 16); \
4552 if ((sum >> 16) == 1) \
4553 ge |= 3 << (n * 2); \
4554 } while(0)
4556 #define ADD8(a, b, n) do { \
4557 uint32_t sum; \
4558 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4559 RESULT(sum, n, 8); \
4560 if ((sum >> 8) == 1) \
4561 ge |= 1 << n; \
4562 } while(0)
4564 #define SUB16(a, b, n) do { \
4565 uint32_t sum; \
4566 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4567 RESULT(sum, n, 16); \
4568 if ((sum >> 16) == 0) \
4569 ge |= 3 << (n * 2); \
4570 } while(0)
4572 #define SUB8(a, b, n) do { \
4573 uint32_t sum; \
4574 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4575 RESULT(sum, n, 8); \
4576 if ((sum >> 8) == 0) \
4577 ge |= 1 << n; \
4578 } while(0)
4580 #define PFX u
4581 #define ARITH_GE
4583 #include "op_addsub.h"
4585 /* Halved signed arithmetic. */
4586 #define ADD16(a, b, n) \
4587 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4588 #define SUB16(a, b, n) \
4589 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4590 #define ADD8(a, b, n) \
4591 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4592 #define SUB8(a, b, n) \
4593 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4594 #define PFX sh
4596 #include "op_addsub.h"
4598 /* Halved unsigned arithmetic. */
4599 #define ADD16(a, b, n) \
4600 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4601 #define SUB16(a, b, n) \
4602 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4603 #define ADD8(a, b, n) \
4604 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4605 #define SUB8(a, b, n) \
4606 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4607 #define PFX uh
4609 #include "op_addsub.h"
4611 static inline uint8_t do_usad(uint8_t a, uint8_t b)
4613 if (a > b)
4614 return a - b;
4615 else
4616 return b - a;
4619 /* Unsigned sum of absolute byte differences. */
4620 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
4622 uint32_t sum;
4623 sum = do_usad(a, b);
4624 sum += do_usad(a >> 8, b >> 8);
4625 sum += do_usad(a >> 16, b >>16);
4626 sum += do_usad(a >> 24, b >> 24);
4627 return sum;
4630 /* For ARMv6 SEL instruction. */
4631 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
4633 uint32_t mask;
4635 mask = 0;
4636 if (flags & 1)
4637 mask |= 0xff;
4638 if (flags & 2)
4639 mask |= 0xff00;
4640 if (flags & 4)
4641 mask |= 0xff0000;
4642 if (flags & 8)
4643 mask |= 0xff000000;
4644 return (a & mask) | (b & ~mask);
4647 /* VFP support. We follow the convention used for VFP instructions:
4648 Single precision routines have a "s" suffix, double precision a
4649 "d" suffix. */
4651 /* Convert host exception flags to vfp form. */
4652 static inline int vfp_exceptbits_from_host(int host_bits)
4654 int target_bits = 0;
4656 if (host_bits & float_flag_invalid)
4657 target_bits |= 1;
4658 if (host_bits & float_flag_divbyzero)
4659 target_bits |= 2;
4660 if (host_bits & float_flag_overflow)
4661 target_bits |= 4;
4662 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4663 target_bits |= 8;
4664 if (host_bits & float_flag_inexact)
4665 target_bits |= 0x10;
4666 if (host_bits & float_flag_input_denormal)
4667 target_bits |= 0x80;
4668 return target_bits;
4671 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4673 int i;
4674 uint32_t fpscr;
4676 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4677 | (env->vfp.vec_len << 16)
4678 | (env->vfp.vec_stride << 20);
4679 i = get_float_exception_flags(&env->vfp.fp_status);
4680 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4681 fpscr |= vfp_exceptbits_from_host(i);
4682 return fpscr;
4685 uint32_t vfp_get_fpscr(CPUARMState *env)
4687 return HELPER(vfp_get_fpscr)(env);
4690 /* Convert vfp exception flags to target form. */
4691 static inline int vfp_exceptbits_to_host(int target_bits)
4693 int host_bits = 0;
4695 if (target_bits & 1)
4696 host_bits |= float_flag_invalid;
4697 if (target_bits & 2)
4698 host_bits |= float_flag_divbyzero;
4699 if (target_bits & 4)
4700 host_bits |= float_flag_overflow;
4701 if (target_bits & 8)
4702 host_bits |= float_flag_underflow;
4703 if (target_bits & 0x10)
4704 host_bits |= float_flag_inexact;
4705 if (target_bits & 0x80)
4706 host_bits |= float_flag_input_denormal;
4707 return host_bits;
4710 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4712 int i;
4713 uint32_t changed;
