Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20210330' into...
[qemu/ar7.git] / hw / block / nand.c
blob8bc80e3514420c361ca91c6de1166eb02e0552bf
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #ifndef NAND_IO
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/qdev-properties.h"
24 #include "hw/qdev-properties-system.h"
25 #include "hw/block/flash.h"
26 #include "sysemu/block-backend.h"
27 #include "migration/vmstate.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/module.h"
31 #include "qom/object.h"
33 # define NAND_CMD_READ0 0x00
34 # define NAND_CMD_READ1 0x01
35 # define NAND_CMD_READ2 0x50
36 # define NAND_CMD_LPREAD2 0x30
37 # define NAND_CMD_NOSERIALREAD2 0x35
38 # define NAND_CMD_RANDOMREAD1 0x05
39 # define NAND_CMD_RANDOMREAD2 0xe0
40 # define NAND_CMD_READID 0x90
41 # define NAND_CMD_RESET 0xff
42 # define NAND_CMD_PAGEPROGRAM1 0x80
43 # define NAND_CMD_PAGEPROGRAM2 0x10
44 # define NAND_CMD_CACHEPROGRAM2 0x15
45 # define NAND_CMD_BLOCKERASE1 0x60
46 # define NAND_CMD_BLOCKERASE2 0xd0
47 # define NAND_CMD_READSTATUS 0x70
48 # define NAND_CMD_COPYBACKPRG1 0x85
50 # define NAND_IOSTATUS_ERROR (1 << 0)
51 # define NAND_IOSTATUS_PLANE0 (1 << 1)
52 # define NAND_IOSTATUS_PLANE1 (1 << 2)
53 # define NAND_IOSTATUS_PLANE2 (1 << 3)
54 # define NAND_IOSTATUS_PLANE3 (1 << 4)
55 # define NAND_IOSTATUS_READY (1 << 6)
56 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
58 # define MAX_PAGE 0x800
59 # define MAX_OOB 0x40
61 typedef struct NANDFlashState NANDFlashState;
62 struct NANDFlashState {
63 DeviceState parent_obj;
65 uint8_t manf_id, chip_id;
66 uint8_t buswidth; /* in BYTES */
67 int size, pages;
68 int page_shift, oob_shift, erase_shift, addr_shift;
69 uint8_t *storage;
70 BlockBackend *blk;
71 int mem_oob;
73 uint8_t cle, ale, ce, wp, gnd;
75 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
76 uint8_t *ioaddr;
77 int iolen;
79 uint32_t cmd;
80 uint64_t addr;
81 int addrlen;
82 int status;
83 int offset;
85 void (*blk_write)(NANDFlashState *s);
86 void (*blk_erase)(NANDFlashState *s);
87 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
89 uint32_t ioaddr_vmstate;
92 #define TYPE_NAND "nand"
94 OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND)
96 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
98 /* Like memcpy() but we logical-AND the data into the destination */
99 int i;
100 for (i = 0; i < n; i++) {
101 dest[i] &= src[i];
105 # define NAND_NO_AUTOINCR 0x00000001
106 # define NAND_BUSWIDTH_16 0x00000002
107 # define NAND_NO_PADDING 0x00000004
108 # define NAND_CACHEPRG 0x00000008
109 # define NAND_COPYBACK 0x00000010
110 # define NAND_IS_AND 0x00000020
111 # define NAND_4PAGE_ARRAY 0x00000040
112 # define NAND_NO_READRDY 0x00000100
113 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
115 # define NAND_IO
117 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
118 # define PAGE_START(page) (PAGE(page) * (NAND_PAGE_SIZE + OOB_SIZE))
119 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
120 # define OOB_SHIFT (PAGE_SHIFT - 5)
121 # define OOB_SIZE (1 << OOB_SHIFT)
122 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
123 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
125 # define NAND_PAGE_SIZE 256
126 # define PAGE_SHIFT 8
127 # define PAGE_SECTORS 1
128 # define ADDR_SHIFT 8
129 # include "nand.c"
130 # define NAND_PAGE_SIZE 512
131 # define PAGE_SHIFT 9
132 # define PAGE_SECTORS 1
133 # define ADDR_SHIFT 8
134 # include "nand.c"
135 # define NAND_PAGE_SIZE 2048
136 # define PAGE_SHIFT 11
137 # define PAGE_SECTORS 4
138 # define ADDR_SHIFT 16
139 # include "nand.c"
141 /* Information based on Linux drivers/mtd/nand/raw/nand_ids.c */
142 static const struct {
143 int size;
144 int width;
145 int page_shift;
146 int erase_shift;
147 uint32_t options;
