MAINTAINERS: make virtio-blk Stefan Hajnoczi's responsibility
[qemu/ar7.git] / target-arm / kvm.c
blobfdd9ba3f1d8d0c52b8fe656c6a11ddbf237ace8a
1 /*
2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
28 KVM_CAP_LAST_INFO
31 static bool cap_has_mp_state;
33 int kvm_arm_vcpu_init(CPUState *cs)
35 ARMCPU *cpu = ARM_CPU(cs);
36 struct kvm_vcpu_init init;
38 init.target = cpu->kvm_target;
39 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
41 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
44 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
45 int *fdarray,
46 struct kvm_vcpu_init *init)
48 int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
50 kvmfd = qemu_open("/dev/kvm", O_RDWR);
51 if (kvmfd < 0) {
52 goto err;
54 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
55 if (vmfd < 0) {
56 goto err;
58 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
59 if (cpufd < 0) {
60 goto err;
63 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
64 if (ret >= 0) {
65 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
66 if (ret < 0) {
67 goto err;
69 } else {
70 /* Old kernel which doesn't know about the
71 * PREFERRED_TARGET ioctl: we know it will only support
72 * creating one kind of guest CPU which is its preferred
73 * CPU type.
75 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
76 init->target = *cpus_to_try++;
77 memset(init->features, 0, sizeof(init->features));
78 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
79 if (ret >= 0) {
80 break;
83 if (ret < 0) {
84 goto err;
88 fdarray[0] = kvmfd;
89 fdarray[1] = vmfd;
90 fdarray[2] = cpufd;
92 return true;
94 err:
95 if (cpufd >= 0) {
96 close(cpufd);
98 if (vmfd >= 0) {
99 close(vmfd);
101 if (kvmfd >= 0) {
102 close(kvmfd);
105 return false;
108 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
110 int i;
112 for (i = 2; i >= 0; i--) {
113 close(fdarray[i]);
117 static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
119 ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
121 /* All we really need to set up for the 'host' CPU
122 * is the feature bits -- we rely on the fact that the
123 * various ID register values in ARMCPU are only used for
124 * TCG CPUs.
126 if (!kvm_arm_get_host_cpu_features(ahcc)) {
127 fprintf(stderr, "Failed to retrieve host CPU features!\n");
128 abort();
132 static void kvm_arm_host_cpu_initfn(Object *obj)
134 ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
135 ARMCPU *cpu = ARM_CPU(obj);
136 CPUARMState *env = &cpu->env;
138 cpu->kvm_target = ahcc->target;
139 cpu->dtb_compatible = ahcc->dtb_compatible;
140 env->features = ahcc->features;
143 static const TypeInfo host_arm_cpu_type_info = {
144 .name = TYPE_ARM_HOST_CPU,
145 #ifdef TARGET_AARCH64
146 .parent = TYPE_AARCH64_CPU,
147 #else
148 .parent = TYPE_ARM_CPU,
149 #endif
150 .instance_init = kvm_arm_host_cpu_initfn,
151 .class_init = kvm_arm_host_cpu_class_init,
152 .class_size = sizeof(ARMHostCPUClass),
155 int kvm_arch_init(MachineState *ms, KVMState *s)
157 /* For ARM interrupt delivery is always asynchronous,
158 * whether we are using an in-kernel VGIC or not.
160 kvm_async_interrupts_allowed = true;
162 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
164 type_register_static(&host_arm_cpu_type_info);
166 return 0;
169 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
171 return cpu->cpu_index;
174 /* We track all the KVM devices which need their memory addresses
175 * passing to the kernel in a list of these structures.
176 * When board init is complete we run through the list and
177 * tell the kernel the base addresses of the memory regions.
178 * We use a MemoryListener to track mapping and unmapping of
179 * the regions during board creation, so the board models don't
180 * need to do anything special for the KVM case.