4715 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4716 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4717 env->vfp.vec_len = (val >> 16) & 7;
4718 env->vfp.vec_stride = (val >> 20) & 3;
4720 changed ^= val;
4721 if (changed & (3 << 22)) {
4722 i = (val >> 22) & 3;
4723 switch (i) {
4724 case FPROUNDING_TIEEVEN:
4725 i = float_round_nearest_even;
4726 break;
4727 case FPROUNDING_POSINF:
4728 i = float_round_up;
4729 break;
4730 case FPROUNDING_NEGINF:
4731 i = float_round_down;
4732 break;
4733 case FPROUNDING_ZERO:
4734 i = float_round_to_zero;
4735 break;
4737 set_float_rounding_mode(i, &env->vfp.fp_status);
4739 if (changed & (1 << 24)) {
4740 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4741 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4743 if (changed & (1 << 25))
4744 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4746 i = vfp_exceptbits_to_host(val);
4747 set_float_exception_flags(i, &env->vfp.fp_status);
4748 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4751 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4753 HELPER(vfp_set_fpscr)(env, val);
4756 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4758 #define VFP_BINOP(name) \
4759 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4761 float_status *fpst = fpstp; \
4762 return float32_ ## name(a, b, fpst); \
4764 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4766 float_status *fpst = fpstp; \
4767 return float64_ ## name(a, b, fpst); \
4769 VFP_BINOP(add)
4770 VFP_BINOP(sub)
4771 VFP_BINOP(mul)
4772 VFP_BINOP(div)
4773 VFP_BINOP(min)
4774 VFP_BINOP(max)
4775 VFP_BINOP(minnum)
4776 VFP_BINOP(maxnum)
4777 #undef VFP_BINOP
4779 float32 VFP_HELPER(neg, s)(float32 a)
4781 return float32_chs(a);
4784 float64 VFP_HELPER(neg, d)(float64 a)
4786 return float64_chs(a);
4789 float32 VFP_HELPER(abs, s)(float32 a)
4791 return float32_abs(a);
4794 float64 VFP_HELPER(abs, d)(float64 a)
4796 return float64_abs(a);
4799 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4801 return float32_sqrt(a, &env->vfp.fp_status);
4804 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4806 return float64_sqrt(a, &env->vfp.fp_status);
4809 /* XXX: check quiet/signaling case */
4810 #define DO_VFP_cmp(p, type) \
4811 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4813 uint32_t flags; \
4814 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4815 case 0: flags = 0x6; break; \
4816 case -1: flags = 0x8; break; \
4817 case 1: flags = 0x2; break; \
4818 default: case 2: flags = 0x3; break; \
4820 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4821 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4823 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4825 uint32_t flags; \
4826 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4827 case 0: flags = 0x6; break; \
4828 case -1: flags = 0x8; break; \
4829 case 1: flags = 0x2; break; \
4830 default: case 2: flags = 0x3; break; \
4832 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4833 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4835 DO_VFP_cmp(s, float32)
4836 DO_VFP_cmp(d, float64)
4837 #undef DO_VFP_cmp
4839 /* Integer to float and float to integer conversions */
4841 #define CONV_ITOF(name, fsz, sign) \
4842 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4844 float_status *fpst = fpstp; \
4845 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4848 #define CONV_FTOI(name, fsz, sign, round) \
4849 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4851 float_status *fpst = fpstp; \
4852 if (float##fsz##_is_any_nan(x)) { \
4853 float_raise(float_flag_invalid, fpst); \
4854 return 0; \
4856 return float##fsz##_to_##sign##int32##round(x, fpst); \
4859 #define FLOAT_CONVS(name, p, fsz, sign) \
4860 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4861 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4862 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4864 FLOAT_CONVS(si, s, 32, )
4865 FLOAT_CONVS(si, d, 64, )
4866 FLOAT_CONVS(ui, s, 32, u)
4867 FLOAT_CONVS(ui, d, 64, u)
4869 #undef CONV_ITOF
4870 #undef CONV_FTOI
4871 #undef FLOAT_CONVS
4873 /* floating point conversion */
4874 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4876 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4877 /* ARM requires that S<->D conversion of any kind of NaN generates
4878 * a quiet NaN by forcing the most significant frac bit to 1.