148 } nand_flash_ids[0x100] = {
149 [0 ... 0xff] = { 0 },
151 [0x6b] = { 4, 8, 9, 4, 0 },
152 [0xe3] = { 4, 8, 9, 4, 0 },
153 [0xe5] = { 4, 8, 9, 4, 0 },
154 [0xd6] = { 8, 8, 9, 4, 0 },
155 [0xe6] = { 8, 8, 9, 4, 0 },
157 [0x33] = { 16, 8, 9, 5, 0 },
158 [0x73] = { 16, 8, 9, 5, 0 },
159 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
160 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
162 [0x35] = { 32, 8, 9, 5, 0 },
163 [0x75] = { 32, 8, 9, 5, 0 },
164 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
165 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
167 [0x36] = { 64, 8, 9, 5, 0 },
168 [0x76] = { 64, 8, 9, 5, 0 },
169 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
170 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
172 [0x78] = { 128, 8, 9, 5, 0 },
173 [0x39] = { 128, 8, 9, 5, 0 },
174 [0x79] = { 128, 8, 9, 5, 0 },
175 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
176 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
177 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
178 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
180 [0x71] = { 256, 8, 9, 5, 0 },
183 * These are the new chips with large page size. The pagesize and the
184 * erasesize is determined from the extended id bytes
186 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
187 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
189 /* 512 Megabit */
190 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
191 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
192 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
193 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
195 /* 1 Gigabit */
196 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
197 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
198 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
199 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
201 /* 2 Gigabit */
202 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
203 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
204 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
205 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
207 /* 4 Gigabit */
208 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
209 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
210 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
211 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
213 /* 8 Gigabit */
214 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
215 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
216 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
217 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
219 /* 16 Gigabit */
220 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
221 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
222 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
223 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
226 static void nand_reset(DeviceState *dev)
228 NANDFlashState *s = NAND(dev);
229 s->cmd = NAND_CMD_READ0;
230 s->addr = 0;
231 s->addrlen = 0;
232 s->iolen = 0;
233 s->offset = 0;
234 s->status &= NAND_IOSTATUS_UNPROTCT;
235 s->status |= NAND_IOSTATUS_READY;
238 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
240 s->ioaddr[s->iolen++] = value;
241 for (value = s->buswidth; --value;) {
242 s->ioaddr[s->iolen++] = 0;
246 static void nand_command(NANDFlashState *s)
248 unsigned int offset;
249 switch (s->cmd) {
250 case NAND_CMD_READ0:
251 s->iolen = 0;
252 break;
254 case NAND_CMD_READID:
255 s->ioaddr = s->io;
256 s->iolen = 0;
257 nand_pushio_byte(s, s->manf_id);
258 nand_pushio_byte(s, s->chip_id);
259 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
260 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
261 /* Page Size, Block Size, Spare Size; bit 6 indicates
262 * 8 vs 16 bit width NAND.