182 typedef struct KVMDevice {
183 struct kvm_arm_device_addr kda;
184 struct kvm_device_attr kdattr;
185 MemoryRegion *mr;
186 QSLIST_ENTRY(KVMDevice) entries;
187 int dev_fd;
188 } KVMDevice;
190 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
192 static void kvm_arm_devlistener_add(MemoryListener *listener,
193 MemoryRegionSection *section)
195 KVMDevice *kd;
197 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
198 if (section->mr == kd->mr) {
199 kd->kda.addr = section->offset_within_address_space;
204 static void kvm_arm_devlistener_del(MemoryListener *listener,
205 MemoryRegionSection *section)
207 KVMDevice *kd;
209 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
210 if (section->mr == kd->mr) {
211 kd->kda.addr = -1;
216 static MemoryListener devlistener = {
217 .region_add = kvm_arm_devlistener_add,
218 .region_del = kvm_arm_devlistener_del,
221 static void kvm_arm_set_device_addr(KVMDevice *kd)
223 struct kvm_device_attr *attr = &kd->kdattr;
224 int ret;
226 /* If the device control API is available and we have a device fd on the
227 * KVMDevice struct, let's use the newer API
229 if (kd->dev_fd >= 0) {
230 uint64_t addr = kd->kda.addr;
231 attr->addr = (uintptr_t)&addr;
232 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
233 } else {
234 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
237 if (ret < 0) {
238 fprintf(stderr, "Failed to set device address: %s\n",
239 strerror(-ret));
240 abort();
244 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
246 KVMDevice *kd, *tkd;
248 memory_listener_unregister(&devlistener);
249 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
250 if (kd->kda.addr != -1) {
251 kvm_arm_set_device_addr(kd);
253 memory_region_unref(kd->mr);
254 g_free(kd);
258 static Notifier notify = {
259 .notify = kvm_arm_machine_init_done,
262 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
263 uint64_t attr, int dev_fd)
265 KVMDevice *kd;
267 if (!kvm_irqchip_in_kernel()) {
268 return;
271 if (QSLIST_EMPTY(&kvm_devices_head)) {
272 memory_listener_register(&devlistener, NULL);
273 qemu_add_machine_init_done_notifier(&notify);
275 kd = g_new0(KVMDevice, 1);
276 kd->mr = mr;
277 kd->kda.id = devid;
278 kd->kda.addr = -1;
279 kd->kdattr.flags = 0;
280 kd->kdattr.group = group;
281 kd->kdattr.attr = attr;
282 kd->dev_fd = dev_fd;
283 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
284 memory_region_ref(kd->mr);
287 static int compare_u64(const void *a, const void *b)
289 if (*(uint64_t *)a > *(uint64_t *)b) {
290 return 1;
292 if (*(uint64_t *)a < *(uint64_t *)b) {
293 return -1;
295 return 0;
298 /* Initialize the CPUState's cpreg list according to the kernel's
299 * definition of what CPU registers it knows about (and throw away
300 * the previous TCG-created cpreg list).
302 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
304 struct kvm_reg_list rl;
305 struct kvm_reg_list *rlp;
306 int i, ret, arraylen;
307 CPUState *cs = CPU(cpu);
309 rl.n = 0;
310 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
311 if (ret != -E2BIG) {
312 return ret;
314 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
315 rlp->n = rl.n;
316 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
317 if (ret) {
318 goto out;
320 /* Sort the list we get back from the kernel, since cpreg_tuples
321 * must be in strictly ascending order.
323 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
325 for (i = 0, arraylen = 0; i < rlp->n; i++) {
326 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
327 continue;
329 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
330 case KVM_REG_SIZE_U32:
331 case KVM_REG_SIZE_U64:
332 break;
333 default:
334 fprintf(stderr, "Can't handle size of register in kernel list\n");
335 ret = -EINVAL;
336 goto out;
339 arraylen++;
342 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
343 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
344 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
345 arraylen);
346 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
347 arraylen);
348 cpu->cpreg_array_len = arraylen;
349 cpu->cpreg_vmstate_array_len = arraylen;
351 for (i = 0, arraylen = 0; i < rlp->n; i++) {
352 uint64_t regidx = rlp->reg[i];
353 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
354 continue;
356 cpu->cpreg_indexes[arraylen] = regidx;
357 arraylen++;
359 assert(cpu->cpreg_array_len == arraylen);
361 if (!write_kvmstate_to_list(cpu)) {
362 /* Shouldn't happen unless kernel is inconsistent about
363 * what registers exist.
