tests: fw_cfg: add 'reboot-timeout' test case
[qemu/ar7.git] / target / arm / translate-a64.c
blobb7c5a928b4acccd3e17f37d35b5a1e1805c9607b
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/qemu-print.h"
32 #include "exec/semihost.h"
33 #include "exec/gen-icount.h"
35 #include "exec/helper-proto.h"
36 #include "exec/helper-gen.h"
37 #include "exec/log.h"
39 #include "trace-tcg.h"
40 #include "translate-a64.h"
41 #include "qemu/atomic128.h"
43 static TCGv_i64 cpu_X[32];
44 static TCGv_i64 cpu_pc;
46 /* Load/store exclusive handling */
47 static TCGv_i64 cpu_exclusive_high;
49 static const char *regnames[] = {
50 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
51 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
52 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
53 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
56 enum a64_shift_type {
57 A64_SHIFT_TYPE_LSL = 0,
58 A64_SHIFT_TYPE_LSR = 1,
59 A64_SHIFT_TYPE_ASR = 2,
60 A64_SHIFT_TYPE_ROR = 3
63 /* Table based decoder typedefs - used when the relevant bits for decode
64 * are too awkwardly scattered across the instruction (eg SIMD).
66 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
68 typedef struct AArch64DecodeTable {
69 uint32_t pattern;
70 uint32_t mask;
71 AArch64DecodeFn *disas_fn;
72 } AArch64DecodeTable;
74 /* Function prototype for gen_ functions for calling Neon helpers */
75 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
76 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
78 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
79 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
80 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
81 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
82 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
83 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
84 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
85 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
86 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
87 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
88 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
89 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
91 /* initialize TCG globals. */
92 void a64_translate_init(void)
94 int i;
96 cpu_pc = tcg_global_mem_new_i64(cpu_env,
97 offsetof(CPUARMState, pc),
98 "pc");
99 for (i = 0; i < 32; i++) {
100 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, xregs[i]),
102 regnames[i]);
105 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
106 offsetof(CPUARMState, exclusive_high), "exclusive_high");
109 static inline int get_a64_user_mem_index(DisasContext *s)
111 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
112 * if EL1, access as if EL0; otherwise access at current EL
114 ARMMMUIdx useridx;
116 switch (s->mmu_idx) {
117 case ARMMMUIdx_S12NSE1:
118 useridx = ARMMMUIdx_S12NSE0;
119 break;
120 case ARMMMUIdx_S1SE1:
121 useridx = ARMMMUIdx_S1SE0;
122 break;
123 case ARMMMUIdx_S2NS:
124 g_assert_not_reached();
125 default:
126 useridx = s->mmu_idx;
127 break;
129 return arm_to_core_mmu_idx(useridx);
132 static void reset_btype(DisasContext *s)
134 if (s->btype != 0) {
135 TCGv_i32 zero = tcg_const_i32(0);
136 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
137 tcg_temp_free_i32(zero);
138 s->btype = 0;
142 static void set_btype(DisasContext *s, int val)
144 TCGv_i32 tcg_val;
146 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
147 tcg_debug_assert(val >= 1 && val <= 3);
149 tcg_val = tcg_const_i32(val);
150 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
151 tcg_temp_free_i32(tcg_val);
152 s->btype = -1;
155 void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
157 ARMCPU *cpu = ARM_CPU(cs);
158 CPUARMState *env = &cpu->env;
159 uint32_t psr = pstate_read(env);
160 int i;
161 int el = arm_current_el(env);
162 const char *ns_status;
164 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
165 for (i = 0; i < 32; i++) {
166 if (i == 31) {
167 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
168 } else {
169 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
170 (i + 2) % 3 ? " " : "\n");
174 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
175 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
176 } else {
177 ns_status = "";
179 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
180 psr,
181 psr & PSTATE_N ? 'N' : '-',
182 psr & PSTATE_Z ? 'Z' : '-',
183 psr & PSTATE_C ? 'C' : '-',
184 psr & PSTATE_V ? 'V' : '-',
185 ns_status,
187 psr & PSTATE_SP ? 'h' : 't');
189 if (cpu_isar_feature(aa64_bti, cpu)) {
190 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
192 if (!(flags & CPU_DUMP_FPU)) {
193 qemu_fprintf(f, "\n");
194 return;
196 if (fp_exception_el(env, el) != 0) {
197 qemu_fprintf(f, " FPU disabled\n");
198 return;
200 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
201 vfp_get_fpcr(env), vfp_get_fpsr(env));
203 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
204 int j, zcr_len = sve_zcr_len_for_el(env, el);
206 for (i = 0; i <= FFR_PRED_NUM; i++) {
207 bool eol;
208 if (i == FFR_PRED_NUM) {
209 qemu_fprintf(f, "FFR=");
210 /* It's last, so end the line. */
211 eol = true;
212 } else {
213 qemu_fprintf(f, "P%02d=", i);
214 switch (zcr_len) {
215 case 0:
216 eol = i % 8 == 7;
217 break;
218 case 1:
219 eol = i % 6 == 5;
220 break;
221 case 2:
222 case 3:
223 eol = i % 3 == 2;
224 break;
225 default:
226 /* More than one quadword per predicate. */
227 eol = true;
228 break;
231 for (j = zcr_len / 4; j >= 0; j--) {
232 int digits;
233 if (j * 4 + 4 <= zcr_len + 1) {
234 digits = 16;
235 } else {
236 digits = (zcr_len % 4 + 1) * 4;
238 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
239 env->vfp.pregs[i].p[j],
240 j ? ":" : eol ? "\n" : " ");
244 for (i = 0; i < 32; i++) {
245 if (zcr_len == 0) {
246 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
247 i, env->vfp.zregs[i].d[1],
248 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
249 } else if (zcr_len == 1) {
250 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
251 ":%016" PRIx64 ":%016" PRIx64 "\n",
252 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
253 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
254 } else {
255 for (j = zcr_len; j >= 0; j--) {
256 bool odd = (zcr_len - j) % 2 != 0;
257 if (j == zcr_len) {
258 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
259 } else if (!odd) {
260 if (j > 0) {
261 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
262 } else {
263 qemu_fprintf(f, " [%x]=", j);
266 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
267 env->vfp.zregs[i].d[j * 2 + 1],
268 env->vfp.zregs[i].d[j * 2],
269 odd || j == 0 ? "\n" : ":");
273 } else {
274 for (i = 0; i < 32; i++) {
275 uint64_t *q = aa64_vfp_qreg(env, i);
276 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
277 i, q[1], q[0], (i & 1 ? "\n" : " "));
282 void gen_a64_set_pc_im(uint64_t val)
284 tcg_gen_movi_i64(cpu_pc, val);
288 * Handle Top Byte Ignore (TBI) bits.
290 * If address tagging is enabled via the TCR TBI bits:
291 * + for EL2 and EL3 there is only one TBI bit, and if it is set
292 * then the address is zero-extended, clearing bits [63:56]
293 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
294 * and TBI1 controls addressses with bit 55 == 1.
295 * If the appropriate TBI bit is set for the address then
296 * the address is sign-extended from bit 55 into bits [63:56]
298 * Here We have concatenated TBI{1,0} into tbi.
300 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
301 TCGv_i64 src, int tbi)
303 if (tbi == 0) {
304 /* Load unmodified address */
305 tcg_gen_mov_i64(dst, src);
306 } else if (s->current_el >= 2) {
307 /* FIXME: ARMv8.1-VHE S2 translation regime. */
308 /* Force tag byte to all zero */
309 tcg_gen_extract_i64(dst, src, 0, 56);
310 } else {
311 /* Sign-extend from bit 55. */
312 tcg_gen_sextract_i64(dst, src, 0, 56);
314 if (tbi != 3) {
315 TCGv_i64 tcg_zero = tcg_const_i64(0);
318 * The two TBI bits differ.
319 * If tbi0, then !tbi1: only use the extension if positive.
320 * if !tbi0, then tbi1: only use the extension if negative.
322 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
323 dst, dst, tcg_zero, dst, src);
324 tcg_temp_free_i64(tcg_zero);
329 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
332 * If address tagging is enabled for instructions via the TCR TBI bits,
333 * then loading an address into the PC will clear out any tag.
335 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
339 * Return a "clean" address for ADDR according to TBID.
340 * This is always a fresh temporary, as we need to be able to
341 * increment this independently of a dirty write-back address.
343 static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
345 TCGv_i64 clean = new_tmp_a64(s);
346 gen_top_byte_ignore(s, clean, addr, s->tbid);
347 return clean;
350 typedef struct DisasCompare64 {
351 TCGCond cond;
352 TCGv_i64 value;
353 } DisasCompare64;
355 static void a64_test_cc(DisasCompare64 *c64, int cc)
357 DisasCompare c32;
359 arm_test_cc(&c32, cc);
361 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
362 * properly. The NE/EQ comparisons are also fine with this choice. */
363 c64->cond = c32.cond;
364 c64->value = tcg_temp_new_i64();
365 tcg_gen_ext_i32_i64(c64->value, c32.value);
367 arm_free_cc(&c32);
370 static void a64_free_cc(DisasCompare64 *c64)
372 tcg_temp_free_i64(c64->value);
375 static void gen_exception_internal(int excp)
377 TCGv_i32 tcg_excp = tcg_const_i32(excp);
379 assert(excp_is_internal(excp));
380 gen_helper_exception_internal(cpu_env, tcg_excp);
381 tcg_temp_free_i32(tcg_excp);
384 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
386 TCGv_i32 tcg_excp = tcg_const_i32(excp);
387 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
388 TCGv_i32 tcg_el = tcg_const_i32(target_el);
390 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
391 tcg_syn, tcg_el);
392 tcg_temp_free_i32(tcg_el);
393 tcg_temp_free_i32(tcg_syn);
394 tcg_temp_free_i32(tcg_excp);
397 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
399 gen_a64_set_pc_im(s->pc - offset);
400 gen_exception_internal(excp);
401 s->base.is_jmp = DISAS_NORETURN;
404 static void gen_exception_insn(DisasContext *s, int offset, int excp,
405 uint32_t syndrome, uint32_t target_el)
407 gen_a64_set_pc_im(s->pc - offset);
408 gen_exception(excp, syndrome, target_el);
409 s->base.is_jmp = DISAS_NORETURN;
412 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
413 uint32_t syndrome)
415 TCGv_i32 tcg_syn;
417 gen_a64_set_pc_im(s->pc - offset);
418 tcg_syn = tcg_const_i32(syndrome);
419 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
420 tcg_temp_free_i32(tcg_syn);
421 s->base.is_jmp = DISAS_NORETURN;
424 static void gen_step_complete_exception(DisasContext *s)
426 /* We just completed step of an insn. Move from Active-not-pending
427 * to Active-pending, and then also take the swstep exception.
428 * This corresponds to making the (IMPDEF) choice to prioritize
429 * swstep exceptions over asynchronous exceptions taken to an exception
430 * level where debug is disabled. This choice has the advantage that
431 * we do not need to maintain internal state corresponding to the
432 * ISV/EX syndrome bits between completion of the step and generation
433 * of the exception, and our syndrome information is always correct.
435 gen_ss_advance(s);
436 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
437 default_exception_el(s));
438 s->base.is_jmp = DISAS_NORETURN;
441 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
443 /* No direct tb linking with singlestep (either QEMU's or the ARM
444 * debug architecture kind) or deterministic io
446 if (s->base.singlestep_enabled || s->ss_active ||
447 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
448 return false;
451 #ifndef CONFIG_USER_ONLY
452 /* Only link tbs from inside the same guest page */
453 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
454 return false;
456 #endif
458 return true;
461 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
463 TranslationBlock *tb;
465 tb = s->base.tb;
466 if (use_goto_tb(s, n, dest)) {
467 tcg_gen_goto_tb(n);
468 gen_a64_set_pc_im(dest);
469 tcg_gen_exit_tb(tb, n);
470 s->base.is_jmp = DISAS_NORETURN;
471 } else {
472 gen_a64_set_pc_im(dest);
473 if (s->ss_active) {
474 gen_step_complete_exception(s);
475 } else if (s->base.singlestep_enabled) {
476 gen_exception_internal(EXCP_DEBUG);
477 } else {
478 tcg_gen_lookup_and_goto_ptr();
479 s->base.is_jmp = DISAS_NORETURN;
484 void unallocated_encoding(DisasContext *s)
486 /* Unallocated and reserved encodings are uncategorized */
487 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
488 default_exception_el(s));
491 static void init_tmp_a64_array(DisasContext *s)
493 #ifdef CONFIG_DEBUG_TCG
494 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
495 #endif
496 s->tmp_a64_count = 0;
499 static void free_tmp_a64(DisasContext *s)
501 int i;
502 for (i = 0; i < s->tmp_a64_count; i++) {
503 tcg_temp_free_i64(s->tmp_a64[i]);
505 init_tmp_a64_array(s);
508 TCGv_i64 new_tmp_a64(DisasContext *s)
510 assert(s->tmp_a64_count < TMP_A64_MAX);
511 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
514 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
516 TCGv_i64 t = new_tmp_a64(s);
517 tcg_gen_movi_i64(t, 0);
518 return t;
522 * Register access functions
524 * These functions are used for directly accessing a register in where
525 * changes to the final register value are likely to be made. If you
526 * need to use a register for temporary calculation (e.g. index type
527 * operations) use the read_* form.
529 * B1.2.1 Register mappings
531 * In instruction register encoding 31 can refer to ZR (zero register) or
532 * the SP (stack pointer) depending on context. In QEMU's case we map SP
533 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
534 * This is the point of the _sp forms.
536 TCGv_i64 cpu_reg(DisasContext *s, int reg)
538 if (reg == 31) {
539 return new_tmp_a64_zero(s);
540 } else {
541 return cpu_X[reg];
545 /* register access for when 31 == SP */
546 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
548 return cpu_X[reg];
551 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
552 * representing the register contents. This TCGv is an auto-freed
553 * temporary so it need not be explicitly freed, and may be modified.
555 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
557 TCGv_i64 v = new_tmp_a64(s);
558 if (reg != 31) {
559 if (sf) {
560 tcg_gen_mov_i64(v, cpu_X[reg]);
561 } else {
562 tcg_gen_ext32u_i64(v, cpu_X[reg]);
564 } else {
565 tcg_gen_movi_i64(v, 0);
567 return v;
570 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
572 TCGv_i64 v = new_tmp_a64(s);
573 if (sf) {
574 tcg_gen_mov_i64(v, cpu_X[reg]);
575 } else {
576 tcg_gen_ext32u_i64(v, cpu_X[reg]);
578 return v;
581 /* Return the offset into CPUARMState of a slice (from
582 * the least significant end) of FP register Qn (ie
583 * Dn, Sn, Hn or Bn).
584 * (Note that this is not the same mapping as for A32; see cpu.h)
586 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
588 return vec_reg_offset(s, regno, 0, size);
591 /* Offset of the high half of the 128 bit vector Qn */
592 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
594 return vec_reg_offset(s, regno, 1, MO_64);
597 /* Convenience accessors for reading and writing single and double
598 * FP registers. Writing clears the upper parts of the associated
599 * 128 bit vector register, as required by the architecture.
600 * Note that unlike the GP register accessors, the values returned
601 * by the read functions must be manually freed.
603 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
605 TCGv_i64 v = tcg_temp_new_i64();
607 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
608 return v;
611 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
613 TCGv_i32 v = tcg_temp_new_i32();
615 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
616 return v;
619 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
621 TCGv_i32 v = tcg_temp_new_i32();
623 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
624 return v;
627 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
628 * If SVE is not enabled, then there are only 128 bits in the vector.
630 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
632 unsigned ofs = fp_reg_offset(s, rd, MO_64);
633 unsigned vsz = vec_full_reg_size(s);
635 if (!is_q) {
636 TCGv_i64 tcg_zero = tcg_const_i64(0);
637 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
638 tcg_temp_free_i64(tcg_zero);
640 if (vsz > 16) {
641 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
645 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
647 unsigned ofs = fp_reg_offset(s, reg, MO_64);
649 tcg_gen_st_i64(v, cpu_env, ofs);
650 clear_vec_high(s, false, reg);
653 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
655 TCGv_i64 tmp = tcg_temp_new_i64();
657 tcg_gen_extu_i32_i64(tmp, v);
658 write_fp_dreg(s, reg, tmp);
659 tcg_temp_free_i64(tmp);
662 TCGv_ptr get_fpstatus_ptr(bool is_f16)
664 TCGv_ptr statusptr = tcg_temp_new_ptr();
665 int offset;
667 /* In A64 all instructions (both FP and Neon) use the FPCR; there
668 * is no equivalent of the A32 Neon "standard FPSCR value".
669 * However half-precision operations operate under a different
670 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
672 if (is_f16) {
673 offset = offsetof(CPUARMState, vfp.fp_status_f16);
674 } else {
675 offset = offsetof(CPUARMState, vfp.fp_status);
677 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
678 return statusptr;
681 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
682 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
683 GVecGen2Fn *gvec_fn, int vece)
685 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
686 is_q ? 16 : 8, vec_full_reg_size(s));
689 /* Expand a 2-operand + immediate AdvSIMD vector operation using
690 * an expander function.
692 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
693 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
695 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
696 imm, is_q ? 16 : 8, vec_full_reg_size(s));
699 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
700 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
701 GVecGen3Fn *gvec_fn, int vece)
703 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
704 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
707 /* Expand a 2-operand + immediate AdvSIMD vector operation using
708 * an op descriptor.
710 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
711 int rn, int64_t imm, const GVecGen2i *gvec_op)
713 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
714 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
717 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
718 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
719 int rn, int rm, const GVecGen3 *gvec_op)
721 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
722 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
723 vec_full_reg_size(s), gvec_op);
726 /* Expand a 3-operand operation using an out-of-line helper. */
727 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
728 int rn, int rm, int data, gen_helper_gvec_3 *fn)
730 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
731 vec_full_reg_offset(s, rn),
732 vec_full_reg_offset(s, rm),
733 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 /* Expand a 3-operand + env pointer operation using
737 * an out-of-line helper.
739 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
740 int rn, int rm, gen_helper_gvec_3_ptr *fn)
742 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
743 vec_full_reg_offset(s, rn),
744 vec_full_reg_offset(s, rm), cpu_env,
745 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
748 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
749 * an out-of-line helper.
751 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
752 int rm, bool is_fp16, int data,
753 gen_helper_gvec_3_ptr *fn)
755 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
756 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
757 vec_full_reg_offset(s, rn),
758 vec_full_reg_offset(s, rm), fpst,
759 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
760 tcg_temp_free_ptr(fpst);
763 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
764 * than the 32 bit equivalent.
766 static inline void gen_set_NZ64(TCGv_i64 result)
768 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
769 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
772 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
773 static inline void gen_logic_CC(int sf, TCGv_i64 result)
775 if (sf) {
776 gen_set_NZ64(result);
777 } else {
778 tcg_gen_extrl_i64_i32(cpu_ZF, result);
779 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
781 tcg_gen_movi_i32(cpu_CF, 0);
782 tcg_gen_movi_i32(cpu_VF, 0);
785 /* dest = T0 + T1; compute C, N, V and Z flags */
786 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
788 if (sf) {
789 TCGv_i64 result, flag, tmp;
790 result = tcg_temp_new_i64();
791 flag = tcg_temp_new_i64();
792 tmp = tcg_temp_new_i64();
794 tcg_gen_movi_i64(tmp, 0);
795 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
797 tcg_gen_extrl_i64_i32(cpu_CF, flag);
799 gen_set_NZ64(result);
801 tcg_gen_xor_i64(flag, result, t0);
802 tcg_gen_xor_i64(tmp, t0, t1);
803 tcg_gen_andc_i64(flag, flag, tmp);
804 tcg_temp_free_i64(tmp);
805 tcg_gen_extrh_i64_i32(cpu_VF, flag);
807 tcg_gen_mov_i64(dest, result);
808 tcg_temp_free_i64(result);
809 tcg_temp_free_i64(flag);
810 } else {
811 /* 32 bit arithmetic */
812 TCGv_i32 t0_32 = tcg_temp_new_i32();
813 TCGv_i32 t1_32 = tcg_temp_new_i32();
814 TCGv_i32 tmp = tcg_temp_new_i32();
816 tcg_gen_movi_i32(tmp, 0);
817 tcg_gen_extrl_i64_i32(t0_32, t0);
818 tcg_gen_extrl_i64_i32(t1_32, t1);
819 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
820 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
822 tcg_gen_xor_i32(tmp, t0_32, t1_32);
823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
824 tcg_gen_extu_i32_i64(dest, cpu_NF);
826 tcg_temp_free_i32(tmp);
827 tcg_temp_free_i32(t0_32);
828 tcg_temp_free_i32(t1_32);
832 /* dest = T0 - T1; compute C, N, V and Z flags */
833 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
835 if (sf) {
836 /* 64 bit arithmetic */
837 TCGv_i64 result, flag, tmp;
839 result = tcg_temp_new_i64();
840 flag = tcg_temp_new_i64();
841 tcg_gen_sub_i64(result, t0, t1);
843 gen_set_NZ64(result);
845 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
846 tcg_gen_extrl_i64_i32(cpu_CF, flag);
848 tcg_gen_xor_i64(flag, result, t0);
849 tmp = tcg_temp_new_i64();
850 tcg_gen_xor_i64(tmp, t0, t1);
851 tcg_gen_and_i64(flag, flag, tmp);
852 tcg_temp_free_i64(tmp);
853 tcg_gen_extrh_i64_i32(cpu_VF, flag);
854 tcg_gen_mov_i64(dest, result);
855 tcg_temp_free_i64(flag);
856 tcg_temp_free_i64(result);
857 } else {
858 /* 32 bit arithmetic */
859 TCGv_i32 t0_32 = tcg_temp_new_i32();
860 TCGv_i32 t1_32 = tcg_temp_new_i32();
861 TCGv_i32 tmp;
863 tcg_gen_extrl_i64_i32(t0_32, t0);
864 tcg_gen_extrl_i64_i32(t1_32, t1);
865 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
866 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
867 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
868 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
869 tmp = tcg_temp_new_i32();
870 tcg_gen_xor_i32(tmp, t0_32, t1_32);
871 tcg_temp_free_i32(t0_32);
872 tcg_temp_free_i32(t1_32);
873 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
874 tcg_temp_free_i32(tmp);
875 tcg_gen_extu_i32_i64(dest, cpu_NF);
879 /* dest = T0 + T1 + CF; do not compute flags. */
880 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
882 TCGv_i64 flag = tcg_temp_new_i64();
883 tcg_gen_extu_i32_i64(flag, cpu_CF);
884 tcg_gen_add_i64(dest, t0, t1);
885 tcg_gen_add_i64(dest, dest, flag);
886 tcg_temp_free_i64(flag);
888 if (!sf) {
889 tcg_gen_ext32u_i64(dest, dest);
893 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
894 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
896 if (sf) {
897 TCGv_i64 result, cf_64, vf_64, tmp;
898 result = tcg_temp_new_i64();
899 cf_64 = tcg_temp_new_i64();
900 vf_64 = tcg_temp_new_i64();
901 tmp = tcg_const_i64(0);
903 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
904 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
905 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
906 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
907 gen_set_NZ64(result);
909 tcg_gen_xor_i64(vf_64, result, t0);
910 tcg_gen_xor_i64(tmp, t0, t1);
911 tcg_gen_andc_i64(vf_64, vf_64, tmp);
912 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
914 tcg_gen_mov_i64(dest, result);
916 tcg_temp_free_i64(tmp);
917 tcg_temp_free_i64(vf_64);
918 tcg_temp_free_i64(cf_64);
919 tcg_temp_free_i64(result);
920 } else {
921 TCGv_i32 t0_32, t1_32, tmp;
922 t0_32 = tcg_temp_new_i32();
923 t1_32 = tcg_temp_new_i32();
924 tmp = tcg_const_i32(0);
926 tcg_gen_extrl_i64_i32(t0_32, t0);
927 tcg_gen_extrl_i64_i32(t1_32, t1);
928 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
929 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
931 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
932 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
933 tcg_gen_xor_i32(tmp, t0_32, t1_32);
934 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
935 tcg_gen_extu_i32_i64(dest, cpu_NF);
937 tcg_temp_free_i32(tmp);
938 tcg_temp_free_i32(t1_32);
939 tcg_temp_free_i32(t0_32);
944 * Load/Store generators
948 * Store from GPR register to memory.
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951 TCGv_i64 tcg_addr, int size, int memidx,
952 bool iss_valid,
953 unsigned int iss_srt,
954 bool iss_sf, bool iss_ar)
956 g_assert(size <= 3);
957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
959 if (iss_valid) {
960 uint32_t syn;
962 syn = syn_data_abort_with_iss(0,
963 size,
964 false,
965 iss_srt,
966 iss_sf,
967 iss_ar,
968 0, 0, 0, 0, 0, false);
969 disas_set_insn_syndrome(s, syn);
973 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
974 TCGv_i64 tcg_addr, int size,
975 bool iss_valid,
976 unsigned int iss_srt,
977 bool iss_sf, bool iss_ar)
979 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
980 iss_valid, iss_srt, iss_sf, iss_ar);
984 * Load from memory to GPR register
986 static void do_gpr_ld_memidx(DisasContext *s,
987 TCGv_i64 dest, TCGv_i64 tcg_addr,
988 int size, bool is_signed,
989 bool extend, int memidx,
990 bool iss_valid, unsigned int iss_srt,
991 bool iss_sf, bool iss_ar)
993 TCGMemOp memop = s->be_data + size;
995 g_assert(size <= 3);
997 if (is_signed) {
998 memop += MO_SIGN;
1001 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1003 if (extend && is_signed) {
1004 g_assert(size < 3);
1005 tcg_gen_ext32u_i64(dest, dest);
1008 if (iss_valid) {
1009 uint32_t syn;
1011 syn = syn_data_abort_with_iss(0,
1012 size,
1013 is_signed,
1014 iss_srt,
1015 iss_sf,
1016 iss_ar,
1017 0, 0, 0, 0, 0, false);
1018 disas_set_insn_syndrome(s, syn);
1022 static void do_gpr_ld(DisasContext *s,
1023 TCGv_i64 dest, TCGv_i64 tcg_addr,
1024 int size, bool is_signed, bool extend,
1025 bool iss_valid, unsigned int iss_srt,
1026 bool iss_sf, bool iss_ar)
1028 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1029 get_mem_index(s),
1030 iss_valid, iss_srt, iss_sf, iss_ar);
1034 * Store from FP register to memory
1036 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1038 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1039 TCGv_i64 tmp = tcg_temp_new_i64();
1040 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1041 if (size < 4) {
1042 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1043 s->be_data + size);
1044 } else {
1045 bool be = s->be_data == MO_BE;
1046 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1048 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1049 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1050 s->be_data | MO_Q);
1051 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1052 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1053 s->be_data | MO_Q);
1054 tcg_temp_free_i64(tcg_hiaddr);
1057 tcg_temp_free_i64(tmp);
1061 * Load from memory to FP register
1063 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1065 /* This always zero-extends and writes to a full 128 bit wide vector */
1066 TCGv_i64 tmplo = tcg_temp_new_i64();
1067 TCGv_i64 tmphi;
1069 if (size < 4) {
1070 TCGMemOp memop = s->be_data + size;
1071 tmphi = tcg_const_i64(0);
1072 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1073 } else {
1074 bool be = s->be_data == MO_BE;
1075 TCGv_i64 tcg_hiaddr;
1077 tmphi = tcg_temp_new_i64();
1078 tcg_hiaddr = tcg_temp_new_i64();
1080 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1081 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1082 s->be_data | MO_Q);
1083 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1084 s->be_data | MO_Q);
1085 tcg_temp_free_i64(tcg_hiaddr);
1088 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1089 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1091 tcg_temp_free_i64(tmplo);
1092 tcg_temp_free_i64(tmphi);
1094 clear_vec_high(s, true, destidx);
1098 * Vector load/store helpers.
1100 * The principal difference between this and a FP load is that we don't
1101 * zero extend as we are filling a partial chunk of the vector register.
1102 * These functions don't support 128 bit loads/stores, which would be
1103 * normal load/store operations.
1105 * The _i32 versions are useful when operating on 32 bit quantities
1106 * (eg for floating point single or using Neon helper functions).
1109 /* Get value of an element within a vector register */
1110 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1111 int element, TCGMemOp memop)
1113 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1114 switch (memop) {
1115 case MO_8:
1116 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1117 break;
1118 case MO_16:
1119 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1120 break;
1121 case MO_32:
1122 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1123 break;
1124 case MO_8|MO_SIGN:
1125 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1126 break;
1127 case MO_16|MO_SIGN:
1128 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1129 break;
1130 case MO_32|MO_SIGN:
1131 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1132 break;
1133 case MO_64:
1134 case MO_64|MO_SIGN:
1135 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1136 break;
1137 default:
1138 g_assert_not_reached();
1142 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1143 int element, TCGMemOp memop)
1145 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1146 switch (memop) {
1147 case MO_8:
1148 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1149 break;
1150 case MO_16:
1151 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1152 break;
1153 case MO_8|MO_SIGN:
1154 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1155 break;
1156 case MO_16|MO_SIGN:
1157 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1158 break;
1159 case MO_32:
1160 case MO_32|MO_SIGN:
1161 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1162 break;
1163 default:
1164 g_assert_not_reached();
1168 /* Set value of an element within a vector register */
1169 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1170 int element, TCGMemOp memop)
1172 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1173 switch (memop) {
1174 case MO_8:
1175 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1176 break;
1177 case MO_16:
1178 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1179 break;
1180 case MO_32:
1181 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1182 break;
1183 case MO_64:
1184 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1185 break;
1186 default:
1187 g_assert_not_reached();
1191 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1192 int destidx, int element, TCGMemOp memop)
1194 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1195 switch (memop) {
1196 case MO_8:
1197 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1198 break;
1199 case MO_16:
1200 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1201 break;
1202 case MO_32:
1203 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1204 break;
1205 default:
1206 g_assert_not_reached();
1210 /* Store from vector register to memory */
1211 static void do_vec_st(DisasContext *s, int srcidx, int element,
1212 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1214 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1216 read_vec_element(s, tcg_tmp, srcidx, element, size);
1217 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1219 tcg_temp_free_i64(tcg_tmp);
1222 /* Load from memory to vector register */
1223 static void do_vec_ld(DisasContext *s, int destidx, int element,
1224 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1226 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1228 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1229 write_vec_element(s, tcg_tmp, destidx, element, size);
1231 tcg_temp_free_i64(tcg_tmp);
1234 /* Check that FP/Neon access is enabled. If it is, return
1235 * true. If not, emit code to generate an appropriate exception,
1236 * and return false; the caller should not emit any code for
1237 * the instruction. Note that this check must happen after all
1238 * unallocated-encoding checks (otherwise the syndrome information
1239 * for the resulting exception will be incorrect).
1241 static inline bool fp_access_check(DisasContext *s)
1243 assert(!s->fp_access_checked);
1244 s->fp_access_checked = true;
1246 if (!s->fp_excp_el) {
1247 return true;
1250 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1251 s->fp_excp_el);
1252 return false;
1255 /* Check that SVE access is enabled. If it is, return true.
1256 * If not, emit code to generate an appropriate exception and return false.
1258 bool sve_access_check(DisasContext *s)
1260 if (s->sve_excp_el) {
1261 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1262 s->sve_excp_el);
1263 return false;
1265 return fp_access_check(s);
1269 * This utility function is for doing register extension with an
1270 * optional shift. You will likely want to pass a temporary for the
1271 * destination register. See DecodeRegExtend() in the ARM ARM.
1273 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1274 int option, unsigned int shift)
1276 int extsize = extract32(option, 0, 2);
1277 bool is_signed = extract32(option, 2, 1);
1279 if (is_signed) {
1280 switch (extsize) {
1281 case 0:
1282 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1283 break;
1284 case 1:
1285 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1286 break;
1287 case 2:
1288 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1289 break;
1290 case 3:
1291 tcg_gen_mov_i64(tcg_out, tcg_in);
1292 break;
1294 } else {
1295 switch (extsize) {
1296 case 0:
1297 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1298 break;
1299 case 1:
1300 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1301 break;
1302 case 2:
1303 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1304 break;
1305 case 3:
1306 tcg_gen_mov_i64(tcg_out, tcg_in);
1307 break;
1311 if (shift) {
1312 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1316 static inline void gen_check_sp_alignment(DisasContext *s)
1318 /* The AArch64 architecture mandates that (if enabled via PSTATE
1319 * or SCTLR bits) there is a check that SP is 16-aligned on every
1320 * SP-relative load or store (with an exception generated if it is not).
1321 * In line with general QEMU practice regarding misaligned accesses,
1322 * we omit these checks for the sake of guest program performance.
1323 * This function is provided as a hook so we can more easily add these
1324 * checks in future (possibly as a "favour catching guest program bugs
1325 * over speed" user selectable option).
1330 * This provides a simple table based table lookup decoder. It is
1331 * intended to be used when the relevant bits for decode are too
1332 * awkwardly placed and switch/if based logic would be confusing and
1333 * deeply nested. Since it's a linear search through the table, tables
1334 * should be kept small.
1336 * It returns the first handler where insn & mask == pattern, or
1337 * NULL if there is no match.
1338 * The table is terminated by an empty mask (i.e. 0)
1340 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1341 uint32_t insn)
1343 const AArch64DecodeTable *tptr = table;
1345 while (tptr->mask) {
1346 if ((insn & tptr->mask) == tptr->pattern) {
1347 return tptr->disas_fn;
1349 tptr++;
1351 return NULL;
1355 * The instruction disassembly implemented here matches
1356 * the instruction encoding classifications in chapter C4
1357 * of the ARM Architecture Reference Manual (DDI0487B_a);
1358 * classification names and decode diagrams here should generally
1359 * match up with those in the manual.
1362 /* Unconditional branch (immediate)
1363 * 31 30 26 25 0
1364 * +----+-----------+-------------------------------------+
1365 * | op | 0 0 1 0 1 | imm26 |
1366 * +----+-----------+-------------------------------------+
1368 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1370 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1372 if (insn & (1U << 31)) {
1373 /* BL Branch with link */
1374 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1377 /* B Branch / BL Branch with link */
1378 reset_btype(s);
1379 gen_goto_tb(s, 0, addr);
1382 /* Compare and branch (immediate)
1383 * 31 30 25 24 23 5 4 0
1384 * +----+-------------+----+---------------------+--------+
1385 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1386 * +----+-------------+----+---------------------+--------+
1388 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1390 unsigned int sf, op, rt;
1391 uint64_t addr;
1392 TCGLabel *label_match;
1393 TCGv_i64 tcg_cmp;
1395 sf = extract32(insn, 31, 1);
1396 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1397 rt = extract32(insn, 0, 5);
1398 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1400 tcg_cmp = read_cpu_reg(s, rt, sf);
1401 label_match = gen_new_label();
1403 reset_btype(s);
1404 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1405 tcg_cmp, 0, label_match);
1407 gen_goto_tb(s, 0, s->pc);
1408 gen_set_label(label_match);
1409 gen_goto_tb(s, 1, addr);
1412 /* Test and branch (immediate)
1413 * 31 30 25 24 23 19 18 5 4 0
1414 * +----+-------------+----+-------+-------------+------+
1415 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1416 * +----+-------------+----+-------+-------------+------+
1418 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1420 unsigned int bit_pos, op, rt;
1421 uint64_t addr;
1422 TCGLabel *label_match;
1423 TCGv_i64 tcg_cmp;
1425 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1426 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1427 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1428 rt = extract32(insn, 0, 5);
1430 tcg_cmp = tcg_temp_new_i64();
1431 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1432 label_match = gen_new_label();
1434 reset_btype(s);
1435 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1436 tcg_cmp, 0, label_match);
1437 tcg_temp_free_i64(tcg_cmp);
1438 gen_goto_tb(s, 0, s->pc);
1439 gen_set_label(label_match);
1440 gen_goto_tb(s, 1, addr);
1443 /* Conditional branch (immediate)
1444 * 31 25 24 23 5 4 3 0
1445 * +---------------+----+---------------------+----+------+
1446 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1447 * +---------------+----+---------------------+----+------+
1449 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1451 unsigned int cond;
1452 uint64_t addr;
1454 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1455 unallocated_encoding(s);
1456 return;
1458 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1459 cond = extract32(insn, 0, 4);
1461 reset_btype(s);
1462 if (cond < 0x0e) {
1463 /* genuinely conditional branches */
1464 TCGLabel *label_match = gen_new_label();
1465 arm_gen_test_cc(cond, label_match);
1466 gen_goto_tb(s, 0, s->pc);
1467 gen_set_label(label_match);
1468 gen_goto_tb(s, 1, addr);
1469 } else {
1470 /* 0xe and 0xf are both "always" conditions */
1471 gen_goto_tb(s, 0, addr);
1475 /* HINT instruction group, including various allocated HINTs */
1476 static void handle_hint(DisasContext *s, uint32_t insn,
1477 unsigned int op1, unsigned int op2, unsigned int crm)
1479 unsigned int selector = crm << 3 | op2;
1481 if (op1 != 3) {
1482 unallocated_encoding(s);
1483 return;
1486 switch (selector) {
1487 case 0b00000: /* NOP */
1488 break;
1489 case 0b00011: /* WFI */
1490 s->base.is_jmp = DISAS_WFI;
1491 break;
1492 case 0b00001: /* YIELD */
1493 /* When running in MTTCG we don't generate jumps to the yield and
1494 * WFE helpers as it won't affect the scheduling of other vCPUs.
1495 * If we wanted to more completely model WFE/SEV so we don't busy
1496 * spin unnecessarily we would need to do something more involved.
1498 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1499 s->base.is_jmp = DISAS_YIELD;
1501 break;
1502 case 0b00010: /* WFE */
1503 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1504 s->base.is_jmp = DISAS_WFE;
1506 break;
1507 case 0b00100: /* SEV */
1508 case 0b00101: /* SEVL */
1509 /* we treat all as NOP at least for now */
1510 break;
1511 case 0b00111: /* XPACLRI */
1512 if (s->pauth_active) {
1513 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1515 break;
1516 case 0b01000: /* PACIA1716 */
1517 if (s->pauth_active) {
1518 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1520 break;
1521 case 0b01010: /* PACIB1716 */
1522 if (s->pauth_active) {
1523 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1525 break;
1526 case 0b01100: /* AUTIA1716 */
1527 if (s->pauth_active) {
1528 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1530 break;
1531 case 0b01110: /* AUTIB1716 */
1532 if (s->pauth_active) {
1533 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1535 break;
1536 case 0b11000: /* PACIAZ */
1537 if (s->pauth_active) {
1538 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1539 new_tmp_a64_zero(s));
1541 break;
1542 case 0b11001: /* PACIASP */
1543 if (s->pauth_active) {
1544 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1546 break;
1547 case 0b11010: /* PACIBZ */
1548 if (s->pauth_active) {
1549 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1550 new_tmp_a64_zero(s));
1552 break;
1553 case 0b11011: /* PACIBSP */
1554 if (s->pauth_active) {
1555 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1557 break;
1558 case 0b11100: /* AUTIAZ */
1559 if (s->pauth_active) {
1560 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1561 new_tmp_a64_zero(s));
1563 break;
1564 case 0b11101: /* AUTIASP */
1565 if (s->pauth_active) {
1566 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1568 break;
1569 case 0b11110: /* AUTIBZ */
1570 if (s->pauth_active) {
1571 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1572 new_tmp_a64_zero(s));
1574 break;
1575 case 0b11111: /* AUTIBSP */
1576 if (s->pauth_active) {
1577 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1579 break;
1580 default:
1581 /* default specified as NOP equivalent */
1582 break;
1586 static void gen_clrex(DisasContext *s, uint32_t insn)
1588 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1591 /* CLREX, DSB, DMB, ISB */
1592 static void handle_sync(DisasContext *s, uint32_t insn,
1593 unsigned int op1, unsigned int op2, unsigned int crm)
1595 TCGBar bar;
1597 if (op1 != 3) {
1598 unallocated_encoding(s);
1599 return;
1602 switch (op2) {
1603 case 2: /* CLREX */
1604 gen_clrex(s, insn);
1605 return;
1606 case 4: /* DSB */
1607 case 5: /* DMB */
1608 switch (crm & 3) {
1609 case 1: /* MBReqTypes_Reads */
1610 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1611 break;
1612 case 2: /* MBReqTypes_Writes */
1613 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1614 break;
1615 default: /* MBReqTypes_All */
1616 bar = TCG_BAR_SC | TCG_MO_ALL;
1617 break;
1619 tcg_gen_mb(bar);
1620 return;
1621 case 6: /* ISB */
1622 /* We need to break the TB after this insn to execute
1623 * a self-modified code correctly and also to take
1624 * any pending interrupts immediately.
1626 reset_btype(s);
1627 gen_goto_tb(s, 0, s->pc);
1628 return;
1630 case 7: /* SB */
1631 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1632 goto do_unallocated;
1635 * TODO: There is no speculation barrier opcode for TCG;
1636 * MB and end the TB instead.
1638 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1639 gen_goto_tb(s, 0, s->pc);
1640 return;
1642 default:
1643 do_unallocated:
1644 unallocated_encoding(s);
1645 return;
1649 static void gen_xaflag(void)
1651 TCGv_i32 z = tcg_temp_new_i32();
1653 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1656 * (!C & !Z) << 31
1657 * (!(C | Z)) << 31
1658 * ~((C | Z) << 31)
1659 * ~-(C | Z)
1660 * (C | Z) - 1
1662 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1663 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1665 /* !(Z & C) */
1666 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1667 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1669 /* (!C & Z) << 31 -> -(Z & ~C) */
1670 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1671 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1673 /* C | Z */
1674 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1676 tcg_temp_free_i32(z);
1679 static void gen_axflag(void)
1681 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1682 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1684 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1685 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1687 tcg_gen_movi_i32(cpu_NF, 0);
1688 tcg_gen_movi_i32(cpu_VF, 0);
1691 /* MSR (immediate) - move immediate to processor state field */
1692 static void handle_msr_i(DisasContext *s, uint32_t insn,
1693 unsigned int op1, unsigned int op2, unsigned int crm)
1695 TCGv_i32 t1;
1696 int op = op1 << 3 | op2;
1698 /* End the TB by default, chaining is ok. */
1699 s->base.is_jmp = DISAS_TOO_MANY;
1701 switch (op) {
1702 case 0x00: /* CFINV */
1703 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1704 goto do_unallocated;
1706 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1707 s->base.is_jmp = DISAS_NEXT;
1708 break;
1710 case 0x01: /* XAFlag */
1711 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1712 goto do_unallocated;
1714 gen_xaflag();
1715 s->base.is_jmp = DISAS_NEXT;
1716 break;
1718 case 0x02: /* AXFlag */
1719 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1720 goto do_unallocated;
1722 gen_axflag();
1723 s->base.is_jmp = DISAS_NEXT;
1724 break;
1726 case 0x05: /* SPSel */
1727 if (s->current_el == 0) {
1728 goto do_unallocated;
1730 t1 = tcg_const_i32(crm & PSTATE_SP);
1731 gen_helper_msr_i_spsel(cpu_env, t1);
1732 tcg_temp_free_i32(t1);
1733 break;
1735 case 0x1e: /* DAIFSet */
1736 t1 = tcg_const_i32(crm);
1737 gen_helper_msr_i_daifset(cpu_env, t1);
1738 tcg_temp_free_i32(t1);
1739 break;
1741 case 0x1f: /* DAIFClear */
1742 t1 = tcg_const_i32(crm);
1743 gen_helper_msr_i_daifclear(cpu_env, t1);
1744 tcg_temp_free_i32(t1);
1745 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1746 s->base.is_jmp = DISAS_UPDATE;
1747 break;
1749 default:
1750 do_unallocated:
1751 unallocated_encoding(s);
1752 return;
1756 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1758 TCGv_i32 tmp = tcg_temp_new_i32();
1759 TCGv_i32 nzcv = tcg_temp_new_i32();
1761 /* build bit 31, N */
1762 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1763 /* build bit 30, Z */
1764 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1765 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1766 /* build bit 29, C */
1767 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1768 /* build bit 28, V */
1769 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1770 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1771 /* generate result */
1772 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1774 tcg_temp_free_i32(nzcv);
1775 tcg_temp_free_i32(tmp);
1778 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1780 TCGv_i32 nzcv = tcg_temp_new_i32();
1782 /* take NZCV from R[t] */
1783 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1785 /* bit 31, N */
1786 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1787 /* bit 30, Z */
1788 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1789 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1790 /* bit 29, C */
1791 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1792 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1793 /* bit 28, V */
1794 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1795 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1796 tcg_temp_free_i32(nzcv);
1799 /* MRS - move from system register
1800 * MSR (register) - move to system register
1801 * SYS
1802 * SYSL
1803 * These are all essentially the same insn in 'read' and 'write'
1804 * versions, with varying op0 fields.
1806 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1807 unsigned int op0, unsigned int op1, unsigned int op2,
1808 unsigned int crn, unsigned int crm, unsigned int rt)
1810 const ARMCPRegInfo *ri;
1811 TCGv_i64 tcg_rt;
1813 ri = get_arm_cp_reginfo(s->cp_regs,
1814 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1815 crn, crm, op0, op1, op2));
1817 if (!ri) {
1818 /* Unknown register; this might be a guest error or a QEMU
1819 * unimplemented feature.
1821 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1822 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1823 isread ? "read" : "write", op0, op1, crn, crm, op2);
1824 unallocated_encoding(s);
1825 return;
1828 /* Check access permissions */
1829 if (!cp_access_ok(s->current_el, ri, isread)) {
1830 unallocated_encoding(s);
1831 return;
1834 if (ri->accessfn) {
1835 /* Emit code to perform further access permissions checks at
1836 * runtime; this may result in an exception.
1838 TCGv_ptr tmpptr;
1839 TCGv_i32 tcg_syn, tcg_isread;
1840 uint32_t syndrome;
1842 gen_a64_set_pc_im(s->pc - 4);
1843 tmpptr = tcg_const_ptr(ri);
1844 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1845 tcg_syn = tcg_const_i32(syndrome);
1846 tcg_isread = tcg_const_i32(isread);
1847 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1848 tcg_temp_free_ptr(tmpptr);
1849 tcg_temp_free_i32(tcg_syn);
1850 tcg_temp_free_i32(tcg_isread);
1853 /* Handle special cases first */
1854 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1855 case ARM_CP_NOP:
1856 return;
1857 case ARM_CP_NZCV:
1858 tcg_rt = cpu_reg(s, rt);
1859 if (isread) {
1860 gen_get_nzcv(tcg_rt);
1861 } else {
1862 gen_set_nzcv(tcg_rt);
1864 return;
1865 case ARM_CP_CURRENTEL:
1866 /* Reads as current EL value from pstate, which is
1867 * guaranteed to be constant by the tb flags.