264 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
265 } else {
266 nand_pushio_byte(s, 0xc0); /* Multi-plane */
268 break;
270 case NAND_CMD_RANDOMREAD2:
271 case NAND_CMD_NOSERIALREAD2:
272 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
273 break;
274 offset = s->addr & ((1 << s->addr_shift) - 1);
275 s->blk_load(s, s->addr, offset);
276 if (s->gnd)
277 s->iolen = (1 << s->page_shift) - offset;
278 else
279 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
280 break;
282 case NAND_CMD_RESET:
283 nand_reset(DEVICE(s));
284 break;
286 case NAND_CMD_PAGEPROGRAM1:
287 s->ioaddr = s->io;
288 s->iolen = 0;
289 break;
291 case NAND_CMD_PAGEPROGRAM2:
292 if (s->wp) {
293 s->blk_write(s);
295 break;
297 case NAND_CMD_BLOCKERASE1:
298 break;
300 case NAND_CMD_BLOCKERASE2:
301 s->addr &= (1ull << s->addrlen * 8) - 1;
302 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
303 16 : 8;
305 if (s->wp) {
306 s->blk_erase(s);
308 break;
310 case NAND_CMD_READSTATUS:
311 s->ioaddr = s->io;
312 s->iolen = 0;
313 nand_pushio_byte(s, s->status);
314 break;
316 default:
317 printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
321 static int nand_pre_save(void *opaque)
323 NANDFlashState *s = NAND(opaque);
325 s->ioaddr_vmstate = s->ioaddr - s->io;
327 return 0;
330 static int nand_post_load(void *opaque, int version_id)
332 NANDFlashState *s = NAND(opaque);
334 if (s->ioaddr_vmstate > sizeof(s->io)) {
335 return -EINVAL;
337 s->ioaddr = s->io + s->ioaddr_vmstate;
339 return 0;
342 static const VMStateDescription vmstate_nand = {
343 .name = "nand",
344 .version_id = 1,
345 .minimum_version_id = 1,
346 .pre_save = nand_pre_save,
347 .post_load = nand_post_load,
348 .fields = (VMStateField[]) {
349 VMSTATE_UINT8(cle, NANDFlashState),
350 VMSTATE_UINT8(ale, NANDFlashState),
351 VMSTATE_UINT8(ce, NANDFlashState),
352 VMSTATE_UINT8(wp, NANDFlashState),
353 VMSTATE_UINT8(gnd, NANDFlashState),
354 VMSTATE_BUFFER(io, NANDFlashState),
355 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
356 VMSTATE_INT32(iolen, NANDFlashState),
357 VMSTATE_UINT32(cmd, NANDFlashState),
358 VMSTATE_UINT64(addr, NANDFlashState),
359 VMSTATE_INT32(addrlen, NANDFlashState),
360 VMSTATE_INT32(status, NANDFlashState),
361 VMSTATE_INT32(offset, NANDFlashState),
362 /* XXX: do we want to save s->storage too? */
363 VMSTATE_END_OF_LIST()
367 static void nand_realize(DeviceState *dev, Error **errp)
369 int pagesize;
370 NANDFlashState *s = NAND(dev);
371 int ret;
374 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
375 s->size = nand_flash_ids[s->chip_id].size << 20;
376 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
377 s->page_shift = 11;
378 s->erase_shift = 6;
379 } else {
380 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
381 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
384 switch (1 << s->page_shift) {
385 case 256:
386 nand_init_256(s);
387 break;
388 case 512:
389 nand_init_512(s);
390 break;
391 case 2048:
392 nand_init_2048(s);
393 break;
394 default:
395 error_setg(errp, "Unsupported NAND block size %#x",
396 1 << s->page_shift);
397 return;
400 pagesize = 1 << s->oob_shift;
401 s->mem_oob = 1;
402 if (s->blk) {
403 if (!blk_supports_write_perm(s->blk)) {
404 error_setg(errp, "Can't use a read-only drive");
405 return;
407 ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
408 BLK_PERM_ALL, errp);
409 if (ret < 0) {
410 return;
412 if (blk_getlength(s->blk) >=
413 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
414 pagesize = 0;
415 s->mem_oob = 0;
417 } else {
418 pagesize += 1 << s->page_shift;
420 if (pagesize) {
421 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
422 0xff, s->pages * pagesize);
424 /* Give s->ioaddr a sane value in case we save state before it is used. */
425 s->ioaddr = s->io;
428 static Property nand_properties[] = {
429 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
430 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
431 DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
432 DEFINE_PROP_END_OF_LIST(),
435 static void nand_class_init(ObjectClass *klass, void *data)
437 DeviceClass *dc = DEVICE_CLASS(klass);
439 dc->realize = nand_realize;
440 dc->reset = nand_reset;
441 dc->vmsd = &vmstate_nand;
442 device_class_set_props(dc, nand_properties);
443 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
446 static const TypeInfo nand_info = {
447 .name = TYPE_NAND,
448 .parent = TYPE_DEVICE,
449 .instance_size = sizeof(NANDFlashState),
450 .class_init = nand_class_init,
453 static void nand_register_types(void)
455 type_register_static(&nand_info);
459 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
460 * outputs are R/B and eight I/O pins.
462 * CE, WP and R/B are active low.
