qemu-pr-helper: use new libmultipath API
[qemu/ar7.git] / accel / tcg / cpu-exec.c
blob363dfa208ad1ee60b7880a1c7099acd771b10617
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/rcu.h"
30 #include "exec/tb-hash.h"
31 #include "exec/tb-lookup.h"
32 #include "exec/log.h"
33 #include "qemu/main-loop.h"
34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
35 #include "hw/i386/apic.h"
36 #endif
37 #include "sysemu/cpus.h"
38 #include "sysemu/replay.h"
40 /* -icount align implementation. */
42 typedef struct SyncClocks {
43 int64_t diff_clk;
44 int64_t last_cpu_icount;
45 int64_t realtime_clock;
46 } SyncClocks;
48 #if !defined(CONFIG_USER_ONLY)
49 /* Allow the guest to have a max 3ms advance.
50 * The difference between the 2 clocks could therefore
51 * oscillate around 0.
53 #define VM_CLOCK_ADVANCE 3000000
54 #define THRESHOLD_REDUCE 1.5
55 #define MAX_DELAY_PRINT_RATE 2000000000LL
56 #define MAX_NB_PRINTS 100
58 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
60 int64_t cpu_icount;
62 if (!icount_align_option) {
63 return;
66 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
67 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
68 sc->last_cpu_icount = cpu_icount;
70 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
71 #ifndef _WIN32
72 struct timespec sleep_delay, rem_delay;
73 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
74 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
75 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
76 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
77 } else {
78 sc->diff_clk = 0;
80 #else
81 Sleep(sc->diff_clk / SCALE_MS);
82 sc->diff_clk = 0;
83 #endif
87 static void print_delay(const SyncClocks *sc)
89 static float threshold_delay;
90 static int64_t last_realtime_clock;
91 static int nb_prints;
93 if (icount_align_option &&
94 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
95 nb_prints < MAX_NB_PRINTS) {
96 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
97 (-sc->diff_clk / (float)1000000000LL <
98 (threshold_delay - THRESHOLD_REDUCE))) {
99 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
100 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
101 threshold_delay - 1,
102 threshold_delay);
103 nb_prints++;
104 last_realtime_clock = sc->realtime_clock;
109 static void init_delay_params(SyncClocks *sc,
110 const CPUState *cpu)
112 if (!icount_align_option) {
113 return;
115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
117 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
118 if (sc->diff_clk < max_delay) {
119 max_delay = sc->diff_clk;
121 if (sc->diff_clk > max_advance) {
122 max_advance = sc->diff_clk;
125 /* Print every 2s max if the guest is late. We limit the number
126 of printed messages to NB_PRINT_MAX(currently 100) */
127 print_delay(sc);
129 #else
130 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
134 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
137 #endif /* CONFIG USER ONLY */
139 /* Execute a TB, and fix up the CPU state afterwards if necessary */
140 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
142 CPUArchState *env = cpu->env_ptr;
143 uintptr_t ret;
144 TranslationBlock *last_tb;
145 int tb_exit;
146 uint8_t *tb_ptr = itb->tc.ptr;
148 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
149 "Trace %p [%d: " TARGET_FMT_lx "] %s\n",
150 itb->tc.ptr, cpu->cpu_index, itb->pc,
151 lookup_symbol(itb->pc));
153 #if defined(DEBUG_DISAS)
154 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
155 && qemu_log_in_addr_range(itb->pc)) {
156 qemu_log_lock();
157 #if defined(TARGET_I386)
158 log_cpu_state(cpu, CPU_DUMP_CCOP);
159 #else
160 log_cpu_state(cpu, 0);
161 #endif
162 qemu_log_unlock();
164 #endif /* DEBUG_DISAS */
166 cpu->can_do_io = !use_icount;
167 ret = tcg_qemu_tb_exec(env, tb_ptr);
168 cpu->can_do_io = 1;
169 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
170 tb_exit = ret & TB_EXIT_MASK;
171 trace_exec_tb_exit(last_tb, tb_exit);
173 if (tb_exit > TB_EXIT_IDX1) {
174 /* We didn't start executing this TB (eg because the instruction
175 * counter hit zero); we must restore the guest PC to the address
176 * of the start of the TB.