1869 tcg_rt = cpu_reg(s, rt);
1870 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1871 return;
1872 case ARM_CP_DC_ZVA:
1873 /* Writes clear the aligned block of memory which rt points into. */
1874 tcg_rt = cpu_reg(s, rt);
1875 gen_helper_dc_zva(cpu_env, tcg_rt);
1876 return;
1877 default:
1878 break;
1880 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1881 return;
1882 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1883 return;
1886 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1887 gen_io_start();
1890 tcg_rt = cpu_reg(s, rt);
1892 if (isread) {
1893 if (ri->type & ARM_CP_CONST) {
1894 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1895 } else if (ri->readfn) {
1896 TCGv_ptr tmpptr;
1897 tmpptr = tcg_const_ptr(ri);
1898 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1899 tcg_temp_free_ptr(tmpptr);
1900 } else {
1901 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1903 } else {
1904 if (ri->type & ARM_CP_CONST) {
1905 /* If not forbidden by access permissions, treat as WI */
1906 return;
1907 } else if (ri->writefn) {
1908 TCGv_ptr tmpptr;
1909 tmpptr = tcg_const_ptr(ri);
1910 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1911 tcg_temp_free_ptr(tmpptr);
1912 } else {
1913 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1917 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1918 /* I/O operations must end the TB here (whether read or write) */
1919 gen_io_end();
1920 s->base.is_jmp = DISAS_UPDATE;
1921 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1922 /* We default to ending the TB on a coprocessor register write,
1923 * but allow this to be suppressed by the register definition
1924 * (usually only necessary to work around guest bugs).
1926 s->base.is_jmp = DISAS_UPDATE;
1930 /* System
1931 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1932 * +---------------------+---+-----+-----+-------+-------+-----+------+
1933 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1934 * +---------------------+---+-----+-----+-------+-------+-----+------+
1936 static void disas_system(DisasContext *s, uint32_t insn)
1938 unsigned int l, op0, op1, crn, crm, op2, rt;
1939 l = extract32(insn, 21, 1);
1940 op0 = extract32(insn, 19, 2);
1941 op1 = extract32(insn, 16, 3);
1942 crn = extract32(insn, 12, 4);
1943 crm = extract32(insn, 8, 4);
1944 op2 = extract32(insn, 5, 3);
1945 rt = extract32(insn, 0, 5);
1947 if (op0 == 0) {
1948 if (l || rt != 31) {
1949 unallocated_encoding(s);
1950 return;
1952 switch (crn) {
1953 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1954 handle_hint(s, insn, op1, op2, crm);
1955 break;
1956 case 3: /* CLREX, DSB, DMB, ISB */
1957 handle_sync(s, insn, op1, op2, crm);
1958 break;
1959 case 4: /* MSR (immediate) */
1960 handle_msr_i(s, insn, op1, op2, crm);
1961 break;
1962 default:
1963 unallocated_encoding(s);
1964 break;
1966 return;
1968 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1971 /* Exception generation
1973 * 31 24 23 21 20 5 4 2 1 0
1974 * +-----------------+-----+------------------------+-----+----+
1975 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1976 * +-----------------------+------------------------+----------+
1978 static void disas_exc(DisasContext *s, uint32_t insn)
1980 int opc = extract32(insn, 21, 3);
1981 int op2_ll = extract32(insn, 0, 5);
1982 int imm16 = extract32(insn, 5, 16);
1983 TCGv_i32 tmp;
1985 switch (opc) {
1986 case 0:
1987 /* For SVC, HVC and SMC we advance the single-step state
1988 * machine before taking the exception. This is architecturally
1989 * mandated, to ensure that single-stepping a system call
1990 * instruction works properly.
1992 switch (op2_ll) {
1993 case 1: /* SVC */
1994 gen_ss_advance(s);
1995 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1996 default_exception_el(s));
1997 break;
1998 case 2: /* HVC */
1999 if (s->current_el == 0) {
2000 unallocated_encoding(s);
2001 break;
2003 /* The pre HVC helper handles cases when HVC gets trapped
2004 * as an undefined insn by runtime configuration.
2006 gen_a64_set_pc_im(s->pc - 4);
2007 gen_helper_pre_hvc(cpu_env);
2008 gen_ss_advance(s);
2009 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2010 break;
2011 case 3: /* SMC */
2012 if (s->current_el == 0) {
2013 unallocated_encoding(s);
2014 break;
2016 gen_a64_set_pc_im(s->pc - 4);
2017 tmp = tcg_const_i32(syn_aa64_smc(imm16));
2018 gen_helper_pre_smc(cpu_env, tmp);
2019 tcg_temp_free_i32(tmp);
2020 gen_ss_advance(s);
2021 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
2022 break;
2023 default:
2024 unallocated_encoding(s);
2025 break;
2027 break;
2028 case 1:
2029 if (op2_ll != 0) {
2030 unallocated_encoding(s);
2031 break;
2033 /* BRK */
2034 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
2035 break;
2036 case 2:
2037 if (op2_ll != 0) {
2038 unallocated_encoding(s);
2039 break;
2041 /* HLT. This has two purposes.
2042 * Architecturally, it is an external halting debug instruction.
2043 * Since QEMU doesn't implement external debug, we treat this as
2044 * it is required for halting debug disabled: it will UNDEF.
2045 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2047 if (semihosting_enabled() && imm16 == 0xf000) {
2048 #ifndef CONFIG_USER_ONLY
2049 /* In system mode, don't allow userspace access to semihosting,
2050 * to provide some semblance of security (and for consistency
2051 * with our 32-bit semihosting).
2053 if (s->current_el == 0) {
2054 unsupported_encoding(s, insn);
2055 break;
2057 #endif
2058 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
2059 } else {
2060 unsupported_encoding(s, insn);
2062 break;
2063 case 5:
2064 if (op2_ll < 1 || op2_ll > 3) {
2065 unallocated_encoding(s);
2066 break;
2068 /* DCPS1, DCPS2, DCPS3 */
2069 unsupported_encoding(s, insn);
2070 break;
2071 default:
2072 unallocated_encoding(s);
2073 break;
2077 /* Unconditional branch (register)
2078 * 31 25 24 21 20 16 15 10 9 5 4 0
2079 * +---------------+-------+-------+-------+------+-------+
2080 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2081 * +---------------+-------+-------+-------+------+-------+
2083 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2085 unsigned int opc, op2, op3, rn, op4;
2086 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2087 TCGv_i64 dst;
2088 TCGv_i64 modifier;
2090 opc = extract32(insn, 21, 4);
2091 op2 = extract32(insn, 16, 5);
2092 op3 = extract32(insn, 10, 6);
2093 rn = extract32(insn, 5, 5);
2094 op4 = extract32(insn, 0, 5);
2096 if (op2 != 0x1f) {
2097 goto do_unallocated;
2100 switch (opc) {
2101 case 0: /* BR */
2102 case 1: /* BLR */
2103 case 2: /* RET */
2104 btype_mod = opc;
2105 switch (op3) {
2106 case 0:
2107 /* BR, BLR, RET */
2108 if (op4 != 0) {
2109 goto do_unallocated;
2111 dst = cpu_reg(s, rn);
2112 break;
2114 case 2:
2115 case 3:
2116 if (!dc_isar_feature(aa64_pauth, s)) {
2117 goto do_unallocated;
2119 if (opc == 2) {
2120 /* RETAA, RETAB */
2121 if (rn != 0x1f || op4 != 0x1f) {
2122 goto do_unallocated;
2124 rn = 30;
2125 modifier = cpu_X[31];
2126 } else {
2127 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2128 if (op4 != 0x1f) {
2129 goto do_unallocated;
2131 modifier = new_tmp_a64_zero(s);
2133 if (s->pauth_active) {
2134 dst = new_tmp_a64(s);
2135 if (op3 == 2) {
2136 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2137 } else {
2138 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2140 } else {
2141 dst = cpu_reg(s, rn);
2143 break;
2145 default:
2146 goto do_unallocated;
2148 gen_a64_set_pc(s, dst);
2149 /* BLR also needs to load return address */
2150 if (opc == 1) {
2151 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2153 break;
2155 case 8: /* BRAA */
2156 case 9: /* BLRAA */
2157 if (!dc_isar_feature(aa64_pauth, s)) {
2158 goto do_unallocated;
2160 if ((op3 & ~1) != 2) {
2161 goto do_unallocated;
2163 btype_mod = opc & 1;
2164 if (s->pauth_active) {
2165 dst = new_tmp_a64(s);
2166 modifier = cpu_reg_sp(s, op4);
2167 if (op3 == 2) {
2168 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2169 } else {
2170 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2172 } else {
2173 dst = cpu_reg(s, rn);
2175 gen_a64_set_pc(s, dst);
2176 /* BLRAA also needs to load return address */
2177 if (opc == 9) {
2178 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2180 break;
2182 case 4: /* ERET */
2183 if (s->current_el == 0) {
2184 goto do_unallocated;
2186 switch (op3) {
2187 case 0: /* ERET */
2188 if (op4 != 0) {
2189 goto do_unallocated;
2191 dst = tcg_temp_new_i64();
2192 tcg_gen_ld_i64(dst, cpu_env,
2193 offsetof(CPUARMState, elr_el[s->current_el]));
2194 break;
2196 case 2: /* ERETAA */
2197 case 3: /* ERETAB */
2198 if (!dc_isar_feature(aa64_pauth, s)) {
2199 goto do_unallocated;
2201 if (rn != 0x1f || op4 != 0x1f) {
2202 goto do_unallocated;
2204 dst = tcg_temp_new_i64();
2205 tcg_gen_ld_i64(dst, cpu_env,
2206 offsetof(CPUARMState, elr_el[s->current_el]));
2207 if (s->pauth_active) {
2208 modifier = cpu_X[31];
2209 if (op3 == 2) {
2210 gen_helper_autia(dst, cpu_env, dst, modifier);
2211 } else {
2212 gen_helper_autib(dst, cpu_env, dst, modifier);
2215 break;
2217 default:
2218 goto do_unallocated;
2220 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2221 gen_io_start();
2224 gen_helper_exception_return(cpu_env, dst);
2225 tcg_temp_free_i64(dst);
2226 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2227 gen_io_end();
2229 /* Must exit loop to check un-masked IRQs */
2230 s->base.is_jmp = DISAS_EXIT;
2231 return;
2233 case 5: /* DRPS */
2234 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2235 goto do_unallocated;
2236 } else {
2237 unsupported_encoding(s, insn);
2239 return;
2241 default:
2242 do_unallocated:
2243 unallocated_encoding(s);
2244 return;
2247 switch (btype_mod) {
2248 case 0: /* BR */
2249 if (dc_isar_feature(aa64_bti, s)) {
2250 /* BR to {x16,x17} or !guard -> 1, else 3. */
2251 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2253 break;
2255 case 1: /* BLR */
2256 if (dc_isar_feature(aa64_bti, s)) {
2257 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2258 set_btype(s, 2);
2260 break;
2262 default: /* RET or none of the above. */
2263 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2264 break;
2267 s->base.is_jmp = DISAS_JUMP;
2270 /* Branches, exception generating and system instructions */
2271 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2273 switch (extract32(insn, 25, 7)) {
2274 case 0x0a: case 0x0b:
2275 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2276 disas_uncond_b_imm(s, insn);
2277 break;
2278 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2279 disas_comp_b_imm(s, insn);
2280 break;
2281 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2282 disas_test_b_imm(s, insn);
2283 break;
2284 case 0x2a: /* Conditional branch (immediate) */
2285 disas_cond_b_imm(s, insn);
2286 break;
2287 case 0x6a: /* Exception generation / System */
2288 if (insn & (1 << 24)) {
2289 if (extract32(insn, 22, 2) == 0) {
2290 disas_system(s, insn);
2291 } else {
2292 unallocated_encoding(s);
2294 } else {
2295 disas_exc(s, insn);
2297 break;
2298 case 0x6b: /* Unconditional branch (register) */
2299 disas_uncond_b_reg(s, insn);
2300 break;
2301 default:
2302 unallocated_encoding(s);
2303 break;
2308 * Load/Store exclusive instructions are implemented by remembering
2309 * the value/address loaded, and seeing if these are the same
2310 * when the store is performed. This is not actually the architecturally
2311 * mandated semantics, but it works for typical guest code sequences
2312 * and avoids having to monitor regular stores.
2314 * The store exclusive uses the atomic cmpxchg primitives to avoid
2315 * races in multi-threaded linux-user and when MTTCG softmmu is
2316 * enabled.
2318 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2319 TCGv_i64 addr, int size, bool is_pair)
2321 int idx = get_mem_index(s);
2322 TCGMemOp memop = s->be_data;
2324 g_assert(size <= 3);
2325 if (is_pair) {
2326 g_assert(size >= 2);
2327 if (size == 2) {
2328 /* The pair must be single-copy atomic for the doubleword. */
2329 memop |= MO_64 | MO_ALIGN;
2330 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2331 if (s->be_data == MO_LE) {
2332 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2333 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2334 } else {
2335 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2336 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2338 } else {
2339 /* The pair must be single-copy atomic for *each* doubleword, not
2340 the entire quadword, however it must be quadword aligned. */
2341 memop |= MO_64;
2342 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2343 memop | MO_ALIGN_16);
2345 TCGv_i64 addr2 = tcg_temp_new_i64();
2346 tcg_gen_addi_i64(addr2, addr, 8);
2347 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2348 tcg_temp_free_i64(addr2);
2350 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2351 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2353 } else {
2354 memop |= size | MO_ALIGN;
2355 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2356 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2358 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2361 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2362 TCGv_i64 addr, int size, int is_pair)
2364 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2365 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2366 * [addr] = {Rt};
2367 * if (is_pair) {
2368 * [addr + datasize] = {Rt2};
2370 * {Rd} = 0;
2371 * } else {
2372 * {Rd} = 1;
2374 * env->exclusive_addr = -1;
2376 TCGLabel *fail_label = gen_new_label();
2377 TCGLabel *done_label = gen_new_label();
2378 TCGv_i64 tmp;
2380 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2382 tmp = tcg_temp_new_i64();
2383 if (is_pair) {
2384 if (size == 2) {
2385 if (s->be_data == MO_LE) {
2386 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2387 } else {
2388 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2390 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2391 cpu_exclusive_val, tmp,
2392 get_mem_index(s),
2393 MO_64 | MO_ALIGN | s->be_data);
2394 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2395 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2396 if (!HAVE_CMPXCHG128) {
2397 gen_helper_exit_atomic(cpu_env);
2398 s->base.is_jmp = DISAS_NORETURN;
2399 } else if (s->be_data == MO_LE) {
2400 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2401 cpu_exclusive_addr,
2402 cpu_reg(s, rt),
2403 cpu_reg(s, rt2));
2404 } else {
2405 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2406 cpu_exclusive_addr,
2407 cpu_reg(s, rt),
2408 cpu_reg(s, rt2));
2410 } else if (s->be_data == MO_LE) {
2411 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2412 cpu_reg(s, rt), cpu_reg(s, rt2));
2413 } else {
2414 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2415 cpu_reg(s, rt), cpu_reg(s, rt2));
2417 } else {
2418 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2419 cpu_reg(s, rt), get_mem_index(s),
2420 size | MO_ALIGN | s->be_data);
2421 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2423 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2424 tcg_temp_free_i64(tmp);
2425 tcg_gen_br(done_label);
2427 gen_set_label(fail_label);
2428 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2429 gen_set_label(done_label);
2430 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2433 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2434 int rn, int size)
2436 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2437 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2438 int memidx = get_mem_index(s);
2439 TCGv_i64 clean_addr;
2441 if (rn == 31) {
2442 gen_check_sp_alignment(s);
2444 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2445 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2446 size | MO_ALIGN | s->be_data);
2449 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2450 int rn, int size)
2452 TCGv_i64 s1 = cpu_reg(s, rs);
2453 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2454 TCGv_i64 t1 = cpu_reg(s, rt);
2455 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2456 TCGv_i64 clean_addr;
2457 int memidx = get_mem_index(s);
2459 if (rn == 31) {
2460 gen_check_sp_alignment(s);
2462 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2464 if (size == 2) {
2465 TCGv_i64 cmp = tcg_temp_new_i64();
2466 TCGv_i64 val = tcg_temp_new_i64();
2468 if (s->be_data == MO_LE) {
2469 tcg_gen_concat32_i64(val, t1, t2);
2470 tcg_gen_concat32_i64(cmp, s1, s2);
2471 } else {
2472 tcg_gen_concat32_i64(val, t2, t1);
2473 tcg_gen_concat32_i64(cmp, s2, s1);
2476 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2477 MO_64 | MO_ALIGN | s->be_data);
2478 tcg_temp_free_i64(val);
2480 if (s->be_data == MO_LE) {
2481 tcg_gen_extr32_i64(s1, s2, cmp);
2482 } else {
2483 tcg_gen_extr32_i64(s2, s1, cmp);
2485 tcg_temp_free_i64(cmp);
2486 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2487 if (HAVE_CMPXCHG128) {
2488 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2489 if (s->be_data == MO_LE) {
2490 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2491 clean_addr, t1, t2);
2492 } else {
2493 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2494 clean_addr, t1, t2);
2496 tcg_temp_free_i32(tcg_rs);
2497 } else {
2498 gen_helper_exit_atomic(cpu_env);
2499 s->base.is_jmp = DISAS_NORETURN;
2501 } else {
2502 TCGv_i64 d1 = tcg_temp_new_i64();
2503 TCGv_i64 d2 = tcg_temp_new_i64();
2504 TCGv_i64 a2 = tcg_temp_new_i64();
2505 TCGv_i64 c1 = tcg_temp_new_i64();
2506 TCGv_i64 c2 = tcg_temp_new_i64();
2507 TCGv_i64 zero = tcg_const_i64(0);
2509 /* Load the two words, in memory order. */
2510 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2511 MO_64 | MO_ALIGN_16 | s->be_data);
2512 tcg_gen_addi_i64(a2, clean_addr, 8);
2513 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2515 /* Compare the two words, also in memory order. */
2516 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2517 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2518 tcg_gen_and_i64(c2, c2, c1);
2520 /* If compare equal, write back new data, else write back old data. */
2521 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2522 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2523 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2524 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2525 tcg_temp_free_i64(a2);
2526 tcg_temp_free_i64(c1);
2527 tcg_temp_free_i64(c2);
2528 tcg_temp_free_i64(zero);
2530 /* Write back the data from memory to Rs. */
2531 tcg_gen_mov_i64(s1, d1);
2532 tcg_gen_mov_i64(s2, d2);
2533 tcg_temp_free_i64(d1);
2534 tcg_temp_free_i64(d2);
2538 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2539 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2541 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2543 int opc0 = extract32(opc, 0, 1);
2544 int regsize;
2546 if (is_signed) {
2547 regsize = opc0 ? 32 : 64;
2548 } else {
2549 regsize = size == 3 ? 64 : 32;
2551 return regsize == 64;
2554 /* Load/store exclusive
2556 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2557 * +-----+-------------+----+---+----+------+----+-------+------+------+
2558 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2559 * +-----+-------------+----+---+----+------+----+-------+------+------+
2561 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2562 * L: 0 -> store, 1 -> load
2563 * o2: 0 -> exclusive, 1 -> not
2564 * o1: 0 -> single register, 1 -> register pair
2565 * o0: 1 -> load-acquire/store-release, 0 -> not
2567 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2569 int rt = extract32(insn, 0, 5);
2570 int rn = extract32(insn, 5, 5);
2571 int rt2 = extract32(insn, 10, 5);
2572 int rs = extract32(insn, 16, 5);
2573 int is_lasr = extract32(insn, 15, 1);
2574 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2575 int size = extract32(insn, 30, 2);
2576 TCGv_i64 clean_addr;
2578 switch (o2_L_o1_o0) {
2579 case 0x0: /* STXR */
2580 case 0x1: /* STLXR */
2581 if (rn == 31) {
2582 gen_check_sp_alignment(s);
2584 if (is_lasr) {
2585 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2587 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2588 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2589 return;
2591 case 0x4: /* LDXR */
2592 case 0x5: /* LDAXR */
2593 if (rn == 31) {
2594 gen_check_sp_alignment(s);
2596 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2597 s->is_ldex = true;
2598 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2599 if (is_lasr) {
2600 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2602 return;
2604 case 0x8: /* STLLR */
2605 if (!dc_isar_feature(aa64_lor, s)) {
2606 break;
2608 /* StoreLORelease is the same as Store-Release for QEMU. */
2609 /* fall through */
2610 case 0x9: /* STLR */
2611 /* Generate ISS for non-exclusive accesses including LASR. */
2612 if (rn == 31) {
2613 gen_check_sp_alignment(s);
2615 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2616 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2617 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2618 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2619 return;
2621 case 0xc: /* LDLAR */
2622 if (!dc_isar_feature(aa64_lor, s)) {
2623 break;
2625 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2626 /* fall through */
2627 case 0xd: /* LDAR */
2628 /* Generate ISS for non-exclusive accesses including LASR. */
2629 if (rn == 31) {
2630 gen_check_sp_alignment(s);
2632 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2633 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2634 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2635 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2636 return;
2638 case 0x2: case 0x3: /* CASP / STXP */
2639 if (size & 2) { /* STXP / STLXP */
2640 if (rn == 31) {
2641 gen_check_sp_alignment(s);
2643 if (is_lasr) {
2644 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2646 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2647 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2648 return;
2650 if (rt2 == 31
2651 && ((rt | rs) & 1) == 0
2652 && dc_isar_feature(aa64_atomics, s)) {
2653 /* CASP / CASPL */
2654 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2655 return;
2657 break;
2659 case 0x6: case 0x7: /* CASPA / LDXP */
2660 if (size & 2) { /* LDXP / LDAXP */
2661 if (rn == 31) {
2662 gen_check_sp_alignment(s);
2664 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2665 s->is_ldex = true;
2666 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2667 if (is_lasr) {
2668 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2670 return;
2672 if (rt2 == 31
2673 && ((rt | rs) & 1) == 0
2674 && dc_isar_feature(aa64_atomics, s)) {
2675 /* CASPA / CASPAL */
2676 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2677 return;
2679 break;
2681 case 0xa: /* CAS */
2682 case 0xb: /* CASL */
2683 case 0xe: /* CASA */
2684 case 0xf: /* CASAL */
2685 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2686 gen_compare_and_swap(s, rs, rt, rn, size);
2687 return;
2689 break;
2691 unallocated_encoding(s);
2695 * Load register (literal)
2697 * 31 30 29 27 26 25 24 23 5 4 0
2698 * +-----+-------+---+-----+-------------------+-------+
2699 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2700 * +-----+-------+---+-----+-------------------+-------+
2702 * V: 1 -> vector (simd/fp)
2703 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2704 * 10-> 32 bit signed, 11 -> prefetch
2705 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2707 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2709 int rt = extract32(insn, 0, 5);
2710 int64_t imm = sextract32(insn, 5, 19) << 2;
2711 bool is_vector = extract32(insn, 26, 1);
2712 int opc = extract32(insn, 30, 2);
2713 bool is_signed = false;
2714 int size = 2;
2715 TCGv_i64 tcg_rt, clean_addr;
2717 if (is_vector) {
2718 if (opc == 3) {
2719 unallocated_encoding(s);
2720 return;
2722 size = 2 + opc;
2723 if (!fp_access_check(s)) {
2724 return;
2726 } else {
2727 if (opc == 3) {
2728 /* PRFM (literal) : prefetch */
2729 return;
2731 size = 2 + extract32(opc, 0, 1);
2732 is_signed = extract32(opc, 1, 1);
2735 tcg_rt = cpu_reg(s, rt);
2737 clean_addr = tcg_const_i64((s->pc - 4) + imm);
2738 if (is_vector) {
2739 do_fp_ld(s, rt, clean_addr, size);
2740 } else {
2741 /* Only unsigned 32bit loads target 32bit registers. */
2742 bool iss_sf = opc != 0;
2744 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2745 true, rt, iss_sf, false);
2747 tcg_temp_free_i64(clean_addr);
2751 * LDNP (Load Pair - non-temporal hint)
2752 * LDP (Load Pair - non vector)
2753 * LDPSW (Load Pair Signed Word - non vector)
2754 * STNP (Store Pair - non-temporal hint)
2755 * STP (Store Pair - non vector)
2756 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2757 * LDP (Load Pair of SIMD&FP)
2758 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2759 * STP (Store Pair of SIMD&FP)
2761 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2762 * +-----+-------+---+---+-------+---+-----------------------------+
2763 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2764 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2766 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2767 * LDPSW 01
2768 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2769 * V: 0 -> GPR, 1 -> Vector
2770 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2771 * 10 -> signed offset, 11 -> pre-index
2772 * L: 0 -> Store 1 -> Load
2774 * Rt, Rt2 = GPR or SIMD registers to be stored
2775 * Rn = general purpose register containing address
2776 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2778 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2780 int rt = extract32(insn, 0, 5);
2781 int rn = extract32(insn, 5, 5);
2782 int rt2 = extract32(insn, 10, 5);
2783 uint64_t offset = sextract64(insn, 15, 7);
2784 int index = extract32(insn, 23, 2);
2785 bool is_vector = extract32(insn, 26, 1);
2786 bool is_load = extract32(insn, 22, 1);
2787 int opc = extract32(insn, 30, 2);
2789 bool is_signed = false;
2790 bool postindex = false;
2791 bool wback = false;
2793 TCGv_i64 clean_addr, dirty_addr;
2795 int size;
2797 if (opc == 3) {
2798 unallocated_encoding(s);
2799 return;
2802 if (is_vector) {
2803 size = 2 + opc;
2804 } else {
2805 size = 2 + extract32(opc, 1, 1);
2806 is_signed = extract32(opc, 0, 1);
2807 if (!is_load && is_signed) {
2808 unallocated_encoding(s);
2809 return;
2813 switch (index) {
2814 case 1: /* post-index */
2815 postindex = true;
2816 wback = true;
2817 break;
2818 case 0:
2819 /* signed offset with "non-temporal" hint. Since we don't emulate
2820 * caches we don't care about hints to the cache system about
2821 * data access patterns, and handle this identically to plain
2822 * signed offset.
2824 if (is_signed) {
2825 /* There is no non-temporal-hint version of LDPSW */
2826 unallocated_encoding(s);
2827 return;
2829 postindex = false;
2830 break;
2831 case 2: /* signed offset, rn not updated */
2832 postindex = false;
2833 break;
2834 case 3: /* pre-index */
2835 postindex = false;
2836 wback = true;
2837 break;
2840 if (is_vector && !fp_access_check(s)) {
2841 return;
2844 offset <<= size;
2846 if (rn == 31) {
2847 gen_check_sp_alignment(s);
2850 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2851 if (!postindex) {
2852 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2854 clean_addr = clean_data_tbi(s, dirty_addr);
2856 if (is_vector) {
2857 if (is_load) {
2858 do_fp_ld(s, rt, clean_addr, size);
2859 } else {
2860 do_fp_st(s, rt, clean_addr, size);
2862 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2863 if (is_load) {
2864 do_fp_ld(s, rt2, clean_addr, size);
2865 } else {
2866 do_fp_st(s, rt2, clean_addr, size);
2868 } else {
2869 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2870 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2872 if (is_load) {
2873 TCGv_i64 tmp = tcg_temp_new_i64();
2875 /* Do not modify tcg_rt before recognizing any exception
2876 * from the second load.
2878 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2879 false, 0, false, false);
2880 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2881 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2882 false, 0, false, false);
2884 tcg_gen_mov_i64(tcg_rt, tmp);
2885 tcg_temp_free_i64(tmp);
2886 } else {
2887 do_gpr_st(s, tcg_rt, clean_addr, size,
2888 false, 0, false, false);
2889 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2890 do_gpr_st(s, tcg_rt2, clean_addr, size,
2891 false, 0, false, false);
2895 if (wback) {
2896 if (postindex) {
2897 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2899 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2904 * Load/store (immediate post-indexed)
2905 * Load/store (immediate pre-indexed)
2906 * Load/store (unscaled immediate)
2908 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2909 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2910 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2911 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2913 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2914 10 -> unprivileged
2915 * V = 0 -> non-vector
2916 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2917 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2919 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2920 int opc,
2921 int size,
2922 int rt,
2923 bool is_vector)
2925 int rn = extract32(insn, 5, 5);
2926 int imm9 = sextract32(insn, 12, 9);
2927 int idx = extract32(insn, 10, 2);
2928 bool is_signed = false;
2929 bool is_store = false;
2930 bool is_extended = false;
2931 bool is_unpriv = (idx == 2);
2932 bool iss_valid = !is_vector;
2933 bool post_index;
2934 bool writeback;
2936 TCGv_i64 clean_addr, dirty_addr;
2938 if (is_vector) {
2939 size |= (opc & 2) << 1;
2940 if (size > 4 || is_unpriv) {
2941 unallocated_encoding(s);
2942 return;
2944 is_store = ((opc & 1) == 0);
2945 if (!fp_access_check(s)) {
2946 return;
2948 } else {
2949 if (size == 3 && opc == 2) {
2950 /* PRFM - prefetch */
2951 if (idx != 0) {
2952 unallocated_encoding(s);
2953 return;
2955 return;
2957 if (opc == 3 && size > 1) {
2958 unallocated_encoding(s);
2959 return;
2961 is_store = (opc == 0);
2962 is_signed = extract32(opc, 1, 1);
2963 is_extended = (size < 3) && extract32(opc, 0, 1);
2966 switch (idx) {
2967 case 0:
2968 case 2:
2969 post_index = false;
2970 writeback = false;
2971 break;
2972 case 1:
2973 post_index = true;
2974 writeback = true;
2975 break;
2976 case 3:
2977 post_index = false;
2978 writeback = true;
2979 break;
2980 default:
2981 g_assert_not_reached();
2984 if (rn == 31) {
2985 gen_check_sp_alignment(s);
2988 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2989 if (!post_index) {
2990 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2992 clean_addr = clean_data_tbi(s, dirty_addr);
2994 if (is_vector) {
2995 if (is_store) {
2996 do_fp_st(s, rt, clean_addr, size);
2997 } else {
2998 do_fp_ld(s, rt, clean_addr, size);
3000 } else {
3001 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3002 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3003 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3005 if (is_store) {
3006 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3007 iss_valid, rt, iss_sf, false);
3008 } else {
3009 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
3010 is_signed, is_extended, memidx,
3011 iss_valid, rt, iss_sf, false);
3015 if (writeback) {
3016 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3017 if (post_index) {
3018 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3020 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3025 * Load/store (register offset)
3027 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3028 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3029 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3030 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3032 * For non-vector:
3033 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3034 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3035 * For vector:
3036 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3037 * opc<0>: 0 -> store, 1 -> load
3038 * V: 1 -> vector/simd
3039 * opt: extend encoding (see DecodeRegExtend)
3040 * S: if S=1 then scale (essentially index by sizeof(size))
3041 * Rt: register to transfer into/out of
3042 * Rn: address register or SP for base
3043 * Rm: offset register or ZR for offset
3045 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3046 int opc,
3047 int size,
3048 int rt,
3049 bool is_vector)
3051 int rn = extract32(insn, 5, 5);
3052 int shift = extract32(insn, 12, 1);
3053 int rm = extract32(insn, 16, 5);
3054 int opt = extract32(insn, 13, 3);
3055 bool is_signed = false;
3056 bool is_store = false;
3057 bool is_extended = false;
3059 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3061 if (extract32(opt, 1, 1) == 0) {
3062 unallocated_encoding(s);
3063 return;
3066 if (is_vector) {
3067 size |= (opc & 2) << 1;
3068 if (size > 4) {
3069 unallocated_encoding(s);
3070 return;
3072 is_store = !extract32(opc, 0, 1);
3073 if (!fp_access_check(s)) {
3074 return;
3076 } else {
3077 if (size == 3 && opc == 2) {
3078 /* PRFM - prefetch */
3079 return;
3081 if (opc == 3 && size > 1) {
3082 unallocated_encoding(s);
3083 return;
3085 is_store = (opc == 0);
3086 is_signed = extract32(opc, 1, 1);
3087 is_extended = (size < 3) && extract32(opc, 0, 1);
3090 if (rn == 31) {
3091 gen_check_sp_alignment(s);
3093 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3095 tcg_rm = read_cpu_reg(s, rm, 1);
3096 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3098 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3099 clean_addr = clean_data_tbi(s, dirty_addr);
3101 if (is_vector) {
3102 if (is_store) {
3103 do_fp_st(s, rt, clean_addr, size);
3104 } else {
3105 do_fp_ld(s, rt, clean_addr, size);
3107 } else {
3108 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3109 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3110 if (is_store) {
3111 do_gpr_st(s, tcg_rt, clean_addr, size,
3112 true, rt, iss_sf, false);
3113 } else {
3114 do_gpr_ld(s, tcg_rt, clean_addr, size,
3115 is_signed, is_extended,
3116 true, rt, iss_sf, false);
3122 * Load/store (unsigned immediate)
3124 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3125 * +----+-------+---+-----+-----+------------+-------+------+
3126 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3127 * +----+-------+---+-----+-----+------------+-------+------+
3129 * For non-vector:
3130 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3131 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3132 * For vector:
3133 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3134 * opc<0>: 0 -> store, 1 -> load
3135 * Rn: base address register (inc SP)
3136 * Rt: target register
3138 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3139 int opc,
3140 int size,
3141 int rt,
3142 bool is_vector)
3144 int rn = extract32(insn, 5, 5);
3145 unsigned int imm12 = extract32(insn, 10, 12);
3146 unsigned int offset;
3148 TCGv_i64 clean_addr, dirty_addr;
3150 bool is_store;
3151 bool is_signed = false;
3152 bool is_extended = false;
3154 if (is_vector) {
3155 size |= (opc & 2) << 1;
3156 if (size > 4) {
3157 unallocated_encoding(s);
3158 return;
3160 is_store = !extract32(opc, 0, 1);
3161 if (!fp_access_check(s)) {
3162 return;
3164 } else {
3165 if (size == 3 && opc == 2) {
3166 /* PRFM - prefetch */
3167 return;
3169 if (opc == 3 && size > 1) {
3170 unallocated_encoding(s);
3171 return;
3173 is_store = (opc == 0);
3174 is_signed = extract32(opc, 1, 1);
3175 is_extended = (size < 3) && extract32(opc, 0, 1);
3178 if (rn == 31) {
3179 gen_check_sp_alignment(s);
3181 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3182 offset = imm12 << size;
3183 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3184 clean_addr = clean_data_tbi(s, dirty_addr);
3186 if (is_vector) {
3187 if (is_store) {
3188 do_fp_st(s, rt, clean_addr, size);
3189 } else {
3190 do_fp_ld(s, rt, clean_addr, size);
3192 } else {
3193 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3194 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3195 if (is_store) {
3196 do_gpr_st(s, tcg_rt, clean_addr, size,
3197 true, rt, iss_sf, false);
3198 } else {
3199 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3200 true, rt, iss_sf, false);
3205 /* Atomic memory operations
3207 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3208 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3209 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3210 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3212 * Rt: the result register
3213 * Rn: base address or SP
3214 * Rs: the source register for the operation
3215 * V: vector flag (always 0 as of v8.3)
3216 * A: acquire flag
3217 * R: release flag
3219 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3220 int size, int rt, bool is_vector)
3222 int rs = extract32(insn, 16, 5);
3223 int rn = extract32(insn, 5, 5);
3224 int o3_opc = extract32(insn, 12, 4);
3225 TCGv_i64 tcg_rs, clean_addr;
3226 AtomicThreeOpFn *fn;
3228 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3229 unallocated_encoding(s);
3230 return;
3232 switch (o3_opc) {
3233 case 000: /* LDADD */
3234 fn = tcg_gen_atomic_fetch_add_i64;
3235 break;
3236 case 001: /* LDCLR */
3237 fn = tcg_gen_atomic_fetch_and_i64;
3238 break;
3239 case 002: /* LDEOR */
3240 fn = tcg_gen_atomic_fetch_xor_i64;
3241 break;
3242 case 003: /* LDSET */
3243 fn = tcg_gen_atomic_fetch_or_i64;
3244 break;
3245 case 004: /* LDSMAX */
3246 fn = tcg_gen_atomic_fetch_smax_i64;
3247 break;
3248 case 005: /* LDSMIN */
3249 fn = tcg_gen_atomic_fetch_smin_i64;
3250 break;
3251 case 006: /* LDUMAX */
3252 fn = tcg_gen_atomic_fetch_umax_i64;
3253 break;
3254 case 007: /* LDUMIN */
3255 fn = tcg_gen_atomic_fetch_umin_i64;
3256 break;
3257 case 010: /* SWP */
3258 fn = tcg_gen_atomic_xchg_i64;
3259 break;
3260 default:
3261 unallocated_encoding(s);
3262 return;
3265 if (rn == 31) {
3266 gen_check_sp_alignment(s);
3268 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
3269 tcg_rs = read_cpu_reg(s, rs, true);
3271 if (o3_opc == 1) { /* LDCLR */
3272 tcg_gen_not_i64(tcg_rs, tcg_rs);
3275 /* The tcg atomic primitives are all full barriers. Therefore we
3276 * can ignore the Acquire and Release bits of this instruction.
3278 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3279 s->be_data | size | MO_ALIGN);
3283 * PAC memory operations
3285 * 31 30 27 26 24 22 21 12 11 10 5 0
3286 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3287 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3288 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3290 * Rt: the result register
3291 * Rn: base address or SP
3292 * V: vector flag (always 0 as of v8.3)
3293 * M: clear for key DA, set for key DB
3294 * W: pre-indexing flag
3295 * S: sign for imm9.
3297 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3298 int size, int rt, bool is_vector)
3300 int rn = extract32(insn, 5, 5);
3301 bool is_wback = extract32(insn, 11, 1);
3302 bool use_key_a = !extract32(insn, 23, 1);
3303 int offset;
3304 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3306 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3307 unallocated_encoding(s);
3308 return;
3311 if (rn == 31) {
3312 gen_check_sp_alignment(s);
3314 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3316 if (s->pauth_active) {
3317 if (use_key_a) {
3318 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3319 } else {
3320 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3324 /* Form the 10-bit signed, scaled offset. */
3325 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3326 offset = sextract32(offset << size, 0, 10 + size);
3327 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3329 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3330 clean_addr = clean_data_tbi(s, dirty_addr);
3332 tcg_rt = cpu_reg(s, rt);
3333 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3334 /* extend */ false, /* iss_valid */ !is_wback,
3335 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3337 if (is_wback) {
3338 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3342 /* Load/store register (all forms) */
3343 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3345 int rt = extract32(insn, 0, 5);
3346 int opc = extract32(insn, 22, 2);
3347 bool is_vector = extract32(insn, 26, 1);
3348 int size = extract32(insn, 30, 2);
3350 switch (extract32(insn, 24, 2)) {
3351 case 0:
3352 if (extract32(insn, 21, 1) == 0) {
3353 /* Load/store register (unscaled immediate)
3354 * Load/store immediate pre/post-indexed
3355 * Load/store register unprivileged
3357 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3358 return;
3360 switch (extract32(insn, 10, 2)) {
3361 case 0:
3362 disas_ldst_atomic(s, insn, size, rt, is_vector);
3363 return;
3364 case 2:
3365 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3366 return;
3367 default:
3368 disas_ldst_pac(s, insn, size, rt, is_vector);
3369 return;
3371 break;
3372 case 1:
3373 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3374 return;
3376 unallocated_encoding(s);
3379 /* AdvSIMD load/store multiple structures
3381 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3382 * +---+---+---------------+---+-------------+--------+------+------+------+
3383 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3384 * +---+---+---------------+---+-------------+--------+------+------+------+
3386 * AdvSIMD load/store multiple structures (post-indexed)
3388 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3389 * +---+---+---------------+---+---+---------+--------+------+------+------+
3390 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3391 * +---+---+---------------+---+---+---------+--------+------+------+------+
3393 * Rt: first (or only) SIMD&FP register to be transferred
3394 * Rn: base address or SP
3395 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3397 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3399 int rt = extract32(insn, 0, 5);
3400 int rn = extract32(insn, 5, 5);
3401 int rm = extract32(insn, 16, 5);
3402 int size = extract32(insn, 10, 2);
3403 int opcode = extract32(insn, 12, 4);
3404 bool is_store = !extract32(insn, 22, 1);
3405 bool is_postidx = extract32(insn, 23, 1);
3406 bool is_q = extract32(insn, 30, 1);
3407 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3408 TCGMemOp endian = s->be_data;
3410 int ebytes; /* bytes per element */
3411 int elements; /* elements per vector */
3412 int rpt; /* num iterations */
3413 int selem; /* structure elements */
3414 int r;
3416 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3417 unallocated_encoding(s);
3418 return;
3421 if (!is_postidx && rm != 0) {
3422 unallocated_encoding(s);
3423 return;
3426 /* From the shared decode logic */
3427 switch (opcode) {
3428 case 0x0:
3429 rpt = 1;
3430 selem = 4;
3431 break;
3432 case 0x2:
3433 rpt = 4;
3434 selem = 1;
3435 break;
3436 case 0x4:
3437 rpt = 1;
3438 selem = 3;
3439 break;
3440 case 0x6:
3441 rpt = 3;
3442 selem = 1;
3443 break;
3444 case 0x7:
3445 rpt = 1;
3446 selem = 1;
3447 break;
3448 case 0x8:
3449 rpt = 1;
3450 selem = 2;
3451 break;
3452 case 0xa:
3453 rpt = 2;
3454 selem = 1;
3455 break;
3456 default:
3457 unallocated_encoding(s);
3458 return;
3461 if (size == 3 && !is_q && selem != 1) {
3462 /* reserved */
3463 unallocated_encoding(s);
3464 return;
3467 if (!fp_access_check(s)) {
3468 return;
3471 if (rn == 31) {
3472 gen_check_sp_alignment(s);
3475 /* For our purposes, bytes are always little-endian. */
3476 if (size == 0) {
3477 endian = MO_LE;
3480 /* Consecutive little-endian elements from a single register
3481 * can be promoted to a larger little-endian operation.
3483 if (selem == 1 && endian == MO_LE) {
3484 size = 3;
3486 ebytes = 1 << size;
3487 elements = (is_q ? 16 : 8) / ebytes;
3489 tcg_rn = cpu_reg_sp(s, rn);
3490 clean_addr = clean_data_tbi(s, tcg_rn);
3491 tcg_ebytes = tcg_const_i64(ebytes);
3493 for (r = 0; r < rpt; r++) {
3494 int e;
3495 for (e = 0; e < elements; e++) {
3496 int xs;
3497 for (xs = 0; xs < selem; xs++) {
3498 int tt = (rt + r + xs) % 32;
3499 if (is_store) {
3500 do_vec_st(s, tt, e, clean_addr, size, endian);
3501 } else {
3502 do_vec_ld(s, tt, e, clean_addr, size, endian);
3504 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3508 tcg_temp_free_i64(tcg_ebytes);
3510 if (!is_store) {
3511 /* For non-quad operations, setting a slice of the low
3512 * 64 bits of the register clears the high 64 bits (in
3513 * the ARM ARM pseudocode this is implicit in the fact
3514 * that 'rval' is a 64 bit wide variable).
3515 * For quad operations, we might still need to zero the
3516 * high bits of SVE.
3518 for (r = 0; r < rpt * selem; r++) {
3519 int tt = (rt + r) % 32;
3520 clear_vec_high(s, is_q, tt);
3524 if (is_postidx) {
3525 if (rm == 31) {
3526 tcg_gen_addi_i64(tcg_rn, tcg_rn, rpt * elements * selem * ebytes);
3527 } else {
3528 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3533 /* AdvSIMD load/store single structure
3535 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3536 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3537 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3538 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3540 * AdvSIMD load/store single structure (post-indexed)
3542 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3543 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3544 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3545 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3547 * Rt: first (or only) SIMD&FP register to be transferred
3548 * Rn: base address or SP
3549 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3550 * index = encoded in Q:S:size dependent on size
3552 * lane_size = encoded in R, opc
3553 * transfer width = encoded in opc, S, size
3555 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3557 int rt = extract32(insn, 0, 5);
3558 int rn = extract32(insn, 5, 5);
3559 int rm = extract32(insn, 16, 5);
3560 int size = extract32(insn, 10, 2);
3561 int S = extract32(insn, 12, 1);
3562 int opc = extract32(insn, 13, 3);
3563 int R = extract32(insn, 21, 1);
3564 int is_load = extract32(insn, 22, 1);
3565 int is_postidx = extract32(insn, 23, 1);
3566 int is_q = extract32(insn, 30, 1);
3568 int scale = extract32(opc, 1, 2);
3569 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3570 bool replicate = false;
3571 int index = is_q << 3 | S << 2 | size;
3572 int ebytes, xs;
3573 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3575 if (extract32(insn, 31, 1)) {
3576 unallocated_encoding(s);
3577 return;
3579 if (!is_postidx && rm != 0) {
3580 unallocated_encoding(s);
3581 return;
3584 switch (scale) {
3585 case 3:
3586 if (!is_load || S) {
3587 unallocated_encoding(s);
3588 return;
3590 scale = size;
3591 replicate = true;
3592 break;
3593 case 0:
3594 break;
3595 case 1:
3596 if (extract32(size, 0, 1)) {
3597 unallocated_encoding(s);
3598 return;
3600 index >>= 1;
3601 break;
3602 case 2:
3603 if (extract32(size, 1, 1)) {
3604 unallocated_encoding(s);
3605 return;
3607 if (!extract32(size, 0, 1)) {
3608 index >>= 2;
3609 } else {
3610 if (S) {
3611 unallocated_encoding(s);
3612 return;
3614 index >>= 3;
3615 scale = 3;
3617 break;
3618 default:
3619 g_assert_not_reached();
3622 if (!fp_access_check(s)) {
3623 return;
3626 ebytes = 1 << scale;
3628 if (rn == 31) {
3629 gen_check_sp_alignment(s);
3632 tcg_rn = cpu_reg_sp(s, rn);
3633 clean_addr = clean_data_tbi(s, tcg_rn);
3634 tcg_ebytes = tcg_const_i64(ebytes);
3636 for (xs = 0; xs < selem; xs++) {
3637 if (replicate) {
3638 /* Load and replicate to all elements */
3639 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3641 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3642 get_mem_index(s), s->be_data + scale);
3643 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3644 (is_q + 1) * 8, vec_full_reg_size(s),
3645 tcg_tmp);
3646 tcg_temp_free_i64(tcg_tmp);
3647 } else {
3648 /* Load/store one element per register */
3649 if (is_load) {
3650 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3651 } else {
3652 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3655 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3656 rt = (rt + 1) % 32;
3658 tcg_temp_free_i64(tcg_ebytes);
3660 if (is_postidx) {
3661 if (rm == 31) {
3662 tcg_gen_addi_i64(tcg_rn, tcg_rn, selem * ebytes);
3663 } else {
3664 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3669 /* Loads and stores */
3670 static void disas_ldst(DisasContext *s, uint32_t insn)
3672 switch (extract32(insn, 24, 6)) {
3673 case 0x08: /* Load/store exclusive */
3674 disas_ldst_excl(s, insn);
3675 break;
3676 case 0x18: case 0x1c: /* Load register (literal) */
3677 disas_ld_lit(s, insn);
3678 break;
3679 case 0x28: case 0x29:
3680 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3681 disas_ldst_pair(s, insn);
3682 break;
3683 case 0x38: case 0x39:
3684 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3685 disas_ldst_reg(s, insn);
3686 break;
3687 case 0x0c: /* AdvSIMD load/store multiple structures */
3688 disas_ldst_multiple_struct(s, insn);
3689 break;
3690 case 0x0d: /* AdvSIMD load/store single structure */
3691 disas_ldst_single_struct(s, insn);
3692 break;
3693 default:
3694 unallocated_encoding(s);
3695 break;
3699 /* PC-rel. addressing
3700 * 31 30 29 28 24 23 5 4 0
3701 * +----+-------+-----------+-------------------+------+
3702 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3703 * +----+-------+-----------+-------------------+------+
3705 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3707 unsigned int page, rd;
3708 uint64_t base;
3709 uint64_t offset;
3711 page = extract32(insn, 31, 1);
3712 /* SignExtend(immhi:immlo) -> offset */
3713 offset = sextract64(insn, 5, 19);
3714 offset = offset << 2 | extract32(insn, 29, 2);
3715 rd = extract32(insn, 0, 5);
3716 base = s->pc - 4;
3718 if (page) {
3719 /* ADRP (page based) */
3720 base &= ~0xfff;
3721 offset <<= 12;
3724 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3728 * Add/subtract (immediate)
3730 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3731 * +--+--+--+-----------+-----+-------------+-----+-----+
3732 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3733 * +--+--+--+-----------+-----+-------------+-----+-----+
3735 * sf: 0 -> 32bit, 1 -> 64bit
3736 * op: 0 -> add , 1 -> sub
3737 * S: 1 -> set flags
3738 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3740 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3742 int rd = extract32(insn, 0, 5);
3743 int rn = extract32(insn, 5, 5);
3744 uint64_t imm = extract32(insn, 10, 12);
3745 int shift = extract32(insn, 22, 2);
3746 bool setflags = extract32(insn, 29, 1);
3747 bool sub_op = extract32(insn, 30, 1);
3748 bool is_64bit = extract32(insn, 31, 1);
3750 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3751 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3752 TCGv_i64 tcg_result;
3754 switch (shift) {
3755 case 0x0:
3756 break;
3757 case 0x1:
3758 imm <<= 12;
3759 break;
3760 default:
3761 unallocated_encoding(s);
3762 return;
3765 tcg_result = tcg_temp_new_i64();
3766 if (!setflags) {
3767 if (sub_op) {
3768 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3769 } else {
3770 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3772 } else {
3773 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3774 if (sub_op) {
3775 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3776 } else {
3777 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3779 tcg_temp_free_i64(tcg_imm);
3782 if (is_64bit) {
3783 tcg_gen_mov_i64(tcg_rd, tcg_result);
3784 } else {
3785 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3788 tcg_temp_free_i64(tcg_result);
3791 /* The input should be a value in the bottom e bits (with higher
3792 * bits zero); returns that value replicated into every element
3793 * of size e in a 64 bit integer.