4880 return float64_maybe_silence_nan(r);
4883 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4885 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4886 /* ARM requires that S<->D conversion of any kind of NaN generates
4887 * a quiet NaN by forcing the most significant frac bit to 1.
4889 return float32_maybe_silence_nan(r);
4892 /* VFP3 fixed point conversion. */
4893 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4894 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4895 void *fpstp) \
4897 float_status *fpst = fpstp; \
4898 float##fsz tmp; \
4899 tmp = itype##_to_##float##fsz(x, fpst); \
4900 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4903 /* Notice that we want only input-denormal exception flags from the
4904 * scalbn operation: the other possible flags (overflow+inexact if
4905 * we overflow to infinity, output-denormal) aren't correct for the
4906 * complete scale-and-convert operation.
4908 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4909 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4910 uint32_t shift, \
4911 void *fpstp) \
4913 float_status *fpst = fpstp; \
4914 int old_exc_flags = get_float_exception_flags(fpst); \
4915 float##fsz tmp; \
4916 if (float##fsz##_is_any_nan(x)) { \
4917 float_raise(float_flag_invalid, fpst); \
4918 return 0; \
4920 tmp = float##fsz##_scalbn(x, shift, fpst); \
4921 old_exc_flags |= get_float_exception_flags(fpst) \
4922 & float_flag_input_denormal; \
4923 set_float_exception_flags(old_exc_flags, fpst); \
4924 return float##fsz##_to_##itype##round(tmp, fpst); \
4927 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4928 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4929 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4930 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4932 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4933 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4934 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4936 VFP_CONV_FIX(sh, d, 64, 64, int16)
4937 VFP_CONV_FIX(sl, d, 64, 64, int32)
4938 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4939 VFP_CONV_FIX(uh, d, 64, 64, uint16)
4940 VFP_CONV_FIX(ul, d, 64, 64, uint32)
4941 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4942 VFP_CONV_FIX(sh, s, 32, 32, int16)
4943 VFP_CONV_FIX(sl, s, 32, 32, int32)
4944 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4945 VFP_CONV_FIX(uh, s, 32, 32, uint16)
4946 VFP_CONV_FIX(ul, s, 32, 32, uint32)
4947 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4948 #undef VFP_CONV_FIX
4949 #undef VFP_CONV_FIX_FLOAT
4950 #undef VFP_CONV_FLOAT_FIX_ROUND
4952 /* Set the current fp rounding mode and return the old one.
4953 * The argument is a softfloat float_round_ value.
4955 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4957 float_status *fp_status = &env->vfp.fp_status;
4959 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4960 set_float_rounding_mode(rmode, fp_status);
4962 return prev_rmode;
4965 /* Set the current fp rounding mode in the standard fp status and return
4966 * the old one. This is for NEON instructions that need to change the
4967 * rounding mode but wish to use the standard FPSCR values for everything
4968 * else. Always set the rounding mode back to the correct value after
4969 * modifying it.