178 CPUClass *cc = CPU_GET_CLASS(cpu);
179 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
180 "Stopped execution of TB chain before %p ["
181 TARGET_FMT_lx "] %s\n",
182 last_tb->tc.ptr, last_tb->pc,
183 lookup_symbol(last_tb->pc));
184 if (cc->synchronize_from_tb) {
185 cc->synchronize_from_tb(cpu, last_tb);
186 } else {
187 assert(cc->set_pc);
188 cc->set_pc(cpu, last_tb->pc);
191 return ret;
194 #ifndef CONFIG_USER_ONLY
195 /* Execute the code without caching the generated code. An interpreter
196 could be used if available. */
197 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
198 TranslationBlock *orig_tb, bool ignore_icount)
200 TranslationBlock *tb;
202 /* Should never happen.
203 We only end up here when an existing TB is too long. */
204 if (max_cycles > CF_COUNT_MASK)
205 max_cycles = CF_COUNT_MASK;
207 tb_lock();
208 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
209 max_cycles | CF_NOCACHE
210 | (ignore_icount ? CF_IGNORE_ICOUNT : 0));
211 tb->orig_tb = orig_tb;
212 tb_unlock();
214 /* execute the generated code */
215 trace_exec_tb_nocache(tb, tb->pc);
216 cpu_tb_exec(cpu, tb);
218 tb_lock();
219 tb_phys_invalidate(tb, -1);
220 tb_free(tb);
221 tb_unlock();
223 #endif
225 static void cpu_exec_step(CPUState *cpu)
227 CPUClass *cc = CPU_GET_CLASS(cpu);
228 CPUArchState *env = (CPUArchState *)cpu->env_ptr;
229 TranslationBlock *tb;
230 target_ulong cs_base, pc;
231 uint32_t flags;
233 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
234 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
235 mmap_lock();
236 tb_lock();
237 tb = tb_gen_code(cpu, pc, cs_base, flags,
238 1 | CF_NOCACHE | CF_IGNORE_ICOUNT);
239 tb->orig_tb = NULL;
240 tb_unlock();
241 mmap_unlock();
243 cc->cpu_exec_enter(cpu);
244 /* execute the generated code */
245 trace_exec_tb_nocache(tb, pc);
246 cpu_tb_exec(cpu, tb);
247 cc->cpu_exec_exit(cpu);
249 tb_lock();
250 tb_phys_invalidate(tb, -1);
251 tb_free(tb);
252 tb_unlock();
253 } else {
254 /* We may have exited due to another problem here, so we need
255 * to reset any tb_locks we may have taken but didn't release.
256 * The mmap_lock is dropped by tb_gen_code if it runs out of
257 * memory.