3795 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3797 assert(e != 0);
3798 while (e < 64) {
3799 mask |= mask << e;
3800 e *= 2;
3802 return mask;
3805 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3806 static inline uint64_t bitmask64(unsigned int length)
3808 assert(length > 0 && length <= 64);
3809 return ~0ULL >> (64 - length);
3812 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3813 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3814 * value (ie should cause a guest UNDEF exception), and true if they are
3815 * valid, in which case the decoded bit pattern is written to result.
3817 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3818 unsigned int imms, unsigned int immr)
3820 uint64_t mask;
3821 unsigned e, levels, s, r;
3822 int len;
3824 assert(immn < 2 && imms < 64 && immr < 64);
3826 /* The bit patterns we create here are 64 bit patterns which
3827 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3828 * 64 bits each. Each element contains the same value: a run
3829 * of between 1 and e-1 non-zero bits, rotated within the
3830 * element by between 0 and e-1 bits.
3832 * The element size and run length are encoded into immn (1 bit)
3833 * and imms (6 bits) as follows:
3834 * 64 bit elements: immn = 1, imms = <length of run - 1>
3835 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3836 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3837 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3838 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3839 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3840 * Notice that immn = 0, imms = 11111x is the only combination
3841 * not covered by one of the above options; this is reserved.
3842 * Further, <length of run - 1> all-ones is a reserved pattern.
3844 * In all cases the rotation is by immr % e (and immr is 6 bits).
3847 /* First determine the element size */
3848 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3849 if (len < 1) {
3850 /* This is the immn == 0, imms == 0x11111x case */
3851 return false;
3853 e = 1 << len;
3855 levels = e - 1;
3856 s = imms & levels;
3857 r = immr & levels;
3859 if (s == levels) {
3860 /* <length of run - 1> mustn't be all-ones. */
3861 return false;
3864 /* Create the value of one element: s+1 set bits rotated
3865 * by r within the element (which is e bits wide)...
3867 mask = bitmask64(s + 1);
3868 if (r) {
3869 mask = (mask >> r) | (mask << (e - r));
3870 mask &= bitmask64(e);
3872 /* ...then replicate the element over the whole 64 bit value */
3873 mask = bitfield_replicate(mask, e);
3874 *result = mask;
3875 return true;
3878 /* Logical (immediate)
3879 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3880 * +----+-----+-------------+---+------+------+------+------+
3881 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3882 * +----+-----+-------------+---+------+------+------+------+
3884 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3886 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3887 TCGv_i64 tcg_rd, tcg_rn;
3888 uint64_t wmask;
3889 bool is_and = false;
3891 sf = extract32(insn, 31, 1);
3892 opc = extract32(insn, 29, 2);
3893 is_n = extract32(insn, 22, 1);
3894 immr = extract32(insn, 16, 6);
3895 imms = extract32(insn, 10, 6);
3896 rn = extract32(insn, 5, 5);
3897 rd = extract32(insn, 0, 5);
3899 if (!sf && is_n) {
3900 unallocated_encoding(s);
3901 return;
3904 if (opc == 0x3) { /* ANDS */
3905 tcg_rd = cpu_reg(s, rd);
3906 } else {
3907 tcg_rd = cpu_reg_sp(s, rd);
3909 tcg_rn = cpu_reg(s, rn);
3911 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3912 /* some immediate field values are reserved */
3913 unallocated_encoding(s);
3914 return;
3917 if (!sf) {
3918 wmask &= 0xffffffff;
3921 switch (opc) {
3922 case 0x3: /* ANDS */
3923 case 0x0: /* AND */
3924 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3925 is_and = true;
3926 break;
3927 case 0x1: /* ORR */
3928 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3929 break;
3930 case 0x2: /* EOR */
3931 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3932 break;
3933 default:
3934 assert(FALSE); /* must handle all above */
3935 break;
3938 if (!sf && !is_and) {
3939 /* zero extend final result; we know we can skip this for AND
3940 * since the immediate had the high 32 bits clear.
3942 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3945 if (opc == 3) { /* ANDS */
3946 gen_logic_CC(sf, tcg_rd);
3951 * Move wide (immediate)
3953 * 31 30 29 28 23 22 21 20 5 4 0
3954 * +--+-----+-------------+-----+----------------+------+
3955 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3956 * +--+-----+-------------+-----+----------------+------+
3958 * sf: 0 -> 32 bit, 1 -> 64 bit
3959 * opc: 00 -> N, 10 -> Z, 11 -> K
3960 * hw: shift/16 (0,16, and sf only 32, 48)
3962 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3964 int rd = extract32(insn, 0, 5);
3965 uint64_t imm = extract32(insn, 5, 16);
3966 int sf = extract32(insn, 31, 1);
3967 int opc = extract32(insn, 29, 2);
3968 int pos = extract32(insn, 21, 2) << 4;
3969 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3970 TCGv_i64 tcg_imm;
3972 if (!sf && (pos >= 32)) {
3973 unallocated_encoding(s);
3974 return;
3977 switch (opc) {
3978 case 0: /* MOVN */
3979 case 2: /* MOVZ */
3980 imm <<= pos;
3981 if (opc == 0) {
3982 imm = ~imm;
3984 if (!sf) {
3985 imm &= 0xffffffffu;
3987 tcg_gen_movi_i64(tcg_rd, imm);
3988 break;
3989 case 3: /* MOVK */
3990 tcg_imm = tcg_const_i64(imm);
3991 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3992 tcg_temp_free_i64(tcg_imm);
3993 if (!sf) {
3994 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3996 break;
3997 default:
3998 unallocated_encoding(s);
3999 break;
4003 /* Bitfield
4004 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4005 * +----+-----+-------------+---+------+------+------+------+
4006 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4007 * +----+-----+-------------+---+------+------+------+------+
4009 static void disas_bitfield(DisasContext *s, uint32_t insn)
4011 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4012 TCGv_i64 tcg_rd, tcg_tmp;
4014 sf = extract32(insn, 31, 1);
4015 opc = extract32(insn, 29, 2);
4016 n = extract32(insn, 22, 1);
4017 ri = extract32(insn, 16, 6);
4018 si = extract32(insn, 10, 6);
4019 rn = extract32(insn, 5, 5);
4020 rd = extract32(insn, 0, 5);
4021 bitsize = sf ? 64 : 32;
4023 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4024 unallocated_encoding(s);
4025 return;
4028 tcg_rd = cpu_reg(s, rd);
4030 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4031 to be smaller than bitsize, we'll never reference data outside the
4032 low 32-bits anyway. */
4033 tcg_tmp = read_cpu_reg(s, rn, 1);
4035 /* Recognize simple(r) extractions. */
4036 if (si >= ri) {
4037 /* Wd<s-r:0> = Wn<s:r> */
4038 len = (si - ri) + 1;
4039 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4040 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4041 goto done;
4042 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4043 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4044 return;
4046 /* opc == 1, BXFIL fall through to deposit */
4047 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
4048 pos = 0;
4049 } else {
4050 /* Handle the ri > si case with a deposit
4051 * Wd<32+s-r,32-r> = Wn<s:0>
4053 len = si + 1;
4054 pos = (bitsize - ri) & (bitsize - 1);
4057 if (opc == 0 && len < ri) {
4058 /* SBFM: sign extend the destination field from len to fill
4059 the balance of the word. Let the deposit below insert all
4060 of those sign bits. */
4061 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4062 len = ri;
4065 if (opc == 1) { /* BFM, BXFIL */
4066 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4067 } else {
4068 /* SBFM or UBFM: We start with zero, and we haven't modified
4069 any bits outside bitsize, therefore the zero-extension
4070 below is unneeded. */
4071 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4072 return;
4075 done:
4076 if (!sf) { /* zero extend final result */
4077 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4081 /* Extract
4082 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4083 * +----+------+-------------+---+----+------+--------+------+------+
4084 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4085 * +----+------+-------------+---+----+------+--------+------+------+
4087 static void disas_extract(DisasContext *s, uint32_t insn)
4089 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4091 sf = extract32(insn, 31, 1);
4092 n = extract32(insn, 22, 1);
4093 rm = extract32(insn, 16, 5);
4094 imm = extract32(insn, 10, 6);
4095 rn = extract32(insn, 5, 5);
4096 rd = extract32(insn, 0, 5);
4097 op21 = extract32(insn, 29, 2);
4098 op0 = extract32(insn, 21, 1);
4099 bitsize = sf ? 64 : 32;
4101 if (sf != n || op21 || op0 || imm >= bitsize) {
4102 unallocated_encoding(s);
4103 } else {
4104 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4106 tcg_rd = cpu_reg(s, rd);
4108 if (unlikely(imm == 0)) {
4109 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4110 * so an extract from bit 0 is a special case.
4112 if (sf) {
4113 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4114 } else {
4115 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4117 } else if (rm == rn) { /* ROR */
4118 tcg_rm = cpu_reg(s, rm);
4119 if (sf) {
4120 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
4121 } else {
4122 TCGv_i32 tmp = tcg_temp_new_i32();
4123 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
4124 tcg_gen_rotri_i32(tmp, tmp, imm);
4125 tcg_gen_extu_i32_i64(tcg_rd, tmp);
4126 tcg_temp_free_i32(tmp);
4128 } else {
4129 tcg_rm = read_cpu_reg(s, rm, sf);
4130 tcg_rn = read_cpu_reg(s, rn, sf);
4131 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
4132 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
4133 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
4134 if (!sf) {
4135 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4141 /* Data processing - immediate */
4142 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4144 switch (extract32(insn, 23, 6)) {
4145 case 0x20: case 0x21: /* PC-rel. addressing */
4146 disas_pc_rel_adr(s, insn);
4147 break;
4148 case 0x22: case 0x23: /* Add/subtract (immediate) */
4149 disas_add_sub_imm(s, insn);
4150 break;
4151 case 0x24: /* Logical (immediate) */
4152 disas_logic_imm(s, insn);
4153 break;
4154 case 0x25: /* Move wide (immediate) */
4155 disas_movw_imm(s, insn);
4156 break;
4157 case 0x26: /* Bitfield */
4158 disas_bitfield(s, insn);
4159 break;
4160 case 0x27: /* Extract */
4161 disas_extract(s, insn);
4162 break;
4163 default:
4164 unallocated_encoding(s);
4165 break;
4169 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4170 * Note that it is the caller's responsibility to ensure that the
4171 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4172 * mandated semantics for out of range shifts.
4174 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4175 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4177 switch (shift_type) {
4178 case A64_SHIFT_TYPE_LSL:
4179 tcg_gen_shl_i64(dst, src, shift_amount);
4180 break;
4181 case A64_SHIFT_TYPE_LSR:
4182 tcg_gen_shr_i64(dst, src, shift_amount);
4183 break;
4184 case A64_SHIFT_TYPE_ASR:
4185 if (!sf) {
4186 tcg_gen_ext32s_i64(dst, src);
4188 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4189 break;
4190 case A64_SHIFT_TYPE_ROR:
4191 if (sf) {
4192 tcg_gen_rotr_i64(dst, src, shift_amount);
4193 } else {
4194 TCGv_i32 t0, t1;
4195 t0 = tcg_temp_new_i32();
4196 t1 = tcg_temp_new_i32();
4197 tcg_gen_extrl_i64_i32(t0, src);
4198 tcg_gen_extrl_i64_i32(t1, shift_amount);
4199 tcg_gen_rotr_i32(t0, t0, t1);
4200 tcg_gen_extu_i32_i64(dst, t0);
4201 tcg_temp_free_i32(t0);
4202 tcg_temp_free_i32(t1);
4204 break;
4205 default:
4206 assert(FALSE); /* all shift types should be handled */
4207 break;
4210 if (!sf) { /* zero extend final result */
4211 tcg_gen_ext32u_i64(dst, dst);
4215 /* Shift a TCGv src by immediate, put result in dst.
4216 * The shift amount must be in range (this should always be true as the
4217 * relevant instructions will UNDEF on bad shift immediates).
4219 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4220 enum a64_shift_type shift_type, unsigned int shift_i)
4222 assert(shift_i < (sf ? 64 : 32));
4224 if (shift_i == 0) {
4225 tcg_gen_mov_i64(dst, src);
4226 } else {
4227 TCGv_i64 shift_const;
4229 shift_const = tcg_const_i64(shift_i);
4230 shift_reg(dst, src, sf, shift_type, shift_const);
4231 tcg_temp_free_i64(shift_const);
4235 /* Logical (shifted register)
4236 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4237 * +----+-----+-----------+-------+---+------+--------+------+------+
4238 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4239 * +----+-----+-----------+-------+---+------+--------+------+------+
4241 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4243 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4244 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4246 sf = extract32(insn, 31, 1);
4247 opc = extract32(insn, 29, 2);
4248 shift_type = extract32(insn, 22, 2);
4249 invert = extract32(insn, 21, 1);
4250 rm = extract32(insn, 16, 5);
4251 shift_amount = extract32(insn, 10, 6);
4252 rn = extract32(insn, 5, 5);
4253 rd = extract32(insn, 0, 5);
4255 if (!sf && (shift_amount & (1 << 5))) {
4256 unallocated_encoding(s);
4257 return;
4260 tcg_rd = cpu_reg(s, rd);
4262 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4263 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4264 * register-register MOV and MVN, so it is worth special casing.
4266 tcg_rm = cpu_reg(s, rm);
4267 if (invert) {
4268 tcg_gen_not_i64(tcg_rd, tcg_rm);
4269 if (!sf) {
4270 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4272 } else {
4273 if (sf) {
4274 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4275 } else {
4276 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4279 return;
4282 tcg_rm = read_cpu_reg(s, rm, sf);
4284 if (shift_amount) {
4285 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4288 tcg_rn = cpu_reg(s, rn);
4290 switch (opc | (invert << 2)) {
4291 case 0: /* AND */
4292 case 3: /* ANDS */
4293 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4294 break;
4295 case 1: /* ORR */
4296 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4297 break;
4298 case 2: /* EOR */
4299 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4300 break;
4301 case 4: /* BIC */
4302 case 7: /* BICS */
4303 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4304 break;
4305 case 5: /* ORN */
4306 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4307 break;
4308 case 6: /* EON */
4309 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4310 break;
4311 default:
4312 assert(FALSE);
4313 break;
4316 if (!sf) {
4317 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4320 if (opc == 3) {
4321 gen_logic_CC(sf, tcg_rd);
4326 * Add/subtract (extended register)
4328 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4329 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4330 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4331 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4333 * sf: 0 -> 32bit, 1 -> 64bit
4334 * op: 0 -> add , 1 -> sub
4335 * S: 1 -> set flags
4336 * opt: 00
4337 * option: extension type (see DecodeRegExtend)
4338 * imm3: optional shift to Rm
4340 * Rd = Rn + LSL(extend(Rm), amount)
4342 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4344 int rd = extract32(insn, 0, 5);
4345 int rn = extract32(insn, 5, 5);
4346 int imm3 = extract32(insn, 10, 3);
4347 int option = extract32(insn, 13, 3);
4348 int rm = extract32(insn, 16, 5);
4349 int opt = extract32(insn, 22, 2);
4350 bool setflags = extract32(insn, 29, 1);
4351 bool sub_op = extract32(insn, 30, 1);
4352 bool sf = extract32(insn, 31, 1);
4354 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4355 TCGv_i64 tcg_rd;
4356 TCGv_i64 tcg_result;
4358 if (imm3 > 4 || opt != 0) {
4359 unallocated_encoding(s);
4360 return;
4363 /* non-flag setting ops may use SP */
4364 if (!setflags) {
4365 tcg_rd = cpu_reg_sp(s, rd);
4366 } else {
4367 tcg_rd = cpu_reg(s, rd);
4369 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4371 tcg_rm = read_cpu_reg(s, rm, sf);
4372 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4374 tcg_result = tcg_temp_new_i64();
4376 if (!setflags) {
4377 if (sub_op) {
4378 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4379 } else {
4380 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4382 } else {
4383 if (sub_op) {
4384 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4385 } else {
4386 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4390 if (sf) {
4391 tcg_gen_mov_i64(tcg_rd, tcg_result);
4392 } else {
4393 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4396 tcg_temp_free_i64(tcg_result);
4400 * Add/subtract (shifted register)
4402 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4403 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4404 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4405 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4407 * sf: 0 -> 32bit, 1 -> 64bit
4408 * op: 0 -> add , 1 -> sub
4409 * S: 1 -> set flags
4410 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4411 * imm6: Shift amount to apply to Rm before the add/sub
4413 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4415 int rd = extract32(insn, 0, 5);
4416 int rn = extract32(insn, 5, 5);
4417 int imm6 = extract32(insn, 10, 6);
4418 int rm = extract32(insn, 16, 5);
4419 int shift_type = extract32(insn, 22, 2);
4420 bool setflags = extract32(insn, 29, 1);
4421 bool sub_op = extract32(insn, 30, 1);
4422 bool sf = extract32(insn, 31, 1);
4424 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4425 TCGv_i64 tcg_rn, tcg_rm;
4426 TCGv_i64 tcg_result;
4428 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4429 unallocated_encoding(s);
4430 return;
4433 tcg_rn = read_cpu_reg(s, rn, sf);
4434 tcg_rm = read_cpu_reg(s, rm, sf);
4436 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4438 tcg_result = tcg_temp_new_i64();
4440 if (!setflags) {
4441 if (sub_op) {
4442 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4443 } else {
4444 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4446 } else {
4447 if (sub_op) {
4448 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4449 } else {
4450 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4454 if (sf) {
4455 tcg_gen_mov_i64(tcg_rd, tcg_result);
4456 } else {
4457 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4460 tcg_temp_free_i64(tcg_result);
4463 /* Data-processing (3 source)
4465 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4466 * +--+------+-----------+------+------+----+------+------+------+
4467 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4468 * +--+------+-----------+------+------+----+------+------+------+
4470 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4472 int rd = extract32(insn, 0, 5);
4473 int rn = extract32(insn, 5, 5);
4474 int ra = extract32(insn, 10, 5);
4475 int rm = extract32(insn, 16, 5);
4476 int op_id = (extract32(insn, 29, 3) << 4) |
4477 (extract32(insn, 21, 3) << 1) |
4478 extract32(insn, 15, 1);
4479 bool sf = extract32(insn, 31, 1);
4480 bool is_sub = extract32(op_id, 0, 1);
4481 bool is_high = extract32(op_id, 2, 1);
4482 bool is_signed = false;
4483 TCGv_i64 tcg_op1;
4484 TCGv_i64 tcg_op2;
4485 TCGv_i64 tcg_tmp;
4487 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4488 switch (op_id) {
4489 case 0x42: /* SMADDL */
4490 case 0x43: /* SMSUBL */
4491 case 0x44: /* SMULH */
4492 is_signed = true;
4493 break;
4494 case 0x0: /* MADD (32bit) */
4495 case 0x1: /* MSUB (32bit) */
4496 case 0x40: /* MADD (64bit) */
4497 case 0x41: /* MSUB (64bit) */
4498 case 0x4a: /* UMADDL */
4499 case 0x4b: /* UMSUBL */
4500 case 0x4c: /* UMULH */
4501 break;
4502 default:
4503 unallocated_encoding(s);
4504 return;
4507 if (is_high) {
4508 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4509 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4510 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4511 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4513 if (is_signed) {
4514 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4515 } else {
4516 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4519 tcg_temp_free_i64(low_bits);
4520 return;
4523 tcg_op1 = tcg_temp_new_i64();
4524 tcg_op2 = tcg_temp_new_i64();
4525 tcg_tmp = tcg_temp_new_i64();
4527 if (op_id < 0x42) {
4528 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4529 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4530 } else {
4531 if (is_signed) {
4532 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4533 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4534 } else {
4535 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4536 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4540 if (ra == 31 && !is_sub) {
4541 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4542 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4543 } else {
4544 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4545 if (is_sub) {
4546 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4547 } else {
4548 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4552 if (!sf) {
4553 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4556 tcg_temp_free_i64(tcg_op1);
4557 tcg_temp_free_i64(tcg_op2);
4558 tcg_temp_free_i64(tcg_tmp);
4561 /* Add/subtract (with carry)
4562 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4563 * +--+--+--+------------------------+------+-------------+------+-----+
4564 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4565 * +--+--+--+------------------------+------+-------------+------+-----+
4568 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4570 unsigned int sf, op, setflags, rm, rn, rd;
4571 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4573 sf = extract32(insn, 31, 1);
4574 op = extract32(insn, 30, 1);
4575 setflags = extract32(insn, 29, 1);
4576 rm = extract32(insn, 16, 5);
4577 rn = extract32(insn, 5, 5);
4578 rd = extract32(insn, 0, 5);
4580 tcg_rd = cpu_reg(s, rd);
4581 tcg_rn = cpu_reg(s, rn);
4583 if (op) {
4584 tcg_y = new_tmp_a64(s);
4585 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4586 } else {
4587 tcg_y = cpu_reg(s, rm);
4590 if (setflags) {
4591 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4592 } else {
4593 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4598 * Rotate right into flags
4599 * 31 30 29 21 15 10 5 4 0
4600 * +--+--+--+-----------------+--------+-----------+------+--+------+
4601 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4602 * +--+--+--+-----------------+--------+-----------+------+--+------+
4604 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4606 int mask = extract32(insn, 0, 4);
4607 int o2 = extract32(insn, 4, 1);
4608 int rn = extract32(insn, 5, 5);
4609 int imm6 = extract32(insn, 15, 6);
4610 int sf_op_s = extract32(insn, 29, 3);
4611 TCGv_i64 tcg_rn;
4612 TCGv_i32 nzcv;
4614 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4615 unallocated_encoding(s);
4616 return;
4619 tcg_rn = read_cpu_reg(s, rn, 1);
4620 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4622 nzcv = tcg_temp_new_i32();
4623 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4625 if (mask & 8) { /* N */
4626 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4628 if (mask & 4) { /* Z */
4629 tcg_gen_not_i32(cpu_ZF, nzcv);
4630 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4632 if (mask & 2) { /* C */
4633 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4635 if (mask & 1) { /* V */
4636 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4639 tcg_temp_free_i32(nzcv);
4643 * Evaluate into flags
4644 * 31 30 29 21 15 14 10 5 4 0
4645 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4646 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
4647 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4649 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4651 int o3_mask = extract32(insn, 0, 5);
4652 int rn = extract32(insn, 5, 5);
4653 int o2 = extract32(insn, 15, 6);
4654 int sz = extract32(insn, 14, 1);
4655 int sf_op_s = extract32(insn, 29, 3);
4656 TCGv_i32 tmp;
4657 int shift;
4659 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4660 !dc_isar_feature(aa64_condm_4, s)) {
4661 unallocated_encoding(s);
4662 return;
4664 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
4666 tmp = tcg_temp_new_i32();
4667 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4668 tcg_gen_shli_i32(cpu_NF, tmp, shift);
4669 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4670 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4671 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4672 tcg_temp_free_i32(tmp);
4675 /* Conditional compare (immediate / register)
4676 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4677 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4678 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4679 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4680 * [1] y [0] [0]
4682 static void disas_cc(DisasContext *s, uint32_t insn)
4684 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4685 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4686 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4687 DisasCompare c;
4689 if (!extract32(insn, 29, 1)) {
4690 unallocated_encoding(s);
4691 return;
4693 if (insn & (1 << 10 | 1 << 4)) {
4694 unallocated_encoding(s);
4695 return;
4697 sf = extract32(insn, 31, 1);
4698 op = extract32(insn, 30, 1);
4699 is_imm = extract32(insn, 11, 1);
4700 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4701 cond = extract32(insn, 12, 4);
4702 rn = extract32(insn, 5, 5);
4703 nzcv = extract32(insn, 0, 4);
4705 /* Set T0 = !COND. */
4706 tcg_t0 = tcg_temp_new_i32();
4707 arm_test_cc(&c, cond);
4708 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4709 arm_free_cc(&c);
4711 /* Load the arguments for the new comparison. */
4712 if (is_imm) {
4713 tcg_y = new_tmp_a64(s);
4714 tcg_gen_movi_i64(tcg_y, y);
4715 } else {
4716 tcg_y = cpu_reg(s, y);
4718 tcg_rn = cpu_reg(s, rn);
4720 /* Set the flags for the new comparison. */
4721 tcg_tmp = tcg_temp_new_i64();
4722 if (op) {
4723 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4724 } else {
4725 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4727 tcg_temp_free_i64(tcg_tmp);
4729 /* If COND was false, force the flags to #nzcv. Compute two masks
4730 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4731 * For tcg hosts that support ANDC, we can make do with just T1.
4732 * In either case, allow the tcg optimizer to delete any unused mask.
4734 tcg_t1 = tcg_temp_new_i32();
4735 tcg_t2 = tcg_temp_new_i32();
4736 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4737 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4739 if (nzcv & 8) { /* N */
4740 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4741 } else {
4742 if (TCG_TARGET_HAS_andc_i32) {
4743 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4744 } else {
4745 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4748 if (nzcv & 4) { /* Z */
4749 if (TCG_TARGET_HAS_andc_i32) {
4750 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4751 } else {
4752 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4754 } else {
4755 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4757 if (nzcv & 2) { /* C */
4758 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4759 } else {
4760 if (TCG_TARGET_HAS_andc_i32) {
4761 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4762 } else {
4763 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4766 if (nzcv & 1) { /* V */
4767 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4768 } else {
4769 if (TCG_TARGET_HAS_andc_i32) {
4770 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4771 } else {
4772 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4775 tcg_temp_free_i32(tcg_t0);
4776 tcg_temp_free_i32(tcg_t1);
4777 tcg_temp_free_i32(tcg_t2);
4780 /* Conditional select
4781 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4782 * +----+----+---+-----------------+------+------+-----+------+------+
4783 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4784 * +----+----+---+-----------------+------+------+-----+------+------+
4786 static void disas_cond_select(DisasContext *s, uint32_t insn)
4788 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4789 TCGv_i64 tcg_rd, zero;
4790 DisasCompare64 c;
4792 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4793 /* S == 1 or op2<1> == 1 */
4794 unallocated_encoding(s);
4795 return;
4797 sf = extract32(insn, 31, 1);
4798 else_inv = extract32(insn, 30, 1);
4799 rm = extract32(insn, 16, 5);
4800 cond = extract32(insn, 12, 4);
4801 else_inc = extract32(insn, 10, 1);
4802 rn = extract32(insn, 5, 5);
4803 rd = extract32(insn, 0, 5);
4805 tcg_rd = cpu_reg(s, rd);
4807 a64_test_cc(&c, cond);
4808 zero = tcg_const_i64(0);
4810 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4811 /* CSET & CSETM. */
4812 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4813 if (else_inv) {
4814 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4816 } else {
4817 TCGv_i64 t_true = cpu_reg(s, rn);
4818 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4819 if (else_inv && else_inc) {
4820 tcg_gen_neg_i64(t_false, t_false);
4821 } else if (else_inv) {
4822 tcg_gen_not_i64(t_false, t_false);
4823 } else if (else_inc) {
4824 tcg_gen_addi_i64(t_false, t_false, 1);
4826 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4829 tcg_temp_free_i64(zero);
4830 a64_free_cc(&c);
4832 if (!sf) {
4833 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4837 static void handle_clz(DisasContext *s, unsigned int sf,
4838 unsigned int rn, unsigned int rd)
4840 TCGv_i64 tcg_rd, tcg_rn;
4841 tcg_rd = cpu_reg(s, rd);
4842 tcg_rn = cpu_reg(s, rn);
4844 if (sf) {
4845 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4846 } else {
4847 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4848 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4849 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4850 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4851 tcg_temp_free_i32(tcg_tmp32);
4855 static void handle_cls(DisasContext *s, unsigned int sf,
4856 unsigned int rn, unsigned int rd)
4858 TCGv_i64 tcg_rd, tcg_rn;
4859 tcg_rd = cpu_reg(s, rd);
4860 tcg_rn = cpu_reg(s, rn);
4862 if (sf) {
4863 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4864 } else {
4865 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4866 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4867 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4868 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4869 tcg_temp_free_i32(tcg_tmp32);
4873 static void handle_rbit(DisasContext *s, unsigned int sf,
4874 unsigned int rn, unsigned int rd)
4876 TCGv_i64 tcg_rd, tcg_rn;
4877 tcg_rd = cpu_reg(s, rd);
4878 tcg_rn = cpu_reg(s, rn);
4880 if (sf) {
4881 gen_helper_rbit64(tcg_rd, tcg_rn);
4882 } else {
4883 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4884 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4885 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4886 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4887 tcg_temp_free_i32(tcg_tmp32);
4891 /* REV with sf==1, opcode==3 ("REV64") */
4892 static void handle_rev64(DisasContext *s, unsigned int sf,
4893 unsigned int rn, unsigned int rd)
4895 if (!sf) {
4896 unallocated_encoding(s);
4897 return;
4899 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4902 /* REV with sf==0, opcode==2
4903 * REV32 (sf==1, opcode==2)
4905 static void handle_rev32(DisasContext *s, unsigned int sf,
4906 unsigned int rn, unsigned int rd)
4908 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4910 if (sf) {
4911 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4912 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4914 /* bswap32_i64 requires zero high word */
4915 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4916 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4917 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4918 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4919 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4921 tcg_temp_free_i64(tcg_tmp);
4922 } else {
4923 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4924 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4928 /* REV16 (opcode==1) */
4929 static void handle_rev16(DisasContext *s, unsigned int sf,
4930 unsigned int rn, unsigned int rd)
4932 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4933 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4934 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4935 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4937 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4938 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4939 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4940 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4941 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4943 tcg_temp_free_i64(mask);
4944 tcg_temp_free_i64(tcg_tmp);
4947 /* Data-processing (1 source)
4948 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4949 * +----+---+---+-----------------+---------+--------+------+------+
4950 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4951 * +----+---+---+-----------------+---------+--------+------+------+
4953 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4955 unsigned int sf, opcode, opcode2, rn, rd;
4956 TCGv_i64 tcg_rd;
4958 if (extract32(insn, 29, 1)) {
4959 unallocated_encoding(s);
4960 return;
4963 sf = extract32(insn, 31, 1);
4964 opcode = extract32(insn, 10, 6);
4965 opcode2 = extract32(insn, 16, 5);
4966 rn = extract32(insn, 5, 5);
4967 rd = extract32(insn, 0, 5);
4969 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
4971 switch (MAP(sf, opcode2, opcode)) {
4972 case MAP(0, 0x00, 0x00): /* RBIT */
4973 case MAP(1, 0x00, 0x00):
4974 handle_rbit(s, sf, rn, rd);
4975 break;
4976 case MAP(0, 0x00, 0x01): /* REV16 */
4977 case MAP(1, 0x00, 0x01):
4978 handle_rev16(s, sf, rn, rd);
4979 break;
4980 case MAP(0, 0x00, 0x02): /* REV/REV32 */
4981 case MAP(1, 0x00, 0x02):
4982 handle_rev32(s, sf, rn, rd);
4983 break;
4984 case MAP(1, 0x00, 0x03): /* REV64 */
4985 handle_rev64(s, sf, rn, rd);
4986 break;
4987 case MAP(0, 0x00, 0x04): /* CLZ */
4988 case MAP(1, 0x00, 0x04):
4989 handle_clz(s, sf, rn, rd);
4990 break;
4991 case MAP(0, 0x00, 0x05): /* CLS */
4992 case MAP(1, 0x00, 0x05):
4993 handle_cls(s, sf, rn, rd);
4994 break;
4995 case MAP(1, 0x01, 0x00): /* PACIA */
4996 if (s->pauth_active) {
4997 tcg_rd = cpu_reg(s, rd);
4998 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4999 } else if (!dc_isar_feature(aa64_pauth, s)) {
5000 goto do_unallocated;
5002 break;
5003 case MAP(1, 0x01, 0x01): /* PACIB */
5004 if (s->pauth_active) {
5005 tcg_rd = cpu_reg(s, rd);
5006 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5007 } else if (!dc_isar_feature(aa64_pauth, s)) {
5008 goto do_unallocated;
5010 break;
5011 case MAP(1, 0x01, 0x02): /* PACDA */
5012 if (s->pauth_active) {
5013 tcg_rd = cpu_reg(s, rd);
5014 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5015 } else if (!dc_isar_feature(aa64_pauth, s)) {
5016 goto do_unallocated;
5018 break;
5019 case MAP(1, 0x01, 0x03): /* PACDB */
5020 if (s->pauth_active) {
5021 tcg_rd = cpu_reg(s, rd);
5022 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5023 } else if (!dc_isar_feature(aa64_pauth, s)) {
5024 goto do_unallocated;
5026 break;
5027 case MAP(1, 0x01, 0x04): /* AUTIA */
5028 if (s->pauth_active) {
5029 tcg_rd = cpu_reg(s, rd);
5030 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5031 } else if (!dc_isar_feature(aa64_pauth, s)) {
5032 goto do_unallocated;
5034 break;
5035 case MAP(1, 0x01, 0x05): /* AUTIB */
5036 if (s->pauth_active) {
5037 tcg_rd = cpu_reg(s, rd);
5038 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5039 } else if (!dc_isar_feature(aa64_pauth, s)) {
5040 goto do_unallocated;
5042 break;
5043 case MAP(1, 0x01, 0x06): /* AUTDA */
5044 if (s->pauth_active) {
5045 tcg_rd = cpu_reg(s, rd);
5046 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5047 } else if (!dc_isar_feature(aa64_pauth, s)) {
5048 goto do_unallocated;
5050 break;
5051 case MAP(1, 0x01, 0x07): /* AUTDB */
5052 if (s->pauth_active) {
5053 tcg_rd = cpu_reg(s, rd);
5054 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5055 } else if (!dc_isar_feature(aa64_pauth, s)) {
5056 goto do_unallocated;
5058 break;
5059 case MAP(1, 0x01, 0x08): /* PACIZA */
5060 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5061 goto do_unallocated;
5062 } else if (s->pauth_active) {
5063 tcg_rd = cpu_reg(s, rd);
5064 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5066 break;
5067 case MAP(1, 0x01, 0x09): /* PACIZB */
5068 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5069 goto do_unallocated;
5070 } else if (s->pauth_active) {
5071 tcg_rd = cpu_reg(s, rd);
5072 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5074 break;
5075 case MAP(1, 0x01, 0x0a): /* PACDZA */
5076 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5077 goto do_unallocated;
5078 } else if (s->pauth_active) {
5079 tcg_rd = cpu_reg(s, rd);
5080 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5082 break;
5083 case MAP(1, 0x01, 0x0b): /* PACDZB */
5084 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5085 goto do_unallocated;
5086 } else if (s->pauth_active) {
5087 tcg_rd = cpu_reg(s, rd);
5088 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5090 break;
5091 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5092 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5093 goto do_unallocated;
5094 } else if (s->pauth_active) {
5095 tcg_rd = cpu_reg(s, rd);
5096 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5098 break;
5099 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5100 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5101 goto do_unallocated;
5102 } else if (s->pauth_active) {
5103 tcg_rd = cpu_reg(s, rd);
5104 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5106 break;
5107 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5108 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5109 goto do_unallocated;
5110 } else if (s->pauth_active) {
5111 tcg_rd = cpu_reg(s, rd);
5112 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5114 break;
5115 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5116 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5117 goto do_unallocated;
5118 } else if (s->pauth_active) {
5119 tcg_rd = cpu_reg(s, rd);
5120 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5122 break;
5123 case MAP(1, 0x01, 0x10): /* XPACI */
5124 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5125 goto do_unallocated;
5126 } else if (s->pauth_active) {
5127 tcg_rd = cpu_reg(s, rd);
5128 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5130 break;
5131 case MAP(1, 0x01, 0x11): /* XPACD */
5132 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5133 goto do_unallocated;
5134 } else if (s->pauth_active) {
5135 tcg_rd = cpu_reg(s, rd);
5136 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5138 break;
5139 default:
5140 do_unallocated:
5141 unallocated_encoding(s);
5142 break;
5145 #undef MAP
5148 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5149 unsigned int rm, unsigned int rn, unsigned int rd)
5151 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5152 tcg_rd = cpu_reg(s, rd);
5154 if (!sf && is_signed) {
5155 tcg_n = new_tmp_a64(s);
5156 tcg_m = new_tmp_a64(s);
5157 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5158 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5159 } else {
5160 tcg_n = read_cpu_reg(s, rn, sf);
5161 tcg_m = read_cpu_reg(s, rm, sf);
5164 if (is_signed) {
5165 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5166 } else {
5167 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5170 if (!sf) { /* zero extend final result */
5171 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5175 /* LSLV, LSRV, ASRV, RORV */
5176 static void handle_shift_reg(DisasContext *s,
5177 enum a64_shift_type shift_type, unsigned int sf,
5178 unsigned int rm, unsigned int rn, unsigned int rd)
5180 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5181 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5182 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5184 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5185 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5186 tcg_temp_free_i64(tcg_shift);
5189 /* CRC32[BHWX], CRC32C[BHWX] */
5190 static void handle_crc32(DisasContext *s,
5191 unsigned int sf, unsigned int sz, bool crc32c,
5192 unsigned int rm, unsigned int rn, unsigned int rd)
5194 TCGv_i64 tcg_acc, tcg_val;
5195 TCGv_i32 tcg_bytes;
5197 if (!dc_isar_feature(aa64_crc32, s)
5198 || (sf == 1 && sz != 3)
5199 || (sf == 0 && sz == 3)) {
5200 unallocated_encoding(s);
5201 return;
5204 if (sz == 3) {
5205 tcg_val = cpu_reg(s, rm);
5206 } else {
5207 uint64_t mask;
5208 switch (sz) {
5209 case 0:
5210 mask = 0xFF;
5211 break;
5212 case 1:
5213 mask = 0xFFFF;
5214 break;
5215 case 2:
5216 mask = 0xFFFFFFFF;
5217 break;
5218 default:
5219 g_assert_not_reached();
5221 tcg_val = new_tmp_a64(s);
5222 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5225 tcg_acc = cpu_reg(s, rn);
5226 tcg_bytes = tcg_const_i32(1 << sz);
5228 if (crc32c) {
5229 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5230 } else {
5231 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5234 tcg_temp_free_i32(tcg_bytes);
5237 /* Data-processing (2 source)
5238 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5239 * +----+---+---+-----------------+------+--------+------+------+
5240 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5241 * +----+---+---+-----------------+------+--------+------+------+
5243 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5245 unsigned int sf, rm, opcode, rn, rd;
5246 sf = extract32(insn, 31, 1);
5247 rm = extract32(insn, 16, 5);
5248 opcode = extract32(insn, 10, 6);
5249 rn = extract32(insn, 5, 5);
5250 rd = extract32(insn, 0, 5);
5252 if (extract32(insn, 29, 1)) {
5253 unallocated_encoding(s);
5254 return;
5257 switch (opcode) {
5258 case 2: /* UDIV */
5259 handle_div(s, false, sf, rm, rn, rd);
5260 break;
5261 case 3: /* SDIV */
5262 handle_div(s, true, sf, rm, rn, rd);
5263 break;
5264 case 8: /* LSLV */
5265 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5266 break;
5267 case 9: /* LSRV */
5268 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5269 break;
5270 case 10: /* ASRV */
5271 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5272 break;
5273 case 11: /* RORV */
5274 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5275 break;
5276 case 12: /* PACGA */
5277 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5278 goto do_unallocated;
5280 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5281 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5282 break;
5283 case 16:
5284 case 17:
5285 case 18:
5286 case 19:
5287 case 20:
5288 case 21:
5289 case 22:
5290 case 23: /* CRC32 */
5292 int sz = extract32(opcode, 0, 2);
5293 bool crc32c = extract32(opcode, 2, 1);
5294 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5295 break;
5297 default:
5298 do_unallocated:
5299 unallocated_encoding(s);
5300 break;
5305 * Data processing - register
5306 * 31 30 29 28 25 21 20 16 10 0
5307 * +--+---+--+---+-------+-----+-------+-------+---------+
5308 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5309 * +--+---+--+---+-------+-----+-------+-------+---------+
5311 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5313 int op0 = extract32(insn, 30, 1);
5314 int op1 = extract32(insn, 28, 1);
5315 int op2 = extract32(insn, 21, 4);
5316 int op3 = extract32(insn, 10, 6);
5318 if (!op1) {
5319 if (op2 & 8) {
5320 if (op2 & 1) {
5321 /* Add/sub (extended register) */
5322 disas_add_sub_ext_reg(s, insn);
5323 } else {
5324 /* Add/sub (shifted register) */
5325 disas_add_sub_reg(s, insn);
5327 } else {
5328 /* Logical (shifted register) */
5329 disas_logic_reg(s, insn);
5331 return;
5334 switch (op2) {
5335 case 0x0:
5336 switch (op3) {
5337 case 0x00: /* Add/subtract (with carry) */
5338 disas_adc_sbc(s, insn);
5339 break;
5341 case 0x01: /* Rotate right into flags */
5342 case 0x21:
5343 disas_rotate_right_into_flags(s, insn);
5344 break;
5346 case 0x02: /* Evaluate into flags */
5347 case 0x12:
5348 case 0x22:
5349 case 0x32:
5350 disas_evaluate_into_flags(s, insn);
5351 break;
5353 default:
5354 goto do_unallocated;
5356 break;
5358 case 0x2: /* Conditional compare */
5359 disas_cc(s, insn); /* both imm and reg forms */
5360 break;
5362 case 0x4: /* Conditional select */
5363 disas_cond_select(s, insn);
5364 break;
5366 case 0x6: /* Data-processing */
5367 if (op0) { /* (1 source) */
5368 disas_data_proc_1src(s, insn);
5369 } else { /* (2 source) */
5370 disas_data_proc_2src(s, insn);
5372 break;
5373 case 0x8 ... 0xf: /* (3 source) */
5374 disas_data_proc_3src(s, insn);
5375 break;
5377 default:
5378 do_unallocated:
5379 unallocated_encoding(s);
5380 break;
5384 static void handle_fp_compare(DisasContext *s, int size,
5385 unsigned int rn, unsigned int rm,
5386 bool cmp_with_zero, bool signal_all_nans)
5388 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5389 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5391 if (size == MO_64) {
5392 TCGv_i64 tcg_vn, tcg_vm;
5394 tcg_vn = read_fp_dreg(s, rn);
5395 if (cmp_with_zero) {
5396 tcg_vm = tcg_const_i64(0);
5397 } else {
5398 tcg_vm = read_fp_dreg(s, rm);
5400 if (signal_all_nans) {
5401 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5402 } else {
5403 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5405 tcg_temp_free_i64(tcg_vn);
5406 tcg_temp_free_i64(tcg_vm);
5407 } else {
5408 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5409 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5411 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5412 if (cmp_with_zero) {
5413 tcg_gen_movi_i32(tcg_vm, 0);
5414 } else {
5415 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5418 switch (size) {
5419 case MO_32:
5420 if (signal_all_nans) {
5421 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5422 } else {
5423 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5425 break;
5426 case MO_16:
5427 if (signal_all_nans) {
5428 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5429 } else {
5430 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5432 break;
5433 default:
5434 g_assert_not_reached();
5437 tcg_temp_free_i32(tcg_vn);
5438 tcg_temp_free_i32(tcg_vm);
5441 tcg_temp_free_ptr(fpst);
5443 gen_set_nzcv(tcg_flags);
5445 tcg_temp_free_i64(tcg_flags);
5448 /* Floating point compare
5449 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5450 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5451 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5452 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5454 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5456 unsigned int mos, type, rm, op, rn, opc, op2r;
5457 int size;
5459 mos = extract32(insn, 29, 3);
5460 type = extract32(insn, 22, 2);
5461 rm = extract32(insn, 16, 5);
5462 op = extract32(insn, 14, 2);
5463 rn = extract32(insn, 5, 5);
5464 opc = extract32(insn, 3, 2);
5465 op2r = extract32(insn, 0, 3);
5467 if (mos || op || op2r) {
5468 unallocated_encoding(s);
5469 return;
5472 switch (type) {
5473 case 0:
5474 size = MO_32;
5475 break;
5476 case 1:
5477 size = MO_64;
5478 break;
5479 case 3:
5480 size = MO_16;
5481 if (dc_isar_feature(aa64_fp16, s)) {
5482 break;
5484 /* fallthru */
5485 default:
5486 unallocated_encoding(s);
5487 return;
5490 if (!fp_access_check(s)) {
5491 return;
5494 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5497 /* Floating point conditional compare