4970 * The argument is a softfloat float_round_ value.
4972 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4974 float_status *fp_status = &env->vfp.standard_fp_status;
4976 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4977 set_float_rounding_mode(rmode, fp_status);
4979 return prev_rmode;
4982 /* Half precision conversions. */
4983 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4985 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4986 float32 r = float16_to_float32(make_float16(a), ieee, s);
4987 if (ieee) {
4988 return float32_maybe_silence_nan(r);
4990 return r;
4993 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
4995 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4996 float16 r = float32_to_float16(a, ieee, s);
4997 if (ieee) {
4998 r = float16_maybe_silence_nan(r);
5000 return float16_val(r);
5003 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
5005 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
5008 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
5010 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
5013 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
5015 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
5018 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
5020 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
5023 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
5025 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5026 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
5027 if (ieee) {
5028 return float64_maybe_silence_nan(r);
5030 return r;
5033 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
5035 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5036 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
5037 if (ieee) {
5038 r = float16_maybe_silence_nan(r);
5040 return float16_val(r);
5043 #define float32_two make_float32(0x40000000)
5044 #define float32_three make_float32(0x40400000)
5045 #define float32_one_point_five make_float32(0x3fc00000)
5047 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
5049 float_status *s = &env->vfp.standard_fp_status;
5050 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
5051 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
5052 if (!(float32_is_zero(a) || float32_is_zero(b))) {
5053 float_raise(float_flag_input_denormal, s);
5055 return float32_two;
5057 return float32_sub(float32_two, float32_mul(a, b, s), s);
5060 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
5062 float_status *s = &env->vfp.standard_fp_status;
5063 float32 product;
5064 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
5065 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
5066 if (!(float32_is_zero(a) || float32_is_zero(b))) {
5067 float_raise(float_flag_input_denormal, s);
5069 return float32_one_point_five;
5071 product = float32_mul(a, b, s);
5072 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
5075 /* NEON helpers. */
5077 /* Constants 256 and 512 are used in some helpers; we avoid relying on
5078 * int->float conversions at run-time. */
5079 #define float64_256 make_float64(0x4070000000000000LL)
5080 #define float64_512 make_float64(0x4080000000000000LL)
5081 #define float32_maxnorm make_float32(0x7f7fffff)
5082 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
5084 /* Reciprocal functions
5086 * The algorithm that must be used to calculate the estimate
5087 * is specified by the ARM ARM, see FPRecipEstimate()
5090 static float64 recip_estimate(float64 a, float_status *real_fp_status)
5092 /* These calculations mustn't set any fp exception flags,
5093 * so we use a local copy of the fp_status.