259 #ifndef CONFIG_SOFTMMU
260 tcg_debug_assert(!have_mmap_lock());
261 #endif
262 tb_lock_reset();
266 void cpu_exec_step_atomic(CPUState *cpu)
268 start_exclusive();
270 /* Since we got here, we know that parallel_cpus must be true. */
271 parallel_cpus = false;
272 cpu_exec_step(cpu);
273 parallel_cpus = true;
275 end_exclusive();
278 struct tb_desc {
279 target_ulong pc;
280 target_ulong cs_base;
281 CPUArchState *env;
282 tb_page_addr_t phys_page1;
283 uint32_t flags;
284 uint32_t trace_vcpu_dstate;
287 static bool tb_cmp(const void *p, const void *d)
289 const TranslationBlock *tb = p;
290 const struct tb_desc *desc = d;
292 if (tb->pc == desc->pc &&
293 tb->page_addr[0] == desc->phys_page1 &&
294 tb->cs_base == desc->cs_base &&
295 tb->flags == desc->flags &&
296 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
297 !(atomic_read(&tb->cflags) & CF_INVALID)) {
298 /* check next page if needed */
299 if (tb->page_addr[1] == -1) {
300 return true;
301 } else {
302 tb_page_addr_t phys_page2;
303 target_ulong virt_page2;
305 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
306 phys_page2 = get_page_addr_code(desc->env, virt_page2);
307 if (tb->page_addr[1] == phys_page2) {
308 return true;
312 return false;
315 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
316 target_ulong cs_base, uint32_t flags)
318 tb_page_addr_t phys_pc;
319 struct tb_desc desc;
320 uint32_t h;
322 desc.env = (CPUArchState *)cpu->env_ptr;
323 desc.cs_base = cs_base;
324 desc.flags = flags;
325 desc.trace_vcpu_dstate = *cpu->trace_dstate;
326 desc.pc = pc;
327 phys_pc = get_page_addr_code(desc.env, pc);
328 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
329 h = tb_hash_func(phys_pc, pc, flags, *cpu->trace_dstate);
330 return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h);
333 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
335 if (TCG_TARGET_HAS_direct_jump) {
336 uintptr_t offset = tb->jmp_target_arg[n];
337 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
338 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
339 } else {
340 tb->jmp_target_arg[n] = addr;
344 /* Called with tb_lock held. */
345 static inline void tb_add_jump(TranslationBlock *tb, int n,
346 TranslationBlock *tb_next)
348 assert(n < ARRAY_SIZE(tb->jmp_list_next));
349 if (tb->jmp_list_next[n]) {
350 /* Another thread has already done this while we were
351 * outside of the lock; nothing to do in this case */
352 return;
354 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
355 "Linking TBs %p [" TARGET_FMT_lx
356 "] index %d -> %p [" TARGET_FMT_lx "]\n",
357 tb->tc.ptr, tb->pc, n,
358 tb_next->tc.ptr, tb_next->pc);
360 /* patch the native jump address */
361 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
363 /* add in TB jmp circular list */
364 tb->jmp_list_next[n] = tb_next->jmp_list_first;
365 tb_next->jmp_list_first = (uintptr_t)tb | n;
368 static inline TranslationBlock *tb_find(CPUState *cpu,
369 TranslationBlock *last_tb,
370 int tb_exit)
372 TranslationBlock *tb;
373 target_ulong cs_base, pc;
374 uint32_t flags;
375 bool acquired_tb_lock = false;
377 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags);
378 if (tb == NULL) {
379 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
380 * taken outside tb_lock. As system emulation is currently
381 * single threaded the locks are NOPs.
383 mmap_lock();
384 tb_lock();
385 acquired_tb_lock = true;
387 /* There's a chance that our desired tb has been translated while
388 * taking the locks so we check again inside the lock.
390 tb = tb_htable_lookup(cpu, pc, cs_base, flags);
391 if (likely(tb == NULL)) {
392 /* if no translated code available, then translate it now */
393 tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
396 mmap_unlock();
397 /* We add the TB in the virtual pc hash table for the fast lookup */
398 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
400 #ifndef CONFIG_USER_ONLY
401 /* We don't take care of direct jumps when address mapping changes in
402 * system emulation. So it's not safe to make a direct jump to a TB
403 * spanning two pages because the mapping for the second page can change.