464 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
465 uint8_t ce, uint8_t wp, uint8_t gnd)
467 NANDFlashState *s = NAND(dev);
469 s->cle = cle;
470 s->ale = ale;
471 s->ce = ce;
472 s->wp = wp;
473 s->gnd = gnd;
474 if (wp) {
475 s->status |= NAND_IOSTATUS_UNPROTCT;
476 } else {
477 s->status &= ~NAND_IOSTATUS_UNPROTCT;
481 void nand_getpins(DeviceState *dev, int *rb)
483 *rb = 1;
486 void nand_setio(DeviceState *dev, uint32_t value)
488 int i;
489 NANDFlashState *s = NAND(dev);
491 if (!s->ce && s->cle) {
492 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
493 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
494 return;
495 if (value == NAND_CMD_RANDOMREAD1) {
496 s->addr &= ~((1 << s->addr_shift) - 1);
497 s->addrlen = 0;
498 return;
501 if (value == NAND_CMD_READ0) {
502 s->offset = 0;
503 } else if (value == NAND_CMD_READ1) {
504 s->offset = 0x100;
505 value = NAND_CMD_READ0;
506 } else if (value == NAND_CMD_READ2) {
507 s->offset = 1 << s->page_shift;
508 value = NAND_CMD_READ0;
511 s->cmd = value;
513 if (s->cmd == NAND_CMD_READSTATUS ||
514 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
515 s->cmd == NAND_CMD_BLOCKERASE1 ||
516 s->cmd == NAND_CMD_BLOCKERASE2 ||
517 s->cmd == NAND_CMD_NOSERIALREAD2 ||
518 s->cmd == NAND_CMD_RANDOMREAD2 ||
519 s->cmd == NAND_CMD_RESET) {
520 nand_command(s);
523 if (s->cmd != NAND_CMD_RANDOMREAD2) {
524 s->addrlen = 0;
528 if (s->ale) {
529 unsigned int shift = s->addrlen * 8;
530 uint64_t mask = ~(0xffull << shift);
531 uint64_t v = (uint64_t)value << shift;
533 s->addr = (s->addr & mask) | v;
534 s->addrlen ++;
536 switch (s->addrlen) {
537 case 1:
538 if (s->cmd == NAND_CMD_READID) {
539 nand_command(s);
541 break;
542 case 2: /* fix cache address as a byte address */
543 s->addr <<= (s->buswidth - 1);
544 break;
545 case 3:
546 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
547 (s->cmd == NAND_CMD_READ0 ||
548 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
549 nand_command(s);
551 break;
552 case 4:
553 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
554 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
555 (s->cmd == NAND_CMD_READ0 ||
556 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
557 nand_command(s);
559 break;
560 case 5:
561 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
562 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
563 (s->cmd == NAND_CMD_READ0 ||
564 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
565 nand_command(s);
567 break;
568 default:
569 break;
573 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
574 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
575 for (i = s->buswidth; i--; value >>= 8) {
576 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
579 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
580 if ((s->addr & ((1 << s->addr_shift) - 1)) <
581 (1 << s->page_shift) + (1 << s->oob_shift)) {
582 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
583 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
584 (uint8_t) (value & 0xff);
590 uint32_t nand_getio(DeviceState *dev)
592 int offset;
593 uint32_t x = 0;
594 NANDFlashState *s = NAND(dev);
596 /* Allow sequential reading */
597 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
598 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
599 s->offset = 0;
601 s->blk_load(s, s->addr, offset);
602 if (s->gnd)
603 s->iolen = (1 << s->page_shift) - offset;
604 else
605 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
608 if (s->ce || s->iolen <= 0) {
609 return 0;
612 for (offset = s->buswidth; offset--;) {
613 x |= s->ioaddr[offset] << (offset << 3);
615 /* after receiving READ STATUS command all subsequent reads will
616 * return the status register value until another command is issued
618 if (s->cmd != NAND_CMD_READSTATUS) {
619 s->addr += s->buswidth;
620 s->ioaddr += s->buswidth;
621 s->iolen -= s->buswidth;
623 return x;
626 uint32_t nand_getbuswidth(DeviceState *dev)
628 NANDFlashState *s = (NANDFlashState *) dev;
629 return s->buswidth << 3;
632 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
634 DeviceState *dev;
636 if (nand_flash_ids[chip_id].size == 0) {
637 hw_error("%s: Unsupported NAND chip ID.\n", __func__);
639 dev = qdev_new(TYPE_NAND);
640 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
641 qdev_prop_set_uint8(dev, "chip_id", chip_id);
642 if (blk) {
643 qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal);
646 qdev_realize(dev, NULL, &error_fatal);
647 return dev;
650 type_init(nand_register_types)
652 #else
654 /* Program a single page */
655 static void glue(nand_blk_write_, NAND_PAGE_SIZE)(NANDFlashState *s)
657 uint64_t off, page, sector, soff;
658 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
659 if (PAGE(s->addr) >= s->pages)