5095 float_status dummy_status = *real_fp_status;
5096 float_status *s = &dummy_status;
5097 /* q = (int)(a * 512.0) */
5098 float64 q = float64_mul(float64_512, a, s);
5099 int64_t q_int = float64_to_int64_round_to_zero(q, s);
5101 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
5102 q = int64_to_float64(q_int, s);
5103 q = float64_add(q, float64_half, s);
5104 q = float64_div(q, float64_512, s);
5105 q = float64_div(float64_one, q, s);
5107 /* s = (int)(256.0 * r + 0.5) */
5108 q = float64_mul(q, float64_256, s);
5109 q = float64_add(q, float64_half, s);
5110 q_int = float64_to_int64_round_to_zero(q, s);
5112 /* return (double)s / 256.0 */
5113 return float64_div(int64_to_float64(q_int, s), float64_256, s);
5116 /* Common wrapper to call recip_estimate */
5117 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
5119 uint64_t val64 = float64_val(num);
5120 uint64_t frac = extract64(val64, 0, 52);
5121 int64_t exp = extract64(val64, 52, 11);
5122 uint64_t sbit;
5123 float64 scaled, estimate;
5125 /* Generate the scaled number for the estimate function */
5126 if (exp == 0) {
5127 if (extract64(frac, 51, 1) == 0) {
5128 exp = -1;
5129 frac = extract64(frac, 0, 50) << 2;
5130 } else {
5131 frac = extract64(frac, 0, 51) << 1;
5135 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5136 scaled = make_float64((0x3feULL << 52)
5137 | extract64(frac, 44, 8) << 44);
5139 estimate = recip_estimate(scaled, fpst);
5141 /* Build new result */
5142 val64 = float64_val(estimate);
5143 sbit = 0x8000000000000000ULL & val64;
5144 exp = off - exp;
5145 frac = extract64(val64, 0, 52);
5147 if (exp == 0) {
5148 frac = 1ULL << 51 | extract64(frac, 1, 51);
5149 } else if (exp == -1) {
5150 frac = 1ULL << 50 | extract64(frac, 2, 50);
5151 exp = 0;
5154 return make_float64(sbit | (exp << 52) | frac);
5157 static bool round_to_inf(float_status *fpst, bool sign_bit)
5159 switch (fpst->float_rounding_mode) {
5160 case float_round_nearest_even: /* Round to Nearest */
5161 return true;
5162 case float_round_up: /* Round to +Inf */
5163 return !sign_bit;
5164 case float_round_down: /* Round to -Inf */
5165 return sign_bit;
5166 case float_round_to_zero: /* Round to Zero */
5167 return false;
5170 g_assert_not_reached();
5173 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
5175 float_status *fpst = fpstp;
5176 float32 f32 = float32_squash_input_denormal(input, fpst);
5177 uint32_t f32_val = float32_val(f32);
5178 uint32_t f32_sbit = 0x80000000ULL & f32_val;
5179 int32_t f32_exp = extract32(f32_val, 23, 8);
5180 uint32_t f32_frac = extract32(f32_val, 0, 23);
5181 float64 f64, r64;
5182 uint64_t r64_val;
5183 int64_t r64_exp;
5184 uint64_t r64_frac;
5186 if (float32_is_any_nan(f32)) {
5187 float32 nan = f32;
5188 if (float32_is_signaling_nan(f32)) {
5189 float_raise(float_flag_invalid, fpst);
5190 nan = float32_maybe_silence_nan(f32);
5192 if (fpst->default_nan_mode) {
5193 nan = float32_default_nan;
5195 return nan;
5196 } else if (float32_is_infinity(f32)) {
5197 return float32_set_sign(float32_zero, float32_is_neg(f32));
5198 } else if (float32_is_zero(f32)) {
5199 float_raise(float_flag_divbyzero, fpst);
5200 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5201 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
5202 /* Abs(value) < 2.0^-128 */
5203 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5204 if (round_to_inf(fpst, f32_sbit)) {
5205 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5206 } else {
5207 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
5209 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
5210 float_raise(float_flag_underflow, fpst);
5211 return float32_set_sign(float32_zero, float32_is_neg(f32));