405 if (tb->page_addr[1] != -1) {
406 last_tb = NULL;
408 #endif
409 /* See if we can patch the calling TB. */
410 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
411 if (!acquired_tb_lock) {
412 tb_lock();
413 acquired_tb_lock = true;
415 if (!(tb->cflags & CF_INVALID)) {
416 tb_add_jump(last_tb, tb_exit, tb);
419 if (acquired_tb_lock) {
420 tb_unlock();
422 return tb;
425 static inline bool cpu_handle_halt(CPUState *cpu)
427 if (cpu->halted) {
428 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
429 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
430 && replay_interrupt()) {
431 X86CPU *x86_cpu = X86_CPU(cpu);
432 qemu_mutex_lock_iothread();
433 apic_poll_irq(x86_cpu->apic_state);
434 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
435 qemu_mutex_unlock_iothread();
437 #endif
438 if (!cpu_has_work(cpu)) {
439 return true;
442 cpu->halted = 0;
445 return false;
448 static inline void cpu_handle_debug_exception(CPUState *cpu)
450 CPUClass *cc = CPU_GET_CLASS(cpu);
451 CPUWatchpoint *wp;
453 if (!cpu->watchpoint_hit) {
454 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
455 wp->flags &= ~BP_WATCHPOINT_HIT;
459 cc->debug_excp_handler(cpu);
462 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
464 if (cpu->exception_index >= 0) {
465 if (cpu->exception_index >= EXCP_INTERRUPT) {
466 /* exit request from the cpu execution loop */
467 *ret = cpu->exception_index;
468 if (*ret == EXCP_DEBUG) {
469 cpu_handle_debug_exception(cpu);
471 cpu->exception_index = -1;
472 return true;
473 } else {
474 #if defined(CONFIG_USER_ONLY)
475 /* if user mode only, we simulate a fake exception
476 which will be handled outside the cpu execution
477 loop */
478 #if defined(TARGET_I386)
479 CPUClass *cc = CPU_GET_CLASS(cpu);
480 cc->do_interrupt(cpu);
481 #endif
482 *ret = cpu->exception_index;
483 cpu->exception_index = -1;
484 return true;
485 #else
486 if (replay_exception()) {
487 CPUClass *cc = CPU_GET_CLASS(cpu);
488 qemu_mutex_lock_iothread();
489 cc->do_interrupt(cpu);
490 qemu_mutex_unlock_iothread();
491 cpu->exception_index = -1;
492 } else if (!replay_has_interrupt()) {
493 /* give a chance to iothread in replay mode */
494 *ret = EXCP_INTERRUPT;
495 return true;
497 #endif
499 #ifndef CONFIG_USER_ONLY
500 } else if (replay_has_exception()
501 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
502 /* try to cause an exception pending in the log */
503 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true);
504 *ret = -1;
505 return true;
506 #endif
509 return false;
512 static inline bool cpu_handle_interrupt(CPUState *cpu,
513 TranslationBlock **last_tb)
515 CPUClass *cc = CPU_GET_CLASS(cpu);
517 if (unlikely(atomic_read(&cpu->interrupt_request))) {
518 int interrupt_request;
519 qemu_mutex_lock_iothread();
520 interrupt_request = cpu->interrupt_request;
521 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
522 /* Mask out external interrupts for this step. */
523 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
525 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
526 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
527 cpu->exception_index = EXCP_DEBUG;
528 qemu_mutex_unlock_iothread();
529 return true;
531 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
532 /* Do nothing */
533 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
534 replay_interrupt();
535 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
536 cpu->halted = 1;
537 cpu->exception_index = EXCP_HLT;
538 qemu_mutex_unlock_iothread();
539 return true;
541 #if defined(TARGET_I386)
542 else if (interrupt_request & CPU_INTERRUPT_INIT) {
543 X86CPU *x86_cpu = X86_CPU(cpu);
544 CPUArchState *env = &x86_cpu->env;
545 replay_interrupt();
546 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
547 do_cpu_init(x86_cpu);
548 cpu->exception_index = EXCP_HALTED;
549 qemu_mutex_unlock_iothread();
550 return true;
552 #else
553 else if (interrupt_request & CPU_INTERRUPT_RESET) {
554 replay_interrupt();
555 cpu_reset(cpu);
556 qemu_mutex_unlock_iothread();
557 return true;
559 #endif
560 /* The target hook has 3 exit conditions:
561 False when the interrupt isn't processed,
562 True when it is, and we should restart on a new TB,
563 and via longjmp via cpu_loop_exit. */
564 else {