5498 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5499 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5500 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5501 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5503 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5505 unsigned int mos, type, rm, cond, rn, op, nzcv;
5506 TCGv_i64 tcg_flags;
5507 TCGLabel *label_continue = NULL;
5508 int size;
5510 mos = extract32(insn, 29, 3);
5511 type = extract32(insn, 22, 2);
5512 rm = extract32(insn, 16, 5);
5513 cond = extract32(insn, 12, 4);
5514 rn = extract32(insn, 5, 5);
5515 op = extract32(insn, 4, 1);
5516 nzcv = extract32(insn, 0, 4);
5518 if (mos) {
5519 unallocated_encoding(s);
5520 return;
5523 switch (type) {
5524 case 0:
5525 size = MO_32;
5526 break;
5527 case 1:
5528 size = MO_64;
5529 break;
5530 case 3:
5531 size = MO_16;
5532 if (dc_isar_feature(aa64_fp16, s)) {
5533 break;
5535 /* fallthru */
5536 default:
5537 unallocated_encoding(s);
5538 return;
5541 if (!fp_access_check(s)) {
5542 return;
5545 if (cond < 0x0e) { /* not always */
5546 TCGLabel *label_match = gen_new_label();
5547 label_continue = gen_new_label();
5548 arm_gen_test_cc(cond, label_match);
5549 /* nomatch: */
5550 tcg_flags = tcg_const_i64(nzcv << 28);
5551 gen_set_nzcv(tcg_flags);
5552 tcg_temp_free_i64(tcg_flags);
5553 tcg_gen_br(label_continue);
5554 gen_set_label(label_match);
5557 handle_fp_compare(s, size, rn, rm, false, op);
5559 if (cond < 0x0e) {
5560 gen_set_label(label_continue);
5564 /* Floating point conditional select
5565 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5566 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5567 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5568 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5570 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5572 unsigned int mos, type, rm, cond, rn, rd;
5573 TCGv_i64 t_true, t_false, t_zero;
5574 DisasCompare64 c;
5575 TCGMemOp sz;
5577 mos = extract32(insn, 29, 3);
5578 type = extract32(insn, 22, 2);
5579 rm = extract32(insn, 16, 5);
5580 cond = extract32(insn, 12, 4);
5581 rn = extract32(insn, 5, 5);
5582 rd = extract32(insn, 0, 5);
5584 if (mos) {
5585 unallocated_encoding(s);
5586 return;
5589 switch (type) {
5590 case 0:
5591 sz = MO_32;
5592 break;
5593 case 1:
5594 sz = MO_64;
5595 break;
5596 case 3:
5597 sz = MO_16;
5598 if (dc_isar_feature(aa64_fp16, s)) {
5599 break;
5601 /* fallthru */
5602 default:
5603 unallocated_encoding(s);
5604 return;
5607 if (!fp_access_check(s)) {
5608 return;
5611 /* Zero extend sreg & hreg inputs to 64 bits now. */
5612 t_true = tcg_temp_new_i64();
5613 t_false = tcg_temp_new_i64();
5614 read_vec_element(s, t_true, rn, 0, sz);
5615 read_vec_element(s, t_false, rm, 0, sz);
5617 a64_test_cc(&c, cond);
5618 t_zero = tcg_const_i64(0);
5619 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5620 tcg_temp_free_i64(t_zero);
5621 tcg_temp_free_i64(t_false);
5622 a64_free_cc(&c);
5624 /* Note that sregs & hregs write back zeros to the high bits,
5625 and we've already done the zero-extension. */
5626 write_fp_dreg(s, rd, t_true);
5627 tcg_temp_free_i64(t_true);
5630 /* Floating-point data-processing (1 source) - half precision */
5631 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5633 TCGv_ptr fpst = NULL;
5634 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5635 TCGv_i32 tcg_res = tcg_temp_new_i32();
5637 switch (opcode) {
5638 case 0x0: /* FMOV */
5639 tcg_gen_mov_i32(tcg_res, tcg_op);
5640 break;
5641 case 0x1: /* FABS */
5642 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5643 break;
5644 case 0x2: /* FNEG */
5645 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5646 break;
5647 case 0x3: /* FSQRT */
5648 fpst = get_fpstatus_ptr(true);
5649 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5650 break;
5651 case 0x8: /* FRINTN */
5652 case 0x9: /* FRINTP */
5653 case 0xa: /* FRINTM */
5654 case 0xb: /* FRINTZ */
5655 case 0xc: /* FRINTA */
5657 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5658 fpst = get_fpstatus_ptr(true);
5660 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5661 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5663 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5664 tcg_temp_free_i32(tcg_rmode);
5665 break;
5667 case 0xe: /* FRINTX */
5668 fpst = get_fpstatus_ptr(true);
5669 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5670 break;
5671 case 0xf: /* FRINTI */
5672 fpst = get_fpstatus_ptr(true);
5673 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5674 break;
5675 default:
5676 abort();
5679 write_fp_sreg(s, rd, tcg_res);
5681 if (fpst) {
5682 tcg_temp_free_ptr(fpst);
5684 tcg_temp_free_i32(tcg_op);
5685 tcg_temp_free_i32(tcg_res);
5688 /* Floating-point data-processing (1 source) - single precision */
5689 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5691 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5692 TCGv_i32 tcg_op, tcg_res;
5693 TCGv_ptr fpst;
5694 int rmode = -1;
5696 tcg_op = read_fp_sreg(s, rn);
5697 tcg_res = tcg_temp_new_i32();
5699 switch (opcode) {
5700 case 0x0: /* FMOV */
5701 tcg_gen_mov_i32(tcg_res, tcg_op);
5702 goto done;
5703 case 0x1: /* FABS */
5704 gen_helper_vfp_abss(tcg_res, tcg_op);
5705 goto done;
5706 case 0x2: /* FNEG */
5707 gen_helper_vfp_negs(tcg_res, tcg_op);
5708 goto done;
5709 case 0x3: /* FSQRT */
5710 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5711 goto done;
5712 case 0x8: /* FRINTN */
5713 case 0x9: /* FRINTP */
5714 case 0xa: /* FRINTM */
5715 case 0xb: /* FRINTZ */
5716 case 0xc: /* FRINTA */
5717 rmode = arm_rmode_to_sf(opcode & 7);
5718 gen_fpst = gen_helper_rints;
5719 break;
5720 case 0xe: /* FRINTX */
5721 gen_fpst = gen_helper_rints_exact;
5722 break;
5723 case 0xf: /* FRINTI */
5724 gen_fpst = gen_helper_rints;
5725 break;
5726 case 0x10: /* FRINT32Z */
5727 rmode = float_round_to_zero;
5728 gen_fpst = gen_helper_frint32_s;
5729 break;
5730 case 0x11: /* FRINT32X */
5731 gen_fpst = gen_helper_frint32_s;
5732 break;
5733 case 0x12: /* FRINT64Z */
5734 rmode = float_round_to_zero;
5735 gen_fpst = gen_helper_frint64_s;
5736 break;
5737 case 0x13: /* FRINT64X */
5738 gen_fpst = gen_helper_frint64_s;
5739 break;
5740 default:
5741 g_assert_not_reached();
5744 fpst = get_fpstatus_ptr(false);
5745 if (rmode >= 0) {
5746 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5747 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5748 gen_fpst(tcg_res, tcg_op, fpst);
5749 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5750 tcg_temp_free_i32(tcg_rmode);
5751 } else {
5752 gen_fpst(tcg_res, tcg_op, fpst);
5754 tcg_temp_free_ptr(fpst);
5756 done:
5757 write_fp_sreg(s, rd, tcg_res);
5758 tcg_temp_free_i32(tcg_op);
5759 tcg_temp_free_i32(tcg_res);
5762 /* Floating-point data-processing (1 source) - double precision */
5763 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5765 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5766 TCGv_i64 tcg_op, tcg_res;
5767 TCGv_ptr fpst;
5768 int rmode = -1;
5770 switch (opcode) {
5771 case 0x0: /* FMOV */
5772 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5773 return;
5776 tcg_op = read_fp_dreg(s, rn);
5777 tcg_res = tcg_temp_new_i64();
5779 switch (opcode) {
5780 case 0x1: /* FABS */
5781 gen_helper_vfp_absd(tcg_res, tcg_op);
5782 goto done;
5783 case 0x2: /* FNEG */
5784 gen_helper_vfp_negd(tcg_res, tcg_op);
5785 goto done;
5786 case 0x3: /* FSQRT */
5787 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5788 goto done;
5789 case 0x8: /* FRINTN */
5790 case 0x9: /* FRINTP */
5791 case 0xa: /* FRINTM */
5792 case 0xb: /* FRINTZ */
5793 case 0xc: /* FRINTA */
5794 rmode = arm_rmode_to_sf(opcode & 7);
5795 gen_fpst = gen_helper_rintd;
5796 break;
5797 case 0xe: /* FRINTX */
5798 gen_fpst = gen_helper_rintd_exact;
5799 break;
5800 case 0xf: /* FRINTI */
5801 gen_fpst = gen_helper_rintd;
5802 break;
5803 case 0x10: /* FRINT32Z */
5804 rmode = float_round_to_zero;
5805 gen_fpst = gen_helper_frint32_d;
5806 break;
5807 case 0x11: /* FRINT32X */
5808 gen_fpst = gen_helper_frint32_d;
5809 break;
5810 case 0x12: /* FRINT64Z */
5811 rmode = float_round_to_zero;
5812 gen_fpst = gen_helper_frint64_d;
5813 break;
5814 case 0x13: /* FRINT64X */
5815 gen_fpst = gen_helper_frint64_d;
5816 break;
5817 default:
5818 g_assert_not_reached();
5821 fpst = get_fpstatus_ptr(false);
5822 if (rmode >= 0) {
5823 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5824 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5825 gen_fpst(tcg_res, tcg_op, fpst);
5826 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5827 tcg_temp_free_i32(tcg_rmode);
5828 } else {
5829 gen_fpst(tcg_res, tcg_op, fpst);
5831 tcg_temp_free_ptr(fpst);
5833 done:
5834 write_fp_dreg(s, rd, tcg_res);
5835 tcg_temp_free_i64(tcg_op);
5836 tcg_temp_free_i64(tcg_res);
5839 static void handle_fp_fcvt(DisasContext *s, int opcode,
5840 int rd, int rn, int dtype, int ntype)
5842 switch (ntype) {
5843 case 0x0:
5845 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5846 if (dtype == 1) {
5847 /* Single to double */
5848 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5849 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5850 write_fp_dreg(s, rd, tcg_rd);
5851 tcg_temp_free_i64(tcg_rd);
5852 } else {
5853 /* Single to half */
5854 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5855 TCGv_i32 ahp = get_ahp_flag();
5856 TCGv_ptr fpst = get_fpstatus_ptr(false);
5858 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5859 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5860 write_fp_sreg(s, rd, tcg_rd);
5861 tcg_temp_free_i32(tcg_rd);
5862 tcg_temp_free_i32(ahp);
5863 tcg_temp_free_ptr(fpst);
5865 tcg_temp_free_i32(tcg_rn);
5866 break;
5868 case 0x1:
5870 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5871 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5872 if (dtype == 0) {
5873 /* Double to single */
5874 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5875 } else {
5876 TCGv_ptr fpst = get_fpstatus_ptr(false);
5877 TCGv_i32 ahp = get_ahp_flag();
5878 /* Double to half */
5879 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5880 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5881 tcg_temp_free_ptr(fpst);
5882 tcg_temp_free_i32(ahp);
5884 write_fp_sreg(s, rd, tcg_rd);
5885 tcg_temp_free_i32(tcg_rd);
5886 tcg_temp_free_i64(tcg_rn);
5887 break;
5889 case 0x3:
5891 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5892 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5893 TCGv_i32 tcg_ahp = get_ahp_flag();
5894 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5895 if (dtype == 0) {
5896 /* Half to single */
5897 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5898 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5899 write_fp_sreg(s, rd, tcg_rd);
5900 tcg_temp_free_ptr(tcg_fpst);
5901 tcg_temp_free_i32(tcg_ahp);
5902 tcg_temp_free_i32(tcg_rd);
5903 } else {
5904 /* Half to double */
5905 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5906 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5907 write_fp_dreg(s, rd, tcg_rd);
5908 tcg_temp_free_i64(tcg_rd);
5910 tcg_temp_free_i32(tcg_rn);
5911 break;
5913 default:
5914 abort();
5918 /* Floating point data-processing (1 source)
5919 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5920 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5921 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5922 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5924 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5926 int mos = extract32(insn, 29, 3);
5927 int type = extract32(insn, 22, 2);
5928 int opcode = extract32(insn, 15, 6);
5929 int rn = extract32(insn, 5, 5);
5930 int rd = extract32(insn, 0, 5);
5932 if (mos) {
5933 unallocated_encoding(s);
5934 return;
5937 switch (opcode) {
5938 case 0x4: case 0x5: case 0x7:
5940 /* FCVT between half, single and double precision */
5941 int dtype = extract32(opcode, 0, 2);
5942 if (type == 2 || dtype == type) {
5943 unallocated_encoding(s);
5944 return;
5946 if (!fp_access_check(s)) {
5947 return;
5950 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5951 break;
5954 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
5955 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
5956 unallocated_encoding(s);
5957 return;
5959 /* fall through */
5960 case 0x0 ... 0x3:
5961 case 0x8 ... 0xc:
5962 case 0xe ... 0xf:
5963 /* 32-to-32 and 64-to-64 ops */
5964 switch (type) {
5965 case 0:
5966 if (!fp_access_check(s)) {
5967 return;
5969 handle_fp_1src_single(s, opcode, rd, rn);
5970 break;
5971 case 1:
5972 if (!fp_access_check(s)) {
5973 return;
5975 handle_fp_1src_double(s, opcode, rd, rn);
5976 break;
5977 case 3:
5978 if (!dc_isar_feature(aa64_fp16, s)) {
5979 unallocated_encoding(s);
5980 return;
5983 if (!fp_access_check(s)) {
5984 return;
5986 handle_fp_1src_half(s, opcode, rd, rn);
5987 break;
5988 default:
5989 unallocated_encoding(s);
5991 break;
5993 default:
5994 unallocated_encoding(s);
5995 break;
5999 /* Floating-point data-processing (2 source) - single precision */
6000 static void handle_fp_2src_single(DisasContext *s, int opcode,
6001 int rd, int rn, int rm)
6003 TCGv_i32 tcg_op1;
6004 TCGv_i32 tcg_op2;
6005 TCGv_i32 tcg_res;
6006 TCGv_ptr fpst;
6008 tcg_res = tcg_temp_new_i32();
6009 fpst = get_fpstatus_ptr(false);
6010 tcg_op1 = read_fp_sreg(s, rn);
6011 tcg_op2 = read_fp_sreg(s, rm);
6013 switch (opcode) {
6014 case 0x0: /* FMUL */
6015 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6016 break;
6017 case 0x1: /* FDIV */
6018 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6019 break;
6020 case 0x2: /* FADD */
6021 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6022 break;
6023 case 0x3: /* FSUB */
6024 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6025 break;
6026 case 0x4: /* FMAX */
6027 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6028 break;
6029 case 0x5: /* FMIN */
6030 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6031 break;
6032 case 0x6: /* FMAXNM */
6033 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6034 break;
6035 case 0x7: /* FMINNM */
6036 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6037 break;
6038 case 0x8: /* FNMUL */
6039 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6040 gen_helper_vfp_negs(tcg_res, tcg_res);
6041 break;
6044 write_fp_sreg(s, rd, tcg_res);
6046 tcg_temp_free_ptr(fpst);
6047 tcg_temp_free_i32(tcg_op1);
6048 tcg_temp_free_i32(tcg_op2);
6049 tcg_temp_free_i32(tcg_res);
6052 /* Floating-point data-processing (2 source) - double precision */
6053 static void handle_fp_2src_double(DisasContext *s, int opcode,
6054 int rd, int rn, int rm)
6056 TCGv_i64 tcg_op1;
6057 TCGv_i64 tcg_op2;
6058 TCGv_i64 tcg_res;
6059 TCGv_ptr fpst;
6061 tcg_res = tcg_temp_new_i64();
6062 fpst = get_fpstatus_ptr(false);
6063 tcg_op1 = read_fp_dreg(s, rn);
6064 tcg_op2 = read_fp_dreg(s, rm);
6066 switch (opcode) {
6067 case 0x0: /* FMUL */
6068 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6069 break;
6070 case 0x1: /* FDIV */
6071 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6072 break;
6073 case 0x2: /* FADD */
6074 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6075 break;
6076 case 0x3: /* FSUB */
6077 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6078 break;
6079 case 0x4: /* FMAX */
6080 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6081 break;
6082 case 0x5: /* FMIN */
6083 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6084 break;
6085 case 0x6: /* FMAXNM */
6086 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6087 break;
6088 case 0x7: /* FMINNM */
6089 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6090 break;
6091 case 0x8: /* FNMUL */
6092 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6093 gen_helper_vfp_negd(tcg_res, tcg_res);
6094 break;
6097 write_fp_dreg(s, rd, tcg_res);
6099 tcg_temp_free_ptr(fpst);
6100 tcg_temp_free_i64(tcg_op1);
6101 tcg_temp_free_i64(tcg_op2);
6102 tcg_temp_free_i64(tcg_res);
6105 /* Floating-point data-processing (2 source) - half precision */
6106 static void handle_fp_2src_half(DisasContext *s, int opcode,
6107 int rd, int rn, int rm)
6109 TCGv_i32 tcg_op1;
6110 TCGv_i32 tcg_op2;
6111 TCGv_i32 tcg_res;
6112 TCGv_ptr fpst;
6114 tcg_res = tcg_temp_new_i32();
6115 fpst = get_fpstatus_ptr(true);
6116 tcg_op1 = read_fp_hreg(s, rn);
6117 tcg_op2 = read_fp_hreg(s, rm);
6119 switch (opcode) {
6120 case 0x0: /* FMUL */
6121 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6122 break;
6123 case 0x1: /* FDIV */
6124 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6125 break;
6126 case 0x2: /* FADD */
6127 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6128 break;
6129 case 0x3: /* FSUB */
6130 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6131 break;
6132 case 0x4: /* FMAX */
6133 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6134 break;
6135 case 0x5: /* FMIN */
6136 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6137 break;
6138 case 0x6: /* FMAXNM */
6139 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6140 break;
6141 case 0x7: /* FMINNM */
6142 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6143 break;
6144 case 0x8: /* FNMUL */
6145 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6146 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6147 break;
6148 default:
6149 g_assert_not_reached();
6152 write_fp_sreg(s, rd, tcg_res);
6154 tcg_temp_free_ptr(fpst);
6155 tcg_temp_free_i32(tcg_op1);
6156 tcg_temp_free_i32(tcg_op2);
6157 tcg_temp_free_i32(tcg_res);
6160 /* Floating point data-processing (2 source)
6161 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6162 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6163 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6164 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6166 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6168 int mos = extract32(insn, 29, 3);
6169 int type = extract32(insn, 22, 2);
6170 int rd = extract32(insn, 0, 5);
6171 int rn = extract32(insn, 5, 5);
6172 int rm = extract32(insn, 16, 5);
6173 int opcode = extract32(insn, 12, 4);
6175 if (opcode > 8 || mos) {
6176 unallocated_encoding(s);
6177 return;
6180 switch (type) {
6181 case 0:
6182 if (!fp_access_check(s)) {
6183 return;
6185 handle_fp_2src_single(s, opcode, rd, rn, rm);
6186 break;
6187 case 1:
6188 if (!fp_access_check(s)) {
6189 return;
6191 handle_fp_2src_double(s, opcode, rd, rn, rm);
6192 break;
6193 case 3:
6194 if (!dc_isar_feature(aa64_fp16, s)) {
6195 unallocated_encoding(s);
6196 return;
6198 if (!fp_access_check(s)) {
6199 return;
6201 handle_fp_2src_half(s, opcode, rd, rn, rm);
6202 break;
6203 default:
6204 unallocated_encoding(s);
6208 /* Floating-point data-processing (3 source) - single precision */
6209 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6210 int rd, int rn, int rm, int ra)
6212 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6213 TCGv_i32 tcg_res = tcg_temp_new_i32();
6214 TCGv_ptr fpst = get_fpstatus_ptr(false);
6216 tcg_op1 = read_fp_sreg(s, rn);
6217 tcg_op2 = read_fp_sreg(s, rm);
6218 tcg_op3 = read_fp_sreg(s, ra);
6220 /* These are fused multiply-add, and must be done as one
6221 * floating point operation with no rounding between the
6222 * multiplication and addition steps.
6223 * NB that doing the negations here as separate steps is
6224 * correct : an input NaN should come out with its sign bit
6225 * flipped if it is a negated-input.
6227 if (o1 == true) {
6228 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6231 if (o0 != o1) {
6232 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6235 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6237 write_fp_sreg(s, rd, tcg_res);
6239 tcg_temp_free_ptr(fpst);
6240 tcg_temp_free_i32(tcg_op1);
6241 tcg_temp_free_i32(tcg_op2);
6242 tcg_temp_free_i32(tcg_op3);
6243 tcg_temp_free_i32(tcg_res);
6246 /* Floating-point data-processing (3 source) - double precision */
6247 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6248 int rd, int rn, int rm, int ra)
6250 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6251 TCGv_i64 tcg_res = tcg_temp_new_i64();
6252 TCGv_ptr fpst = get_fpstatus_ptr(false);
6254 tcg_op1 = read_fp_dreg(s, rn);
6255 tcg_op2 = read_fp_dreg(s, rm);
6256 tcg_op3 = read_fp_dreg(s, ra);
6258 /* These are fused multiply-add, and must be done as one
6259 * floating point operation with no rounding between the
6260 * multiplication and addition steps.
6261 * NB that doing the negations here as separate steps is
6262 * correct : an input NaN should come out with its sign bit
6263 * flipped if it is a negated-input.
6265 if (o1 == true) {
6266 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6269 if (o0 != o1) {
6270 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6273 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6275 write_fp_dreg(s, rd, tcg_res);
6277 tcg_temp_free_ptr(fpst);
6278 tcg_temp_free_i64(tcg_op1);
6279 tcg_temp_free_i64(tcg_op2);
6280 tcg_temp_free_i64(tcg_op3);
6281 tcg_temp_free_i64(tcg_res);
6284 /* Floating-point data-processing (3 source) - half precision */
6285 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6286 int rd, int rn, int rm, int ra)
6288 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6289 TCGv_i32 tcg_res = tcg_temp_new_i32();
6290 TCGv_ptr fpst = get_fpstatus_ptr(true);
6292 tcg_op1 = read_fp_hreg(s, rn);
6293 tcg_op2 = read_fp_hreg(s, rm);
6294 tcg_op3 = read_fp_hreg(s, ra);
6296 /* These are fused multiply-add, and must be done as one
6297 * floating point operation with no rounding between the
6298 * multiplication and addition steps.
6299 * NB that doing the negations here as separate steps is
6300 * correct : an input NaN should come out with its sign bit
6301 * flipped if it is a negated-input.
6303 if (o1 == true) {
6304 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6307 if (o0 != o1) {
6308 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6311 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6313 write_fp_sreg(s, rd, tcg_res);
6315 tcg_temp_free_ptr(fpst);
6316 tcg_temp_free_i32(tcg_op1);
6317 tcg_temp_free_i32(tcg_op2);
6318 tcg_temp_free_i32(tcg_op3);
6319 tcg_temp_free_i32(tcg_res);
6322 /* Floating point data-processing (3 source)
6323 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6324 * +---+---+---+-----------+------+----+------+----+------+------+------+
6325 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6326 * +---+---+---+-----------+------+----+------+----+------+------+------+
6328 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6330 int mos = extract32(insn, 29, 3);
6331 int type = extract32(insn, 22, 2);
6332 int rd = extract32(insn, 0, 5);
6333 int rn = extract32(insn, 5, 5);
6334 int ra = extract32(insn, 10, 5);
6335 int rm = extract32(insn, 16, 5);
6336 bool o0 = extract32(insn, 15, 1);
6337 bool o1 = extract32(insn, 21, 1);
6339 if (mos) {
6340 unallocated_encoding(s);
6341 return;
6344 switch (type) {
6345 case 0:
6346 if (!fp_access_check(s)) {
6347 return;
6349 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6350 break;
6351 case 1:
6352 if (!fp_access_check(s)) {
6353 return;
6355 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6356 break;
6357 case 3:
6358 if (!dc_isar_feature(aa64_fp16, s)) {
6359 unallocated_encoding(s);
6360 return;
6362 if (!fp_access_check(s)) {
6363 return;
6365 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6366 break;
6367 default:
6368 unallocated_encoding(s);
6372 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
6373 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
6374 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
6376 uint64_t vfp_expand_imm(int size, uint8_t imm8)
6378 uint64_t imm;
6380 switch (size) {
6381 case MO_64:
6382 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6383 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
6384 extract32(imm8, 0, 6);
6385 imm <<= 48;
6386 break;
6387 case MO_32:
6388 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6389 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
6390 (extract32(imm8, 0, 6) << 3);
6391 imm <<= 16;
6392 break;
6393 case MO_16:
6394 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6395 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
6396 (extract32(imm8, 0, 6) << 6);
6397 break;
6398 default:
6399 g_assert_not_reached();
6401 return imm;
6404 /* Floating point immediate
6405 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6406 * +---+---+---+-----------+------+---+------------+-------+------+------+
6407 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6408 * +---+---+---+-----------+------+---+------------+-------+------+------+
6410 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6412 int rd = extract32(insn, 0, 5);
6413 int imm5 = extract32(insn, 5, 5);
6414 int imm8 = extract32(insn, 13, 8);
6415 int type = extract32(insn, 22, 2);
6416 int mos = extract32(insn, 29, 3);
6417 uint64_t imm;
6418 TCGv_i64 tcg_res;
6419 TCGMemOp sz;
6421 if (mos || imm5) {
6422 unallocated_encoding(s);
6423 return;
6426 switch (type) {
6427 case 0:
6428 sz = MO_32;
6429 break;
6430 case 1:
6431 sz = MO_64;
6432 break;
6433 case 3:
6434 sz = MO_16;
6435 if (dc_isar_feature(aa64_fp16, s)) {
6436 break;
6438 /* fallthru */
6439 default:
6440 unallocated_encoding(s);
6441 return;
6444 if (!fp_access_check(s)) {
6445 return;
6448 imm = vfp_expand_imm(sz, imm8);
6450 tcg_res = tcg_const_i64(imm);
6451 write_fp_dreg(s, rd, tcg_res);
6452 tcg_temp_free_i64(tcg_res);
6455 /* Handle floating point <=> fixed point conversions. Note that we can
6456 * also deal with fp <=> integer conversions as a special case (scale == 64)
6457 * OPTME: consider handling that special case specially or at least skipping
6458 * the call to scalbn in the helpers for zero shifts.
6460 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6461 bool itof, int rmode, int scale, int sf, int type)
6463 bool is_signed = !(opcode & 1);
6464 TCGv_ptr tcg_fpstatus;
6465 TCGv_i32 tcg_shift, tcg_single;
6466 TCGv_i64 tcg_double;
6468 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6470 tcg_shift = tcg_const_i32(64 - scale);
6472 if (itof) {
6473 TCGv_i64 tcg_int = cpu_reg(s, rn);
6474 if (!sf) {
6475 TCGv_i64 tcg_extend = new_tmp_a64(s);
6477 if (is_signed) {
6478 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6479 } else {
6480 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6483 tcg_int = tcg_extend;
6486 switch (type) {
6487 case 1: /* float64 */
6488 tcg_double = tcg_temp_new_i64();
6489 if (is_signed) {
6490 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6491 tcg_shift, tcg_fpstatus);
6492 } else {
6493 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6494 tcg_shift, tcg_fpstatus);
6496 write_fp_dreg(s, rd, tcg_double);
6497 tcg_temp_free_i64(tcg_double);
6498 break;
6500 case 0: /* float32 */
6501 tcg_single = tcg_temp_new_i32();
6502 if (is_signed) {
6503 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6504 tcg_shift, tcg_fpstatus);
6505 } else {
6506 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6507 tcg_shift, tcg_fpstatus);
6509 write_fp_sreg(s, rd, tcg_single);
6510 tcg_temp_free_i32(tcg_single);
6511 break;
6513 case 3: /* float16 */
6514 tcg_single = tcg_temp_new_i32();
6515 if (is_signed) {
6516 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6517 tcg_shift, tcg_fpstatus);
6518 } else {
6519 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6520 tcg_shift, tcg_fpstatus);
6522 write_fp_sreg(s, rd, tcg_single);
6523 tcg_temp_free_i32(tcg_single);
6524 break;
6526 default:
6527 g_assert_not_reached();
6529 } else {
6530 TCGv_i64 tcg_int = cpu_reg(s, rd);
6531 TCGv_i32 tcg_rmode;
6533 if (extract32(opcode, 2, 1)) {
6534 /* There are too many rounding modes to all fit into rmode,
6535 * so FCVTA[US] is a special case.
6537 rmode = FPROUNDING_TIEAWAY;
6540 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6542 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6544 switch (type) {
6545 case 1: /* float64 */
6546 tcg_double = read_fp_dreg(s, rn);
6547 if (is_signed) {
6548 if (!sf) {
6549 gen_helper_vfp_tosld(tcg_int, tcg_double,
6550 tcg_shift, tcg_fpstatus);
6551 } else {
6552 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6553 tcg_shift, tcg_fpstatus);
6555 } else {
6556 if (!sf) {
6557 gen_helper_vfp_tould(tcg_int, tcg_double,
6558 tcg_shift, tcg_fpstatus);
6559 } else {
6560 gen_helper_vfp_touqd(tcg_int, tcg_double,
6561 tcg_shift, tcg_fpstatus);
6564 if (!sf) {
6565 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6567 tcg_temp_free_i64(tcg_double);
6568 break;
6570 case 0: /* float32 */
6571 tcg_single = read_fp_sreg(s, rn);
6572 if (sf) {
6573 if (is_signed) {
6574 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6575 tcg_shift, tcg_fpstatus);
6576 } else {
6577 gen_helper_vfp_touqs(tcg_int, tcg_single,
6578 tcg_shift, tcg_fpstatus);
6580 } else {
6581 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6582 if (is_signed) {
6583 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6584 tcg_shift, tcg_fpstatus);
6585 } else {
6586 gen_helper_vfp_touls(tcg_dest, tcg_single,
6587 tcg_shift, tcg_fpstatus);
6589 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6590 tcg_temp_free_i32(tcg_dest);
6592 tcg_temp_free_i32(tcg_single);
6593 break;
6595 case 3: /* float16 */
6596 tcg_single = read_fp_sreg(s, rn);
6597 if (sf) {
6598 if (is_signed) {
6599 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6600 tcg_shift, tcg_fpstatus);
6601 } else {
6602 gen_helper_vfp_touqh(tcg_int, tcg_single,
6603 tcg_shift, tcg_fpstatus);
6605 } else {
6606 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6607 if (is_signed) {
6608 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6609 tcg_shift, tcg_fpstatus);
6610 } else {
6611 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6612 tcg_shift, tcg_fpstatus);
6614 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6615 tcg_temp_free_i32(tcg_dest);
6617 tcg_temp_free_i32(tcg_single);
6618 break;
6620 default:
6621 g_assert_not_reached();
6624 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6625 tcg_temp_free_i32(tcg_rmode);
6628 tcg_temp_free_ptr(tcg_fpstatus);
6629 tcg_temp_free_i32(tcg_shift);
6632 /* Floating point <-> fixed point conversions
6633 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6634 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6635 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6636 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6638 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6640 int rd = extract32(insn, 0, 5);
6641 int rn = extract32(insn, 5, 5);
6642 int scale = extract32(insn, 10, 6);
6643 int opcode = extract32(insn, 16, 3);
6644 int rmode = extract32(insn, 19, 2);
6645 int type = extract32(insn, 22, 2);
6646 bool sbit = extract32(insn, 29, 1);
6647 bool sf = extract32(insn, 31, 1);
6648 bool itof;
6650 if (sbit || (!sf && scale < 32)) {
6651 unallocated_encoding(s);
6652 return;
6655 switch (type) {
6656 case 0: /* float32 */
6657 case 1: /* float64 */
6658 break;
6659 case 3: /* float16 */
6660 if (dc_isar_feature(aa64_fp16, s)) {
6661 break;
6663 /* fallthru */
6664 default:
6665 unallocated_encoding(s);
6666 return;
6669 switch ((rmode << 3) | opcode) {
6670 case 0x2: /* SCVTF */
6671 case 0x3: /* UCVTF */
6672 itof = true;
6673 break;
6674 case 0x18: /* FCVTZS */
6675 case 0x19: /* FCVTZU */
6676 itof = false;
6677 break;
6678 default:
6679 unallocated_encoding(s);
6680 return;
6683 if (!fp_access_check(s)) {
6684 return;
6687 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6690 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6692 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6693 * without conversion.
6696 if (itof) {
6697 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6698 TCGv_i64 tmp;
6700 switch (type) {
6701 case 0:
6702 /* 32 bit */
6703 tmp = tcg_temp_new_i64();
6704 tcg_gen_ext32u_i64(tmp, tcg_rn);
6705 write_fp_dreg(s, rd, tmp);
6706 tcg_temp_free_i64(tmp);
6707 break;
6708 case 1:
6709 /* 64 bit */
6710 write_fp_dreg(s, rd, tcg_rn);
6711 break;
6712 case 2:
6713 /* 64 bit to top half. */
6714 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6715 clear_vec_high(s, true, rd);
6716 break;
6717 case 3:
6718 /* 16 bit */
6719 tmp = tcg_temp_new_i64();
6720 tcg_gen_ext16u_i64(tmp, tcg_rn);
6721 write_fp_dreg(s, rd, tmp);
6722 tcg_temp_free_i64(tmp);
6723 break;
6724 default:
6725 g_assert_not_reached();
6727 } else {
6728 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6730 switch (type) {
6731 case 0:
6732 /* 32 bit */
6733 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6734 break;
6735 case 1:
6736 /* 64 bit */
6737 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6738 break;
6739 case 2:
6740 /* 64 bits from top half */
6741 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6742 break;
6743 case 3:
6744 /* 16 bit */
6745 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6746 break;
6747 default:
6748 g_assert_not_reached();
6753 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6755 TCGv_i64 t = read_fp_dreg(s, rn);
6756 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
6758 gen_helper_fjcvtzs(t, t, fpstatus);
6760 tcg_temp_free_ptr(fpstatus);
6762 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6763 tcg_gen_extrh_i64_i32(cpu_ZF, t);
6764 tcg_gen_movi_i32(cpu_CF, 0);
6765 tcg_gen_movi_i32(cpu_NF, 0);
6766 tcg_gen_movi_i32(cpu_VF, 0);
6768 tcg_temp_free_i64(t);
6771 /* Floating point <-> integer conversions
6772 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6773 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6774 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6775 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6777 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6779 int rd = extract32(insn, 0, 5);
6780 int rn = extract32(insn, 5, 5);
6781 int opcode = extract32(insn, 16, 3);
6782 int rmode = extract32(insn, 19, 2);
6783 int type = extract32(insn, 22, 2);
6784 bool sbit = extract32(insn, 29, 1);
6785 bool sf = extract32(insn, 31, 1);
6786 bool itof = false;
6788 if (sbit) {
6789 goto do_unallocated;
6792 switch (opcode) {
6793 case 2: /* SCVTF */
6794 case 3: /* UCVTF */
6795 itof = true;
6796 /* fallthru */
6797 case 4: /* FCVTAS */
6798 case 5: /* FCVTAU */
6799 if (rmode != 0) {
6800 goto do_unallocated;
6802 /* fallthru */
6803 case 0: /* FCVT[NPMZ]S */
6804 case 1: /* FCVT[NPMZ]U */
6805 switch (type) {
6806 case 0: /* float32 */
6807 case 1: /* float64 */
6808 break;
6809 case 3: /* float16 */
6810 if (!dc_isar_feature(aa64_fp16, s)) {
6811 goto do_unallocated;
6813 break;
6814 default:
6815 goto do_unallocated;
6817 if (!fp_access_check(s)) {
6818 return;
6820 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6821 break;
6823 default:
6824 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6825 case 0b01100110: /* FMOV half <-> 32-bit int */
6826 case 0b01100111:
6827 case 0b11100110: /* FMOV half <-> 64-bit int */
6828 case 0b11100111:
6829 if (!dc_isar_feature(aa64_fp16, s)) {
6830 goto do_unallocated;
6832 /* fallthru */
6833 case 0b00000110: /* FMOV 32-bit */
6834 case 0b00000111:
6835 case 0b10100110: /* FMOV 64-bit */
6836 case 0b10100111:
6837 case 0b11001110: /* FMOV top half of 128-bit */
6838 case 0b11001111:
6839 if (!fp_access_check(s)) {
6840 return;
6842 itof = opcode & 1;
6843 handle_fmov(s, rd, rn, type, itof);
6844 break;
6846 case 0b00111110: /* FJCVTZS */
6847 if (!dc_isar_feature(aa64_jscvt, s)) {
6848 goto do_unallocated;
6849 } else if (fp_access_check(s)) {
6850 handle_fjcvtzs(s, rd, rn);
6852 break;
6854 default:
6855 do_unallocated:
6856 unallocated_encoding(s);
6857 return;
6859 break;
6863 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6864 * 31 30 29 28 25 24 0
6865 * +---+---+---+---------+-----------------------------+
6866 * | | 0 | | 1 1 1 1 | |
6867 * +---+---+---+---------+-----------------------------+
6869 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6871 if (extract32(insn, 24, 1)) {
6872 /* Floating point data-processing (3 source) */
6873 disas_fp_3src(s, insn);
6874 } else if (extract32(insn, 21, 1) == 0) {
6875 /* Floating point to fixed point conversions */
6876 disas_fp_fixed_conv(s, insn);
6877 } else {
6878 switch (extract32(insn, 10, 2)) {
6879 case 1:
6880 /* Floating point conditional compare */
6881 disas_fp_ccomp(s, insn);
6882 break;
6883 case 2:
6884 /* Floating point data-processing (2 source) */
6885 disas_fp_2src(s, insn);
6886 break;
6887 case 3:
6888 /* Floating point conditional select */
6889 disas_fp_csel(s, insn);
6890 break;
6891 case 0:
6892 switch (ctz32(extract32(insn, 12, 4))) {
6893 case 0: /* [15:12] == xxx1 */
6894 /* Floating point immediate */
6895 disas_fp_imm(s, insn);
6896 break;
6897 case 1: /* [15:12] == xx10 */
6898 /* Floating point compare */
6899 disas_fp_compare(s, insn);
6900 break;
6901 case 2: /* [15:12] == x100 */
6902 /* Floating point data-processing (1 source) */
6903 disas_fp_1src(s, insn);
6904 break;
6905 case 3: /* [15:12] == 1000 */
6906 unallocated_encoding(s);
6907 break;
6908 default: /* [15:12] == 0000 */
6909 /* Floating point <-> integer conversions */
6910 disas_fp_int_conv(s, insn);
6911 break;
6913 break;
6918 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6919 int pos)
6921 /* Extract 64 bits from the middle of two concatenated 64 bit
6922 * vector register slices left:right. The extracted bits start
6923 * at 'pos' bits into the right (least significant) side.
6924 * We return the result in tcg_right, and guarantee not to
6925 * trash tcg_left.
6927 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6928 assert(pos > 0 && pos < 64);
6930 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6931 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6932 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6934 tcg_temp_free_i64(tcg_tmp);
6937 /* EXT
6938 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6939 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6940 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6941 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6943 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6945 int is_q = extract32(insn, 30, 1);
6946 int op2 = extract32(insn, 22, 2);
6947 int imm4 = extract32(insn, 11, 4);
6948 int rm = extract32(insn, 16, 5);
6949 int rn = extract32(insn, 5, 5);
6950 int rd = extract32(insn, 0, 5);
6951 int pos = imm4 << 3;
6952 TCGv_i64 tcg_resl, tcg_resh;
6954 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6955 unallocated_encoding(s);
6956 return;
6959 if (!fp_access_check(s)) {
6960 return;
6963 tcg_resh = tcg_temp_new_i64();
6964 tcg_resl = tcg_temp_new_i64();
6966 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6967 * either extracting 128 bits from a 128:128 concatenation, or
6968 * extracting 64 bits from a 64:64 concatenation.
6970 if (!is_q) {
6971 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6972 if (pos != 0) {
6973 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6974 do_ext64(s, tcg_resh, tcg_resl, pos);
6976 tcg_gen_movi_i64(tcg_resh, 0);
6977 } else {
6978 TCGv_i64 tcg_hh;
6979 typedef struct {
6980 int reg;
6981 int elt;
6982 } EltPosns;
6983 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6984 EltPosns *elt = eltposns;
6986 if (pos >= 64) {
6987 elt++;
6988 pos -= 64;
6991 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6992 elt++;
6993 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6994 elt++;
6995 if (pos != 0) {
6996 do_ext64(s, tcg_resh, tcg_resl, pos);
6997 tcg_hh = tcg_temp_new_i64();
6998 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6999 do_ext64(s, tcg_hh, tcg_resh, pos);
7000 tcg_temp_free_i64(tcg_hh);
7004 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7005 tcg_temp_free_i64(tcg_resl);
7006 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7007 tcg_temp_free_i64(tcg_resh);
7010 /* TBL/TBX
7011 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7012 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7013 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7014 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7016 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7018 int op2 = extract32(insn, 22, 2);
7019 int is_q = extract32(insn, 30, 1);
7020 int rm = extract32(insn, 16, 5);
7021 int rn = extract32(insn, 5, 5);
7022 int rd = extract32(insn, 0, 5);
7023 int is_tblx = extract32(insn, 12, 1);
7024 int len = extract32(insn, 13, 2);
7025 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
7026 TCGv_i32 tcg_regno, tcg_numregs;
7028 if (op2 != 0) {
7029 unallocated_encoding(s);
7030 return;
7033 if (!fp_access_check(s)) {
7034 return;
7037 /* This does a table lookup: for every byte element in the input
7038 * we index into a table formed from up to four vector registers,
7039 * and then the output is the result of the lookups. Our helper
7040 * function does the lookup operation for a single 64 bit part of
7041 * the input.
7043 tcg_resl = tcg_temp_new_i64();
7044 tcg_resh = tcg_temp_new_i64();
7046 if (is_tblx) {
7047 read_vec_element(s, tcg_resl, rd, 0, MO_64);
7048 } else {
7049 tcg_gen_movi_i64(tcg_resl, 0);
7051 if (is_tblx && is_q) {
7052 read_vec_element(s, tcg_resh, rd, 1, MO_64);
7053 } else {
7054 tcg_gen_movi_i64(tcg_resh, 0);
7057 tcg_idx = tcg_temp_new_i64();
7058 tcg_regno = tcg_const_i32(rn);
7059 tcg_numregs = tcg_const_i32(len + 1);
7060 read_vec_element(s, tcg_idx, rm, 0, MO_64);
7061 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
7062 tcg_regno, tcg_numregs);
7063 if (is_q) {
7064 read_vec_element(s, tcg_idx, rm, 1, MO_64);
7065 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
7066 tcg_regno, tcg_numregs);
7068 tcg_temp_free_i64(tcg_idx);
7069 tcg_temp_free_i32(tcg_regno);
7070 tcg_temp_free_i32(tcg_numregs);
7072 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7073 tcg_temp_free_i64(tcg_resl);
7074 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7075 tcg_temp_free_i64(tcg_resh);
7078 /* ZIP/UZP/TRN
7079 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7080 * +---+---+-------------+------+---+------+---+------------------+------+
7081 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7082 * +---+---+-------------+------+---+------+---+------------------+------+
7084 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7086 int rd = extract32(insn, 0, 5);
7087 int rn = extract32(insn, 5, 5);
7088 int rm = extract32(insn, 16, 5);
7089 int size = extract32(insn, 22, 2);
7090 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7091 * bit 2 indicates 1 vs 2 variant of the insn.
7093 int opcode = extract32(insn, 12, 2);
7094 bool part = extract32(insn, 14, 1);
7095 bool is_q = extract32(insn, 30, 1);
7096 int esize = 8 << size;
7097 int i, ofs;
7098 int datasize = is_q ? 128 : 64;
7099 int elements = datasize / esize;
7100 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7102 if (opcode == 0 || (size == 3 && !is_q)) {
7103 unallocated_encoding(s);
7104 return;
7107 if (!fp_access_check(s)) {
7108 return;
7111 tcg_resl = tcg_const_i64(0);
7112 tcg_resh = tcg_const_i64(0);
7113 tcg_res = tcg_temp_new_i64();
7115 for (i = 0; i < elements; i++) {
7116 switch (opcode) {
7117 case 1: /* UZP1/2 */
7119 int midpoint = elements / 2;
7120 if (i < midpoint) {
7121 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7122 } else {
7123 read_vec_element(s, tcg_res, rm,
7124 2 * (i - midpoint) + part, size);
7126 break;
7128 case 2: /* TRN1/2 */
7129 if (i & 1) {
7130 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7131 } else {
7132 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7134 break;
7135 case 3: /* ZIP1/2 */
7137 int base = part * elements / 2;
7138 if (i & 1) {
7139 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7140 } else {
7141 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7143 break;
7145 default:
7146 g_assert_not_reached();
7149 ofs = i * esize;
7150 if (ofs < 64) {
7151 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7152 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7153 } else {
7154 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7155 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7159 tcg_temp_free_i64(tcg_res);
7161 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7162 tcg_temp_free_i64(tcg_resl);
7163 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7164 tcg_temp_free_i64(tcg_resh);
7168 * do_reduction_op helper
7170 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7171 * important for correct NaN propagation that we do these
7172 * operations in exactly the order specified by the pseudocode.
7174 * This is a recursive function, TCG temps should be freed by the
7175 * calling function once it is done with the values.
7177 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7178 int esize, int size, int vmap, TCGv_ptr fpst)
7180 if (esize == size) {
7181 int element;
7182 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
7183 TCGv_i32 tcg_elem;
7185 /* We should have one register left here */
7186 assert(ctpop8(vmap) == 1);
7187 element = ctz32(vmap);
7188 assert(element < 8);
7190 tcg_elem = tcg_temp_new_i32();
7191 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7192 return tcg_elem;
7193 } else {
7194 int bits = size / 2;
7195 int shift = ctpop8(vmap) / 2;
7196 int vmap_lo = (vmap >> shift) & vmap;
7197 int vmap_hi = (vmap & ~vmap_lo);
7198 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7200 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7201 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7202 tcg_res = tcg_temp_new_i32();
7204 switch (fpopcode) {
7205 case 0x0c: /* fmaxnmv half-precision */
7206 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7207 break;
7208 case 0x0f: /* fmaxv half-precision */
7209 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7210 break;
7211 case 0x1c: /* fminnmv half-precision */
7212 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7213 break;
7214 case 0x1f: /* fminv half-precision */
7215 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7216 break;
7217 case 0x2c: /* fmaxnmv */
7218 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7219 break;
7220 case 0x2f: /* fmaxv */
7221 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7222 break;
7223 case 0x3c: /* fminnmv */
7224 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7225 break;
7226 case 0x3f: /* fminv */
7227 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7228 break;
7229 default:
7230 g_assert_not_reached();
7233 tcg_temp_free_i32(tcg_hi);
7234 tcg_temp_free_i32(tcg_lo);
7235 return tcg_res;
7239 /* AdvSIMD across lanes
7240 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7241 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7242 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7243 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7245 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7247 int rd = extract32(insn, 0, 5);
7248 int rn = extract32(insn, 5, 5);
7249 int size = extract32(insn, 22, 2);
7250 int opcode = extract32(insn, 12, 5);
7251 bool is_q = extract32(insn, 30, 1);
7252 bool is_u = extract32(insn, 29, 1);
7253 bool is_fp = false;
7254 bool is_min = false;
7255 int esize;
7256 int elements;
7257 int i;
7258 TCGv_i64 tcg_res, tcg_elt;
7260 switch (opcode) {
7261 case 0x1b: /* ADDV */
7262 if (is_u) {
7263 unallocated_encoding(s);
7264 return;
7266 /* fall through */
7267 case 0x3: /* SADDLV, UADDLV */
7268 case 0xa: /* SMAXV, UMAXV */
7269 case 0x1a: /* SMINV, UMINV */
7270 if (size == 3 || (size == 2 && !is_q)) {
7271 unallocated_encoding(s);
7272 return;
7274 break;
7275 case 0xc: /* FMAXNMV, FMINNMV */
7276 case 0xf: /* FMAXV, FMINV */
7277 /* Bit 1 of size field encodes min vs max and the actual size
7278 * depends on the encoding of the U bit. If not set (and FP16
7279 * enabled) then we do half-precision float instead of single
7280 * precision.