5215 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
5216 r64 = call_recip_estimate(f64, 253, fpst);
5217 r64_val = float64_val(r64);
5218 r64_exp = extract64(r64_val, 52, 11);
5219 r64_frac = extract64(r64_val, 0, 52);
5221 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5222 return make_float32(f32_sbit |
5223 (r64_exp & 0xff) << 23 |
5224 extract64(r64_frac, 29, 24));
5227 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
5229 float_status *fpst = fpstp;
5230 float64 f64 = float64_squash_input_denormal(input, fpst);
5231 uint64_t f64_val = float64_val(f64);
5232 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
5233 int64_t f64_exp = extract64(f64_val, 52, 11);
5234 float64 r64;
5235 uint64_t r64_val;
5236 int64_t r64_exp;
5237 uint64_t r64_frac;
5239 /* Deal with any special cases */
5240 if (float64_is_any_nan(f64)) {
5241 float64 nan = f64;
5242 if (float64_is_signaling_nan(f64)) {
5243 float_raise(float_flag_invalid, fpst);
5244 nan = float64_maybe_silence_nan(f64);
5246 if (fpst->default_nan_mode) {
5247 nan = float64_default_nan;
5249 return nan;
5250 } else if (float64_is_infinity(f64)) {
5251 return float64_set_sign(float64_zero, float64_is_neg(f64));
5252 } else if (float64_is_zero(f64)) {
5253 float_raise(float_flag_divbyzero, fpst);
5254 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5255 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
5256 /* Abs(value) < 2.0^-1024 */
5257 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5258 if (round_to_inf(fpst, f64_sbit)) {
5259 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5260 } else {
5261 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
5263 } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
5264 float_raise(float_flag_underflow, fpst);
5265 return float64_set_sign(float64_zero, float64_is_neg(f64));
5268 r64 = call_recip_estimate(f64, 2045, fpst);
5269 r64_val = float64_val(r64);
5270 r64_exp = extract64(r64_val, 52, 11);
5271 r64_frac = extract64(r64_val, 0, 52);
5273 /* result = sign : result_exp<10:0> : fraction<51:0> */
5274 return make_float64(f64_sbit |
5275 ((r64_exp & 0x7ff) << 52) |
5276 r64_frac);
5279 /* The algorithm that must be used to calculate the estimate
5280 * is specified by the ARM ARM.
5282 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
5284 /* These calculations mustn't set any fp exception flags,
5285 * so we use a local copy of the fp_status.
5287 float_status dummy_status = *real_fp_status;
5288 float_status *s = &dummy_status;
5289 float64 q;
5290 int64_t q_int;
5292 if (float64_lt(a, float64_half, s)) {
5293 /* range 0.25 <= a < 0.5 */
5295 /* a in units of 1/512 rounded down */
5296 /* q0 = (int)(a * 512.0); */
5297 q = float64_mul(float64_512, a, s);
5298 q_int = float64_to_int64_round_to_zero(q, s);
5300 /* reciprocal root r */
5301 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5302 q = int64_to_float64(q_int, s);
5303 q = float64_add(q, float64_half, s);
5304 q = float64_div(q, float64_512, s);
5305 q = float64_sqrt(q, s);
5306 q = float64_div(float64_one, q, s);
5307 } else {
5308 /* range 0.5 <= a < 1.0 */
5310 /* a in units of 1/256 rounded down */
5311 /* q1 = (int)(a * 256.0); */
5312 q = float64_mul(float64_256, a, s);
5313 int64_t q_int = float64_to_int64_round_to_zero(q, s);
5315 /* reciprocal root r */
5316 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5317 q = int64_to_float64(q_int, s);
5318 q = float64_add(q, float64_half, s);
5319 q = float64_div(q, float64_256, s);
5320 q = float64_sqrt(q, s);
5321 q = float64_div(float64_one, q, s);
5323 /* r in units of 1/256 rounded to nearest */
5324 /* s = (int)(256.0 * r + 0.5); */