365 fprintf(stderr, "Initial read of kernel register state failed\n");
366 ret = -EINVAL;
367 goto out;
370 out:
371 g_free(rlp);
372 return ret;
375 bool write_kvmstate_to_list(ARMCPU *cpu)
377 CPUState *cs = CPU(cpu);
378 int i;
379 bool ok = true;
381 for (i = 0; i < cpu->cpreg_array_len; i++) {
382 struct kvm_one_reg r;
383 uint64_t regidx = cpu->cpreg_indexes[i];
384 uint32_t v32;
385 int ret;
387 r.id = regidx;
389 switch (regidx & KVM_REG_SIZE_MASK) {
390 case KVM_REG_SIZE_U32:
391 r.addr = (uintptr_t)&v32;
392 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
393 if (!ret) {
394 cpu->cpreg_values[i] = v32;
396 break;
397 case KVM_REG_SIZE_U64:
398 r.addr = (uintptr_t)(cpu->cpreg_values + i);
399 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
400 break;
401 default:
402 abort();
404 if (ret) {
405 ok = false;
408 return ok;
411 bool write_list_to_kvmstate(ARMCPU *cpu)
413 CPUState *cs = CPU(cpu);
414 int i;
415 bool ok = true;
417 for (i = 0; i < cpu->cpreg_array_len; i++) {
418 struct kvm_one_reg r;
419 uint64_t regidx = cpu->cpreg_indexes[i];
420 uint32_t v32;
421 int ret;
423 r.id = regidx;
424 switch (regidx & KVM_REG_SIZE_MASK) {
425 case KVM_REG_SIZE_U32:
426 v32 = cpu->cpreg_values[i];
427 r.addr = (uintptr_t)&v32;
428 break;
429 case KVM_REG_SIZE_U64:
430 r.addr = (uintptr_t)(cpu->cpreg_values + i);
431 break;
432 default:
433 abort();
435 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
436 if (ret) {
437 /* We might fail for "unknown register" and also for
438 * "you tried to set a register which is constant with
439 * a different value from what it actually contains".
441 ok = false;
444 return ok;
447 void kvm_arm_reset_vcpu(ARMCPU *cpu)
449 int ret;
451 /* Re-init VCPU so that all registers are set to
452 * their respective reset values.
454 ret = kvm_arm_vcpu_init(CPU(cpu));
455 if (ret < 0) {
456 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
457 abort();
459 if (!write_kvmstate_to_list(cpu)) {
460 fprintf(stderr, "write_kvmstate_to_list failed\n");
461 abort();
466 * Update KVM's MP_STATE based on what QEMU thinks it is
468 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
470 if (cap_has_mp_state) {
471 struct kvm_mp_state mp_state = {
472 .mp_state =
473 cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
475 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
476 if (ret) {
477 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
478 __func__, ret, strerror(-ret));
479 return -1;
483 return 0;
487 * Sync the KVM MP_STATE into QEMU
489 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
491 if (cap_has_mp_state) {
492 struct kvm_mp_state mp_state;
493 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
494 if (ret) {
495 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
496 __func__, ret, strerror(-ret));
497 abort();
499 cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED);
502 return 0;
505 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
509 void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
513 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
515 return 0;
518 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
520 return true;
523 int kvm_arch_process_async_events(CPUState *cs)
525 return 0;
528 int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
530 return 1;
533 int kvm_arch_on_sigbus(int code, void *addr)
535 return 1;
538 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
540 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
543 int kvm_arch_insert_sw_breakpoint(CPUState *cs,
544 struct kvm_sw_breakpoint *bp)
546 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
547 return -EINVAL;
550 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
551 target_ulong len, int type)
553 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
554 return -EINVAL;
557 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
558 target_ulong len, int type)
560 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
561 return -EINVAL;
564 int kvm_arch_remove_sw_breakpoint(CPUState *cs,
565 struct kvm_sw_breakpoint *bp)
567 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
568 return -EINVAL;
571 void kvm_arch_remove_all_hw_breakpoints(void)
573 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
576 void kvm_arch_init_irq_routing(KVMState *s)
580 int kvm_arch_irqchip_create(KVMState *s)
582 int ret;
584 /* If we can create the VGIC using the newer device control API, we
585 * let the device do this when it initializes itself, otherwise we
586 * fall back to the old API */
588 ret = kvm_create_device(s, KVM_DEV_TYPE_ARM_VGIC_V2, true);
589 if (ret == 0) {
590 return 1;
593 return 0;
596 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
597 uint64_t address, uint32_t data)
599 return 0;