7282 is_min = extract32(size, 1, 1);
7283 is_fp = true;
7284 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7285 size = 1;
7286 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7287 unallocated_encoding(s);
7288 return;
7289 } else {
7290 size = 2;
7292 break;
7293 default:
7294 unallocated_encoding(s);
7295 return;
7298 if (!fp_access_check(s)) {
7299 return;
7302 esize = 8 << size;
7303 elements = (is_q ? 128 : 64) / esize;
7305 tcg_res = tcg_temp_new_i64();
7306 tcg_elt = tcg_temp_new_i64();
7308 /* These instructions operate across all lanes of a vector
7309 * to produce a single result. We can guarantee that a 64
7310 * bit intermediate is sufficient:
7311 * + for [US]ADDLV the maximum element size is 32 bits, and
7312 * the result type is 64 bits
7313 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7314 * same as the element size, which is 32 bits at most
7315 * For the integer operations we can choose to work at 64
7316 * or 32 bits and truncate at the end; for simplicity
7317 * we use 64 bits always. The floating point
7318 * ops do require 32 bit intermediates, though.
7320 if (!is_fp) {
7321 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7323 for (i = 1; i < elements; i++) {
7324 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7326 switch (opcode) {
7327 case 0x03: /* SADDLV / UADDLV */
7328 case 0x1b: /* ADDV */
7329 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7330 break;
7331 case 0x0a: /* SMAXV / UMAXV */
7332 if (is_u) {
7333 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7334 } else {
7335 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7337 break;
7338 case 0x1a: /* SMINV / UMINV */
7339 if (is_u) {
7340 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7341 } else {
7342 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7344 break;
7345 default:
7346 g_assert_not_reached();
7350 } else {
7351 /* Floating point vector reduction ops which work across 32
7352 * bit (single) or 16 bit (half-precision) intermediates.
7353 * Note that correct NaN propagation requires that we do these
7354 * operations in exactly the order specified by the pseudocode.
7356 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7357 int fpopcode = opcode | is_min << 4 | is_u << 5;
7358 int vmap = (1 << elements) - 1;
7359 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7360 (is_q ? 128 : 64), vmap, fpst);
7361 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7362 tcg_temp_free_i32(tcg_res32);
7363 tcg_temp_free_ptr(fpst);
7366 tcg_temp_free_i64(tcg_elt);
7368 /* Now truncate the result to the width required for the final output */
7369 if (opcode == 0x03) {
7370 /* SADDLV, UADDLV: result is 2*esize */
7371 size++;
7374 switch (size) {
7375 case 0:
7376 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7377 break;
7378 case 1:
7379 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7380 break;
7381 case 2:
7382 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7383 break;
7384 case 3:
7385 break;
7386 default:
7387 g_assert_not_reached();
7390 write_fp_dreg(s, rd, tcg_res);
7391 tcg_temp_free_i64(tcg_res);
7394 /* DUP (Element, Vector)
7396 * 31 30 29 21 20 16 15 10 9 5 4 0
7397 * +---+---+-------------------+--------+-------------+------+------+
7398 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7399 * +---+---+-------------------+--------+-------------+------+------+
7401 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7403 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7404 int imm5)
7406 int size = ctz32(imm5);
7407 int index = imm5 >> (size + 1);
7409 if (size > 3 || (size == 3 && !is_q)) {
7410 unallocated_encoding(s);
7411 return;
7414 if (!fp_access_check(s)) {
7415 return;
7418 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7419 vec_reg_offset(s, rn, index, size),
7420 is_q ? 16 : 8, vec_full_reg_size(s));
7423 /* DUP (element, scalar)
7424 * 31 21 20 16 15 10 9 5 4 0
7425 * +-----------------------+--------+-------------+------+------+
7426 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7427 * +-----------------------+--------+-------------+------+------+
7429 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7430 int imm5)
7432 int size = ctz32(imm5);
7433 int index;
7434 TCGv_i64 tmp;
7436 if (size > 3) {
7437 unallocated_encoding(s);
7438 return;
7441 if (!fp_access_check(s)) {
7442 return;
7445 index = imm5 >> (size + 1);
7447 /* This instruction just extracts the specified element and
7448 * zero-extends it into the bottom of the destination register.
7450 tmp = tcg_temp_new_i64();
7451 read_vec_element(s, tmp, rn, index, size);
7452 write_fp_dreg(s, rd, tmp);
7453 tcg_temp_free_i64(tmp);
7456 /* DUP (General)
7458 * 31 30 29 21 20 16 15 10 9 5 4 0
7459 * +---+---+-------------------+--------+-------------+------+------+
7460 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7461 * +---+---+-------------------+--------+-------------+------+------+
7463 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7465 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7466 int imm5)
7468 int size = ctz32(imm5);
7469 uint32_t dofs, oprsz, maxsz;
7471 if (size > 3 || ((size == 3) && !is_q)) {
7472 unallocated_encoding(s);
7473 return;
7476 if (!fp_access_check(s)) {
7477 return;
7480 dofs = vec_full_reg_offset(s, rd);
7481 oprsz = is_q ? 16 : 8;
7482 maxsz = vec_full_reg_size(s);
7484 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7487 /* INS (Element)
7489 * 31 21 20 16 15 14 11 10 9 5 4 0
7490 * +-----------------------+--------+------------+---+------+------+
7491 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7492 * +-----------------------+--------+------------+---+------+------+
7494 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7495 * index: encoded in imm5<4:size+1>
7497 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7498 int imm4, int imm5)
7500 int size = ctz32(imm5);
7501 int src_index, dst_index;
7502 TCGv_i64 tmp;
7504 if (size > 3) {
7505 unallocated_encoding(s);
7506 return;
7509 if (!fp_access_check(s)) {
7510 return;
7513 dst_index = extract32(imm5, 1+size, 5);
7514 src_index = extract32(imm4, size, 4);
7516 tmp = tcg_temp_new_i64();
7518 read_vec_element(s, tmp, rn, src_index, size);
7519 write_vec_element(s, tmp, rd, dst_index, size);
7521 tcg_temp_free_i64(tmp);
7525 /* INS (General)
7527 * 31 21 20 16 15 10 9 5 4 0
7528 * +-----------------------+--------+-------------+------+------+
7529 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7530 * +-----------------------+--------+-------------+------+------+
7532 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7533 * index: encoded in imm5<4:size+1>
7535 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7537 int size = ctz32(imm5);
7538 int idx;
7540 if (size > 3) {
7541 unallocated_encoding(s);
7542 return;
7545 if (!fp_access_check(s)) {
7546 return;
7549 idx = extract32(imm5, 1 + size, 4 - size);
7550 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7554 * UMOV (General)
7555 * SMOV (General)
7557 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7558 * +---+---+-------------------+--------+-------------+------+------+
7559 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7560 * +---+---+-------------------+--------+-------------+------+------+
7562 * U: unsigned when set
7563 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7565 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7566 int rn, int rd, int imm5)
7568 int size = ctz32(imm5);
7569 int element;
7570 TCGv_i64 tcg_rd;
7572 /* Check for UnallocatedEncodings */
7573 if (is_signed) {
7574 if (size > 2 || (size == 2 && !is_q)) {
7575 unallocated_encoding(s);
7576 return;
7578 } else {
7579 if (size > 3
7580 || (size < 3 && is_q)
7581 || (size == 3 && !is_q)) {
7582 unallocated_encoding(s);
7583 return;
7587 if (!fp_access_check(s)) {
7588 return;
7591 element = extract32(imm5, 1+size, 4);
7593 tcg_rd = cpu_reg(s, rd);
7594 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7595 if (is_signed && !is_q) {
7596 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7600 /* AdvSIMD copy
7601 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7602 * +---+---+----+-----------------+------+---+------+---+------+------+
7603 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7604 * +---+---+----+-----------------+------+---+------+---+------+------+
7606 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7608 int rd = extract32(insn, 0, 5);
7609 int rn = extract32(insn, 5, 5);
7610 int imm4 = extract32(insn, 11, 4);
7611 int op = extract32(insn, 29, 1);
7612 int is_q = extract32(insn, 30, 1);
7613 int imm5 = extract32(insn, 16, 5);
7615 if (op) {
7616 if (is_q) {
7617 /* INS (element) */
7618 handle_simd_inse(s, rd, rn, imm4, imm5);
7619 } else {
7620 unallocated_encoding(s);
7622 } else {
7623 switch (imm4) {
7624 case 0:
7625 /* DUP (element - vector) */
7626 handle_simd_dupe(s, is_q, rd, rn, imm5);
7627 break;
7628 case 1:
7629 /* DUP (general) */
7630 handle_simd_dupg(s, is_q, rd, rn, imm5);
7631 break;
7632 case 3:
7633 if (is_q) {
7634 /* INS (general) */
7635 handle_simd_insg(s, rd, rn, imm5);
7636 } else {
7637 unallocated_encoding(s);
7639 break;
7640 case 5:
7641 case 7:
7642 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7643 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7644 break;
7645 default:
7646 unallocated_encoding(s);
7647 break;
7652 /* AdvSIMD modified immediate
7653 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7654 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7655 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7656 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7658 * There are a number of operations that can be carried out here:
7659 * MOVI - move (shifted) imm into register
7660 * MVNI - move inverted (shifted) imm into register
7661 * ORR - bitwise OR of (shifted) imm with register
7662 * BIC - bitwise clear of (shifted) imm with register
7663 * With ARMv8.2 we also have:
7664 * FMOV half-precision
7666 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7668 int rd = extract32(insn, 0, 5);
7669 int cmode = extract32(insn, 12, 4);
7670 int cmode_3_1 = extract32(cmode, 1, 3);
7671 int cmode_0 = extract32(cmode, 0, 1);
7672 int o2 = extract32(insn, 11, 1);
7673 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7674 bool is_neg = extract32(insn, 29, 1);
7675 bool is_q = extract32(insn, 30, 1);
7676 uint64_t imm = 0;
7678 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7679 /* Check for FMOV (vector, immediate) - half-precision */
7680 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7681 unallocated_encoding(s);
7682 return;
7686 if (!fp_access_check(s)) {
7687 return;
7690 /* See AdvSIMDExpandImm() in ARM ARM */
7691 switch (cmode_3_1) {
7692 case 0: /* Replicate(Zeros(24):imm8, 2) */
7693 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7694 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7695 case 3: /* Replicate(imm8:Zeros(24), 2) */
7697 int shift = cmode_3_1 * 8;
7698 imm = bitfield_replicate(abcdefgh << shift, 32);
7699 break;
7701 case 4: /* Replicate(Zeros(8):imm8, 4) */
7702 case 5: /* Replicate(imm8:Zeros(8), 4) */
7704 int shift = (cmode_3_1 & 0x1) * 8;
7705 imm = bitfield_replicate(abcdefgh << shift, 16);
7706 break;
7708 case 6:
7709 if (cmode_0) {
7710 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7711 imm = (abcdefgh << 16) | 0xffff;
7712 } else {
7713 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7714 imm = (abcdefgh << 8) | 0xff;
7716 imm = bitfield_replicate(imm, 32);
7717 break;
7718 case 7:
7719 if (!cmode_0 && !is_neg) {
7720 imm = bitfield_replicate(abcdefgh, 8);
7721 } else if (!cmode_0 && is_neg) {
7722 int i;
7723 imm = 0;
7724 for (i = 0; i < 8; i++) {
7725 if ((abcdefgh) & (1 << i)) {
7726 imm |= 0xffULL << (i * 8);
7729 } else if (cmode_0) {
7730 if (is_neg) {
7731 imm = (abcdefgh & 0x3f) << 48;
7732 if (abcdefgh & 0x80) {
7733 imm |= 0x8000000000000000ULL;
7735 if (abcdefgh & 0x40) {
7736 imm |= 0x3fc0000000000000ULL;
7737 } else {
7738 imm |= 0x4000000000000000ULL;
7740 } else {
7741 if (o2) {
7742 /* FMOV (vector, immediate) - half-precision */
7743 imm = vfp_expand_imm(MO_16, abcdefgh);
7744 /* now duplicate across the lanes */
7745 imm = bitfield_replicate(imm, 16);
7746 } else {
7747 imm = (abcdefgh & 0x3f) << 19;
7748 if (abcdefgh & 0x80) {
7749 imm |= 0x80000000;
7751 if (abcdefgh & 0x40) {
7752 imm |= 0x3e000000;
7753 } else {
7754 imm |= 0x40000000;
7756 imm |= (imm << 32);
7760 break;
7761 default:
7762 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7763 g_assert_not_reached();
7766 if (cmode_3_1 != 7 && is_neg) {
7767 imm = ~imm;
7770 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7771 /* MOVI or MVNI, with MVNI negation handled above. */
7772 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7773 vec_full_reg_size(s), imm);
7774 } else {
7775 /* ORR or BIC, with BIC negation to AND handled above. */
7776 if (is_neg) {
7777 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7778 } else {
7779 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7784 /* AdvSIMD scalar copy
7785 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7786 * +-----+----+-----------------+------+---+------+---+------+------+
7787 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7788 * +-----+----+-----------------+------+---+------+---+------+------+
7790 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7792 int rd = extract32(insn, 0, 5);
7793 int rn = extract32(insn, 5, 5);
7794 int imm4 = extract32(insn, 11, 4);
7795 int imm5 = extract32(insn, 16, 5);
7796 int op = extract32(insn, 29, 1);
7798 if (op != 0 || imm4 != 0) {
7799 unallocated_encoding(s);
7800 return;
7803 /* DUP (element, scalar) */
7804 handle_simd_dupes(s, rd, rn, imm5);
7807 /* AdvSIMD scalar pairwise
7808 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7809 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7810 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7811 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7813 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7815 int u = extract32(insn, 29, 1);
7816 int size = extract32(insn, 22, 2);
7817 int opcode = extract32(insn, 12, 5);
7818 int rn = extract32(insn, 5, 5);
7819 int rd = extract32(insn, 0, 5);
7820 TCGv_ptr fpst;
7822 /* For some ops (the FP ones), size[1] is part of the encoding.
7823 * For ADDP strictly it is not but size[1] is always 1 for valid
7824 * encodings.
7826 opcode |= (extract32(size, 1, 1) << 5);
7828 switch (opcode) {
7829 case 0x3b: /* ADDP */
7830 if (u || size != 3) {
7831 unallocated_encoding(s);
7832 return;
7834 if (!fp_access_check(s)) {
7835 return;
7838 fpst = NULL;
7839 break;
7840 case 0xc: /* FMAXNMP */
7841 case 0xd: /* FADDP */
7842 case 0xf: /* FMAXP */
7843 case 0x2c: /* FMINNMP */
7844 case 0x2f: /* FMINP */
7845 /* FP op, size[0] is 32 or 64 bit*/
7846 if (!u) {
7847 if (!dc_isar_feature(aa64_fp16, s)) {
7848 unallocated_encoding(s);
7849 return;
7850 } else {
7851 size = MO_16;
7853 } else {
7854 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7857 if (!fp_access_check(s)) {
7858 return;
7861 fpst = get_fpstatus_ptr(size == MO_16);
7862 break;
7863 default:
7864 unallocated_encoding(s);
7865 return;
7868 if (size == MO_64) {
7869 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7870 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7871 TCGv_i64 tcg_res = tcg_temp_new_i64();
7873 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7874 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7876 switch (opcode) {
7877 case 0x3b: /* ADDP */
7878 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7879 break;
7880 case 0xc: /* FMAXNMP */
7881 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7882 break;
7883 case 0xd: /* FADDP */
7884 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7885 break;
7886 case 0xf: /* FMAXP */
7887 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7888 break;
7889 case 0x2c: /* FMINNMP */
7890 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7891 break;
7892 case 0x2f: /* FMINP */
7893 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7894 break;
7895 default:
7896 g_assert_not_reached();
7899 write_fp_dreg(s, rd, tcg_res);
7901 tcg_temp_free_i64(tcg_op1);
7902 tcg_temp_free_i64(tcg_op2);
7903 tcg_temp_free_i64(tcg_res);
7904 } else {
7905 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7906 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7907 TCGv_i32 tcg_res = tcg_temp_new_i32();
7909 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7910 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7912 if (size == MO_16) {
7913 switch (opcode) {
7914 case 0xc: /* FMAXNMP */
7915 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7916 break;
7917 case 0xd: /* FADDP */
7918 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7919 break;
7920 case 0xf: /* FMAXP */
7921 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7922 break;
7923 case 0x2c: /* FMINNMP */
7924 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7925 break;
7926 case 0x2f: /* FMINP */
7927 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7928 break;
7929 default:
7930 g_assert_not_reached();
7932 } else {
7933 switch (opcode) {
7934 case 0xc: /* FMAXNMP */
7935 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7936 break;
7937 case 0xd: /* FADDP */
7938 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7939 break;
7940 case 0xf: /* FMAXP */
7941 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7942 break;
7943 case 0x2c: /* FMINNMP */
7944 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7945 break;
7946 case 0x2f: /* FMINP */
7947 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7948 break;
7949 default:
7950 g_assert_not_reached();
7954 write_fp_sreg(s, rd, tcg_res);
7956 tcg_temp_free_i32(tcg_op1);
7957 tcg_temp_free_i32(tcg_op2);
7958 tcg_temp_free_i32(tcg_res);
7961 if (fpst) {
7962 tcg_temp_free_ptr(fpst);
7967 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7969 * This code is handles the common shifting code and is used by both
7970 * the vector and scalar code.
7972 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7973 TCGv_i64 tcg_rnd, bool accumulate,
7974 bool is_u, int size, int shift)
7976 bool extended_result = false;
7977 bool round = tcg_rnd != NULL;
7978 int ext_lshift = 0;
7979 TCGv_i64 tcg_src_hi;
7981 if (round && size == 3) {
7982 extended_result = true;
7983 ext_lshift = 64 - shift;
7984 tcg_src_hi = tcg_temp_new_i64();
7985 } else if (shift == 64) {
7986 if (!accumulate && is_u) {
7987 /* result is zero */
7988 tcg_gen_movi_i64(tcg_res, 0);
7989 return;
7993 /* Deal with the rounding step */
7994 if (round) {
7995 if (extended_result) {
7996 TCGv_i64 tcg_zero = tcg_const_i64(0);
7997 if (!is_u) {
7998 /* take care of sign extending tcg_res */
7999 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8000 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8001 tcg_src, tcg_src_hi,
8002 tcg_rnd, tcg_zero);
8003 } else {
8004 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8005 tcg_src, tcg_zero,
8006 tcg_rnd, tcg_zero);
8008 tcg_temp_free_i64(tcg_zero);
8009 } else {
8010 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8014 /* Now do the shift right */
8015 if (round && extended_result) {
8016 /* extended case, >64 bit precision required */
8017 if (ext_lshift == 0) {
8018 /* special case, only high bits matter */
8019 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8020 } else {
8021 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8022 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8023 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8025 } else {
8026 if (is_u) {
8027 if (shift == 64) {
8028 /* essentially shifting in 64 zeros */
8029 tcg_gen_movi_i64(tcg_src, 0);
8030 } else {
8031 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8033 } else {
8034 if (shift == 64) {
8035 /* effectively extending the sign-bit */
8036 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8037 } else {
8038 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8043 if (accumulate) {
8044 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8045 } else {
8046 tcg_gen_mov_i64(tcg_res, tcg_src);
8049 if (extended_result) {
8050 tcg_temp_free_i64(tcg_src_hi);
8054 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8055 static void handle_scalar_simd_shri(DisasContext *s,
8056 bool is_u, int immh, int immb,
8057 int opcode, int rn, int rd)
8059 const int size = 3;
8060 int immhb = immh << 3 | immb;
8061 int shift = 2 * (8 << size) - immhb;
8062 bool accumulate = false;
8063 bool round = false;
8064 bool insert = false;
8065 TCGv_i64 tcg_rn;
8066 TCGv_i64 tcg_rd;
8067 TCGv_i64 tcg_round;
8069 if (!extract32(immh, 3, 1)) {
8070 unallocated_encoding(s);
8071 return;
8074 if (!fp_access_check(s)) {
8075 return;
8078 switch (opcode) {
8079 case 0x02: /* SSRA / USRA (accumulate) */
8080 accumulate = true;
8081 break;
8082 case 0x04: /* SRSHR / URSHR (rounding) */
8083 round = true;
8084 break;
8085 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8086 accumulate = round = true;
8087 break;
8088 case 0x08: /* SRI */
8089 insert = true;
8090 break;
8093 if (round) {
8094 uint64_t round_const = 1ULL << (shift - 1);
8095 tcg_round = tcg_const_i64(round_const);
8096 } else {
8097 tcg_round = NULL;
8100 tcg_rn = read_fp_dreg(s, rn);
8101 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8103 if (insert) {
8104 /* shift count same as element size is valid but does nothing;
8105 * special case to avoid potential shift by 64.
8107 int esize = 8 << size;
8108 if (shift != esize) {
8109 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8110 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8112 } else {
8113 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8114 accumulate, is_u, size, shift);
8117 write_fp_dreg(s, rd, tcg_rd);
8119 tcg_temp_free_i64(tcg_rn);
8120 tcg_temp_free_i64(tcg_rd);
8121 if (round) {
8122 tcg_temp_free_i64(tcg_round);
8126 /* SHL/SLI - Scalar shift left */
8127 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8128 int immh, int immb, int opcode,
8129 int rn, int rd)
8131 int size = 32 - clz32(immh) - 1;
8132 int immhb = immh << 3 | immb;
8133 int shift = immhb - (8 << size);
8134 TCGv_i64 tcg_rn = new_tmp_a64(s);
8135 TCGv_i64 tcg_rd = new_tmp_a64(s);
8137 if (!extract32(immh, 3, 1)) {
8138 unallocated_encoding(s);
8139 return;
8142 if (!fp_access_check(s)) {
8143 return;
8146 tcg_rn = read_fp_dreg(s, rn);
8147 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8149 if (insert) {
8150 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8151 } else {
8152 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8155 write_fp_dreg(s, rd, tcg_rd);
8157 tcg_temp_free_i64(tcg_rn);
8158 tcg_temp_free_i64(tcg_rd);
8161 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8162 * (signed/unsigned) narrowing */
8163 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8164 bool is_u_shift, bool is_u_narrow,
8165 int immh, int immb, int opcode,
8166 int rn, int rd)
8168 int immhb = immh << 3 | immb;
8169 int size = 32 - clz32(immh) - 1;
8170 int esize = 8 << size;
8171 int shift = (2 * esize) - immhb;
8172 int elements = is_scalar ? 1 : (64 / esize);
8173 bool round = extract32(opcode, 0, 1);
8174 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8175 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8176 TCGv_i32 tcg_rd_narrowed;
8177 TCGv_i64 tcg_final;
8179 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8180 { gen_helper_neon_narrow_sat_s8,
8181 gen_helper_neon_unarrow_sat8 },
8182 { gen_helper_neon_narrow_sat_s16,
8183 gen_helper_neon_unarrow_sat16 },
8184 { gen_helper_neon_narrow_sat_s32,
8185 gen_helper_neon_unarrow_sat32 },
8186 { NULL, NULL },
8188 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8189 gen_helper_neon_narrow_sat_u8,
8190 gen_helper_neon_narrow_sat_u16,
8191 gen_helper_neon_narrow_sat_u32,
8192 NULL
8194 NeonGenNarrowEnvFn *narrowfn;
8196 int i;
8198 assert(size < 4);
8200 if (extract32(immh, 3, 1)) {
8201 unallocated_encoding(s);
8202 return;
8205 if (!fp_access_check(s)) {
8206 return;
8209 if (is_u_shift) {
8210 narrowfn = unsigned_narrow_fns[size];
8211 } else {
8212 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8215 tcg_rn = tcg_temp_new_i64();
8216 tcg_rd = tcg_temp_new_i64();
8217 tcg_rd_narrowed = tcg_temp_new_i32();
8218 tcg_final = tcg_const_i64(0);
8220 if (round) {
8221 uint64_t round_const = 1ULL << (shift - 1);
8222 tcg_round = tcg_const_i64(round_const);
8223 } else {
8224 tcg_round = NULL;
8227 for (i = 0; i < elements; i++) {
8228 read_vec_element(s, tcg_rn, rn, i, ldop);
8229 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8230 false, is_u_shift, size+1, shift);
8231 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8232 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8233 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8236 if (!is_q) {
8237 write_vec_element(s, tcg_final, rd, 0, MO_64);
8238 } else {
8239 write_vec_element(s, tcg_final, rd, 1, MO_64);
8242 if (round) {
8243 tcg_temp_free_i64(tcg_round);
8245 tcg_temp_free_i64(tcg_rn);
8246 tcg_temp_free_i64(tcg_rd);
8247 tcg_temp_free_i32(tcg_rd_narrowed);
8248 tcg_temp_free_i64(tcg_final);
8250 clear_vec_high(s, is_q, rd);
8253 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8254 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8255 bool src_unsigned, bool dst_unsigned,
8256 int immh, int immb, int rn, int rd)
8258 int immhb = immh << 3 | immb;
8259 int size = 32 - clz32(immh) - 1;
8260 int shift = immhb - (8 << size);
8261 int pass;
8263 assert(immh != 0);
8264 assert(!(scalar && is_q));
8266 if (!scalar) {
8267 if (!is_q && extract32(immh, 3, 1)) {
8268 unallocated_encoding(s);
8269 return;
8272 /* Since we use the variable-shift helpers we must
8273 * replicate the shift count into each element of
8274 * the tcg_shift value.
8276 switch (size) {
8277 case 0:
8278 shift |= shift << 8;
8279 /* fall through */
8280 case 1:
8281 shift |= shift << 16;
8282 break;
8283 case 2:
8284 case 3:
8285 break;
8286 default:
8287 g_assert_not_reached();
8291 if (!fp_access_check(s)) {
8292 return;
8295 if (size == 3) {
8296 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8297 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8298 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8299 { NULL, gen_helper_neon_qshl_u64 },
8301 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8302 int maxpass = is_q ? 2 : 1;
8304 for (pass = 0; pass < maxpass; pass++) {
8305 TCGv_i64 tcg_op = tcg_temp_new_i64();
8307 read_vec_element(s, tcg_op, rn, pass, MO_64);
8308 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8309 write_vec_element(s, tcg_op, rd, pass, MO_64);
8311 tcg_temp_free_i64(tcg_op);
8313 tcg_temp_free_i64(tcg_shift);
8314 clear_vec_high(s, is_q, rd);
8315 } else {
8316 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8317 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8319 { gen_helper_neon_qshl_s8,
8320 gen_helper_neon_qshl_s16,
8321 gen_helper_neon_qshl_s32 },
8322 { gen_helper_neon_qshlu_s8,
8323 gen_helper_neon_qshlu_s16,
8324 gen_helper_neon_qshlu_s32 }
8325 }, {
8326 { NULL, NULL, NULL },
8327 { gen_helper_neon_qshl_u8,
8328 gen_helper_neon_qshl_u16,
8329 gen_helper_neon_qshl_u32 }
8332 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8333 TCGMemOp memop = scalar ? size : MO_32;
8334 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8336 for (pass = 0; pass < maxpass; pass++) {
8337 TCGv_i32 tcg_op = tcg_temp_new_i32();
8339 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8340 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8341 if (scalar) {
8342 switch (size) {
8343 case 0:
8344 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8345 break;
8346 case 1:
8347 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8348 break;
8349 case 2:
8350 break;
8351 default:
8352 g_assert_not_reached();
8354 write_fp_sreg(s, rd, tcg_op);
8355 } else {
8356 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8359 tcg_temp_free_i32(tcg_op);
8361 tcg_temp_free_i32(tcg_shift);
8363 if (!scalar) {
8364 clear_vec_high(s, is_q, rd);
8369 /* Common vector code for handling integer to FP conversion */
8370 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8371 int elements, int is_signed,
8372 int fracbits, int size)
8374 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8375 TCGv_i32 tcg_shift = NULL;
8377 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
8378 int pass;
8380 if (fracbits || size == MO_64) {
8381 tcg_shift = tcg_const_i32(fracbits);
8384 if (size == MO_64) {
8385 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8386 TCGv_i64 tcg_double = tcg_temp_new_i64();
8388 for (pass = 0; pass < elements; pass++) {
8389 read_vec_element(s, tcg_int64, rn, pass, mop);
8391 if (is_signed) {
8392 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8393 tcg_shift, tcg_fpst);
8394 } else {
8395 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8396 tcg_shift, tcg_fpst);
8398 if (elements == 1) {
8399 write_fp_dreg(s, rd, tcg_double);
8400 } else {
8401 write_vec_element(s, tcg_double, rd, pass, MO_64);
8405 tcg_temp_free_i64(tcg_int64);
8406 tcg_temp_free_i64(tcg_double);
8408 } else {
8409 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8410 TCGv_i32 tcg_float = tcg_temp_new_i32();
8412 for (pass = 0; pass < elements; pass++) {
8413 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8415 switch (size) {
8416 case MO_32:
8417 if (fracbits) {
8418 if (is_signed) {
8419 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8420 tcg_shift, tcg_fpst);
8421 } else {
8422 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8423 tcg_shift, tcg_fpst);
8425 } else {
8426 if (is_signed) {
8427 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8428 } else {
8429 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8432 break;
8433 case MO_16:
8434 if (fracbits) {
8435 if (is_signed) {
8436 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8437 tcg_shift, tcg_fpst);
8438 } else {
8439 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8440 tcg_shift, tcg_fpst);
8442 } else {
8443 if (is_signed) {
8444 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8445 } else {
8446 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8449 break;
8450 default:
8451 g_assert_not_reached();
8454 if (elements == 1) {
8455 write_fp_sreg(s, rd, tcg_float);
8456 } else {
8457 write_vec_element_i32(s, tcg_float, rd, pass, size);
8461 tcg_temp_free_i32(tcg_int32);
8462 tcg_temp_free_i32(tcg_float);
8465 tcg_temp_free_ptr(tcg_fpst);
8466 if (tcg_shift) {
8467 tcg_temp_free_i32(tcg_shift);
8470 clear_vec_high(s, elements << size == 16, rd);
8473 /* UCVTF/SCVTF - Integer to FP conversion */
8474 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8475 bool is_q, bool is_u,
8476 int immh, int immb, int opcode,
8477 int rn, int rd)
8479 int size, elements, fracbits;
8480 int immhb = immh << 3 | immb;
8482 if (immh & 8) {
8483 size = MO_64;
8484 if (!is_scalar && !is_q) {
8485 unallocated_encoding(s);
8486 return;
8488 } else if (immh & 4) {
8489 size = MO_32;
8490 } else if (immh & 2) {
8491 size = MO_16;
8492 if (!dc_isar_feature(aa64_fp16, s)) {
8493 unallocated_encoding(s);
8494 return;
8496 } else {
8497 /* immh == 0 would be a failure of the decode logic */
8498 g_assert(immh == 1);
8499 unallocated_encoding(s);
8500 return;
8503 if (is_scalar) {
8504 elements = 1;
8505 } else {
8506 elements = (8 << is_q) >> size;
8508 fracbits = (16 << size) - immhb;
8510 if (!fp_access_check(s)) {
8511 return;
8514 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8517 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8518 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8519 bool is_q, bool is_u,
8520 int immh, int immb, int rn, int rd)
8522 int immhb = immh << 3 | immb;
8523 int pass, size, fracbits;
8524 TCGv_ptr tcg_fpstatus;
8525 TCGv_i32 tcg_rmode, tcg_shift;
8527 if (immh & 0x8) {
8528 size = MO_64;
8529 if (!is_scalar && !is_q) {
8530 unallocated_encoding(s);
8531 return;
8533 } else if (immh & 0x4) {
8534 size = MO_32;
8535 } else if (immh & 0x2) {
8536 size = MO_16;
8537 if (!dc_isar_feature(aa64_fp16, s)) {
8538 unallocated_encoding(s);
8539 return;
8541 } else {
8542 /* Should have split out AdvSIMD modified immediate earlier. */
8543 assert(immh == 1);
8544 unallocated_encoding(s);
8545 return;
8548 if (!fp_access_check(s)) {
8549 return;
8552 assert(!(is_scalar && is_q));
8554 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8555 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8556 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8557 fracbits = (16 << size) - immhb;
8558 tcg_shift = tcg_const_i32(fracbits);
8560 if (size == MO_64) {
8561 int maxpass = is_scalar ? 1 : 2;
8563 for (pass = 0; pass < maxpass; pass++) {
8564 TCGv_i64 tcg_op = tcg_temp_new_i64();
8566 read_vec_element(s, tcg_op, rn, pass, MO_64);
8567 if (is_u) {
8568 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8569 } else {
8570 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8572 write_vec_element(s, tcg_op, rd, pass, MO_64);
8573 tcg_temp_free_i64(tcg_op);
8575 clear_vec_high(s, is_q, rd);
8576 } else {
8577 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8578 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8580 switch (size) {
8581 case MO_16:
8582 if (is_u) {
8583 fn = gen_helper_vfp_touhh;
8584 } else {
8585 fn = gen_helper_vfp_toshh;
8587 break;
8588 case MO_32:
8589 if (is_u) {
8590 fn = gen_helper_vfp_touls;
8591 } else {
8592 fn = gen_helper_vfp_tosls;
8594 break;
8595 default:
8596 g_assert_not_reached();
8599 for (pass = 0; pass < maxpass; pass++) {
8600 TCGv_i32 tcg_op = tcg_temp_new_i32();
8602 read_vec_element_i32(s, tcg_op, rn, pass, size);
8603 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8604 if (is_scalar) {
8605 write_fp_sreg(s, rd, tcg_op);
8606 } else {
8607 write_vec_element_i32(s, tcg_op, rd, pass, size);
8609 tcg_temp_free_i32(tcg_op);
8611 if (!is_scalar) {
8612 clear_vec_high(s, is_q, rd);
8616 tcg_temp_free_ptr(tcg_fpstatus);
8617 tcg_temp_free_i32(tcg_shift);
8618 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8619 tcg_temp_free_i32(tcg_rmode);
8622 /* AdvSIMD scalar shift by immediate
8623 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8624 * +-----+---+-------------+------+------+--------+---+------+------+
8625 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8626 * +-----+---+-------------+------+------+--------+---+------+------+
8628 * This is the scalar version so it works on a fixed sized registers
8630 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8632 int rd = extract32(insn, 0, 5);
8633 int rn = extract32(insn, 5, 5);
8634 int opcode = extract32(insn, 11, 5);
8635 int immb = extract32(insn, 16, 3);
8636 int immh = extract32(insn, 19, 4);
8637 bool is_u = extract32(insn, 29, 1);
8639 if (immh == 0) {
8640 unallocated_encoding(s);
8641 return;
8644 switch (opcode) {
8645 case 0x08: /* SRI */
8646 if (!is_u) {
8647 unallocated_encoding(s);
8648 return;
8650 /* fall through */
8651 case 0x00: /* SSHR / USHR */
8652 case 0x02: /* SSRA / USRA */
8653 case 0x04: /* SRSHR / URSHR */
8654 case 0x06: /* SRSRA / URSRA */
8655 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8656 break;
8657 case 0x0a: /* SHL / SLI */
8658 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8659 break;
8660 case 0x1c: /* SCVTF, UCVTF */
8661 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8662 opcode, rn, rd);
8663 break;
8664 case 0x10: /* SQSHRUN, SQSHRUN2 */
8665 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8666 if (!is_u) {
8667 unallocated_encoding(s);
8668 return;
8670 handle_vec_simd_sqshrn(s, true, false, false, true,
8671 immh, immb, opcode, rn, rd);
8672 break;
8673 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8674 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8675 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8676 immh, immb, opcode, rn, rd);
8677 break;
8678 case 0xc: /* SQSHLU */
8679 if (!is_u) {
8680 unallocated_encoding(s);
8681 return;
8683 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8684 break;
8685 case 0xe: /* SQSHL, UQSHL */
8686 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8687 break;
8688 case 0x1f: /* FCVTZS, FCVTZU */
8689 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8690 break;
8691 default:
8692 unallocated_encoding(s);
8693 break;
8697 /* AdvSIMD scalar three different
8698 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8699 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8700 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8701 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8703 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8705 bool is_u = extract32(insn, 29, 1);
8706 int size = extract32(insn, 22, 2);
8707 int opcode = extract32(insn, 12, 4);
8708 int rm = extract32(insn, 16, 5);
8709 int rn = extract32(insn, 5, 5);
8710 int rd = extract32(insn, 0, 5);
8712 if (is_u) {
8713 unallocated_encoding(s);
8714 return;
8717 switch (opcode) {
8718 case 0x9: /* SQDMLAL, SQDMLAL2 */
8719 case 0xb: /* SQDMLSL, SQDMLSL2 */
8720 case 0xd: /* SQDMULL, SQDMULL2 */
8721 if (size == 0 || size == 3) {
8722 unallocated_encoding(s);
8723 return;
8725 break;
8726 default:
8727 unallocated_encoding(s);
8728 return;
8731 if (!fp_access_check(s)) {
8732 return;
8735 if (size == 2) {
8736 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8737 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8738 TCGv_i64 tcg_res = tcg_temp_new_i64();
8740 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8741 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8743 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8744 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8746 switch (opcode) {
8747 case 0xd: /* SQDMULL, SQDMULL2 */
8748 break;
8749 case 0xb: /* SQDMLSL, SQDMLSL2 */
8750 tcg_gen_neg_i64(tcg_res, tcg_res);
8751 /* fall through */
8752 case 0x9: /* SQDMLAL, SQDMLAL2 */
8753 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8754 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8755 tcg_res, tcg_op1);
8756 break;
8757 default:
8758 g_assert_not_reached();
8761 write_fp_dreg(s, rd, tcg_res);
8763 tcg_temp_free_i64(tcg_op1);
8764 tcg_temp_free_i64(tcg_op2);
8765 tcg_temp_free_i64(tcg_res);
8766 } else {
8767 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8768 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8769 TCGv_i64 tcg_res = tcg_temp_new_i64();
8771 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8772 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8774 switch (opcode) {
8775 case 0xd: /* SQDMULL, SQDMULL2 */
8776 break;
8777 case 0xb: /* SQDMLSL, SQDMLSL2 */
8778 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8779 /* fall through */
8780 case 0x9: /* SQDMLAL, SQDMLAL2 */
8782 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8783 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8784 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8785 tcg_res, tcg_op3);
8786 tcg_temp_free_i64(tcg_op3);
8787 break;
8789 default:
8790 g_assert_not_reached();
8793 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8794 write_fp_dreg(s, rd, tcg_res);
8796 tcg_temp_free_i32(tcg_op1);
8797 tcg_temp_free_i32(tcg_op2);
8798 tcg_temp_free_i64(tcg_res);
8802 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8803 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8805 /* Handle 64x64->64 opcodes which are shared between the scalar
8806 * and vector 3-same groups. We cover every opcode where size == 3
8807 * is valid in either the three-reg-same (integer, not pairwise)
8808 * or scalar-three-reg-same groups.
8810 TCGCond cond;
8812 switch (opcode) {
8813 case 0x1: /* SQADD */
8814 if (u) {
8815 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8816 } else {
8817 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8819 break;
8820 case 0x5: /* SQSUB */
8821 if (u) {
8822 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8823 } else {
8824 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8826 break;
8827 case 0x6: /* CMGT, CMHI */
8828 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8829 * We implement this using setcond (test) and then negating.
8831 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8832 do_cmop:
8833 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8834 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8835 break;
8836 case 0x7: /* CMGE, CMHS */
8837 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8838 goto do_cmop;
8839 case 0x11: /* CMTST, CMEQ */
8840 if (u) {
8841 cond = TCG_COND_EQ;
8842 goto do_cmop;
8844 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8845 break;
8846 case 0x8: /* SSHL, USHL */
8847 if (u) {
8848 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8849 } else {
8850 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8852 break;
8853 case 0x9: /* SQSHL, UQSHL */
8854 if (u) {
8855 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8856 } else {
8857 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8859 break;
8860 case 0xa: /* SRSHL, URSHL */
8861 if (u) {
8862 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8863 } else {
8864 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8866 break;
8867 case 0xb: /* SQRSHL, UQRSHL */
8868 if (u) {
8869 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8870 } else {
8871 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8873 break;
8874 case 0x10: /* ADD, SUB */
8875 if (u) {
8876 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8877 } else {
8878 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8880 break;
8881 default:
8882 g_assert_not_reached();
8886 /* Handle the 3-same-operands float operations; shared by the scalar
8887 * and vector encodings. The caller must filter out any encodings
8888 * not allocated for the encoding it is dealing with.
8890 static void handle_3same_float(DisasContext *s, int size, int elements,
8891 int fpopcode, int rd, int rn, int rm)
8893 int pass;
8894 TCGv_ptr fpst = get_fpstatus_ptr(false);
8896 for (pass = 0; pass < elements; pass++) {
8897 if (size) {
8898 /* Double */
8899 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8900 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8901 TCGv_i64 tcg_res = tcg_temp_new_i64();
8903 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8904 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8906 switch (fpopcode) {
8907 case 0x39: /* FMLS */
8908 /* As usual for ARM, separate negation for fused multiply-add */
8909 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8910 /* fall through */
8911 case 0x19: /* FMLA */
8912 read_vec_element(s, tcg_res, rd, pass, MO_64);
8913 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8914 tcg_res, fpst);
8915 break;
8916 case 0x18: /* FMAXNM */
8917 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8918 break;
8919 case 0x1a: /* FADD */
8920 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8921 break;
8922 case 0x1b: /* FMULX */
8923 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8924 break;
8925 case 0x1c: /* FCMEQ */
8926 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8927 break;
8928 case 0x1e: /* FMAX */
8929 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8930 break;
8931 case 0x1f: /* FRECPS */
8932 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8933 break;
8934 case 0x38: /* FMINNM */
8935 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8936 break;
8937 case 0x3a: /* FSUB */
8938 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8939 break;
8940 case 0x3e: /* FMIN */
8941 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8942 break;
8943 case 0x3f: /* FRSQRTS */
8944 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8945 break;
8946 case 0x5b: /* FMUL */
8947 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8948 break;
8949 case 0x5c: /* FCMGE */
8950 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8951 break;
8952 case 0x5d: /* FACGE */
8953 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8954 break;
8955 case 0x5f: /* FDIV */
8956 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8957 break;
8958 case 0x7a: /* FABD */
8959 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8960 gen_helper_vfp_absd(tcg_res, tcg_res);
8961 break;
8962 case 0x7c: /* FCMGT */
8963 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8964 break;
8965 case 0x7d: /* FACGT */
8966 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8967 break;
8968 default:
8969 g_assert_not_reached();
8972 write_vec_element(s, tcg_res, rd, pass, MO_64);
8974 tcg_temp_free_i64(tcg_res);
8975 tcg_temp_free_i64(tcg_op1);
8976 tcg_temp_free_i64(tcg_op2);
8977 } else {
8978 /* Single */
8979 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8980 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8981 TCGv_i32 tcg_res = tcg_temp_new_i32();
8983 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8984 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8986 switch (fpopcode) {
8987 case 0x39: /* FMLS */
8988 /* As usual for ARM, separate negation for fused multiply-add */
8989 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8990 /* fall through */
8991 case 0x19: /* FMLA */
8992 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8993 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8994 tcg_res, fpst);
8995 break;
8996 case 0x1a: /* FADD */
8997 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8998 break;
8999 case 0x1b: /* FMULX */
9000 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9001 break;
9002 case 0x1c: /* FCMEQ */
9003 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9004 break;
9005 case 0x1e: /* FMAX */
9006 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9007 break;
9008 case 0x1f: /* FRECPS */
9009 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9010 break;
9011 case 0x18: /* FMAXNM */
9012 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9013 break;
9014 case 0x38: /* FMINNM */
9015 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9016 break;
9017 case 0x3a: /* FSUB */
9018 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9019 break;
9020 case 0x3e: /* FMIN */
9021 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9022 break;
9023 case 0x3f: /* FRSQRTS */
9024 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9025 break;
9026 case 0x5b: /* FMUL */
9027 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9028 break;
9029 case 0x5c: /* FCMGE */
9030 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9031 break;
9032 case 0x5d: /* FACGE */
9033 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9034 break;
9035 case 0x5f: /* FDIV */
9036 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9037 break;
9038 case 0x7a: /* FABD */
9039 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9040 gen_helper_vfp_abss(tcg_res, tcg_res);
9041 break;
9042 case 0x7c: /* FCMGT */
9043 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9044 break;
9045 case 0x7d: /* FACGT */
9046 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9047 break;
9048 default:
9049 g_assert_not_reached();
9052 if (elements == 1) {
9053 /* scalar single so clear high part */
9054 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9056 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9057 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9058 tcg_temp_free_i64(tcg_tmp);
9059 } else {
9060 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9063 tcg_temp_free_i32(tcg_res);
9064 tcg_temp_free_i32(tcg_op1);
9065 tcg_temp_free_i32(tcg_op2);
9069 tcg_temp_free_ptr(fpst);
9071 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9074 /* AdvSIMD scalar three same
9075 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9076 * +-----+---+-----------+------+---+------+--------+---+------+------+
9077 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9078 * +-----+---+-----------+------+---+------+--------+---+------+------+
9080 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9082 int rd = extract32(insn, 0, 5);
9083 int rn = extract32(insn, 5, 5);
9084 int opcode = extract32(insn, 11, 5);
9085 int rm = extract32(insn, 16, 5);
9086 int size = extract32(insn, 22, 2);
9087 bool u = extract32(insn, 29, 1);
9088 TCGv_i64 tcg_rd;
9090 if (opcode >= 0x18) {
9091 /* Floating point: U, size[1] and opcode indicate operation */
9092 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9093 switch (fpopcode) {
9094 case 0x1b: /* FMULX */
9095 case 0x1f: /* FRECPS */
9096 case 0x3f: /* FRSQRTS */
9097 case 0x5d: /* FACGE */
9098 case 0x7d: /* FACGT */
9099 case 0x1c: /* FCMEQ */
9100 case 0x5c: /* FCMGE */
9101 case 0x7c: /* FCMGT */
9102 case 0x7a: /* FABD */
9103 break;
9104 default:
9105 unallocated_encoding(s);
9106 return;
9109 if (!fp_access_check(s)) {
9110 return;
9113 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9114 return;
9117 switch (opcode) {
9118 case 0x1: /* SQADD, UQADD */
9119 case 0x5: /* SQSUB, UQSUB */
9120 case 0x9: /* SQSHL, UQSHL */
9121 case 0xb: /* SQRSHL, UQRSHL */
9122 break;
9123 case 0x8: /* SSHL, USHL */
9124 case 0xa: /* SRSHL, URSHL */
9125 case 0x6: /* CMGT, CMHI */
9126 case 0x7: /* CMGE, CMHS */
9127 case 0x11: /* CMTST, CMEQ */
9128 case 0x10: /* ADD, SUB (vector) */
9129 if (size != 3) {
9130 unallocated_encoding(s);
9131 return;
9133 break;
9134 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9135 if (size != 1 && size != 2) {
9136 unallocated_encoding(s);
9137 return;
9139 break;
9140 default:
9141 unallocated_encoding(s);
9142 return;
9145 if (!fp_access_check(s)) {
9146 return;
9149 tcg_rd = tcg_temp_new_i64();
9151 if (size == 3) {
9152 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9153 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9155 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9156 tcg_temp_free_i64(tcg_rn);
9157 tcg_temp_free_i64(tcg_rm);
9158 } else {
9159 /* Do a single operation on the lowest element in the vector.
9160 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9161 * no side effects for all these operations.
9162 * OPTME: special-purpose helpers would avoid doing some
9163 * unnecessary work in the helper for the 8 and 16 bit cases.