5326 q = float64_mul(q, float64_256,s );
5327 q = float64_add(q, float64_half, s);
5328 q_int = float64_to_int64_round_to_zero(q, s);
5330 /* return (double)s / 256.0;*/
5331 return float64_div(int64_to_float64(q_int, s), float64_256, s);
5334 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
5336 float_status *s = fpstp;
5337 float32 f32 = float32_squash_input_denormal(input, s);
5338 uint32_t val = float32_val(f32);
5339 uint32_t f32_sbit = 0x80000000 & val;
5340 int32_t f32_exp = extract32(val, 23, 8);
5341 uint32_t f32_frac = extract32(val, 0, 23);
5342 uint64_t f64_frac;
5343 uint64_t val64;
5344 int result_exp;
5345 float64 f64;
5347 if (float32_is_any_nan(f32)) {
5348 float32 nan = f32;
5349 if (float32_is_signaling_nan(f32)) {
5350 float_raise(float_flag_invalid, s);
5351 nan = float32_maybe_silence_nan(f32);
5353 if (s->default_nan_mode) {
5354 nan = float32_default_nan;
5356 return nan;
5357 } else if (float32_is_zero(f32)) {
5358 float_raise(float_flag_divbyzero, s);
5359 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5360 } else if (float32_is_neg(f32)) {
5361 float_raise(float_flag_invalid, s);
5362 return float32_default_nan;
5363 } else if (float32_is_infinity(f32)) {
5364 return float32_zero;
5367 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5368 * preserving the parity of the exponent. */
5370 f64_frac = ((uint64_t) f32_frac) << 29;
5371 if (f32_exp == 0) {
5372 while (extract64(f64_frac, 51, 1) == 0) {
5373 f64_frac = f64_frac << 1;
5374 f32_exp = f32_exp-1;
5376 f64_frac = extract64(f64_frac, 0, 51) << 1;
5379 if (extract64(f32_exp, 0, 1) == 0) {
5380 f64 = make_float64(((uint64_t) f32_sbit) << 32
5381 | (0x3feULL << 52)
5382 | f64_frac);
5383 } else {
5384 f64 = make_float64(((uint64_t) f32_sbit) << 32
5385 | (0x3fdULL << 52)
5386 | f64_frac);
5389 result_exp = (380 - f32_exp) / 2;
5391 f64 = recip_sqrt_estimate(f64, s);
5393 val64 = float64_val(f64);
5395 val = ((result_exp & 0xff) << 23)
5396 | ((val64 >> 29) & 0x7fffff);
5397 return make_float32(val);
5400 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
5402 float_status *s = fpstp;
5403 float64 f64 = float64_squash_input_denormal(input, s);
5404 uint64_t val = float64_val(f64);
5405 uint64_t f64_sbit = 0x8000000000000000ULL & val;
5406 int64_t f64_exp = extract64(val, 52, 11);
5407 uint64_t f64_frac = extract64(val, 0, 52);
5408 int64_t result_exp;
5409 uint64_t result_frac;
5411 if (float64_is_any_nan(f64)) {
5412 float64 nan = f64;
5413 if (float64_is_signaling_nan(f64)) {
5414 float_raise(float_flag_invalid, s);
5415 nan = float64_maybe_silence_nan(f64);
5417 if (s->default_nan_mode) {
5418 nan = float64_default_nan;
5420 return nan;
5421 } else if (float64_is_zero(f64)) {
5422 float_raise(float_flag_divbyzero, s);
5423 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5424 } else if (float64_is_neg(f64)) {
5425 float_raise(float_flag_invalid, s);
5426 return float64_default_nan;
5427 } else if (float64_is_infinity(f64)) {
5428 return float64_zero;
5431 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5432 * preserving the parity of the exponent. */
5434 if (f64_exp == 0) {
5435 while (extract64(f64_frac, 51, 1) == 0) {
5436 f64_frac = f64_frac << 1;
5437 f64_exp = f64_exp - 1;
5439 f64_frac = extract64(f64_frac, 0, 51) << 1;
5442 if (extract64(f64_exp, 0, 1) == 0) {
5443 f64 = make_float64(f64_sbit
5444 | (0x3feULL << 52)
5445 | f64_frac);
5446 } else {
5447 f64 = make_float64(f64_sbit
5448 | (0x3fdULL << 52)
5449 | f64_frac);
5452 result_exp = (3068 - f64_exp) / 2;
5454 f64 = recip_sqrt_estimate(f64, s);
5456 result_frac = extract64(float64_val(f64), 0, 52);
5458 return make_float64(f64_sbit |