660 return;
662 if (!s->blk) {
663 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
664 s->offset, s->io, s->iolen);
665 } else if (s->mem_oob) {
666 sector = SECTOR(s->addr);
667 off = (s->addr & PAGE_MASK) + s->offset;
668 soff = SECTOR_OFFSET(s->addr);
669 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
670 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
671 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
672 return;
675 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, NAND_PAGE_SIZE - off));
676 if (off + s->iolen > NAND_PAGE_SIZE) {
677 page = PAGE(s->addr);
678 mem_and(s->storage + (page << OOB_SHIFT), s->io + NAND_PAGE_SIZE - off,
679 MIN(OOB_SIZE, off + s->iolen - NAND_PAGE_SIZE));
682 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
683 PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
684 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
686 } else {
687 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
688 sector = off >> 9;
689 soff = off & 0x1ff;
690 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
691 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
692 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
693 return;
696 mem_and(iobuf + soff, s->io, s->iolen);
698 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
699 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
700 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
703 s->offset = 0;
706 /* Erase a single block */
707 static void glue(nand_blk_erase_, NAND_PAGE_SIZE)(NANDFlashState *s)
709 uint64_t i, page, addr;
710 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
711 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
713 if (PAGE(addr) >= s->pages) {
714 return;
717 if (!s->blk) {
718 memset(s->storage + PAGE_START(addr),
719 0xff, (NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift);
720 } else if (s->mem_oob) {
721 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
722 0xff, OOB_SIZE << s->erase_shift);
723 i = SECTOR(addr);
724 page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
725 for (; i < page; i ++)
726 if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
727 BDRV_SECTOR_SIZE, 0) < 0) {
728 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
730 } else {
731 addr = PAGE_START(addr);
732 page = addr >> 9;
733 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
734 BDRV_SECTOR_SIZE) < 0) {
735 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
737 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
738 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
739 BDRV_SECTOR_SIZE, 0) < 0) {
740 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
743 memset(iobuf, 0xff, 0x200);
744 i = (addr & ~0x1ff) + 0x200;
745 for (addr += ((NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
746 i < addr; i += 0x200) {
747 if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
748 printf("%s: write error in sector %" PRIu64 "\n",
749 __func__, i >> 9);
753 page = i >> 9;
754 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
755 BDRV_SECTOR_SIZE) < 0) {
756 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
758 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
759 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
760 BDRV_SECTOR_SIZE, 0) < 0) {
761 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
766 static void glue(nand_blk_load_, NAND_PAGE_SIZE)(NANDFlashState *s,
767 uint64_t addr, int offset)
769 if (PAGE(addr) >= s->pages) {
770 return;
773 if (s->blk) {
774 if (s->mem_oob) {
775 if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
776 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
777 printf("%s: read error in sector %" PRIu64 "\n",
778 __func__, SECTOR(addr));
780 memcpy(s->io + SECTOR_OFFSET(s->addr) + NAND_PAGE_SIZE,
781 s->storage + (PAGE(s->addr) << OOB_SHIFT),
782 OOB_SIZE);
783 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
784 } else {
785 if (blk_pread(s->blk, PAGE_START(addr), s->io,
786 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
787 printf("%s: read error in sector %" PRIu64 "\n",
788 __func__, PAGE_START(addr) >> 9);
790 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
792 } else {
793 memcpy(s->io, s->storage + PAGE_START(s->addr) +
794 offset, NAND_PAGE_SIZE + OOB_SIZE - offset);
795 s->ioaddr = s->io;
799 static void glue(nand_init_, NAND_PAGE_SIZE)(NANDFlashState *s)
801 s->oob_shift = PAGE_SHIFT - 5;
802 s->pages = s->size >> PAGE_SHIFT;
803 s->addr_shift = ADDR_SHIFT;
805 s->blk_erase = glue(nand_blk_erase_, NAND_PAGE_SIZE);
806 s->blk_write = glue(nand_blk_write_, NAND_PAGE_SIZE);
807 s->blk_load = glue(nand_blk_load_, NAND_PAGE_SIZE);
810 # undef NAND_PAGE_SIZE
811 # undef PAGE_SHIFT
812 # undef PAGE_SECTORS
813 # undef ADDR_SHIFT
814 #endif /* NAND_IO */