9165 NeonGenTwoOpEnvFn *genenvfn;
9166 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9167 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9168 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9170 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9171 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9173 switch (opcode) {
9174 case 0x1: /* SQADD, UQADD */
9176 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9177 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9178 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9179 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9181 genenvfn = fns[size][u];
9182 break;
9184 case 0x5: /* SQSUB, UQSUB */
9186 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9187 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9188 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9189 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9191 genenvfn = fns[size][u];
9192 break;
9194 case 0x9: /* SQSHL, UQSHL */
9196 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9197 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9198 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9199 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9201 genenvfn = fns[size][u];
9202 break;
9204 case 0xb: /* SQRSHL, UQRSHL */
9206 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9207 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9208 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9209 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9211 genenvfn = fns[size][u];
9212 break;
9214 case 0x16: /* SQDMULH, SQRDMULH */
9216 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9217 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9218 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9220 assert(size == 1 || size == 2);
9221 genenvfn = fns[size - 1][u];
9222 break;
9224 default:
9225 g_assert_not_reached();
9228 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9229 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9230 tcg_temp_free_i32(tcg_rd32);
9231 tcg_temp_free_i32(tcg_rn);
9232 tcg_temp_free_i32(tcg_rm);
9235 write_fp_dreg(s, rd, tcg_rd);
9237 tcg_temp_free_i64(tcg_rd);
9240 /* AdvSIMD scalar three same FP16
9241 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9242 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9243 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9244 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9245 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9246 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9248 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9249 uint32_t insn)
9251 int rd = extract32(insn, 0, 5);
9252 int rn = extract32(insn, 5, 5);
9253 int opcode = extract32(insn, 11, 3);
9254 int rm = extract32(insn, 16, 5);
9255 bool u = extract32(insn, 29, 1);
9256 bool a = extract32(insn, 23, 1);
9257 int fpopcode = opcode | (a << 3) | (u << 4);
9258 TCGv_ptr fpst;
9259 TCGv_i32 tcg_op1;
9260 TCGv_i32 tcg_op2;
9261 TCGv_i32 tcg_res;
9263 switch (fpopcode) {
9264 case 0x03: /* FMULX */
9265 case 0x04: /* FCMEQ (reg) */
9266 case 0x07: /* FRECPS */
9267 case 0x0f: /* FRSQRTS */
9268 case 0x14: /* FCMGE (reg) */
9269 case 0x15: /* FACGE */
9270 case 0x1a: /* FABD */
9271 case 0x1c: /* FCMGT (reg) */
9272 case 0x1d: /* FACGT */
9273 break;
9274 default:
9275 unallocated_encoding(s);
9276 return;
9279 if (!dc_isar_feature(aa64_fp16, s)) {
9280 unallocated_encoding(s);
9283 if (!fp_access_check(s)) {
9284 return;
9287 fpst = get_fpstatus_ptr(true);
9289 tcg_op1 = read_fp_hreg(s, rn);
9290 tcg_op2 = read_fp_hreg(s, rm);
9291 tcg_res = tcg_temp_new_i32();
9293 switch (fpopcode) {
9294 case 0x03: /* FMULX */
9295 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9296 break;
9297 case 0x04: /* FCMEQ (reg) */
9298 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9299 break;
9300 case 0x07: /* FRECPS */
9301 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9302 break;
9303 case 0x0f: /* FRSQRTS */
9304 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9305 break;
9306 case 0x14: /* FCMGE (reg) */
9307 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9308 break;
9309 case 0x15: /* FACGE */
9310 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9311 break;
9312 case 0x1a: /* FABD */
9313 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9314 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9315 break;
9316 case 0x1c: /* FCMGT (reg) */
9317 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9318 break;
9319 case 0x1d: /* FACGT */
9320 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9321 break;
9322 default:
9323 g_assert_not_reached();
9326 write_fp_sreg(s, rd, tcg_res);
9329 tcg_temp_free_i32(tcg_res);
9330 tcg_temp_free_i32(tcg_op1);
9331 tcg_temp_free_i32(tcg_op2);
9332 tcg_temp_free_ptr(fpst);
9335 /* AdvSIMD scalar three same extra
9336 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9337 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9338 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9339 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9341 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9342 uint32_t insn)
9344 int rd = extract32(insn, 0, 5);
9345 int rn = extract32(insn, 5, 5);
9346 int opcode = extract32(insn, 11, 4);
9347 int rm = extract32(insn, 16, 5);
9348 int size = extract32(insn, 22, 2);
9349 bool u = extract32(insn, 29, 1);
9350 TCGv_i32 ele1, ele2, ele3;
9351 TCGv_i64 res;
9352 bool feature;
9354 switch (u * 16 + opcode) {
9355 case 0x10: /* SQRDMLAH (vector) */
9356 case 0x11: /* SQRDMLSH (vector) */
9357 if (size != 1 && size != 2) {
9358 unallocated_encoding(s);
9359 return;
9361 feature = dc_isar_feature(aa64_rdm, s);
9362 break;
9363 default:
9364 unallocated_encoding(s);
9365 return;
9367 if (!feature) {
9368 unallocated_encoding(s);
9369 return;
9371 if (!fp_access_check(s)) {
9372 return;
9375 /* Do a single operation on the lowest element in the vector.
9376 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9377 * with no side effects for all these operations.
9378 * OPTME: special-purpose helpers would avoid doing some
9379 * unnecessary work in the helper for the 16 bit cases.
9381 ele1 = tcg_temp_new_i32();
9382 ele2 = tcg_temp_new_i32();
9383 ele3 = tcg_temp_new_i32();
9385 read_vec_element_i32(s, ele1, rn, 0, size);
9386 read_vec_element_i32(s, ele2, rm, 0, size);
9387 read_vec_element_i32(s, ele3, rd, 0, size);
9389 switch (opcode) {
9390 case 0x0: /* SQRDMLAH */
9391 if (size == 1) {
9392 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9393 } else {
9394 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9396 break;
9397 case 0x1: /* SQRDMLSH */
9398 if (size == 1) {
9399 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9400 } else {
9401 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9403 break;
9404 default:
9405 g_assert_not_reached();
9407 tcg_temp_free_i32(ele1);
9408 tcg_temp_free_i32(ele2);
9410 res = tcg_temp_new_i64();
9411 tcg_gen_extu_i32_i64(res, ele3);
9412 tcg_temp_free_i32(ele3);
9414 write_fp_dreg(s, rd, res);
9415 tcg_temp_free_i64(res);
9418 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9419 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9420 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9422 /* Handle 64->64 opcodes which are shared between the scalar and
9423 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9424 * is valid in either group and also the double-precision fp ops.
9425 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9426 * requires them.
9428 TCGCond cond;
9430 switch (opcode) {
9431 case 0x4: /* CLS, CLZ */
9432 if (u) {
9433 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9434 } else {
9435 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9437 break;
9438 case 0x5: /* NOT */
9439 /* This opcode is shared with CNT and RBIT but we have earlier
9440 * enforced that size == 3 if and only if this is the NOT insn.
9442 tcg_gen_not_i64(tcg_rd, tcg_rn);
9443 break;
9444 case 0x7: /* SQABS, SQNEG */
9445 if (u) {
9446 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9447 } else {
9448 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9450 break;
9451 case 0xa: /* CMLT */
9452 /* 64 bit integer comparison against zero, result is
9453 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9454 * subtracting 1.
9456 cond = TCG_COND_LT;
9457 do_cmop:
9458 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9459 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9460 break;
9461 case 0x8: /* CMGT, CMGE */
9462 cond = u ? TCG_COND_GE : TCG_COND_GT;
9463 goto do_cmop;
9464 case 0x9: /* CMEQ, CMLE */
9465 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9466 goto do_cmop;
9467 case 0xb: /* ABS, NEG */
9468 if (u) {
9469 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9470 } else {
9471 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9473 break;
9474 case 0x2f: /* FABS */
9475 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9476 break;
9477 case 0x6f: /* FNEG */
9478 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9479 break;
9480 case 0x7f: /* FSQRT */
9481 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9482 break;
9483 case 0x1a: /* FCVTNS */
9484 case 0x1b: /* FCVTMS */
9485 case 0x1c: /* FCVTAS */
9486 case 0x3a: /* FCVTPS */
9487 case 0x3b: /* FCVTZS */
9489 TCGv_i32 tcg_shift = tcg_const_i32(0);
9490 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9491 tcg_temp_free_i32(tcg_shift);
9492 break;
9494 case 0x5a: /* FCVTNU */
9495 case 0x5b: /* FCVTMU */
9496 case 0x5c: /* FCVTAU */
9497 case 0x7a: /* FCVTPU */
9498 case 0x7b: /* FCVTZU */
9500 TCGv_i32 tcg_shift = tcg_const_i32(0);
9501 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9502 tcg_temp_free_i32(tcg_shift);
9503 break;
9505 case 0x18: /* FRINTN */
9506 case 0x19: /* FRINTM */
9507 case 0x38: /* FRINTP */
9508 case 0x39: /* FRINTZ */
9509 case 0x58: /* FRINTA */
9510 case 0x79: /* FRINTI */
9511 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9512 break;
9513 case 0x59: /* FRINTX */
9514 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9515 break;
9516 case 0x1e: /* FRINT32Z */
9517 case 0x5e: /* FRINT32X */
9518 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9519 break;
9520 case 0x1f: /* FRINT64Z */
9521 case 0x5f: /* FRINT64X */
9522 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9523 break;
9524 default:
9525 g_assert_not_reached();
9529 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9530 bool is_scalar, bool is_u, bool is_q,
9531 int size, int rn, int rd)
9533 bool is_double = (size == MO_64);
9534 TCGv_ptr fpst;
9536 if (!fp_access_check(s)) {
9537 return;
9540 fpst = get_fpstatus_ptr(size == MO_16);
9542 if (is_double) {
9543 TCGv_i64 tcg_op = tcg_temp_new_i64();
9544 TCGv_i64 tcg_zero = tcg_const_i64(0);
9545 TCGv_i64 tcg_res = tcg_temp_new_i64();
9546 NeonGenTwoDoubleOPFn *genfn;
9547 bool swap = false;
9548 int pass;
9550 switch (opcode) {
9551 case 0x2e: /* FCMLT (zero) */
9552 swap = true;
9553 /* fallthrough */
9554 case 0x2c: /* FCMGT (zero) */
9555 genfn = gen_helper_neon_cgt_f64;
9556 break;
9557 case 0x2d: /* FCMEQ (zero) */
9558 genfn = gen_helper_neon_ceq_f64;
9559 break;
9560 case 0x6d: /* FCMLE (zero) */
9561 swap = true;
9562 /* fall through */
9563 case 0x6c: /* FCMGE (zero) */
9564 genfn = gen_helper_neon_cge_f64;
9565 break;
9566 default:
9567 g_assert_not_reached();
9570 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9571 read_vec_element(s, tcg_op, rn, pass, MO_64);
9572 if (swap) {
9573 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9574 } else {
9575 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9577 write_vec_element(s, tcg_res, rd, pass, MO_64);
9579 tcg_temp_free_i64(tcg_res);
9580 tcg_temp_free_i64(tcg_zero);
9581 tcg_temp_free_i64(tcg_op);
9583 clear_vec_high(s, !is_scalar, rd);
9584 } else {
9585 TCGv_i32 tcg_op = tcg_temp_new_i32();
9586 TCGv_i32 tcg_zero = tcg_const_i32(0);
9587 TCGv_i32 tcg_res = tcg_temp_new_i32();
9588 NeonGenTwoSingleOPFn *genfn;
9589 bool swap = false;
9590 int pass, maxpasses;
9592 if (size == MO_16) {
9593 switch (opcode) {
9594 case 0x2e: /* FCMLT (zero) */
9595 swap = true;
9596 /* fall through */
9597 case 0x2c: /* FCMGT (zero) */
9598 genfn = gen_helper_advsimd_cgt_f16;
9599 break;
9600 case 0x2d: /* FCMEQ (zero) */
9601 genfn = gen_helper_advsimd_ceq_f16;
9602 break;
9603 case 0x6d: /* FCMLE (zero) */
9604 swap = true;
9605 /* fall through */
9606 case 0x6c: /* FCMGE (zero) */
9607 genfn = gen_helper_advsimd_cge_f16;
9608 break;
9609 default:
9610 g_assert_not_reached();
9612 } else {
9613 switch (opcode) {
9614 case 0x2e: /* FCMLT (zero) */
9615 swap = true;
9616 /* fall through */
9617 case 0x2c: /* FCMGT (zero) */
9618 genfn = gen_helper_neon_cgt_f32;
9619 break;
9620 case 0x2d: /* FCMEQ (zero) */
9621 genfn = gen_helper_neon_ceq_f32;
9622 break;
9623 case 0x6d: /* FCMLE (zero) */
9624 swap = true;
9625 /* fall through */
9626 case 0x6c: /* FCMGE (zero) */
9627 genfn = gen_helper_neon_cge_f32;
9628 break;
9629 default:
9630 g_assert_not_reached();
9634 if (is_scalar) {
9635 maxpasses = 1;
9636 } else {
9637 int vector_size = 8 << is_q;
9638 maxpasses = vector_size >> size;
9641 for (pass = 0; pass < maxpasses; pass++) {
9642 read_vec_element_i32(s, tcg_op, rn, pass, size);
9643 if (swap) {
9644 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9645 } else {
9646 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9648 if (is_scalar) {
9649 write_fp_sreg(s, rd, tcg_res);
9650 } else {
9651 write_vec_element_i32(s, tcg_res, rd, pass, size);
9654 tcg_temp_free_i32(tcg_res);
9655 tcg_temp_free_i32(tcg_zero);
9656 tcg_temp_free_i32(tcg_op);
9657 if (!is_scalar) {
9658 clear_vec_high(s, is_q, rd);
9662 tcg_temp_free_ptr(fpst);
9665 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9666 bool is_scalar, bool is_u, bool is_q,
9667 int size, int rn, int rd)
9669 bool is_double = (size == 3);
9670 TCGv_ptr fpst = get_fpstatus_ptr(false);
9672 if (is_double) {
9673 TCGv_i64 tcg_op = tcg_temp_new_i64();
9674 TCGv_i64 tcg_res = tcg_temp_new_i64();
9675 int pass;
9677 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9678 read_vec_element(s, tcg_op, rn, pass, MO_64);
9679 switch (opcode) {
9680 case 0x3d: /* FRECPE */
9681 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9682 break;
9683 case 0x3f: /* FRECPX */
9684 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9685 break;
9686 case 0x7d: /* FRSQRTE */
9687 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9688 break;
9689 default:
9690 g_assert_not_reached();
9692 write_vec_element(s, tcg_res, rd, pass, MO_64);
9694 tcg_temp_free_i64(tcg_res);
9695 tcg_temp_free_i64(tcg_op);
9696 clear_vec_high(s, !is_scalar, rd);
9697 } else {
9698 TCGv_i32 tcg_op = tcg_temp_new_i32();
9699 TCGv_i32 tcg_res = tcg_temp_new_i32();
9700 int pass, maxpasses;
9702 if (is_scalar) {
9703 maxpasses = 1;
9704 } else {
9705 maxpasses = is_q ? 4 : 2;
9708 for (pass = 0; pass < maxpasses; pass++) {
9709 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9711 switch (opcode) {
9712 case 0x3c: /* URECPE */
9713 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9714 break;
9715 case 0x3d: /* FRECPE */
9716 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9717 break;
9718 case 0x3f: /* FRECPX */
9719 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9720 break;
9721 case 0x7d: /* FRSQRTE */
9722 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9723 break;
9724 default:
9725 g_assert_not_reached();
9728 if (is_scalar) {
9729 write_fp_sreg(s, rd, tcg_res);
9730 } else {
9731 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9734 tcg_temp_free_i32(tcg_res);
9735 tcg_temp_free_i32(tcg_op);
9736 if (!is_scalar) {
9737 clear_vec_high(s, is_q, rd);
9740 tcg_temp_free_ptr(fpst);
9743 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9744 int opcode, bool u, bool is_q,
9745 int size, int rn, int rd)
9747 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9748 * in the source becomes a size element in the destination).
9750 int pass;
9751 TCGv_i32 tcg_res[2];
9752 int destelt = is_q ? 2 : 0;
9753 int passes = scalar ? 1 : 2;
9755 if (scalar) {
9756 tcg_res[1] = tcg_const_i32(0);
9759 for (pass = 0; pass < passes; pass++) {
9760 TCGv_i64 tcg_op = tcg_temp_new_i64();
9761 NeonGenNarrowFn *genfn = NULL;
9762 NeonGenNarrowEnvFn *genenvfn = NULL;
9764 if (scalar) {
9765 read_vec_element(s, tcg_op, rn, pass, size + 1);
9766 } else {
9767 read_vec_element(s, tcg_op, rn, pass, MO_64);
9769 tcg_res[pass] = tcg_temp_new_i32();
9771 switch (opcode) {
9772 case 0x12: /* XTN, SQXTUN */
9774 static NeonGenNarrowFn * const xtnfns[3] = {
9775 gen_helper_neon_narrow_u8,
9776 gen_helper_neon_narrow_u16,
9777 tcg_gen_extrl_i64_i32,
9779 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9780 gen_helper_neon_unarrow_sat8,
9781 gen_helper_neon_unarrow_sat16,
9782 gen_helper_neon_unarrow_sat32,
9784 if (u) {
9785 genenvfn = sqxtunfns[size];
9786 } else {
9787 genfn = xtnfns[size];
9789 break;
9791 case 0x14: /* SQXTN, UQXTN */
9793 static NeonGenNarrowEnvFn * const fns[3][2] = {
9794 { gen_helper_neon_narrow_sat_s8,
9795 gen_helper_neon_narrow_sat_u8 },
9796 { gen_helper_neon_narrow_sat_s16,
9797 gen_helper_neon_narrow_sat_u16 },
9798 { gen_helper_neon_narrow_sat_s32,
9799 gen_helper_neon_narrow_sat_u32 },
9801 genenvfn = fns[size][u];
9802 break;
9804 case 0x16: /* FCVTN, FCVTN2 */
9805 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9806 if (size == 2) {
9807 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9808 } else {
9809 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9810 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9811 TCGv_ptr fpst = get_fpstatus_ptr(false);
9812 TCGv_i32 ahp = get_ahp_flag();
9814 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9815 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9816 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9817 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9818 tcg_temp_free_i32(tcg_lo);
9819 tcg_temp_free_i32(tcg_hi);
9820 tcg_temp_free_ptr(fpst);
9821 tcg_temp_free_i32(ahp);
9823 break;
9824 case 0x56: /* FCVTXN, FCVTXN2 */
9825 /* 64 bit to 32 bit float conversion
9826 * with von Neumann rounding (round to odd)
9828 assert(size == 2);
9829 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9830 break;
9831 default:
9832 g_assert_not_reached();
9835 if (genfn) {
9836 genfn(tcg_res[pass], tcg_op);
9837 } else if (genenvfn) {
9838 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9841 tcg_temp_free_i64(tcg_op);
9844 for (pass = 0; pass < 2; pass++) {
9845 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9846 tcg_temp_free_i32(tcg_res[pass]);
9848 clear_vec_high(s, is_q, rd);
9851 /* Remaining saturating accumulating ops */
9852 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9853 bool is_q, int size, int rn, int rd)
9855 bool is_double = (size == 3);
9857 if (is_double) {
9858 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9859 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9860 int pass;
9862 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9863 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9864 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9866 if (is_u) { /* USQADD */
9867 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9868 } else { /* SUQADD */
9869 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9871 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9873 tcg_temp_free_i64(tcg_rd);
9874 tcg_temp_free_i64(tcg_rn);
9875 clear_vec_high(s, !is_scalar, rd);
9876 } else {
9877 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9878 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9879 int pass, maxpasses;
9881 if (is_scalar) {
9882 maxpasses = 1;
9883 } else {
9884 maxpasses = is_q ? 4 : 2;
9887 for (pass = 0; pass < maxpasses; pass++) {
9888 if (is_scalar) {
9889 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9890 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9891 } else {
9892 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9893 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9896 if (is_u) { /* USQADD */
9897 switch (size) {
9898 case 0:
9899 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9900 break;
9901 case 1:
9902 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9903 break;
9904 case 2:
9905 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9906 break;
9907 default:
9908 g_assert_not_reached();
9910 } else { /* SUQADD */
9911 switch (size) {
9912 case 0:
9913 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9914 break;
9915 case 1:
9916 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9917 break;
9918 case 2:
9919 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9920 break;
9921 default:
9922 g_assert_not_reached();
9926 if (is_scalar) {
9927 TCGv_i64 tcg_zero = tcg_const_i64(0);
9928 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9929 tcg_temp_free_i64(tcg_zero);
9931 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9933 tcg_temp_free_i32(tcg_rd);
9934 tcg_temp_free_i32(tcg_rn);
9935 clear_vec_high(s, is_q, rd);
9939 /* AdvSIMD scalar two reg misc
9940 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9941 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9942 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9943 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9945 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9947 int rd = extract32(insn, 0, 5);
9948 int rn = extract32(insn, 5, 5);
9949 int opcode = extract32(insn, 12, 5);
9950 int size = extract32(insn, 22, 2);
9951 bool u = extract32(insn, 29, 1);
9952 bool is_fcvt = false;
9953 int rmode;
9954 TCGv_i32 tcg_rmode;
9955 TCGv_ptr tcg_fpstatus;
9957 switch (opcode) {
9958 case 0x3: /* USQADD / SUQADD*/
9959 if (!fp_access_check(s)) {
9960 return;
9962 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9963 return;
9964 case 0x7: /* SQABS / SQNEG */
9965 break;
9966 case 0xa: /* CMLT */
9967 if (u) {
9968 unallocated_encoding(s);
9969 return;
9971 /* fall through */
9972 case 0x8: /* CMGT, CMGE */
9973 case 0x9: /* CMEQ, CMLE */
9974 case 0xb: /* ABS, NEG */
9975 if (size != 3) {
9976 unallocated_encoding(s);
9977 return;
9979 break;
9980 case 0x12: /* SQXTUN */
9981 if (!u) {
9982 unallocated_encoding(s);
9983 return;
9985 /* fall through */
9986 case 0x14: /* SQXTN, UQXTN */
9987 if (size == 3) {
9988 unallocated_encoding(s);
9989 return;
9991 if (!fp_access_check(s)) {
9992 return;
9994 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9995 return;
9996 case 0xc ... 0xf:
9997 case 0x16 ... 0x1d:
9998 case 0x1f:
9999 /* Floating point: U, size[1] and opcode indicate operation;
10000 * size[0] indicates single or double precision.
10002 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10003 size = extract32(size, 0, 1) ? 3 : 2;
10004 switch (opcode) {
10005 case 0x2c: /* FCMGT (zero) */
10006 case 0x2d: /* FCMEQ (zero) */
10007 case 0x2e: /* FCMLT (zero) */
10008 case 0x6c: /* FCMGE (zero) */
10009 case 0x6d: /* FCMLE (zero) */
10010 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10011 return;
10012 case 0x1d: /* SCVTF */
10013 case 0x5d: /* UCVTF */
10015 bool is_signed = (opcode == 0x1d);
10016 if (!fp_access_check(s)) {
10017 return;
10019 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10020 return;
10022 case 0x3d: /* FRECPE */
10023 case 0x3f: /* FRECPX */
10024 case 0x7d: /* FRSQRTE */
10025 if (!fp_access_check(s)) {
10026 return;
10028 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10029 return;
10030 case 0x1a: /* FCVTNS */
10031 case 0x1b: /* FCVTMS */
10032 case 0x3a: /* FCVTPS */
10033 case 0x3b: /* FCVTZS */
10034 case 0x5a: /* FCVTNU */
10035 case 0x5b: /* FCVTMU */
10036 case 0x7a: /* FCVTPU */
10037 case 0x7b: /* FCVTZU */
10038 is_fcvt = true;
10039 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10040 break;
10041 case 0x1c: /* FCVTAS */
10042 case 0x5c: /* FCVTAU */
10043 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10044 is_fcvt = true;
10045 rmode = FPROUNDING_TIEAWAY;
10046 break;
10047 case 0x56: /* FCVTXN, FCVTXN2 */
10048 if (size == 2) {
10049 unallocated_encoding(s);
10050 return;
10052 if (!fp_access_check(s)) {
10053 return;
10055 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10056 return;
10057 default:
10058 unallocated_encoding(s);
10059 return;
10061 break;
10062 default:
10063 unallocated_encoding(s);
10064 return;
10067 if (!fp_access_check(s)) {
10068 return;
10071 if (is_fcvt) {
10072 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10073 tcg_fpstatus = get_fpstatus_ptr(false);
10074 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10075 } else {
10076 tcg_rmode = NULL;
10077 tcg_fpstatus = NULL;
10080 if (size == 3) {
10081 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10082 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10084 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10085 write_fp_dreg(s, rd, tcg_rd);
10086 tcg_temp_free_i64(tcg_rd);
10087 tcg_temp_free_i64(tcg_rn);
10088 } else {
10089 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10090 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10092 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10094 switch (opcode) {
10095 case 0x7: /* SQABS, SQNEG */
10097 NeonGenOneOpEnvFn *genfn;
10098 static NeonGenOneOpEnvFn * const fns[3][2] = {
10099 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10100 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10101 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10103 genfn = fns[size][u];
10104 genfn(tcg_rd, cpu_env, tcg_rn);
10105 break;
10107 case 0x1a: /* FCVTNS */
10108 case 0x1b: /* FCVTMS */
10109 case 0x1c: /* FCVTAS */
10110 case 0x3a: /* FCVTPS */
10111 case 0x3b: /* FCVTZS */
10113 TCGv_i32 tcg_shift = tcg_const_i32(0);
10114 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10115 tcg_temp_free_i32(tcg_shift);
10116 break;
10118 case 0x5a: /* FCVTNU */
10119 case 0x5b: /* FCVTMU */
10120 case 0x5c: /* FCVTAU */
10121 case 0x7a: /* FCVTPU */
10122 case 0x7b: /* FCVTZU */
10124 TCGv_i32 tcg_shift = tcg_const_i32(0);
10125 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10126 tcg_temp_free_i32(tcg_shift);
10127 break;
10129 default:
10130 g_assert_not_reached();
10133 write_fp_sreg(s, rd, tcg_rd);
10134 tcg_temp_free_i32(tcg_rd);
10135 tcg_temp_free_i32(tcg_rn);
10138 if (is_fcvt) {
10139 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10140 tcg_temp_free_i32(tcg_rmode);
10141 tcg_temp_free_ptr(tcg_fpstatus);
10145 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10146 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10147 int immh, int immb, int opcode, int rn, int rd)
10149 int size = 32 - clz32(immh) - 1;
10150 int immhb = immh << 3 | immb;
10151 int shift = 2 * (8 << size) - immhb;
10152 bool accumulate = false;
10153 int dsize = is_q ? 128 : 64;
10154 int esize = 8 << size;
10155 int elements = dsize/esize;
10156 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
10157 TCGv_i64 tcg_rn = new_tmp_a64(s);
10158 TCGv_i64 tcg_rd = new_tmp_a64(s);
10159 TCGv_i64 tcg_round;
10160 uint64_t round_const;
10161 int i;
10163 if (extract32(immh, 3, 1) && !is_q) {
10164 unallocated_encoding(s);
10165 return;
10167 tcg_debug_assert(size <= 3);
10169 if (!fp_access_check(s)) {
10170 return;
10173 switch (opcode) {
10174 case 0x02: /* SSRA / USRA (accumulate) */
10175 if (is_u) {
10176 /* Shift count same as element size produces zero to add. */
10177 if (shift == 8 << size) {
10178 goto done;
10180 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
10181 } else {
10182 /* Shift count same as element size produces all sign to add. */
10183 if (shift == 8 << size) {
10184 shift -= 1;
10186 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
10188 return;
10189 case 0x08: /* SRI */
10190 /* Shift count same as element size is valid but does nothing. */
10191 if (shift == 8 << size) {
10192 goto done;
10194 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
10195 return;
10197 case 0x00: /* SSHR / USHR */
10198 if (is_u) {
10199 if (shift == 8 << size) {
10200 /* Shift count the same size as element size produces zero. */
10201 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
10202 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10203 } else {
10204 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
10206 } else {
10207 /* Shift count the same size as element size produces all sign. */
10208 if (shift == 8 << size) {
10209 shift -= 1;
10211 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
10213 return;
10215 case 0x04: /* SRSHR / URSHR (rounding) */
10216 break;
10217 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10218 accumulate = true;
10219 break;
10220 default:
10221 g_assert_not_reached();
10224 round_const = 1ULL << (shift - 1);
10225 tcg_round = tcg_const_i64(round_const);
10227 for (i = 0; i < elements; i++) {
10228 read_vec_element(s, tcg_rn, rn, i, memop);
10229 if (accumulate) {
10230 read_vec_element(s, tcg_rd, rd, i, memop);
10233 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10234 accumulate, is_u, size, shift);
10236 write_vec_element(s, tcg_rd, rd, i, size);
10238 tcg_temp_free_i64(tcg_round);
10240 done:
10241 clear_vec_high(s, is_q, rd);
10244 /* SHL/SLI - Vector shift left */
10245 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10246 int immh, int immb, int opcode, int rn, int rd)
10248 int size = 32 - clz32(immh) - 1;
10249 int immhb = immh << 3 | immb;
10250 int shift = immhb - (8 << size);
10252 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10253 assert(size >= 0 && size <= 3);
10255 if (extract32(immh, 3, 1) && !is_q) {
10256 unallocated_encoding(s);
10257 return;
10260 if (!fp_access_check(s)) {
10261 return;
10264 if (insert) {
10265 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
10266 } else {
10267 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10271 /* USHLL/SHLL - Vector shift left with widening */
10272 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10273 int immh, int immb, int opcode, int rn, int rd)
10275 int size = 32 - clz32(immh) - 1;
10276 int immhb = immh << 3 | immb;
10277 int shift = immhb - (8 << size);
10278 int dsize = 64;
10279 int esize = 8 << size;
10280 int elements = dsize/esize;
10281 TCGv_i64 tcg_rn = new_tmp_a64(s);
10282 TCGv_i64 tcg_rd = new_tmp_a64(s);
10283 int i;
10285 if (size >= 3) {
10286 unallocated_encoding(s);
10287 return;
10290 if (!fp_access_check(s)) {
10291 return;
10294 /* For the LL variants the store is larger than the load,
10295 * so if rd == rn we would overwrite parts of our input.
10296 * So load everything right now and use shifts in the main loop.
10298 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10300 for (i = 0; i < elements; i++) {
10301 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10302 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10303 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10304 write_vec_element(s, tcg_rd, rd, i, size + 1);
10308 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10309 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10310 int immh, int immb, int opcode, int rn, int rd)
10312 int immhb = immh << 3 | immb;
10313 int size = 32 - clz32(immh) - 1;
10314 int dsize = 64;
10315 int esize = 8 << size;
10316 int elements = dsize/esize;
10317 int shift = (2 * esize) - immhb;
10318 bool round = extract32(opcode, 0, 1);
10319 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10320 TCGv_i64 tcg_round;
10321 int i;
10323 if (extract32(immh, 3, 1)) {
10324 unallocated_encoding(s);
10325 return;
10328 if (!fp_access_check(s)) {
10329 return;
10332 tcg_rn = tcg_temp_new_i64();
10333 tcg_rd = tcg_temp_new_i64();
10334 tcg_final = tcg_temp_new_i64();
10335 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10337 if (round) {
10338 uint64_t round_const = 1ULL << (shift - 1);
10339 tcg_round = tcg_const_i64(round_const);
10340 } else {
10341 tcg_round = NULL;
10344 for (i = 0; i < elements; i++) {
10345 read_vec_element(s, tcg_rn, rn, i, size+1);
10346 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10347 false, true, size+1, shift);
10349 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10352 if (!is_q) {
10353 write_vec_element(s, tcg_final, rd, 0, MO_64);
10354 } else {
10355 write_vec_element(s, tcg_final, rd, 1, MO_64);
10357 if (round) {
10358 tcg_temp_free_i64(tcg_round);
10360 tcg_temp_free_i64(tcg_rn);
10361 tcg_temp_free_i64(tcg_rd);
10362 tcg_temp_free_i64(tcg_final);
10364 clear_vec_high(s, is_q, rd);
10368 /* AdvSIMD shift by immediate
10369 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10370 * +---+---+---+-------------+------+------+--------+---+------+------+
10371 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10372 * +---+---+---+-------------+------+------+--------+---+------+------+
10374 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10376 int rd = extract32(insn, 0, 5);
10377 int rn = extract32(insn, 5, 5);
10378 int opcode = extract32(insn, 11, 5);
10379 int immb = extract32(insn, 16, 3);
10380 int immh = extract32(insn, 19, 4);
10381 bool is_u = extract32(insn, 29, 1);
10382 bool is_q = extract32(insn, 30, 1);
10384 switch (opcode) {
10385 case 0x08: /* SRI */
10386 if (!is_u) {
10387 unallocated_encoding(s);
10388 return;
10390 /* fall through */
10391 case 0x00: /* SSHR / USHR */
10392 case 0x02: /* SSRA / USRA (accumulate) */
10393 case 0x04: /* SRSHR / URSHR (rounding) */
10394 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10395 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10396 break;
10397 case 0x0a: /* SHL / SLI */
10398 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10399 break;
10400 case 0x10: /* SHRN */
10401 case 0x11: /* RSHRN / SQRSHRUN */
10402 if (is_u) {
10403 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10404 opcode, rn, rd);
10405 } else {
10406 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10408 break;
10409 case 0x12: /* SQSHRN / UQSHRN */
10410 case 0x13: /* SQRSHRN / UQRSHRN */
10411 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10412 opcode, rn, rd);
10413 break;
10414 case 0x14: /* SSHLL / USHLL */
10415 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10416 break;
10417 case 0x1c: /* SCVTF / UCVTF */
10418 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10419 opcode, rn, rd);
10420 break;
10421 case 0xc: /* SQSHLU */
10422 if (!is_u) {
10423 unallocated_encoding(s);
10424 return;
10426 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10427 break;
10428 case 0xe: /* SQSHL, UQSHL */
10429 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10430 break;
10431 case 0x1f: /* FCVTZS/ FCVTZU */
10432 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10433 return;
10434 default:
10435 unallocated_encoding(s);
10436 return;
10440 /* Generate code to do a "long" addition or subtraction, ie one done in
10441 * TCGv_i64 on vector lanes twice the width specified by size.
10443 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10444 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10446 static NeonGenTwo64OpFn * const fns[3][2] = {
10447 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10448 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10449 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10451 NeonGenTwo64OpFn *genfn;
10452 assert(size < 3);
10454 genfn = fns[size][is_sub];
10455 genfn(tcg_res, tcg_op1, tcg_op2);
10458 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10459 int opcode, int rd, int rn, int rm)
10461 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10462 TCGv_i64 tcg_res[2];
10463 int pass, accop;
10465 tcg_res[0] = tcg_temp_new_i64();
10466 tcg_res[1] = tcg_temp_new_i64();
10468 /* Does this op do an adding accumulate, a subtracting accumulate,
10469 * or no accumulate at all?
10471 switch (opcode) {
10472 case 5:
10473 case 8:
10474 case 9:
10475 accop = 1;
10476 break;
10477 case 10:
10478 case 11:
10479 accop = -1;
10480 break;
10481 default:
10482 accop = 0;
10483 break;
10486 if (accop != 0) {
10487 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10488 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10491 /* size == 2 means two 32x32->64 operations; this is worth special
10492 * casing because we can generally handle it inline.
10494 if (size == 2) {
10495 for (pass = 0; pass < 2; pass++) {
10496 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10497 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10498 TCGv_i64 tcg_passres;
10499 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10501 int elt = pass + is_q * 2;
10503 read_vec_element(s, tcg_op1, rn, elt, memop);
10504 read_vec_element(s, tcg_op2, rm, elt, memop);
10506 if (accop == 0) {
10507 tcg_passres = tcg_res[pass];
10508 } else {
10509 tcg_passres = tcg_temp_new_i64();
10512 switch (opcode) {
10513 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10514 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10515 break;
10516 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10517 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10518 break;
10519 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10520 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10522 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10523 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10525 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10526 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10527 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10528 tcg_passres,
10529 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10530 tcg_temp_free_i64(tcg_tmp1);
10531 tcg_temp_free_i64(tcg_tmp2);
10532 break;
10534 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10535 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10536 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10537 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10538 break;
10539 case 9: /* SQDMLAL, SQDMLAL2 */
10540 case 11: /* SQDMLSL, SQDMLSL2 */
10541 case 13: /* SQDMULL, SQDMULL2 */
10542 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10543 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10544 tcg_passres, tcg_passres);
10545 break;
10546 default:
10547 g_assert_not_reached();
10550 if (opcode == 9 || opcode == 11) {
10551 /* saturating accumulate ops */
10552 if (accop < 0) {
10553 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10555 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10556 tcg_res[pass], tcg_passres);
10557 } else if (accop > 0) {
10558 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10559 } else if (accop < 0) {
10560 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10563 if (accop != 0) {
10564 tcg_temp_free_i64(tcg_passres);
10567 tcg_temp_free_i64(tcg_op1);
10568 tcg_temp_free_i64(tcg_op2);
10570 } else {
10571 /* size 0 or 1, generally helper functions */
10572 for (pass = 0; pass < 2; pass++) {
10573 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10574 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10575 TCGv_i64 tcg_passres;
10576 int elt = pass + is_q * 2;
10578 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10579 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10581 if (accop == 0) {
10582 tcg_passres = tcg_res[pass];
10583 } else {
10584 tcg_passres = tcg_temp_new_i64();
10587 switch (opcode) {
10588 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10589 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10591 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10592 static NeonGenWidenFn * const widenfns[2][2] = {
10593 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10594 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10596 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10598 widenfn(tcg_op2_64, tcg_op2);
10599 widenfn(tcg_passres, tcg_op1);
10600 gen_neon_addl(size, (opcode == 2), tcg_passres,
10601 tcg_passres, tcg_op2_64);
10602 tcg_temp_free_i64(tcg_op2_64);
10603 break;
10605 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10606 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10607 if (size == 0) {
10608 if (is_u) {
10609 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10610 } else {
10611 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10613 } else {
10614 if (is_u) {
10615 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10616 } else {
10617 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10620 break;
10621 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10622 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10623 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10624 if (size == 0) {
10625 if (is_u) {
10626 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10627 } else {
10628 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10630 } else {
10631 if (is_u) {
10632 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10633 } else {
10634 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10637 break;
10638 case 9: /* SQDMLAL, SQDMLAL2 */
10639 case 11: /* SQDMLSL, SQDMLSL2 */
10640 case 13: /* SQDMULL, SQDMULL2 */
10641 assert(size == 1);
10642 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10643 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10644 tcg_passres, tcg_passres);
10645 break;
10646 case 14: /* PMULL */
10647 assert(size == 0);
10648 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10649 break;
10650 default:
10651 g_assert_not_reached();
10653 tcg_temp_free_i32(tcg_op1);
10654 tcg_temp_free_i32(tcg_op2);
10656 if (accop != 0) {
10657 if (opcode == 9 || opcode == 11) {
10658 /* saturating accumulate ops */
10659 if (accop < 0) {
10660 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10662 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10663 tcg_res[pass],
10664 tcg_passres);
10665 } else {
10666 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10667 tcg_res[pass], tcg_passres);
10669 tcg_temp_free_i64(tcg_passres);
10674 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10675 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10676 tcg_temp_free_i64(tcg_res[0]);
10677 tcg_temp_free_i64(tcg_res[1]);
10680 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10681 int opcode, int rd, int rn, int rm)
10683 TCGv_i64 tcg_res[2];
10684 int part = is_q ? 2 : 0;
10685 int pass;
10687 for (pass = 0; pass < 2; pass++) {
10688 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10689 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10690 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10691 static NeonGenWidenFn * const widenfns[3][2] = {
10692 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10693 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10694 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10696 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10698 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10699 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10700 widenfn(tcg_op2_wide, tcg_op2);
10701 tcg_temp_free_i32(tcg_op2);
10702 tcg_res[pass] = tcg_temp_new_i64();
10703 gen_neon_addl(size, (opcode == 3),
10704 tcg_res[pass], tcg_op1, tcg_op2_wide);
10705 tcg_temp_free_i64(tcg_op1);
10706 tcg_temp_free_i64(tcg_op2_wide);
10709 for (pass = 0; pass < 2; pass++) {
10710 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10711 tcg_temp_free_i64(tcg_res[pass]);
10715 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10717 tcg_gen_addi_i64(in, in, 1U << 31);
10718 tcg_gen_extrh_i64_i32(res, in);
10721 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10722 int opcode, int rd, int rn, int rm)
10724 TCGv_i32 tcg_res[2];
10725 int part = is_q ? 2 : 0;
10726 int pass;
10728 for (pass = 0; pass < 2; pass++) {
10729 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10730 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10731 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10732 static NeonGenNarrowFn * const narrowfns[3][2] = {
10733 { gen_helper_neon_narrow_high_u8,
10734 gen_helper_neon_narrow_round_high_u8 },
10735 { gen_helper_neon_narrow_high_u16,
10736 gen_helper_neon_narrow_round_high_u16 },
10737 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10739 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10741 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10742 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10744 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10746 tcg_temp_free_i64(tcg_op1);
10747 tcg_temp_free_i64(tcg_op2);
10749 tcg_res[pass] = tcg_temp_new_i32();
10750 gennarrow(tcg_res[pass], tcg_wideres);
10751 tcg_temp_free_i64(tcg_wideres);
10754 for (pass = 0; pass < 2; pass++) {
10755 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10756 tcg_temp_free_i32(tcg_res[pass]);
10758 clear_vec_high(s, is_q, rd);
10761 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10763 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10764 * is the only three-reg-diff instruction which produces a
10765 * 128-bit wide result from a single operation. However since
10766 * it's possible to calculate the two halves more or less
10767 * separately we just use two helper calls.
10769 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10770 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10771 TCGv_i64 tcg_res = tcg_temp_new_i64();
10773 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10774 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10775 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10776 write_vec_element(s, tcg_res, rd, 0, MO_64);
10777 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10778 write_vec_element(s, tcg_res, rd, 1, MO_64);
10780 tcg_temp_free_i64(tcg_op1);
10781 tcg_temp_free_i64(tcg_op2);
10782 tcg_temp_free_i64(tcg_res);
10785 /* AdvSIMD three different
10786 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10787 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10788 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10789 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10791 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10793 /* Instructions in this group fall into three basic classes
10794 * (in each case with the operation working on each element in
10795 * the input vectors):
10796 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10797 * 128 bit input)
10798 * (2) wide 64 x 128 -> 128
10799 * (3) narrowing 128 x 128 -> 64
10800 * Here we do initial decode, catch unallocated cases and
10801 * dispatch to separate functions for each class.
10803 int is_q = extract32(insn, 30, 1);
10804 int is_u = extract32(insn, 29, 1);
10805 int size = extract32(insn, 22, 2);
10806 int opcode = extract32(insn, 12, 4);
10807 int rm = extract32(insn, 16, 5);
10808 int rn = extract32(insn, 5, 5);
10809 int rd = extract32(insn, 0, 5);
10811 switch (opcode) {
10812 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10813 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10814 /* 64 x 128 -> 128 */
10815 if (size == 3) {
10816 unallocated_encoding(s);
10817 return;
10819 if (!fp_access_check(s)) {
10820 return;
10822 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10823 break;
10824 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10825 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10826 /* 128 x 128 -> 64 */
10827 if (size == 3) {
10828 unallocated_encoding(s);
10829 return;
10831 if (!fp_access_check(s)) {
10832 return;
10834 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10835 break;
10836 case 14: /* PMULL, PMULL2 */
10837 if (is_u || size == 1 || size == 2) {
10838 unallocated_encoding(s);
10839 return;
10841 if (size == 3) {
10842 if (!dc_isar_feature(aa64_pmull, s)) {
10843 unallocated_encoding(s);
10844 return;
10846 if (!fp_access_check(s)) {
10847 return;
10849 handle_pmull_64(s, is_q, rd, rn, rm);
10850 return;
10852 goto is_widening;
10853 case 9: /* SQDMLAL, SQDMLAL2 */
10854 case 11: /* SQDMLSL, SQDMLSL2 */
10855 case 13: /* SQDMULL, SQDMULL2 */
10856 if (is_u || size == 0) {
10857 unallocated_encoding(s);
10858 return;
10860 /* fall through */
10861 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10862 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10863 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10864 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10865 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10866 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10867 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10868 /* 64 x 64 -> 128 */
10869 if (size == 3) {
10870 unallocated_encoding(s);
10871 return;
10873 is_widening:
10874 if (!fp_access_check(s)) {
10875 return;
10878 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10879 break;
10880 default:
10881 /* opcode 15 not allocated */
10882 unallocated_encoding(s);
10883 break;
10887 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10888 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10890 int rd = extract32(insn, 0, 5);
10891 int rn = extract32(insn, 5, 5);
10892 int rm = extract32(insn, 16, 5);
10893 int size = extract32(insn, 22, 2);
10894 bool is_u = extract32(insn, 29, 1);
10895 bool is_q = extract32(insn, 30, 1);
10897 if (!fp_access_check(s)) {
10898 return;
10901 switch (size + 4 * is_u) {
10902 case 0: /* AND */
10903 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10904 return;
10905 case 1: /* BIC */
10906 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10907 return;
10908 case 2: /* ORR */
10909 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10910 return;
10911 case 3: /* ORN */
10912 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10913 return;
10914 case 4: /* EOR */
10915 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10916 return;
10918 case 5: /* BSL bitwise select */
10919 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10920 return;
10921 case 6: /* BIT, bitwise insert if true */
10922 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10923 return;
10924 case 7: /* BIF, bitwise insert if false */
10925 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10926 return;
10928 default:
10929 g_assert_not_reached();
10933 /* Pairwise op subgroup of C3.6.16.
10935 * This is called directly or via the handle_3same_float for float pairwise
10936 * operations where the opcode and size are calculated differently.
10938 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10939 int size, int rn, int rm, int rd)
10941 TCGv_ptr fpst;
10942 int pass;
10944 /* Floating point operations need fpst */
10945 if (opcode >= 0x58) {
10946 fpst = get_fpstatus_ptr(false);
10947 } else {
10948 fpst = NULL;
10951 if (!fp_access_check(s)) {
10952 return;
10955 /* These operations work on the concatenated rm:rn, with each pair of
10956 * adjacent elements being operated on to produce an element in the result.