565 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
566 replay_interrupt();
567 *last_tb = NULL;
569 /* The target hook may have updated the 'cpu->interrupt_request';
570 * reload the 'interrupt_request' value */
571 interrupt_request = cpu->interrupt_request;
573 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
574 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
575 /* ensure that no TB jump will be modified as
576 the program flow was changed */
577 *last_tb = NULL;
580 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
581 qemu_mutex_unlock_iothread();
584 /* Finally, check if we need to exit to the main loop. */
585 if (unlikely(atomic_read(&cpu->exit_request)
586 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
587 atomic_set(&cpu->exit_request, 0);
588 cpu->exception_index = EXCP_INTERRUPT;
589 return true;
592 return false;
595 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
596 TranslationBlock **last_tb, int *tb_exit)
598 uintptr_t ret;
599 int32_t insns_left;
601 trace_exec_tb(tb, tb->pc);
602 ret = cpu_tb_exec(cpu, tb);
603 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
604 *tb_exit = ret & TB_EXIT_MASK;
605 if (*tb_exit != TB_EXIT_REQUESTED) {
606 *last_tb = tb;
607 return;
610 *last_tb = NULL;
611 insns_left = atomic_read(&cpu->icount_decr.u32);
612 atomic_set(&cpu->icount_decr.u16.high, 0);
613 if (insns_left < 0) {
614 /* Something asked us to stop executing chained TBs; just
615 * continue round the main loop. Whatever requested the exit
616 * will also have set something else (eg exit_request or
617 * interrupt_request) which we will handle next time around
618 * the loop. But we need to ensure the zeroing of icount_decr
619 * comes before the next read of cpu->exit_request
620 * or cpu->interrupt_request.
622 smp_mb();
623 return;
626 /* Instruction counter expired. */
627 assert(use_icount);
628 #ifndef CONFIG_USER_ONLY
629 /* Ensure global icount has gone forward */
630 cpu_update_icount(cpu);
631 /* Refill decrementer and continue execution. */
632 insns_left = MIN(0xffff, cpu->icount_budget);
633 cpu->icount_decr.u16.low = insns_left;
634 cpu->icount_extra = cpu->icount_budget - insns_left;
635 if (!cpu->icount_extra) {
636 /* Execute any remaining instructions, then let the main loop
637 * handle the next event.
639 if (insns_left > 0) {
640 cpu_exec_nocache(cpu, insns_left, tb, false);
643 #endif
646 /* main execution loop */
648 int cpu_exec(CPUState *cpu)
650 CPUClass *cc = CPU_GET_CLASS(cpu);
651 int ret;
652 SyncClocks sc = { 0 };
654 /* replay_interrupt may need current_cpu */
655 current_cpu = cpu;
657 if (cpu_handle_halt(cpu)) {
658 return EXCP_HALTED;
661 rcu_read_lock();
663 cc->cpu_exec_enter(cpu);
665 /* Calculate difference between guest clock and host clock.
666 * This delay includes the delay of the last cycle, so
667 * what we have to do is sleep until it is 0. As for the
668 * advance/delay we gain here, we try to fix it next time.
670 init_delay_params(&sc, cpu);
672 /* prepare setjmp context for exception handling */
673 if (sigsetjmp(cpu->jmp_env, 0) != 0) {
674 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
675 /* Some compilers wrongly smash all local variables after
676 * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
677 * Reload essential local variables here for those compilers.
678 * Newer versions of gcc would complain about this code (-Wclobbered). */
679 cpu = current_cpu;
680 cc = CPU_GET_CLASS(cpu);
681 #else /* buggy compiler */
682 /* Assert that the compiler does not smash local variables. */
683 g_assert(cpu == current_cpu);
684 g_assert(cc == CPU_GET_CLASS(cpu));
685 #endif /* buggy compiler */
686 cpu->can_do_io = 1;
687 tb_lock_reset();
688 if (qemu_mutex_iothread_locked()) {
689 qemu_mutex_unlock_iothread();
693 /* if an exception is pending, we execute it here */
694 while (!cpu_handle_exception(cpu, &ret)) {
695 TranslationBlock *last_tb = NULL;
696 int tb_exit = 0;
698 while (!cpu_handle_interrupt(cpu, &last_tb)) {
699 TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit);
700 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
701 /* Try to align the host and virtual clocks
702 if the guest is in advance */
703 align_clocks(&sc, cpu);
707 cc->cpu_exec_exit(cpu);
708 rcu_read_unlock();
710 return ret;