5459 ((result_exp & 0x7ff) << 52) |
5460 result_frac);
5463 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
5465 float_status *s = fpstp;
5466 float64 f64;
5468 if ((a & 0x80000000) == 0) {
5469 return 0xffffffff;
5472 f64 = make_float64((0x3feULL << 52)
5473 | ((int64_t)(a & 0x7fffffff) << 21));
5475 f64 = recip_estimate(f64, s);
5477 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
5480 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
5482 float_status *fpst = fpstp;
5483 float64 f64;
5485 if ((a & 0xc0000000) == 0) {
5486 return 0xffffffff;
5489 if (a & 0x80000000) {
5490 f64 = make_float64((0x3feULL << 52)
5491 | ((uint64_t)(a & 0x7fffffff) << 21));
5492 } else { /* bits 31-30 == '01' */
5493 f64 = make_float64((0x3fdULL << 52)
5494 | ((uint64_t)(a & 0x3fffffff) << 22));
5497 f64 = recip_sqrt_estimate(f64, fpst);
5499 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
5502 /* VFPv4 fused multiply-accumulate */
5503 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
5505 float_status *fpst = fpstp;
5506 return float32_muladd(a, b, c, 0, fpst);
5509 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
5511 float_status *fpst = fpstp;
5512 return float64_muladd(a, b, c, 0, fpst);
5515 /* ARMv8 round to integral */
5516 float32 HELPER(rints_exact)(float32 x, void *fp_status)
5518 return float32_round_to_int(x, fp_status);
5521 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
5523 return float64_round_to_int(x, fp_status);
5526 float32 HELPER(rints)(float32 x, void *fp_status)
5528 int old_flags = get_float_exception_flags(fp_status), new_flags;
5529 float32 ret;
5531 ret = float32_round_to_int(x, fp_status);
5533 /* Suppress any inexact exceptions the conversion produced */
5534 if (!(old_flags & float_flag_inexact)) {
5535 new_flags = get_float_exception_flags(fp_status);
5536 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
5539 return ret;
5542 float64 HELPER(rintd)(float64 x, void *fp_status)
5544 int old_flags = get_float_exception_flags(fp_status), new_flags;
5545 float64 ret;
5547 ret = float64_round_to_int(x, fp_status);
5549 new_flags = get_float_exception_flags(fp_status);
5551 /* Suppress any inexact exceptions the conversion produced */
5552 if (!(old_flags & float_flag_inexact)) {
5553 new_flags = get_float_exception_flags(fp_status);
5554 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
5557 return ret;
5560 /* Convert ARM rounding mode to softfloat */
5561 int arm_rmode_to_sf(int rmode)
5563 switch (rmode) {
5564 case FPROUNDING_TIEAWAY:
5565 rmode = float_round_ties_away;
5566 break;
5567 case FPROUNDING_ODD:
5568 /* FIXME: add support for TIEAWAY and ODD */
5569 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
5570 rmode);
5571 case FPROUNDING_TIEEVEN:
5572 default:
5573 rmode = float_round_nearest_even;
5574 break;
5575 case FPROUNDING_POSINF:
5576 rmode = float_round_up;
5577 break;
5578 case FPROUNDING_NEGINF:
5579 rmode = float_round_down;
5580 break;
5581 case FPROUNDING_ZERO:
5582 rmode = float_round_to_zero;
5583 break;
5585 return rmode;
5588 /* CRC helpers.
5589 * The upper bytes of val (above the number specified by 'bytes') must have
5590 * been zeroed out by the caller.
5592 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
5594 uint8_t buf[4];
5596 stl_le_p(buf, val);
5598 /* zlib crc32 converts the accumulator and output to one's complement. */
5599 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
5602 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
5604 uint8_t buf[4];
5606 stl_le_p(buf, val);
5608 /* Linux crc32c converts the output to one's complement. */
5609 return crc32c(acc, buf, bytes) ^ 0xffffffff;