10958 if (size == 3) {
10959 TCGv_i64 tcg_res[2];
10961 for (pass = 0; pass < 2; pass++) {
10962 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10963 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10964 int passreg = (pass == 0) ? rn : rm;
10966 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10967 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10968 tcg_res[pass] = tcg_temp_new_i64();
10970 switch (opcode) {
10971 case 0x17: /* ADDP */
10972 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10973 break;
10974 case 0x58: /* FMAXNMP */
10975 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10976 break;
10977 case 0x5a: /* FADDP */
10978 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10979 break;
10980 case 0x5e: /* FMAXP */
10981 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10982 break;
10983 case 0x78: /* FMINNMP */
10984 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10985 break;
10986 case 0x7e: /* FMINP */
10987 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10988 break;
10989 default:
10990 g_assert_not_reached();
10993 tcg_temp_free_i64(tcg_op1);
10994 tcg_temp_free_i64(tcg_op2);
10997 for (pass = 0; pass < 2; pass++) {
10998 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10999 tcg_temp_free_i64(tcg_res[pass]);
11001 } else {
11002 int maxpass = is_q ? 4 : 2;
11003 TCGv_i32 tcg_res[4];
11005 for (pass = 0; pass < maxpass; pass++) {
11006 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11007 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11008 NeonGenTwoOpFn *genfn = NULL;
11009 int passreg = pass < (maxpass / 2) ? rn : rm;
11010 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11012 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11013 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11014 tcg_res[pass] = tcg_temp_new_i32();
11016 switch (opcode) {
11017 case 0x17: /* ADDP */
11019 static NeonGenTwoOpFn * const fns[3] = {
11020 gen_helper_neon_padd_u8,
11021 gen_helper_neon_padd_u16,
11022 tcg_gen_add_i32,
11024 genfn = fns[size];
11025 break;
11027 case 0x14: /* SMAXP, UMAXP */
11029 static NeonGenTwoOpFn * const fns[3][2] = {
11030 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11031 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11032 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11034 genfn = fns[size][u];
11035 break;
11037 case 0x15: /* SMINP, UMINP */
11039 static NeonGenTwoOpFn * const fns[3][2] = {
11040 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11041 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11042 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11044 genfn = fns[size][u];
11045 break;
11047 /* The FP operations are all on single floats (32 bit) */
11048 case 0x58: /* FMAXNMP */
11049 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11050 break;
11051 case 0x5a: /* FADDP */
11052 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11053 break;
11054 case 0x5e: /* FMAXP */
11055 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11056 break;
11057 case 0x78: /* FMINNMP */
11058 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11059 break;
11060 case 0x7e: /* FMINP */
11061 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11062 break;
11063 default:
11064 g_assert_not_reached();
11067 /* FP ops called directly, otherwise call now */
11068 if (genfn) {
11069 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11072 tcg_temp_free_i32(tcg_op1);
11073 tcg_temp_free_i32(tcg_op2);
11076 for (pass = 0; pass < maxpass; pass++) {
11077 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11078 tcg_temp_free_i32(tcg_res[pass]);
11080 clear_vec_high(s, is_q, rd);
11083 if (fpst) {
11084 tcg_temp_free_ptr(fpst);
11088 /* Floating point op subgroup of C3.6.16. */
11089 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11091 /* For floating point ops, the U, size[1] and opcode bits
11092 * together indicate the operation. size[0] indicates single
11093 * or double.
11095 int fpopcode = extract32(insn, 11, 5)
11096 | (extract32(insn, 23, 1) << 5)
11097 | (extract32(insn, 29, 1) << 6);
11098 int is_q = extract32(insn, 30, 1);
11099 int size = extract32(insn, 22, 1);
11100 int rm = extract32(insn, 16, 5);
11101 int rn = extract32(insn, 5, 5);
11102 int rd = extract32(insn, 0, 5);
11104 int datasize = is_q ? 128 : 64;
11105 int esize = 32 << size;
11106 int elements = datasize / esize;
11108 if (size == 1 && !is_q) {
11109 unallocated_encoding(s);
11110 return;
11113 switch (fpopcode) {
11114 case 0x58: /* FMAXNMP */
11115 case 0x5a: /* FADDP */
11116 case 0x5e: /* FMAXP */
11117 case 0x78: /* FMINNMP */
11118 case 0x7e: /* FMINP */
11119 if (size && !is_q) {
11120 unallocated_encoding(s);
11121 return;
11123 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11124 rn, rm, rd);
11125 return;
11126 case 0x1b: /* FMULX */
11127 case 0x1f: /* FRECPS */
11128 case 0x3f: /* FRSQRTS */
11129 case 0x5d: /* FACGE */
11130 case 0x7d: /* FACGT */
11131 case 0x19: /* FMLA */
11132 case 0x39: /* FMLS */
11133 case 0x18: /* FMAXNM */
11134 case 0x1a: /* FADD */
11135 case 0x1c: /* FCMEQ */
11136 case 0x1e: /* FMAX */
11137 case 0x38: /* FMINNM */
11138 case 0x3a: /* FSUB */
11139 case 0x3e: /* FMIN */
11140 case 0x5b: /* FMUL */
11141 case 0x5c: /* FCMGE */
11142 case 0x5f: /* FDIV */
11143 case 0x7a: /* FABD */
11144 case 0x7c: /* FCMGT */
11145 if (!fp_access_check(s)) {
11146 return;
11148 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11149 return;
11151 case 0x1d: /* FMLAL */
11152 case 0x3d: /* FMLSL */
11153 case 0x59: /* FMLAL2 */
11154 case 0x79: /* FMLSL2 */
11155 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11156 unallocated_encoding(s);
11157 return;
11159 if (fp_access_check(s)) {
11160 int is_s = extract32(insn, 23, 1);
11161 int is_2 = extract32(insn, 29, 1);
11162 int data = (is_2 << 1) | is_s;
11163 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11164 vec_full_reg_offset(s, rn),
11165 vec_full_reg_offset(s, rm), cpu_env,
11166 is_q ? 16 : 8, vec_full_reg_size(s),
11167 data, gen_helper_gvec_fmlal_a64);
11169 return;
11171 default:
11172 unallocated_encoding(s);
11173 return;
11177 /* Integer op subgroup of C3.6.16. */
11178 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11180 int is_q = extract32(insn, 30, 1);
11181 int u = extract32(insn, 29, 1);
11182 int size = extract32(insn, 22, 2);
11183 int opcode = extract32(insn, 11, 5);
11184 int rm = extract32(insn, 16, 5);
11185 int rn = extract32(insn, 5, 5);
11186 int rd = extract32(insn, 0, 5);
11187 int pass;
11188 TCGCond cond;
11190 switch (opcode) {
11191 case 0x13: /* MUL, PMUL */
11192 if (u && size != 0) {
11193 unallocated_encoding(s);
11194 return;
11196 /* fall through */
11197 case 0x0: /* SHADD, UHADD */
11198 case 0x2: /* SRHADD, URHADD */
11199 case 0x4: /* SHSUB, UHSUB */
11200 case 0xc: /* SMAX, UMAX */
11201 case 0xd: /* SMIN, UMIN */
11202 case 0xe: /* SABD, UABD */
11203 case 0xf: /* SABA, UABA */
11204 case 0x12: /* MLA, MLS */
11205 if (size == 3) {
11206 unallocated_encoding(s);
11207 return;
11209 break;
11210 case 0x16: /* SQDMULH, SQRDMULH */
11211 if (size == 0 || size == 3) {
11212 unallocated_encoding(s);
11213 return;
11215 break;
11216 default:
11217 if (size == 3 && !is_q) {
11218 unallocated_encoding(s);
11219 return;
11221 break;
11224 if (!fp_access_check(s)) {
11225 return;
11228 switch (opcode) {
11229 case 0x01: /* SQADD, UQADD */
11230 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11231 offsetof(CPUARMState, vfp.qc),
11232 vec_full_reg_offset(s, rn),
11233 vec_full_reg_offset(s, rm),
11234 is_q ? 16 : 8, vec_full_reg_size(s),
11235 (u ? uqadd_op : sqadd_op) + size);
11236 return;
11237 case 0x05: /* SQSUB, UQSUB */
11238 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11239 offsetof(CPUARMState, vfp.qc),
11240 vec_full_reg_offset(s, rn),
11241 vec_full_reg_offset(s, rm),
11242 is_q ? 16 : 8, vec_full_reg_size(s),
11243 (u ? uqsub_op : sqsub_op) + size);
11244 return;
11245 case 0x0c: /* SMAX, UMAX */
11246 if (u) {
11247 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11248 } else {
11249 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11251 return;
11252 case 0x0d: /* SMIN, UMIN */
11253 if (u) {
11254 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11255 } else {
11256 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11258 return;
11259 case 0x10: /* ADD, SUB */
11260 if (u) {
11261 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11262 } else {
11263 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11265 return;
11266 case 0x13: /* MUL, PMUL */
11267 if (!u) { /* MUL */
11268 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11269 return;
11271 break;
11272 case 0x12: /* MLA, MLS */
11273 if (u) {
11274 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
11275 } else {
11276 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
11278 return;
11279 case 0x11:
11280 if (!u) { /* CMTST */
11281 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
11282 return;
11284 /* else CMEQ */
11285 cond = TCG_COND_EQ;
11286 goto do_gvec_cmp;
11287 case 0x06: /* CMGT, CMHI */
11288 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11289 goto do_gvec_cmp;
11290 case 0x07: /* CMGE, CMHS */
11291 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11292 do_gvec_cmp:
11293 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11294 vec_full_reg_offset(s, rn),
11295 vec_full_reg_offset(s, rm),
11296 is_q ? 16 : 8, vec_full_reg_size(s));
11297 return;
11300 if (size == 3) {
11301 assert(is_q);
11302 for (pass = 0; pass < 2; pass++) {
11303 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11304 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11305 TCGv_i64 tcg_res = tcg_temp_new_i64();
11307 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11308 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11310 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11312 write_vec_element(s, tcg_res, rd, pass, MO_64);
11314 tcg_temp_free_i64(tcg_res);
11315 tcg_temp_free_i64(tcg_op1);
11316 tcg_temp_free_i64(tcg_op2);
11318 } else {
11319 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11320 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11321 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11322 TCGv_i32 tcg_res = tcg_temp_new_i32();
11323 NeonGenTwoOpFn *genfn = NULL;
11324 NeonGenTwoOpEnvFn *genenvfn = NULL;
11326 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11327 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11329 switch (opcode) {
11330 case 0x0: /* SHADD, UHADD */
11332 static NeonGenTwoOpFn * const fns[3][2] = {
11333 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11334 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11335 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11337 genfn = fns[size][u];
11338 break;
11340 case 0x2: /* SRHADD, URHADD */
11342 static NeonGenTwoOpFn * const fns[3][2] = {
11343 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11344 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11345 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11347 genfn = fns[size][u];
11348 break;
11350 case 0x4: /* SHSUB, UHSUB */
11352 static NeonGenTwoOpFn * const fns[3][2] = {
11353 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11354 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11355 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11357 genfn = fns[size][u];
11358 break;
11360 case 0x8: /* SSHL, USHL */
11362 static NeonGenTwoOpFn * const fns[3][2] = {
11363 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
11364 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
11365 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
11367 genfn = fns[size][u];
11368 break;
11370 case 0x9: /* SQSHL, UQSHL */
11372 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11373 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11374 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11375 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11377 genenvfn = fns[size][u];
11378 break;
11380 case 0xa: /* SRSHL, URSHL */
11382 static NeonGenTwoOpFn * const fns[3][2] = {
11383 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11384 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11385 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11387 genfn = fns[size][u];
11388 break;
11390 case 0xb: /* SQRSHL, UQRSHL */
11392 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11393 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11394 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11395 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11397 genenvfn = fns[size][u];
11398 break;
11400 case 0xe: /* SABD, UABD */
11401 case 0xf: /* SABA, UABA */
11403 static NeonGenTwoOpFn * const fns[3][2] = {
11404 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11405 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11406 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11408 genfn = fns[size][u];
11409 break;
11411 case 0x13: /* MUL, PMUL */
11412 assert(u); /* PMUL */
11413 assert(size == 0);
11414 genfn = gen_helper_neon_mul_p8;
11415 break;
11416 case 0x16: /* SQDMULH, SQRDMULH */
11418 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11419 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11420 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11422 assert(size == 1 || size == 2);
11423 genenvfn = fns[size - 1][u];
11424 break;
11426 default:
11427 g_assert_not_reached();
11430 if (genenvfn) {
11431 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11432 } else {
11433 genfn(tcg_res, tcg_op1, tcg_op2);
11436 if (opcode == 0xf) {
11437 /* SABA, UABA: accumulating ops */
11438 static NeonGenTwoOpFn * const fns[3] = {
11439 gen_helper_neon_add_u8,
11440 gen_helper_neon_add_u16,
11441 tcg_gen_add_i32,
11444 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11445 fns[size](tcg_res, tcg_op1, tcg_res);
11448 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11450 tcg_temp_free_i32(tcg_res);
11451 tcg_temp_free_i32(tcg_op1);
11452 tcg_temp_free_i32(tcg_op2);
11455 clear_vec_high(s, is_q, rd);
11458 /* AdvSIMD three same
11459 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11460 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11461 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11462 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11464 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11466 int opcode = extract32(insn, 11, 5);
11468 switch (opcode) {
11469 case 0x3: /* logic ops */
11470 disas_simd_3same_logic(s, insn);
11471 break;
11472 case 0x17: /* ADDP */
11473 case 0x14: /* SMAXP, UMAXP */
11474 case 0x15: /* SMINP, UMINP */
11476 /* Pairwise operations */
11477 int is_q = extract32(insn, 30, 1);
11478 int u = extract32(insn, 29, 1);
11479 int size = extract32(insn, 22, 2);
11480 int rm = extract32(insn, 16, 5);
11481 int rn = extract32(insn, 5, 5);
11482 int rd = extract32(insn, 0, 5);
11483 if (opcode == 0x17) {
11484 if (u || (size == 3 && !is_q)) {
11485 unallocated_encoding(s);
11486 return;
11488 } else {
11489 if (size == 3) {
11490 unallocated_encoding(s);
11491 return;
11494 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11495 break;
11497 case 0x18 ... 0x31:
11498 /* floating point ops, sz[1] and U are part of opcode */
11499 disas_simd_3same_float(s, insn);
11500 break;
11501 default:
11502 disas_simd_3same_int(s, insn);
11503 break;
11508 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11510 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11511 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11512 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11513 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11515 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11516 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11519 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11521 int opcode, fpopcode;
11522 int is_q, u, a, rm, rn, rd;
11523 int datasize, elements;
11524 int pass;
11525 TCGv_ptr fpst;
11526 bool pairwise = false;
11528 if (!dc_isar_feature(aa64_fp16, s)) {
11529 unallocated_encoding(s);
11530 return;
11533 if (!fp_access_check(s)) {
11534 return;
11537 /* For these floating point ops, the U, a and opcode bits
11538 * together indicate the operation.
11540 opcode = extract32(insn, 11, 3);
11541 u = extract32(insn, 29, 1);
11542 a = extract32(insn, 23, 1);
11543 is_q = extract32(insn, 30, 1);
11544 rm = extract32(insn, 16, 5);
11545 rn = extract32(insn, 5, 5);
11546 rd = extract32(insn, 0, 5);
11548 fpopcode = opcode | (a << 3) | (u << 4);
11549 datasize = is_q ? 128 : 64;
11550 elements = datasize / 16;
11552 switch (fpopcode) {
11553 case 0x10: /* FMAXNMP */
11554 case 0x12: /* FADDP */
11555 case 0x16: /* FMAXP */
11556 case 0x18: /* FMINNMP */
11557 case 0x1e: /* FMINP */
11558 pairwise = true;
11559 break;
11562 fpst = get_fpstatus_ptr(true);
11564 if (pairwise) {
11565 int maxpass = is_q ? 8 : 4;
11566 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11567 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11568 TCGv_i32 tcg_res[8];
11570 for (pass = 0; pass < maxpass; pass++) {
11571 int passreg = pass < (maxpass / 2) ? rn : rm;
11572 int passelt = (pass << 1) & (maxpass - 1);
11574 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11575 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11576 tcg_res[pass] = tcg_temp_new_i32();
11578 switch (fpopcode) {
11579 case 0x10: /* FMAXNMP */
11580 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11581 fpst);
11582 break;
11583 case 0x12: /* FADDP */
11584 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11585 break;
11586 case 0x16: /* FMAXP */
11587 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11588 break;
11589 case 0x18: /* FMINNMP */
11590 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11591 fpst);
11592 break;
11593 case 0x1e: /* FMINP */
11594 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11595 break;
11596 default:
11597 g_assert_not_reached();
11601 for (pass = 0; pass < maxpass; pass++) {
11602 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11603 tcg_temp_free_i32(tcg_res[pass]);
11606 tcg_temp_free_i32(tcg_op1);
11607 tcg_temp_free_i32(tcg_op2);
11609 } else {
11610 for (pass = 0; pass < elements; pass++) {
11611 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11612 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11613 TCGv_i32 tcg_res = tcg_temp_new_i32();
11615 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11616 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11618 switch (fpopcode) {
11619 case 0x0: /* FMAXNM */
11620 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11621 break;
11622 case 0x1: /* FMLA */
11623 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11624 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11625 fpst);
11626 break;
11627 case 0x2: /* FADD */
11628 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11629 break;
11630 case 0x3: /* FMULX */
11631 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11632 break;
11633 case 0x4: /* FCMEQ */
11634 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11635 break;
11636 case 0x6: /* FMAX */
11637 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11638 break;
11639 case 0x7: /* FRECPS */
11640 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11641 break;
11642 case 0x8: /* FMINNM */
11643 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11644 break;
11645 case 0x9: /* FMLS */
11646 /* As usual for ARM, separate negation for fused multiply-add */
11647 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11648 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11649 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11650 fpst);
11651 break;
11652 case 0xa: /* FSUB */
11653 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11654 break;
11655 case 0xe: /* FMIN */
11656 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11657 break;
11658 case 0xf: /* FRSQRTS */
11659 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11660 break;
11661 case 0x13: /* FMUL */
11662 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11663 break;
11664 case 0x14: /* FCMGE */
11665 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11666 break;
11667 case 0x15: /* FACGE */
11668 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11669 break;
11670 case 0x17: /* FDIV */
11671 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11672 break;
11673 case 0x1a: /* FABD */
11674 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11675 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11676 break;
11677 case 0x1c: /* FCMGT */
11678 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11679 break;
11680 case 0x1d: /* FACGT */
11681 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11682 break;
11683 default:
11684 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11685 __func__, insn, fpopcode, s->pc);
11686 g_assert_not_reached();
11689 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11690 tcg_temp_free_i32(tcg_res);
11691 tcg_temp_free_i32(tcg_op1);
11692 tcg_temp_free_i32(tcg_op2);
11696 tcg_temp_free_ptr(fpst);
11698 clear_vec_high(s, is_q, rd);
11701 /* AdvSIMD three same extra
11702 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11703 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11704 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11705 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11707 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11709 int rd = extract32(insn, 0, 5);
11710 int rn = extract32(insn, 5, 5);
11711 int opcode = extract32(insn, 11, 4);
11712 int rm = extract32(insn, 16, 5);
11713 int size = extract32(insn, 22, 2);
11714 bool u = extract32(insn, 29, 1);
11715 bool is_q = extract32(insn, 30, 1);
11716 bool feature;
11717 int rot;
11719 switch (u * 16 + opcode) {
11720 case 0x10: /* SQRDMLAH (vector) */
11721 case 0x11: /* SQRDMLSH (vector) */
11722 if (size != 1 && size != 2) {
11723 unallocated_encoding(s);
11724 return;
11726 feature = dc_isar_feature(aa64_rdm, s);
11727 break;
11728 case 0x02: /* SDOT (vector) */
11729 case 0x12: /* UDOT (vector) */
11730 if (size != MO_32) {
11731 unallocated_encoding(s);
11732 return;
11734 feature = dc_isar_feature(aa64_dp, s);
11735 break;
11736 case 0x18: /* FCMLA, #0 */
11737 case 0x19: /* FCMLA, #90 */
11738 case 0x1a: /* FCMLA, #180 */
11739 case 0x1b: /* FCMLA, #270 */
11740 case 0x1c: /* FCADD, #90 */
11741 case 0x1e: /* FCADD, #270 */
11742 if (size == 0
11743 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11744 || (size == 3 && !is_q)) {
11745 unallocated_encoding(s);
11746 return;
11748 feature = dc_isar_feature(aa64_fcma, s);
11749 break;
11750 default:
11751 unallocated_encoding(s);
11752 return;
11754 if (!feature) {
11755 unallocated_encoding(s);
11756 return;
11758 if (!fp_access_check(s)) {
11759 return;
11762 switch (opcode) {
11763 case 0x0: /* SQRDMLAH (vector) */
11764 switch (size) {
11765 case 1:
11766 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11767 break;
11768 case 2:
11769 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11770 break;
11771 default:
11772 g_assert_not_reached();
11774 return;
11776 case 0x1: /* SQRDMLSH (vector) */
11777 switch (size) {
11778 case 1:
11779 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11780 break;
11781 case 2:
11782 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11783 break;
11784 default:
11785 g_assert_not_reached();
11787 return;
11789 case 0x2: /* SDOT / UDOT */
11790 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11791 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11792 return;
11794 case 0x8: /* FCMLA, #0 */
11795 case 0x9: /* FCMLA, #90 */
11796 case 0xa: /* FCMLA, #180 */
11797 case 0xb: /* FCMLA, #270 */
11798 rot = extract32(opcode, 0, 2);
11799 switch (size) {
11800 case 1:
11801 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11802 gen_helper_gvec_fcmlah);
11803 break;
11804 case 2:
11805 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11806 gen_helper_gvec_fcmlas);
11807 break;
11808 case 3:
11809 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11810 gen_helper_gvec_fcmlad);
11811 break;
11812 default:
11813 g_assert_not_reached();
11815 return;
11817 case 0xc: /* FCADD, #90 */
11818 case 0xe: /* FCADD, #270 */
11819 rot = extract32(opcode, 1, 1);
11820 switch (size) {
11821 case 1:
11822 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11823 gen_helper_gvec_fcaddh);
11824 break;
11825 case 2:
11826 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11827 gen_helper_gvec_fcadds);
11828 break;
11829 case 3:
11830 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11831 gen_helper_gvec_fcaddd);
11832 break;
11833 default:
11834 g_assert_not_reached();
11836 return;
11838 default:
11839 g_assert_not_reached();
11843 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11844 int size, int rn, int rd)
11846 /* Handle 2-reg-misc ops which are widening (so each size element
11847 * in the source becomes a 2*size element in the destination.
11848 * The only instruction like this is FCVTL.
11850 int pass;
11852 if (size == 3) {
11853 /* 32 -> 64 bit fp conversion */
11854 TCGv_i64 tcg_res[2];
11855 int srcelt = is_q ? 2 : 0;
11857 for (pass = 0; pass < 2; pass++) {
11858 TCGv_i32 tcg_op = tcg_temp_new_i32();
11859 tcg_res[pass] = tcg_temp_new_i64();
11861 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11862 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11863 tcg_temp_free_i32(tcg_op);
11865 for (pass = 0; pass < 2; pass++) {
11866 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11867 tcg_temp_free_i64(tcg_res[pass]);
11869 } else {
11870 /* 16 -> 32 bit fp conversion */
11871 int srcelt = is_q ? 4 : 0;
11872 TCGv_i32 tcg_res[4];
11873 TCGv_ptr fpst = get_fpstatus_ptr(false);
11874 TCGv_i32 ahp = get_ahp_flag();
11876 for (pass = 0; pass < 4; pass++) {
11877 tcg_res[pass] = tcg_temp_new_i32();
11879 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11880 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11881 fpst, ahp);
11883 for (pass = 0; pass < 4; pass++) {
11884 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11885 tcg_temp_free_i32(tcg_res[pass]);
11888 tcg_temp_free_ptr(fpst);
11889 tcg_temp_free_i32(ahp);
11893 static void handle_rev(DisasContext *s, int opcode, bool u,
11894 bool is_q, int size, int rn, int rd)
11896 int op = (opcode << 1) | u;
11897 int opsz = op + size;
11898 int grp_size = 3 - opsz;
11899 int dsize = is_q ? 128 : 64;
11900 int i;
11902 if (opsz >= 3) {
11903 unallocated_encoding(s);
11904 return;
11907 if (!fp_access_check(s)) {
11908 return;
11911 if (size == 0) {
11912 /* Special case bytes, use bswap op on each group of elements */
11913 int groups = dsize / (8 << grp_size);
11915 for (i = 0; i < groups; i++) {
11916 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11918 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11919 switch (grp_size) {
11920 case MO_16:
11921 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11922 break;
11923 case MO_32:
11924 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11925 break;
11926 case MO_64:
11927 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11928 break;
11929 default:
11930 g_assert_not_reached();
11932 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11933 tcg_temp_free_i64(tcg_tmp);
11935 clear_vec_high(s, is_q, rd);
11936 } else {
11937 int revmask = (1 << grp_size) - 1;
11938 int esize = 8 << size;
11939 int elements = dsize / esize;
11940 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11941 TCGv_i64 tcg_rd = tcg_const_i64(0);
11942 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11944 for (i = 0; i < elements; i++) {
11945 int e_rev = (i & 0xf) ^ revmask;
11946 int off = e_rev * esize;
11947 read_vec_element(s, tcg_rn, rn, i, size);
11948 if (off >= 64) {
11949 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11950 tcg_rn, off - 64, esize);
11951 } else {
11952 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11955 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11956 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11958 tcg_temp_free_i64(tcg_rd_hi);
11959 tcg_temp_free_i64(tcg_rd);
11960 tcg_temp_free_i64(tcg_rn);
11964 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11965 bool is_q, int size, int rn, int rd)
11967 /* Implement the pairwise operations from 2-misc:
11968 * SADDLP, UADDLP, SADALP, UADALP.
11969 * These all add pairs of elements in the input to produce a
11970 * double-width result element in the output (possibly accumulating).
11972 bool accum = (opcode == 0x6);
11973 int maxpass = is_q ? 2 : 1;
11974 int pass;
11975 TCGv_i64 tcg_res[2];
11977 if (size == 2) {
11978 /* 32 + 32 -> 64 op */
11979 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11981 for (pass = 0; pass < maxpass; pass++) {
11982 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11983 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11985 tcg_res[pass] = tcg_temp_new_i64();
11987 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11988 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11989 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11990 if (accum) {
11991 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11992 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11995 tcg_temp_free_i64(tcg_op1);
11996 tcg_temp_free_i64(tcg_op2);
11998 } else {
11999 for (pass = 0; pass < maxpass; pass++) {
12000 TCGv_i64 tcg_op = tcg_temp_new_i64();
12001 NeonGenOneOpFn *genfn;
12002 static NeonGenOneOpFn * const fns[2][2] = {
12003 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12004 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12007 genfn = fns[size][u];
12009 tcg_res[pass] = tcg_temp_new_i64();
12011 read_vec_element(s, tcg_op, rn, pass, MO_64);
12012 genfn(tcg_res[pass], tcg_op);
12014 if (accum) {
12015 read_vec_element(s, tcg_op, rd, pass, MO_64);
12016 if (size == 0) {
12017 gen_helper_neon_addl_u16(tcg_res[pass],
12018 tcg_res[pass], tcg_op);
12019 } else {
12020 gen_helper_neon_addl_u32(tcg_res[pass],
12021 tcg_res[pass], tcg_op);
12024 tcg_temp_free_i64(tcg_op);
12027 if (!is_q) {
12028 tcg_res[1] = tcg_const_i64(0);
12030 for (pass = 0; pass < 2; pass++) {
12031 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12032 tcg_temp_free_i64(tcg_res[pass]);
12036 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12038 /* Implement SHLL and SHLL2 */
12039 int pass;
12040 int part = is_q ? 2 : 0;
12041 TCGv_i64 tcg_res[2];
12043 for (pass = 0; pass < 2; pass++) {
12044 static NeonGenWidenFn * const widenfns[3] = {
12045 gen_helper_neon_widen_u8,
12046 gen_helper_neon_widen_u16,
12047 tcg_gen_extu_i32_i64,
12049 NeonGenWidenFn *widenfn = widenfns[size];
12050 TCGv_i32 tcg_op = tcg_temp_new_i32();
12052 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12053 tcg_res[pass] = tcg_temp_new_i64();
12054 widenfn(tcg_res[pass], tcg_op);
12055 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12057 tcg_temp_free_i32(tcg_op);
12060 for (pass = 0; pass < 2; pass++) {
12061 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12062 tcg_temp_free_i64(tcg_res[pass]);
12066 /* AdvSIMD two reg misc
12067 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12068 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12069 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12070 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12072 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12074 int size = extract32(insn, 22, 2);
12075 int opcode = extract32(insn, 12, 5);
12076 bool u = extract32(insn, 29, 1);
12077 bool is_q = extract32(insn, 30, 1);
12078 int rn = extract32(insn, 5, 5);
12079 int rd = extract32(insn, 0, 5);
12080 bool need_fpstatus = false;
12081 bool need_rmode = false;
12082 int rmode = -1;
12083 TCGv_i32 tcg_rmode;
12084 TCGv_ptr tcg_fpstatus;
12086 switch (opcode) {
12087 case 0x0: /* REV64, REV32 */
12088 case 0x1: /* REV16 */
12089 handle_rev(s, opcode, u, is_q, size, rn, rd);
12090 return;
12091 case 0x5: /* CNT, NOT, RBIT */
12092 if (u && size == 0) {
12093 /* NOT */
12094 break;
12095 } else if (u && size == 1) {
12096 /* RBIT */
12097 break;
12098 } else if (!u && size == 0) {
12099 /* CNT */
12100 break;
12102 unallocated_encoding(s);
12103 return;
12104 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12105 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12106 if (size == 3) {
12107 unallocated_encoding(s);
12108 return;
12110 if (!fp_access_check(s)) {
12111 return;
12114 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12115 return;
12116 case 0x4: /* CLS, CLZ */
12117 if (size == 3) {
12118 unallocated_encoding(s);
12119 return;
12121 break;
12122 case 0x2: /* SADDLP, UADDLP */
12123 case 0x6: /* SADALP, UADALP */
12124 if (size == 3) {
12125 unallocated_encoding(s);
12126 return;
12128 if (!fp_access_check(s)) {
12129 return;
12131 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12132 return;
12133 case 0x13: /* SHLL, SHLL2 */
12134 if (u == 0 || size == 3) {
12135 unallocated_encoding(s);
12136 return;
12138 if (!fp_access_check(s)) {
12139 return;
12141 handle_shll(s, is_q, size, rn, rd);
12142 return;
12143 case 0xa: /* CMLT */
12144 if (u == 1) {
12145 unallocated_encoding(s);
12146 return;
12148 /* fall through */
12149 case 0x8: /* CMGT, CMGE */
12150 case 0x9: /* CMEQ, CMLE */
12151 case 0xb: /* ABS, NEG */
12152 if (size == 3 && !is_q) {
12153 unallocated_encoding(s);
12154 return;
12156 break;
12157 case 0x3: /* SUQADD, USQADD */
12158 if (size == 3 && !is_q) {
12159 unallocated_encoding(s);
12160 return;
12162 if (!fp_access_check(s)) {
12163 return;
12165 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12166 return;
12167 case 0x7: /* SQABS, SQNEG */
12168 if (size == 3 && !is_q) {
12169 unallocated_encoding(s);
12170 return;
12172 break;
12173 case 0xc ... 0xf:
12174 case 0x16 ... 0x1f:
12176 /* Floating point: U, size[1] and opcode indicate operation;
12177 * size[0] indicates single or double precision.
12179 int is_double = extract32(size, 0, 1);
12180 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12181 size = is_double ? 3 : 2;
12182 switch (opcode) {
12183 case 0x2f: /* FABS */
12184 case 0x6f: /* FNEG */
12185 if (size == 3 && !is_q) {
12186 unallocated_encoding(s);
12187 return;
12189 break;
12190 case 0x1d: /* SCVTF */
12191 case 0x5d: /* UCVTF */
12193 bool is_signed = (opcode == 0x1d) ? true : false;
12194 int elements = is_double ? 2 : is_q ? 4 : 2;
12195 if (is_double && !is_q) {
12196 unallocated_encoding(s);
12197 return;
12199 if (!fp_access_check(s)) {
12200 return;
12202 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12203 return;
12205 case 0x2c: /* FCMGT (zero) */
12206 case 0x2d: /* FCMEQ (zero) */
12207 case 0x2e: /* FCMLT (zero) */
12208 case 0x6c: /* FCMGE (zero) */
12209 case 0x6d: /* FCMLE (zero) */
12210 if (size == 3 && !is_q) {
12211 unallocated_encoding(s);
12212 return;
12214 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12215 return;
12216 case 0x7f: /* FSQRT */
12217 if (size == 3 && !is_q) {
12218 unallocated_encoding(s);
12219 return;
12221 break;
12222 case 0x1a: /* FCVTNS */
12223 case 0x1b: /* FCVTMS */
12224 case 0x3a: /* FCVTPS */
12225 case 0x3b: /* FCVTZS */
12226 case 0x5a: /* FCVTNU */
12227 case 0x5b: /* FCVTMU */
12228 case 0x7a: /* FCVTPU */
12229 case 0x7b: /* FCVTZU */
12230 need_fpstatus = true;
12231 need_rmode = true;
12232 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12233 if (size == 3 && !is_q) {
12234 unallocated_encoding(s);
12235 return;
12237 break;
12238 case 0x5c: /* FCVTAU */
12239 case 0x1c: /* FCVTAS */
12240 need_fpstatus = true;
12241 need_rmode = true;
12242 rmode = FPROUNDING_TIEAWAY;
12243 if (size == 3 && !is_q) {
12244 unallocated_encoding(s);
12245 return;
12247 break;
12248 case 0x3c: /* URECPE */
12249 if (size == 3) {
12250 unallocated_encoding(s);
12251 return;
12253 /* fall through */
12254 case 0x3d: /* FRECPE */
12255 case 0x7d: /* FRSQRTE */
12256 if (size == 3 && !is_q) {
12257 unallocated_encoding(s);
12258 return;
12260 if (!fp_access_check(s)) {
12261 return;
12263 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12264 return;
12265 case 0x56: /* FCVTXN, FCVTXN2 */
12266 if (size == 2) {
12267 unallocated_encoding(s);
12268 return;
12270 /* fall through */
12271 case 0x16: /* FCVTN, FCVTN2 */
12272 /* handle_2misc_narrow does a 2*size -> size operation, but these
12273 * instructions encode the source size rather than dest size.
12275 if (!fp_access_check(s)) {
12276 return;
12278 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12279 return;
12280 case 0x17: /* FCVTL, FCVTL2 */
12281 if (!fp_access_check(s)) {
12282 return;
12284 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12285 return;
12286 case 0x18: /* FRINTN */
12287 case 0x19: /* FRINTM */
12288 case 0x38: /* FRINTP */
12289 case 0x39: /* FRINTZ */
12290 need_rmode = true;
12291 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12292 /* fall through */
12293 case 0x59: /* FRINTX */
12294 case 0x79: /* FRINTI */
12295 need_fpstatus = true;
12296 if (size == 3 && !is_q) {
12297 unallocated_encoding(s);
12298 return;
12300 break;
12301 case 0x58: /* FRINTA */
12302 need_rmode = true;
12303 rmode = FPROUNDING_TIEAWAY;
12304 need_fpstatus = true;
12305 if (size == 3 && !is_q) {
12306 unallocated_encoding(s);
12307 return;
12309 break;
12310 case 0x7c: /* URSQRTE */
12311 if (size == 3) {
12312 unallocated_encoding(s);
12313 return;
12315 need_fpstatus = true;
12316 break;
12317 case 0x1e: /* FRINT32Z */
12318 case 0x1f: /* FRINT64Z */
12319 need_rmode = true;
12320 rmode = FPROUNDING_ZERO;
12321 /* fall through */
12322 case 0x5e: /* FRINT32X */
12323 case 0x5f: /* FRINT64X */
12324 need_fpstatus = true;
12325 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12326 unallocated_encoding(s);
12327 return;
12329 break;
12330 default:
12331 unallocated_encoding(s);
12332 return;
12334 break;
12336 default:
12337 unallocated_encoding(s);
12338 return;
12341 if (!fp_access_check(s)) {
12342 return;
12345 if (need_fpstatus || need_rmode) {
12346 tcg_fpstatus = get_fpstatus_ptr(false);
12347 } else {
12348 tcg_fpstatus = NULL;
12350 if (need_rmode) {
12351 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12352 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12353 } else {
12354 tcg_rmode = NULL;
12357 switch (opcode) {
12358 case 0x5:
12359 if (u && size == 0) { /* NOT */
12360 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12361 return;
12363 break;
12364 case 0xb:
12365 if (u) { /* ABS, NEG */
12366 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12367 } else {
12368 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12370 return;
12373 if (size == 3) {
12374 /* All 64-bit element operations can be shared with scalar 2misc */
12375 int pass;
12377 /* Coverity claims (size == 3 && !is_q) has been eliminated
12378 * from all paths leading to here.
12380 tcg_debug_assert(is_q);
12381 for (pass = 0; pass < 2; pass++) {
12382 TCGv_i64 tcg_op = tcg_temp_new_i64();
12383 TCGv_i64 tcg_res = tcg_temp_new_i64();
12385 read_vec_element(s, tcg_op, rn, pass, MO_64);
12387 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12388 tcg_rmode, tcg_fpstatus);
12390 write_vec_element(s, tcg_res, rd, pass, MO_64);
12392 tcg_temp_free_i64(tcg_res);
12393 tcg_temp_free_i64(tcg_op);
12395 } else {
12396 int pass;
12398 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12399 TCGv_i32 tcg_op = tcg_temp_new_i32();
12400 TCGv_i32 tcg_res = tcg_temp_new_i32();
12401 TCGCond cond;
12403 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12405 if (size == 2) {
12406 /* Special cases for 32 bit elements */
12407 switch (opcode) {
12408 case 0xa: /* CMLT */
12409 /* 32 bit integer comparison against zero, result is
12410 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12411 * and inverting.
12413 cond = TCG_COND_LT;
12414 do_cmop:
12415 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12416 tcg_gen_neg_i32(tcg_res, tcg_res);
12417 break;
12418 case 0x8: /* CMGT, CMGE */
12419 cond = u ? TCG_COND_GE : TCG_COND_GT;
12420 goto do_cmop;
12421 case 0x9: /* CMEQ, CMLE */
12422 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12423 goto do_cmop;
12424 case 0x4: /* CLS */
12425 if (u) {
12426 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12427 } else {
12428 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12430 break;
12431 case 0x7: /* SQABS, SQNEG */
12432 if (u) {
12433 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12434 } else {
12435 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12437 break;
12438 case 0x2f: /* FABS */
12439 gen_helper_vfp_abss(tcg_res, tcg_op);
12440 break;
12441 case 0x6f: /* FNEG */
12442 gen_helper_vfp_negs(tcg_res, tcg_op);
12443 break;
12444 case 0x7f: /* FSQRT */
12445 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12446 break;
12447 case 0x1a: /* FCVTNS */
12448 case 0x1b: /* FCVTMS */
12449 case 0x1c: /* FCVTAS */
12450 case 0x3a: /* FCVTPS */
12451 case 0x3b: /* FCVTZS */
12453 TCGv_i32 tcg_shift = tcg_const_i32(0);
12454 gen_helper_vfp_tosls(tcg_res, tcg_op,
12455 tcg_shift, tcg_fpstatus);
12456 tcg_temp_free_i32(tcg_shift);
12457 break;
12459 case 0x5a: /* FCVTNU */
12460 case 0x5b: /* FCVTMU */
12461 case 0x5c: /* FCVTAU */
12462 case 0x7a: /* FCVTPU */
12463 case 0x7b: /* FCVTZU */
12465 TCGv_i32 tcg_shift = tcg_const_i32(0);
12466 gen_helper_vfp_touls(tcg_res, tcg_op,
12467 tcg_shift, tcg_fpstatus);
12468 tcg_temp_free_i32(tcg_shift);
12469 break;
12471 case 0x18: /* FRINTN */
12472 case 0x19: /* FRINTM */
12473 case 0x38: /* FRINTP */
12474 case 0x39: /* FRINTZ */
12475 case 0x58: /* FRINTA */
12476 case 0x79: /* FRINTI */
12477 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12478 break;
12479 case 0x59: /* FRINTX */
12480 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12481 break;
12482 case 0x7c: /* URSQRTE */
12483 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12484 break;
12485 case 0x1e: /* FRINT32Z */
12486 case 0x5e: /* FRINT32X */
12487 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12488 break;
12489 case 0x1f: /* FRINT64Z */
12490 case 0x5f: /* FRINT64X */
12491 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12492 break;
12493 default:
12494 g_assert_not_reached();
12496 } else {
12497 /* Use helpers for 8 and 16 bit elements */
12498 switch (opcode) {
12499 case 0x5: /* CNT, RBIT */
12500 /* For these two insns size is part of the opcode specifier
12501 * (handled earlier); they always operate on byte elements.
12503 if (u) {
12504 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12505 } else {
12506 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12508 break;
12509 case 0x7: /* SQABS, SQNEG */
12511 NeonGenOneOpEnvFn *genfn;
12512 static NeonGenOneOpEnvFn * const fns[2][2] = {
12513 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12514 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12516 genfn = fns[size][u];
12517 genfn(tcg_res, cpu_env, tcg_op);
12518 break;
12520 case 0x8: /* CMGT, CMGE */
12521 case 0x9: /* CMEQ, CMLE */
12522 case 0xa: /* CMLT */
12524 static NeonGenTwoOpFn * const fns[3][2] = {
12525 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12526 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12527 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12529 NeonGenTwoOpFn *genfn;
12530 int comp;
12531 bool reverse;
12532 TCGv_i32 tcg_zero = tcg_const_i32(0);
12534 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12535 comp = (opcode - 0x8) * 2 + u;
12536 /* ...but LE, LT are implemented as reverse GE, GT */
12537 reverse = (comp > 2);
12538 if (reverse) {
12539 comp = 4 - comp;
12541 genfn = fns[comp][size];
12542 if (reverse) {
12543 genfn(tcg_res, tcg_zero, tcg_op);
12544 } else {
12545 genfn(tcg_res, tcg_op, tcg_zero);
12547 tcg_temp_free_i32(tcg_zero);
12548 break;
12550 case 0x4: /* CLS, CLZ */
12551 if (u) {
12552 if (size == 0) {
12553 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12554 } else {
12555 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12557 } else {
12558 if (size == 0) {
12559 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12560 } else {
12561 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12564 break;
12565 default:
12566 g_assert_not_reached();
12570 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12572 tcg_temp_free_i32(tcg_res);
12573 tcg_temp_free_i32(tcg_op);
12576 clear_vec_high(s, is_q, rd);
12578 if (need_rmode) {
12579 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12580 tcg_temp_free_i32(tcg_rmode);
12582 if (need_fpstatus) {
12583 tcg_temp_free_ptr(tcg_fpstatus);
12587 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12589 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12590 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12591 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12592 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12593 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12594 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12596 * This actually covers two groups where scalar access is governed by
12597 * bit 28. A bunch of the instructions (float to integral) only exist
12598 * in the vector form and are un-allocated for the scalar decode. Also
12599 * in the scalar decode Q is always 1.
12601 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12603 int fpop, opcode, a, u;
12604 int rn, rd;
12605 bool is_q;
12606 bool is_scalar;
12607 bool only_in_vector = false;
12609 int pass;
12610 TCGv_i32 tcg_rmode = NULL;
12611 TCGv_ptr tcg_fpstatus = NULL;
12612 bool need_rmode = false;
12613 bool need_fpst = true;
12614 int rmode;
12616 if (!dc_isar_feature(aa64_fp16, s)) {
12617 unallocated_encoding(s);
12618 return;
12621 rd = extract32(insn, 0, 5);
12622 rn = extract32(insn, 5, 5);
12624 a = extract32(insn, 23, 1);
12625 u = extract32(insn, 29, 1);
12626 is_scalar = extract32(insn, 28, 1);
12627 is_q = extract32(insn, 30, 1);
12629 opcode = extract32(insn, 12, 5);
12630 fpop = deposit32(opcode, 5, 1, a);
12631 fpop = deposit32(fpop, 6, 1, u);
12633 rd = extract32(insn, 0, 5);
12634 rn = extract32(insn, 5, 5);
12636 switch (fpop) {
12637 case 0x1d: /* SCVTF */
12638 case 0x5d: /* UCVTF */
12640 int elements;
12642 if (is_scalar) {
12643 elements = 1;
12644 } else {
12645 elements = (is_q ? 8 : 4);
12648 if (!fp_access_check(s)) {
12649 return;
12651 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12652 return;
12654 break;
12655 case 0x2c: /* FCMGT (zero) */
12656 case 0x2d: /* FCMEQ (zero) */
12657 case 0x2e: /* FCMLT (zero) */
12658 case 0x6c: /* FCMGE (zero) */
12659 case 0x6d: /* FCMLE (zero) */
12660 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12661 return;
12662 case 0x3d: /* FRECPE */
12663 case 0x3f: /* FRECPX */
12664 break;
12665 case 0x18: /* FRINTN */
12666 need_rmode = true;
12667 only_in_vector = true;
12668 rmode = FPROUNDING_TIEEVEN;
12669 break;
12670 case 0x19: /* FRINTM */
12671 need_rmode = true;
12672 only_in_vector = true;
12673 rmode = FPROUNDING_NEGINF;
12674 break;
12675 case 0x38: /* FRINTP */
12676 need_rmode = true;
12677 only_in_vector = true;
12678 rmode = FPROUNDING_POSINF;
12679 break;
12680 case 0x39: /* FRINTZ */
12681 need_rmode = true;
12682 only_in_vector = true;
12683 rmode = FPROUNDING_ZERO;
12684 break;
12685 case 0x58: /* FRINTA */
12686 need_rmode = true;
12687 only_in_vector = true;
12688 rmode = FPROUNDING_TIEAWAY;
12689 break;
12690 case 0x59: /* FRINTX */
12691 case 0x79: /* FRINTI */
12692 only_in_vector = true;
12693 /* current rounding mode */
12694 break;
12695 case 0x1a: /* FCVTNS */
12696 need_rmode = true;
12697 rmode = FPROUNDING_TIEEVEN;
12698 break;
12699 case 0x1b: /* FCVTMS */
12700 need_rmode = true;
12701 rmode = FPROUNDING_NEGINF;
12702 break;
12703 case 0x1c: /* FCVTAS */
12704 need_rmode = true;
12705 rmode = FPROUNDING_TIEAWAY;
12706 break;
12707 case 0x3a: /* FCVTPS */
12708 need_rmode = true;
12709 rmode = FPROUNDING_POSINF;
12710 break;
12711 case 0x3b: /* FCVTZS */
12712 need_rmode = true;
12713 rmode = FPROUNDING_ZERO;
12714 break;
12715 case 0x5a: /* FCVTNU */
12716 need_rmode = true;
12717 rmode = FPROUNDING_TIEEVEN;
12718 break;
12719 case 0x5b: /* FCVTMU */
12720 need_rmode = true;
12721 rmode = FPROUNDING_NEGINF;
12722 break;
12723 case 0x5c: /* FCVTAU */
12724 need_rmode = true;
12725 rmode = FPROUNDING_TIEAWAY;
12726 break;
12727 case 0x7a: /* FCVTPU */
12728 need_rmode = true;
12729 rmode = FPROUNDING_POSINF;
12730 break;
12731 case 0x7b: /* FCVTZU */
12732 need_rmode = true;
12733 rmode = FPROUNDING_ZERO;
12734 break;
12735 case 0x2f: /* FABS */
12736 case 0x6f: /* FNEG */
12737 need_fpst = false;
12738 break;
12739 case 0x7d: /* FRSQRTE */
12740 case 0x7f: /* FSQRT (vector) */
12741 break;
12742 default:
12743 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12744 g_assert_not_reached();
12748 /* Check additional constraints for the scalar encoding */
12749 if (is_scalar) {
12750 if (!is_q) {
12751 unallocated_encoding(s);
12752 return;
12754 /* FRINTxx is only in the vector form */
12755 if (only_in_vector) {
12756 unallocated_encoding(s);
12757 return;
12761 if (!fp_access_check(s)) {
12762 return;
12765 if (need_rmode || need_fpst) {
12766 tcg_fpstatus = get_fpstatus_ptr(true);
12769 if (need_rmode) {
12770 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12771 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12774 if (is_scalar) {
12775 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12776 TCGv_i32 tcg_res = tcg_temp_new_i32();
12778 switch (fpop) {
12779 case 0x1a: /* FCVTNS */
12780 case 0x1b: /* FCVTMS */
12781 case 0x1c: /* FCVTAS */
12782 case 0x3a: /* FCVTPS */
12783 case 0x3b: /* FCVTZS */
12784 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12785 break;
12786 case 0x3d: /* FRECPE */
12787 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12788 break;
12789 case 0x3f: /* FRECPX */
12790 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12791 break;
12792 case 0x5a: /* FCVTNU */
12793 case 0x5b: /* FCVTMU */
12794 case 0x5c: /* FCVTAU */
12795 case 0x7a: /* FCVTPU */
12796 case 0x7b: /* FCVTZU */
12797 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12798 break;
12799 case 0x6f: /* FNEG */
12800 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12801 break;
12802 case 0x7d: /* FRSQRTE */
12803 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12804 break;
12805 default:
12806 g_assert_not_reached();
12809 /* limit any sign extension going on */
12810 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12811 write_fp_sreg(s, rd, tcg_res);
12813 tcg_temp_free_i32(tcg_res);
12814 tcg_temp_free_i32(tcg_op);
12815 } else {
12816 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12817 TCGv_i32 tcg_op = tcg_temp_new_i32();
12818 TCGv_i32 tcg_res = tcg_temp_new_i32();
12820 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12822 switch (fpop) {
12823 case 0x1a: /* FCVTNS */
12824 case 0x1b: /* FCVTMS */
12825 case 0x1c: /* FCVTAS */
12826 case 0x3a: /* FCVTPS */
12827 case 0x3b: /* FCVTZS */
12828 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12829 break;
12830 case 0x3d: /* FRECPE */
12831 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12832 break;
12833 case 0x5a: /* FCVTNU */
12834 case 0x5b: /* FCVTMU */
12835 case 0x5c: /* FCVTAU */
12836 case 0x7a: /* FCVTPU */
12837 case 0x7b: /* FCVTZU */
12838 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12839 break;
12840 case 0x18: /* FRINTN */
12841 case 0x19: /* FRINTM */
12842 case 0x38: /* FRINTP */
12843 case 0x39: /* FRINTZ */
12844 case 0x58: /* FRINTA */
12845 case 0x79: /* FRINTI */
12846 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12847 break;
12848 case 0x59: /* FRINTX */
12849 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12850 break;
12851 case 0x2f: /* FABS */
12852 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12853 break;
12854 case 0x6f: /* FNEG */
12855 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12856 break;
12857 case 0x7d: /* FRSQRTE */
12858 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12859 break;
12860 case 0x7f: /* FSQRT */
12861 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12862 break;
12863 default:
12864 g_assert_not_reached();
12867 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12869 tcg_temp_free_i32(tcg_res);
12870 tcg_temp_free_i32(tcg_op);
12873 clear_vec_high(s, is_q, rd);
12876 if (tcg_rmode) {
12877 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12878 tcg_temp_free_i32(tcg_rmode);
12881 if (tcg_fpstatus) {
12882 tcg_temp_free_ptr(tcg_fpstatus);
12886 /* AdvSIMD scalar x indexed element
12887 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12888 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12889 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12890 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12891 * AdvSIMD vector x indexed element
12892 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12893 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12894 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12895 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12897 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12899 /* This encoding has two kinds of instruction:
12900 * normal, where we perform elt x idxelt => elt for each
12901 * element in the vector
12902 * long, where we perform elt x idxelt and generate a result of
12903 * double the width of the input element
12904 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12906 bool is_scalar = extract32(insn, 28, 1);
12907 bool is_q = extract32(insn, 30, 1);
12908 bool u = extract32(insn, 29, 1);
12909 int size = extract32(insn, 22, 2);
12910 int l = extract32(insn, 21, 1);
12911 int m = extract32(insn, 20, 1);
12912 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12913 int rm = extract32(insn, 16, 4);
12914 int opcode = extract32(insn, 12, 4);
12915 int h = extract32(insn, 11, 1);
12916 int rn = extract32(insn, 5, 5);
12917 int rd = extract32(insn, 0, 5);
12918 bool is_long = false;
12919 int is_fp = 0;
12920 bool is_fp16 = false;
12921 int index;
12922 TCGv_ptr fpst;
12924 switch (16 * u + opcode) {
12925 case 0x08: /* MUL */
12926 case 0x10: /* MLA */
12927 case 0x14: /* MLS */
12928 if (is_scalar) {
12929 unallocated_encoding(s);
12930 return;
12932 break;
12933 case 0x02: /* SMLAL, SMLAL2 */
12934 case 0x12: /* UMLAL, UMLAL2 */
12935 case 0x06: /* SMLSL, SMLSL2 */
12936 case 0x16: /* UMLSL, UMLSL2 */
12937 case 0x0a: /* SMULL, SMULL2 */
12938 case 0x1a: /* UMULL, UMULL2 */
12939 if (is_scalar) {
12940 unallocated_encoding(s);
12941 return;
12943 is_long = true;
12944 break;
12945 case 0x03: /* SQDMLAL, SQDMLAL2 */
12946 case 0x07: /* SQDMLSL, SQDMLSL2 */
12947 case 0x0b: /* SQDMULL, SQDMULL2 */
12948 is_long = true;
12949 break;
12950 case 0x0c: /* SQDMULH */
12951 case 0x0d: /* SQRDMULH */
12952 break;
12953 case 0x01: /* FMLA */
12954 case 0x05: /* FMLS */
12955 case 0x09: /* FMUL */
12956 case 0x19: /* FMULX */
12957 is_fp = 1;
12958 break;
12959 case 0x1d: /* SQRDMLAH */
12960 case 0x1f: /* SQRDMLSH */
12961 if (!dc_isar_feature(aa64_rdm, s)) {
12962 unallocated_encoding(s);
12963 return;
12965 break;
12966 case 0x0e: /* SDOT */
12967 case 0x1e: /* UDOT */
12968 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12969 unallocated_encoding(s);
12970 return;
12972 break;
12973 case 0x11: /* FCMLA #0 */
12974 case 0x13: /* FCMLA #90 */
12975 case 0x15: /* FCMLA #180 */
12976 case 0x17: /* FCMLA #270 */
12977 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12978 unallocated_encoding(s);
12979 return;
12981 is_fp = 2;
12982 break;
12983 case 0x00: /* FMLAL */
12984 case 0x04: /* FMLSL */
12985 case 0x18: /* FMLAL2 */
12986 case 0x1c: /* FMLSL2 */
12987 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12988 unallocated_encoding(s);
12989 return;
12991 size = MO_16;
12992 /* is_fp, but we pass cpu_env not fp_status. */
12993 break;
12994 default:
12995 unallocated_encoding(s);
12996 return;
12999 switch (is_fp) {
13000 case 1: /* normal fp */
13001 /* convert insn encoded size to TCGMemOp size */
13002 switch (size) {
13003 case 0: /* half-precision */
13004 size = MO_16;
13005 is_fp16 = true;
13006 break;
13007 case MO_32: /* single precision */
13008 case MO_64: /* double precision */
13009 break;
13010 default:
13011 unallocated_encoding(s);
13012 return;
13014 break;
13016 case 2: /* complex fp */
13017 /* Each indexable element is a complex pair. */
13018 size += 1;
13019 switch (size) {
13020 case MO_32:
13021 if (h && !is_q) {
13022 unallocated_encoding(s);
13023 return;
13025 is_fp16 = true;
13026 break;
13027 case MO_64:
13028 break;
13029 default:
13030 unallocated_encoding(s);
13031 return;
13033 break;
13035 default: /* integer */
13036 switch (size) {
13037 case MO_8:
13038 case MO_64:
13039 unallocated_encoding(s);
13040 return;
13042 break;
13044 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13045 unallocated_encoding(s);
13046 return;
13049 /* Given TCGMemOp size, adjust register and indexing. */
13050 switch (size) {
13051 case MO_16:
13052 index = h << 2 | l << 1 | m;
13053 break;
13054 case MO_32:
13055 index = h << 1 | l;
13056 rm |= m << 4;
13057 break;
13058 case MO_64:
13059 if (l || !is_q) {
13060 unallocated_encoding(s);
13061 return;
13063 index = h;
13064 rm |= m << 4;
13065 break;
13066 default:
13067 g_assert_not_reached();
13070 if (!fp_access_check(s)) {
13071 return;
13074 if (is_fp) {
13075 fpst = get_fpstatus_ptr(is_fp16);
13076 } else {
13077 fpst = NULL;
13080 switch (16 * u + opcode) {
13081 case 0x0e: /* SDOT */
13082 case 0x1e: /* UDOT */
13083 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
13084 u ? gen_helper_gvec_udot_idx_b
13085 : gen_helper_gvec_sdot_idx_b);
13086 return;
13087 case 0x11: /* FCMLA #0 */
13088 case 0x13: /* FCMLA #90 */
13089 case 0x15: /* FCMLA #180 */
13090 case 0x17: /* FCMLA #270 */
13092 int rot = extract32(insn, 13, 2);
13093 int data = (index << 2) | rot;
13094 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13095 vec_full_reg_offset(s, rn),
13096 vec_full_reg_offset(s, rm), fpst,
13097 is_q ? 16 : 8, vec_full_reg_size(s), data,
13098 size == MO_64
13099 ? gen_helper_gvec_fcmlas_idx
13100 : gen_helper_gvec_fcmlah_idx);
13101 tcg_temp_free_ptr(fpst);
13103 return;
13105 case 0x00: /* FMLAL */
13106 case 0x04: /* FMLSL */
13107 case 0x18: /* FMLAL2 */
13108 case 0x1c: /* FMLSL2 */
13110 int is_s = extract32(opcode, 2, 1);
13111 int is_2 = u;
13112 int data = (index << 2) | (is_2 << 1) | is_s;
13113 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13114 vec_full_reg_offset(s, rn),
13115 vec_full_reg_offset(s, rm), cpu_env,
13116 is_q ? 16 : 8, vec_full_reg_size(s),
13117 data, gen_helper_gvec_fmlal_idx_a64);
13119 return;
13122 if (size == 3) {
13123 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13124 int pass;
13126 assert(is_fp && is_q && !is_long);
13128 read_vec_element(s, tcg_idx, rm, index, MO_64);
13130 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13131 TCGv_i64 tcg_op = tcg_temp_new_i64();
13132 TCGv_i64 tcg_res = tcg_temp_new_i64();
13134 read_vec_element(s, tcg_op, rn, pass, MO_64);
13136 switch (16 * u + opcode) {
13137 case 0x05: /* FMLS */
13138 /* As usual for ARM, separate negation for fused multiply-add */
13139 gen_helper_vfp_negd(tcg_op, tcg_op);
13140 /* fall through */
13141 case 0x01: /* FMLA */
13142 read_vec_element(s, tcg_res, rd, pass, MO_64);
13143 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13144 break;
13145 case 0x09: /* FMUL */
13146 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13147 break;
13148 case 0x19: /* FMULX */
13149 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13150 break;
13151 default:
13152 g_assert_not_reached();
13155 write_vec_element(s, tcg_res, rd, pass, MO_64);
13156 tcg_temp_free_i64(tcg_op);
13157 tcg_temp_free_i64(tcg_res);
13160 tcg_temp_free_i64(tcg_idx);
13161 clear_vec_high(s, !is_scalar, rd);
13162 } else if (!is_long) {
13163 /* 32 bit floating point, or 16 or 32 bit integer.
13164 * For the 16 bit scalar case we use the usual Neon helpers and
13165 * rely on the fact that 0 op 0 == 0 with no side effects.
13167 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13168 int pass, maxpasses;
13170 if (is_scalar) {
13171 maxpasses = 1;
13172 } else {
13173 maxpasses = is_q ? 4 : 2;
13176 read_vec_element_i32(s, tcg_idx, rm, index, size);
13178 if (size == 1 && !is_scalar) {
13179 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13180 * the index into both halves of the 32 bit tcg_idx and then use
13181 * the usual Neon helpers.
13183 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13186 for (pass = 0; pass < maxpasses; pass++) {
13187 TCGv_i32 tcg_op = tcg_temp_new_i32();
13188 TCGv_i32 tcg_res = tcg_temp_new_i32();
13190 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13192 switch (16 * u + opcode) {
13193 case 0x08: /* MUL */
13194 case 0x10: /* MLA */
13195 case 0x14: /* MLS */
13197 static NeonGenTwoOpFn * const fns[2][2] = {
13198 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13199 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13201 NeonGenTwoOpFn *genfn;
13202 bool is_sub = opcode == 0x4;
13204 if (size == 1) {
13205 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13206 } else {
13207 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13209 if (opcode == 0x8) {
13210 break;
13212 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13213 genfn = fns[size - 1][is_sub];
13214 genfn(tcg_res, tcg_op, tcg_res);
13215 break;
13217 case 0x05: /* FMLS */
13218 case 0x01: /* FMLA */
13219 read_vec_element_i32(s, tcg_res, rd, pass,
13220 is_scalar ? size : MO_32);
13221 switch (size) {
13222 case 1:
13223 if (opcode == 0x5) {
13224 /* As usual for ARM, separate negation for fused
13225 * multiply-add */
13226 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13228 if (is_scalar) {
13229 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13230 tcg_res, fpst);
13231 } else {
13232 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13233 tcg_res, fpst);
13235 break;
13236 case 2:
13237 if (opcode == 0x5) {
13238 /* As usual for ARM, separate negation for
13239 * fused multiply-add */
13240 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13242 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13243 tcg_res, fpst);
13244 break;
13245 default:
13246 g_assert_not_reached();
13248 break;
13249 case 0x09: /* FMUL */
13250 switch (size) {
13251 case 1:
13252 if (is_scalar) {
13253 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13254 tcg_idx, fpst);
13255 } else {
13256 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13257 tcg_idx, fpst);
13259 break;
13260 case 2:
13261 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13262 break;
13263 default:
13264 g_assert_not_reached();
13266 break;
13267 case 0x19: /* FMULX */
13268 switch (size) {
13269 case 1:
13270 if (is_scalar) {
13271 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13272 tcg_idx, fpst);
13273 } else {
13274 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13275 tcg_idx, fpst);
13277 break;
13278 case 2:
13279 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13280 break;
13281 default:
13282 g_assert_not_reached();
13284 break;
13285 case 0x0c: /* SQDMULH */
13286 if (size == 1) {
13287 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13288 tcg_op, tcg_idx);
13289 } else {
13290 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13291 tcg_op, tcg_idx);
13293 break;
13294 case 0x0d: /* SQRDMULH */
13295 if (size == 1) {
13296 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13297 tcg_op, tcg_idx);
13298 } else {
13299 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13300 tcg_op, tcg_idx);
13302 break;
13303 case 0x1d: /* SQRDMLAH */
13304 read_vec_element_i32(s, tcg_res, rd, pass,
13305 is_scalar ? size : MO_32);
13306 if (size == 1) {
13307 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13308 tcg_op, tcg_idx, tcg_res);
13309 } else {
13310 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13311 tcg_op, tcg_idx, tcg_res);
13313 break;
13314 case 0x1f: /* SQRDMLSH */
13315 read_vec_element_i32(s, tcg_res, rd, pass,
13316 is_scalar ? size : MO_32);
13317 if (size == 1) {
13318 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13319 tcg_op, tcg_idx, tcg_res);
13320 } else {
13321 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13322 tcg_op, tcg_idx, tcg_res);
13324 break;
13325 default:
13326 g_assert_not_reached();
13329 if (is_scalar) {
13330 write_fp_sreg(s, rd, tcg_res);
13331 } else {
13332 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13335 tcg_temp_free_i32(tcg_op);
13336 tcg_temp_free_i32(tcg_res);
13339 tcg_temp_free_i32(tcg_idx);
13340 clear_vec_high(s, is_q, rd);
13341 } else {
13342 /* long ops: 16x16->32 or 32x32->64 */
13343 TCGv_i64 tcg_res[2];
13344 int pass;
13345 bool satop = extract32(opcode, 0, 1);
13346 TCGMemOp memop = MO_32;
13348 if (satop || !u) {
13349 memop |= MO_SIGN;
13352 if (size == 2) {
13353 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13355 read_vec_element(s, tcg_idx, rm, index, memop);
13357 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13358 TCGv_i64 tcg_op = tcg_temp_new_i64();
13359 TCGv_i64 tcg_passres;
13360 int passelt;
13362 if (is_scalar) {
13363 passelt = 0;
13364 } else {
13365 passelt = pass + (is_q * 2);
13368 read_vec_element(s, tcg_op, rn, passelt, memop);
13370 tcg_res[pass] = tcg_temp_new_i64();
13372 if (opcode == 0xa || opcode == 0xb) {
13373 /* Non-accumulating ops */
13374 tcg_passres = tcg_res[pass];
13375 } else {
13376 tcg_passres = tcg_temp_new_i64();
13379 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13380 tcg_temp_free_i64(tcg_op);
13382 if (satop) {
13383 /* saturating, doubling */
13384 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13385 tcg_passres, tcg_passres);
13388 if (opcode == 0xa || opcode == 0xb) {
13389 continue;
13392 /* Accumulating op: handle accumulate step */
13393 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13395 switch (opcode) {
13396 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13397 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13398 break;
13399 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13400 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13401 break;
13402 case 0x7: /* SQDMLSL, SQDMLSL2 */
13403 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13404 /* fall through */
13405 case 0x3: /* SQDMLAL, SQDMLAL2 */
13406 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13407 tcg_res[pass],
13408 tcg_passres);
13409 break;
13410 default:
13411 g_assert_not_reached();
13413 tcg_temp_free_i64(tcg_passres);
13415 tcg_temp_free_i64(tcg_idx);
13417 clear_vec_high(s, !is_scalar, rd);
13418 } else {
13419 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13421 assert(size == 1);
13422 read_vec_element_i32(s, tcg_idx, rm, index, size);
13424 if (!is_scalar) {
13425 /* The simplest way to handle the 16x16 indexed ops is to
13426 * duplicate the index into both halves of the 32 bit tcg_idx
13427 * and then use the usual Neon helpers.
13429 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13432 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13433 TCGv_i32 tcg_op = tcg_temp_new_i32();
13434 TCGv_i64 tcg_passres;
13436 if (is_scalar) {
13437 read_vec_element_i32(s, tcg_op, rn, pass, size);
13438 } else {
13439 read_vec_element_i32(s, tcg_op, rn,
13440 pass + (is_q * 2), MO_32);
13443 tcg_res[pass] = tcg_temp_new_i64();
13445 if (opcode == 0xa || opcode == 0xb) {
13446 /* Non-accumulating ops */
13447 tcg_passres = tcg_res[pass];
13448 } else {
13449 tcg_passres = tcg_temp_new_i64();
13452 if (memop & MO_SIGN) {
13453 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13454 } else {
13455 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13457 if (satop) {
13458 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13459 tcg_passres, tcg_passres);
13461 tcg_temp_free_i32(tcg_op);
13463 if (opcode == 0xa || opcode == 0xb) {
13464 continue;
13467 /* Accumulating op: handle accumulate step */
13468 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13470 switch (opcode) {
13471 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13472 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13473 tcg_passres);
13474 break;
13475 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13476 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13477 tcg_passres);
13478 break;
13479 case 0x7: /* SQDMLSL, SQDMLSL2 */
13480 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13481 /* fall through */
13482 case 0x3: /* SQDMLAL, SQDMLAL2 */
13483 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13484 tcg_res[pass],
13485 tcg_passres);
13486 break;
13487 default:
13488 g_assert_not_reached();
13490 tcg_temp_free_i64(tcg_passres);
13492 tcg_temp_free_i32(tcg_idx);
13494 if (is_scalar) {
13495 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13499 if (is_scalar) {
13500 tcg_res[1] = tcg_const_i64(0);
13503 for (pass = 0; pass < 2; pass++) {
13504 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13505 tcg_temp_free_i64(tcg_res[pass]);
13509 if (fpst) {
13510 tcg_temp_free_ptr(fpst);
13514 /* Crypto AES
13515 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13516 * +-----------------+------+-----------+--------+-----+------+------+
13517 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13518 * +-----------------+------+-----------+--------+-----+------+------+
13520 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13522 int size = extract32(insn, 22, 2);
13523 int opcode = extract32(insn, 12, 5);
13524 int rn = extract32(insn, 5, 5);
13525 int rd = extract32(insn, 0, 5);
13526 int decrypt;
13527 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13528 TCGv_i32 tcg_decrypt;
13529 CryptoThreeOpIntFn *genfn;
13531 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13532 unallocated_encoding(s);
13533 return;
13536 switch (opcode) {
13537 case 0x4: /* AESE */
13538 decrypt = 0;
13539 genfn = gen_helper_crypto_aese;
13540 break;
13541 case 0x6: /* AESMC */
13542 decrypt = 0;
13543 genfn = gen_helper_crypto_aesmc;
13544 break;
13545 case 0x5: /* AESD */
13546 decrypt = 1;
13547 genfn = gen_helper_crypto_aese;
13548 break;
13549 case 0x7: /* AESIMC */
13550 decrypt = 1;
13551 genfn = gen_helper_crypto_aesmc;
13552 break;
13553 default:
13554 unallocated_encoding(s);
13555 return;
13558 if (!fp_access_check(s)) {
13559 return;
13562 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13563 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13564 tcg_decrypt = tcg_const_i32(decrypt);
13566 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13568 tcg_temp_free_ptr(tcg_rd_ptr);
13569 tcg_temp_free_ptr(tcg_rn_ptr);
13570 tcg_temp_free_i32(tcg_decrypt);
13573 /* Crypto three-reg SHA
13574 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13575 * +-----------------+------+---+------+---+--------+-----+------+------+
13576 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13577 * +-----------------+------+---+------+---+--------+-----+------+------+
13579 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13581 int size = extract32(insn, 22, 2);
13582 int opcode = extract32(insn, 12, 3);
13583 int rm = extract32(insn, 16, 5);
13584 int rn = extract32(insn, 5, 5);
13585 int rd = extract32(insn, 0, 5);
13586 CryptoThreeOpFn *genfn;
13587 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13588 bool feature;
13590 if (size != 0) {
13591 unallocated_encoding(s);
13592 return;
13595 switch (opcode) {
13596 case 0: /* SHA1C */
13597 case 1: /* SHA1P */
13598 case 2: /* SHA1M */
13599 case 3: /* SHA1SU0 */
13600 genfn = NULL;
13601 feature = dc_isar_feature(aa64_sha1, s);
13602 break;
13603 case 4: /* SHA256H */
13604 genfn = gen_helper_crypto_sha256h;
13605 feature = dc_isar_feature(aa64_sha256, s);
13606 break;
13607 case 5: /* SHA256H2 */
13608 genfn = gen_helper_crypto_sha256h2;
13609 feature = dc_isar_feature(aa64_sha256, s);
13610 break;
13611 case 6: /* SHA256SU1 */
13612 genfn = gen_helper_crypto_sha256su1;
13613 feature = dc_isar_feature(aa64_sha256, s);
13614 break;
13615 default:
13616 unallocated_encoding(s);
13617 return;
13620 if (!feature) {
13621 unallocated_encoding(s);
13622 return;
13625 if (!fp_access_check(s)) {
13626 return;
13629 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13630 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13631 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13633 if (genfn) {
13634 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13635 } else {
13636 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13638 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13639 tcg_rm_ptr, tcg_opcode);
13640 tcg_temp_free_i32(tcg_opcode);
13643 tcg_temp_free_ptr(tcg_rd_ptr);
13644 tcg_temp_free_ptr(tcg_rn_ptr);
13645 tcg_temp_free_ptr(tcg_rm_ptr);
13648 /* Crypto two-reg SHA
13649 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13650 * +-----------------+------+-----------+--------+-----+------+------+
13651 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13652 * +-----------------+------+-----------+--------+-----+------+------+
13654 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13656 int size = extract32(insn, 22, 2);
13657 int opcode = extract32(insn, 12, 5);
13658 int rn = extract32(insn, 5, 5);
13659 int rd = extract32(insn, 0, 5);
13660 CryptoTwoOpFn *genfn;
13661 bool feature;
13662 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13664 if (size != 0) {
13665 unallocated_encoding(s);
13666 return;
13669 switch (opcode) {
13670 case 0: /* SHA1H */
13671 feature = dc_isar_feature(aa64_sha1, s);
13672 genfn = gen_helper_crypto_sha1h;
13673 break;
13674 case 1: /* SHA1SU1 */
13675 feature = dc_isar_feature(aa64_sha1, s);
13676 genfn = gen_helper_crypto_sha1su1;
13677 break;
13678 case 2: /* SHA256SU0 */
13679 feature = dc_isar_feature(aa64_sha256, s);
13680 genfn = gen_helper_crypto_sha256su0;
13681 break;
13682 default:
13683 unallocated_encoding(s);
13684 return;
13687 if (!feature) {
13688 unallocated_encoding(s);
13689 return;
13692 if (!fp_access_check(s)) {
13693 return;
13696 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13697 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13699 genfn(tcg_rd_ptr, tcg_rn_ptr);
13701 tcg_temp_free_ptr(tcg_rd_ptr);
13702 tcg_temp_free_ptr(tcg_rn_ptr);
13705 /* Crypto three-reg SHA512
13706 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13707 * +-----------------------+------+---+---+-----+--------+------+------+
13708 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13709 * +-----------------------+------+---+---+-----+--------+------+------+
13711 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13713 int opcode = extract32(insn, 10, 2);
13714 int o = extract32(insn, 14, 1);
13715 int rm = extract32(insn, 16, 5);
13716 int rn = extract32(insn, 5, 5);
13717 int rd = extract32(insn, 0, 5);
13718 bool feature;
13719 CryptoThreeOpFn *genfn;
13721 if (o == 0) {
13722 switch (opcode) {
13723 case 0: /* SHA512H */
13724 feature = dc_isar_feature(aa64_sha512, s);
13725 genfn = gen_helper_crypto_sha512h;
13726 break;
13727 case 1: /* SHA512H2 */
13728 feature = dc_isar_feature(aa64_sha512, s);
13729 genfn = gen_helper_crypto_sha512h2;
13730 break;
13731 case 2: /* SHA512SU1 */
13732 feature = dc_isar_feature(aa64_sha512, s);
13733 genfn = gen_helper_crypto_sha512su1;
13734 break;
13735 case 3: /* RAX1 */
13736 feature = dc_isar_feature(aa64_sha3, s);
13737 genfn = NULL;
13738 break;
13740 } else {
13741 switch (opcode) {
13742 case 0: /* SM3PARTW1 */
13743 feature = dc_isar_feature(aa64_sm3, s);
13744 genfn = gen_helper_crypto_sm3partw1;
13745 break;
13746 case 1: /* SM3PARTW2 */
13747 feature = dc_isar_feature(aa64_sm3, s);
13748 genfn = gen_helper_crypto_sm3partw2;
13749 break;
13750 case 2: /* SM4EKEY */
13751 feature = dc_isar_feature(aa64_sm4, s);
13752 genfn = gen_helper_crypto_sm4ekey;
13753 break;
13754 default:
13755 unallocated_encoding(s);
13756 return;
13760 if (!feature) {
13761 unallocated_encoding(s);
13762 return;
13765 if (!fp_access_check(s)) {
13766 return;
13769 if (genfn) {
13770 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13772 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13773 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13774 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13776 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13778 tcg_temp_free_ptr(tcg_rd_ptr);
13779 tcg_temp_free_ptr(tcg_rn_ptr);
13780 tcg_temp_free_ptr(tcg_rm_ptr);
13781 } else {
13782 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13783 int pass;
13785 tcg_op1 = tcg_temp_new_i64();
13786 tcg_op2 = tcg_temp_new_i64();
13787 tcg_res[0] = tcg_temp_new_i64();
13788 tcg_res[1] = tcg_temp_new_i64();
13790 for (pass = 0; pass < 2; pass++) {
13791 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13792 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13794 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13795 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13797 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13798 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13800 tcg_temp_free_i64(tcg_op1);
13801 tcg_temp_free_i64(tcg_op2);
13802 tcg_temp_free_i64(tcg_res[0]);
13803 tcg_temp_free_i64(tcg_res[1]);
13807 /* Crypto two-reg SHA512
13808 * 31 12 11 10 9 5 4 0
13809 * +-----------------------------------------+--------+------+------+
13810 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13811 * +-----------------------------------------+--------+------+------+
13813 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13815 int opcode = extract32(insn, 10, 2);
13816 int rn = extract32(insn, 5, 5);
13817 int rd = extract32(insn, 0, 5);
13818 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13819 bool feature;
13820 CryptoTwoOpFn *genfn;
13822 switch (opcode) {
13823 case 0: /* SHA512SU0 */
13824 feature = dc_isar_feature(aa64_sha512, s);
13825 genfn = gen_helper_crypto_sha512su0;
13826 break;
13827 case 1: /* SM4E */
13828 feature = dc_isar_feature(aa64_sm4, s);
13829 genfn = gen_helper_crypto_sm4e;
13830 break;
13831 default:
13832 unallocated_encoding(s);
13833 return;
13836 if (!feature) {
13837 unallocated_encoding(s);
13838 return;
13841 if (!fp_access_check(s)) {
13842 return;
13845 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13846 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13848 genfn(tcg_rd_ptr, tcg_rn_ptr);
13850 tcg_temp_free_ptr(tcg_rd_ptr);
13851 tcg_temp_free_ptr(tcg_rn_ptr);
13854 /* Crypto four-register
13855 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13856 * +-------------------+-----+------+---+------+------+------+
13857 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13858 * +-------------------+-----+------+---+------+------+------+
13860 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13862 int op0 = extract32(insn, 21, 2);
13863 int rm = extract32(insn, 16, 5);
13864 int ra = extract32(insn, 10, 5);
13865 int rn = extract32(insn, 5, 5);
13866 int rd = extract32(insn, 0, 5);
13867 bool feature;
13869 switch (op0) {
13870 case 0: /* EOR3 */
13871 case 1: /* BCAX */
13872 feature = dc_isar_feature(aa64_sha3, s);
13873 break;
13874 case 2: /* SM3SS1 */
13875 feature = dc_isar_feature(aa64_sm3, s);
13876 break;
13877 default:
13878 unallocated_encoding(s);
13879 return;
13882 if (!feature) {
13883 unallocated_encoding(s);
13884 return;
13887 if (!fp_access_check(s)) {
13888 return;
13891 if (op0 < 2) {
13892 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13893 int pass;
13895 tcg_op1 = tcg_temp_new_i64();
13896 tcg_op2 = tcg_temp_new_i64();
13897 tcg_op3 = tcg_temp_new_i64();
13898 tcg_res[0] = tcg_temp_new_i64();
13899 tcg_res[1] = tcg_temp_new_i64();
13901 for (pass = 0; pass < 2; pass++) {
13902 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13903 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13904 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13906 if (op0 == 0) {
13907 /* EOR3 */
13908 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13909 } else {
13910 /* BCAX */
13911 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13913 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13915 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13916 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13918 tcg_temp_free_i64(tcg_op1);
13919 tcg_temp_free_i64(tcg_op2);
13920 tcg_temp_free_i64(tcg_op3);
13921 tcg_temp_free_i64(tcg_res[0]);
13922 tcg_temp_free_i64(tcg_res[1]);
13923 } else {
13924 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13926 tcg_op1 = tcg_temp_new_i32();
13927 tcg_op2 = tcg_temp_new_i32();
13928 tcg_op3 = tcg_temp_new_i32();
13929 tcg_res = tcg_temp_new_i32();
13930 tcg_zero = tcg_const_i32(0);
13932 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13933 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13934 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13936 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13937 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13938 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13939 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13941 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13942 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13943 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13944 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13946 tcg_temp_free_i32(tcg_op1);
13947 tcg_temp_free_i32(tcg_op2);
13948 tcg_temp_free_i32(tcg_op3);
13949 tcg_temp_free_i32(tcg_res);
13950 tcg_temp_free_i32(tcg_zero);
13954 /* Crypto XAR
13955 * 31 21 20 16 15 10 9 5 4 0
13956 * +-----------------------+------+--------+------+------+
13957 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13958 * +-----------------------+------+--------+------+------+
13960 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13962 int rm = extract32(insn, 16, 5);
13963 int imm6 = extract32(insn, 10, 6);
13964 int rn = extract32(insn, 5, 5);
13965 int rd = extract32(insn, 0, 5);
13966 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13967 int pass;
13969 if (!dc_isar_feature(aa64_sha3, s)) {
13970 unallocated_encoding(s);
13971 return;
13974 if (!fp_access_check(s)) {
13975 return;
13978 tcg_op1 = tcg_temp_new_i64();
13979 tcg_op2 = tcg_temp_new_i64();
13980 tcg_res[0] = tcg_temp_new_i64();
13981 tcg_res[1] = tcg_temp_new_i64();
13983 for (pass = 0; pass < 2; pass++) {
13984 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13985 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13987 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13988 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13990 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13991 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13993 tcg_temp_free_i64(tcg_op1);
13994 tcg_temp_free_i64(tcg_op2);
13995 tcg_temp_free_i64(tcg_res[0]);
13996 tcg_temp_free_i64(tcg_res[1]);
13999 /* Crypto three-reg imm2
14000 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14001 * +-----------------------+------+-----+------+--------+------+------+
14002 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14003 * +-----------------------+------+-----+------+--------+------+------+
14005 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14007 int opcode = extract32(insn, 10, 2);
14008 int imm2 = extract32(insn, 12, 2);
14009 int rm = extract32(insn, 16, 5);
14010 int rn = extract32(insn, 5, 5);
14011 int rd = extract32(insn, 0, 5);
14012 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
14013 TCGv_i32 tcg_imm2, tcg_opcode;
14015 if (!dc_isar_feature(aa64_sm3, s)) {
14016 unallocated_encoding(s);
14017 return;
14020 if (!fp_access_check(s)) {
14021 return;
14024 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
14025 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
14026 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
14027 tcg_imm2 = tcg_const_i32(imm2);
14028 tcg_opcode = tcg_const_i32(opcode);
14030 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
14031 tcg_opcode);
14033 tcg_temp_free_ptr(tcg_rd_ptr);
14034 tcg_temp_free_ptr(tcg_rn_ptr);
14035 tcg_temp_free_ptr(tcg_rm_ptr);
14036 tcg_temp_free_i32(tcg_imm2);
14037 tcg_temp_free_i32(tcg_opcode);
14040 /* C3.6 Data processing - SIMD, inc Crypto
14042 * As the decode gets a little complex we are using a table based
14043 * approach for this part of the decode.
14045 static const AArch64DecodeTable data_proc_simd[] = {
14046 /* pattern , mask , fn */
14047 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14048 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14049 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14050 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14051 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14052 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14053 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14054 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14055 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14056 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14057 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14058 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14059 { 0x2e000000, 0xbf208400, disas_simd_ext },
14060 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14061 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14062 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14063 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14064 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14065 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14066 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14067 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14068 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14069 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14070 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14071 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14072 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14073 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14074 { 0xce800000, 0xffe00000, disas_crypto_xar },
14075 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14076 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14077 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14078 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14079 { 0x00000000, 0x00000000, NULL }
14082 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14084 /* Note that this is called with all non-FP cases from
14085 * table C3-6 so it must UNDEF for entries not specifically
14086 * allocated to instructions in that table.
14088 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14089 if (fn) {
14090 fn(s, insn);
14091 } else {
14092 unallocated_encoding(s);
14096 /* C3.6 Data processing - SIMD and floating point */
14097 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14099 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14100 disas_data_proc_fp(s, insn);
14101 } else {
14102 /* SIMD, including crypto */
14103 disas_data_proc_simd(s, insn);
14108 * is_guarded_page:
14109 * @env: The cpu environment
14110 * @s: The DisasContext
14112 * Return true if the page is guarded.
14114 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14116 #ifdef CONFIG_USER_ONLY
14117 return false; /* FIXME */
14118 #else
14119 uint64_t addr = s->base.pc_first;
14120 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14121 unsigned int index = tlb_index(env, mmu_idx, addr);
14122 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14125 * We test this immediately after reading an insn, which means
14126 * that any normal page must be in the TLB. The only exception
14127 * would be for executing from flash or device memory, which
14128 * does not retain the TLB entry.
14130 * FIXME: Assume false for those, for now. We could use
14131 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14132 * table entry even for that case.
14134 return (tlb_hit(entry->addr_code, addr) &&
14135 env->iotlb[mmu_idx][index].attrs.target_tlb_bit0);
14136 #endif
14140 * btype_destination_ok:
14141 * @insn: The instruction at the branch destination
14142 * @bt: SCTLR_ELx.BT
14143 * @btype: PSTATE.BTYPE, and is non-zero
14145 * On a guarded page, there are a limited number of insns
14146 * that may be present at the branch target:
14147 * - branch target identifiers,
14148 * - paciasp, pacibsp,
14149 * - BRK insn
14150 * - HLT insn
14151 * Anything else causes a Branch Target Exception.
14153 * Return true if the branch is compatible, false to raise BTITRAP.
14155 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14157 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14158 /* HINT space */
14159 switch (extract32(insn, 5, 7)) {
14160 case 0b011001: /* PACIASP */
14161 case 0b011011: /* PACIBSP */
14163 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14164 * with btype == 3. Otherwise all btype are ok.
14166 return !bt || btype != 3;
14167 case 0b100000: /* BTI */
14168 /* Not compatible with any btype. */
14169 return false;
14170 case 0b100010: /* BTI c */
14171 /* Not compatible with btype == 3 */
14172 return btype != 3;
14173 case 0b100100: /* BTI j */
14174 /* Not compatible with btype == 2 */
14175 return btype != 2;
14176 case 0b100110: /* BTI jc */
14177 /* Compatible with any btype. */
14178 return true;
14180 } else {
14181 switch (insn & 0xffe0001fu) {
14182 case 0xd4200000u: /* BRK */
14183 case 0xd4400000u: /* HLT */
14184 /* Give priority to the breakpoint exception. */
14185 return true;
14188 return false;
14191 /* C3.1 A64 instruction index by encoding */
14192 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14194 uint32_t insn;
14196 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
14197 s->insn = insn;
14198 s->pc += 4;
14200 s->fp_access_checked = false;
14202 if (dc_isar_feature(aa64_bti, s)) {
14203 if (s->base.num_insns == 1) {
14205 * At the first insn of the TB, compute s->guarded_page.
14206 * We delayed computing this until successfully reading
14207 * the first insn of the TB, above. This (mostly) ensures
14208 * that the softmmu tlb entry has been populated, and the
14209 * page table GP bit is available.
14211 * Note that we need to compute this even if btype == 0,
14212 * because this value is used for BR instructions later
14213 * where ENV is not available.
14215 s->guarded_page = is_guarded_page(env, s);
14217 /* First insn can have btype set to non-zero. */
14218 tcg_debug_assert(s->btype >= 0);
14221 * Note that the Branch Target Exception has fairly high
14222 * priority -- below debugging exceptions but above most
14223 * everything else. This allows us to handle this now
14224 * instead of waiting until the insn is otherwise decoded.
14226 if (s->btype != 0
14227 && s->guarded_page
14228 && !btype_destination_ok(insn, s->bt, s->btype)) {
14229 gen_exception_insn(s, 4, EXCP_UDEF, syn_btitrap(s->btype),
14230 default_exception_el(s));
14231 return;
14233 } else {
14234 /* Not the first insn: btype must be 0. */
14235 tcg_debug_assert(s->btype == 0);
14239 switch (extract32(insn, 25, 4)) {
14240 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14241 unallocated_encoding(s);
14242 break;
14243 case 0x2:
14244 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14245 unallocated_encoding(s);
14247 break;
14248 case 0x8: case 0x9: /* Data processing - immediate */
14249 disas_data_proc_imm(s, insn);
14250 break;
14251 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14252 disas_b_exc_sys(s, insn);
14253 break;
14254 case 0x4:
14255 case 0x6:
14256 case 0xc:
14257 case 0xe: /* Loads and stores */
14258 disas_ldst(s, insn);
14259 break;
14260 case 0x5:
14261 case 0xd: /* Data processing - register */
14262 disas_data_proc_reg(s, insn);
14263 break;
14264 case 0x7:
14265 case 0xf: /* Data processing - SIMD and floating point */
14266 disas_data_proc_simd_fp(s, insn);
14267 break;
14268 default:
14269 assert(FALSE); /* all 15 cases should be handled above */
14270 break;
14273 /* if we allocated any temporaries, free them here */
14274 free_tmp_a64(s);
14277 * After execution of most insns, btype is reset to 0.
14278 * Note that we set btype == -1 when the insn sets btype.
14280 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14281 reset_btype(s);
14285 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14286 CPUState *cpu)
14288 DisasContext *dc = container_of(dcbase, DisasContext, base);
14289 CPUARMState *env = cpu->env_ptr;
14290 ARMCPU *arm_cpu = arm_env_get_cpu(env);
14291 uint32_t tb_flags = dc->base.tb->flags;
14292 int bound, core_mmu_idx;
14294 dc->isar = &arm_cpu->isar;
14295 dc->pc = dc->base.pc_first;
14296 dc->condjmp = 0;
14298 dc->aarch64 = 1;
14299 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14300 * there is no secure EL1, so we route exceptions to EL3.
14302 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14303 !arm_el_is_aa64(env, 3);
14304 dc->thumb = 0;
14305 dc->sctlr_b = 0;
14306 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14307 dc->condexec_mask = 0;
14308 dc->condexec_cond = 0;
14309 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14310 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
14311 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14312 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14313 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14314 #if !defined(CONFIG_USER_ONLY)
14315 dc->user = (dc->current_el == 0);
14316 #endif
14317 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14318 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14319 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14320 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14321 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14322 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14323 dc->vec_len = 0;
14324 dc->vec_stride = 0;
14325 dc->cp_regs = arm_cpu->cp_regs;
14326 dc->features = env->features;
14328 /* Single step state. The code-generation logic here is:
14329 * SS_ACTIVE == 0:
14330 * generate code with no special handling for single-stepping (except
14331 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14332 * this happens anyway because those changes are all system register or
14333 * PSTATE writes).
14334 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14335 * emit code for one insn
14336 * emit code to clear PSTATE.SS
14337 * emit code to generate software step exception for completed step
14338 * end TB (as usual for having generated an exception)
14339 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14340 * emit code to generate a software step exception
14341 * end the TB
14343 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14344 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14345 dc->is_ldex = false;
14346 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
14348 /* Bound the number of insns to execute to those left on the page. */
14349 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14351 /* If architectural single step active, limit to 1. */
14352 if (dc->ss_active) {
14353 bound = 1;
14355 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14357 init_tmp_a64_array(dc);
14360 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14364 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14366 DisasContext *dc = container_of(dcbase, DisasContext, base);
14368 tcg_gen_insn_start(dc->pc, 0, 0);
14369 dc->insn_start = tcg_last_op();
14372 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14373 const CPUBreakpoint *bp)
14375 DisasContext *dc = container_of(dcbase, DisasContext, base);
14377 if (bp->flags & BP_CPU) {
14378 gen_a64_set_pc_im(dc->pc);
14379 gen_helper_check_breakpoints(cpu_env);
14380 /* End the TB early; it likely won't be executed */
14381 dc->base.is_jmp = DISAS_TOO_MANY;
14382 } else {
14383 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
14384 /* The address covered by the breakpoint must be
14385 included in [tb->pc, tb->pc + tb->size) in order
14386 to for it to be properly cleared -- thus we
14387 increment the PC here so that the logic setting
14388 tb->size below does the right thing. */
14389 dc->pc += 4;
14390 dc->base.is_jmp = DISAS_NORETURN;
14393 return true;
14396 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14398 DisasContext *dc = container_of(dcbase, DisasContext, base);
14399 CPUARMState *env = cpu->env_ptr;
14401 if (dc->ss_active && !dc->pstate_ss) {
14402 /* Singlestep state is Active-pending.
14403 * If we're in this state at the start of a TB then either
14404 * a) we just took an exception to an EL which is being debugged
14405 * and this is the first insn in the exception handler
14406 * b) debug exceptions were masked and we just unmasked them
14407 * without changing EL (eg by clearing PSTATE.D)
14408 * In either case we're going to take a swstep exception in the
14409 * "did not step an insn" case, and so the syndrome ISV and EX
14410 * bits should be zero.
14412 assert(dc->base.num_insns == 1);
14413 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
14414 default_exception_el(dc));
14415 dc->base.is_jmp = DISAS_NORETURN;
14416 } else {
14417 disas_a64_insn(env, dc);
14420 dc->base.pc_next = dc->pc;
14421 translator_loop_temp_check(&dc->base);
14424 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14426 DisasContext *dc = container_of(dcbase, DisasContext, base);
14428 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14429 /* Note that this means single stepping WFI doesn't halt the CPU.
14430 * For conditional branch insns this is harmless unreachable code as
14431 * gen_goto_tb() has already handled emitting the debug exception
14432 * (and thus a tb-jump is not possible when singlestepping).
14434 switch (dc->base.is_jmp) {
14435 default:
14436 gen_a64_set_pc_im(dc->pc);
14437 /* fall through */
14438 case DISAS_EXIT:
14439 case DISAS_JUMP:
14440 if (dc->base.singlestep_enabled) {
14441 gen_exception_internal(EXCP_DEBUG);
14442 } else {
14443 gen_step_complete_exception(dc);
14445 break;
14446 case DISAS_NORETURN:
14447 break;
14449 } else {
14450 switch (dc->base.is_jmp) {
14451 case DISAS_NEXT:
14452 case DISAS_TOO_MANY:
14453 gen_goto_tb(dc, 1, dc->pc);
14454 break;
14455 default:
14456 case DISAS_UPDATE:
14457 gen_a64_set_pc_im(dc->pc);
14458 /* fall through */
14459 case DISAS_EXIT:
14460 tcg_gen_exit_tb(NULL, 0);
14461 break;
14462 case DISAS_JUMP:
14463 tcg_gen_lookup_and_goto_ptr();
14464 break;
14465 case DISAS_NORETURN:
14466 case DISAS_SWI:
14467 break;
14468 case DISAS_WFE:
14469 gen_a64_set_pc_im(dc->pc);
14470 gen_helper_wfe(cpu_env);
14471 break;
14472 case DISAS_YIELD:
14473 gen_a64_set_pc_im(dc->pc);
14474 gen_helper_yield(cpu_env);
14475 break;
14476 case DISAS_WFI:
14478 /* This is a special case because we don't want to just halt the CPU
14479 * if trying to debug across a WFI.
14481 TCGv_i32 tmp = tcg_const_i32(4);
14483 gen_a64_set_pc_im(dc->pc);
14484 gen_helper_wfi(cpu_env, tmp);
14485 tcg_temp_free_i32(tmp);
14486 /* The helper doesn't necessarily throw an exception, but we
14487 * must go back to the main loop to check for interrupts anyway.
14489 tcg_gen_exit_tb(NULL, 0);
14490 break;
14495 /* Functions above can change dc->pc, so re-align db->pc_next */
14496 dc->base.pc_next = dc->pc;
14499 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14500 CPUState *cpu)
14502 DisasContext *dc = container_of(dcbase, DisasContext, base);
14504 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14505 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14508 const TranslatorOps aarch64_translator_ops = {
14509 .init_disas_context = aarch64_tr_init_disas_context,
14510 .tb_start = aarch64_tr_tb_start,
14511 .insn_start = aarch64_tr_insn_start,
14512 .breakpoint_check = aarch64_tr_breakpoint_check,
14513 .translate_insn = aarch64_tr_translate_insn,
14514 .tb_stop = aarch64_tr_tb_stop,
14515 .disas_log = aarch64_tr_disas_log,