hw/dma/xilinx_axidma: remove dead code
[qemu/ar7.git] / disas / libvixl / a64 / instructions-a64.h
blobf1d883ccc718972d08ce06d71820a23da4bc81b4
1 // Copyright 2013, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #ifndef VIXL_A64_INSTRUCTIONS_A64_H_
28 #define VIXL_A64_INSTRUCTIONS_A64_H_
30 #include "globals.h"
31 #include "utils.h"
32 #include "a64/constants-a64.h"
34 namespace vixl {
35 // ISA constants. --------------------------------------------------------------
37 typedef uint32_t Instr;
38 const unsigned kInstructionSize = 4;
39 const unsigned kInstructionSizeLog2 = 2;
40 const unsigned kLiteralEntrySize = 4;
41 const unsigned kLiteralEntrySizeLog2 = 2;
42 const unsigned kMaxLoadLiteralRange = 1 * MBytes;
44 // This is the nominal page size (as used by the adrp instruction); the actual
45 // size of the memory pages allocated by the kernel is likely to differ.
46 const unsigned kPageSize = 4 * KBytes;
47 const unsigned kPageSizeLog2 = 12;
49 const unsigned kWRegSize = 32;
50 const unsigned kWRegSizeLog2 = 5;
51 const unsigned kWRegSizeInBytes = kWRegSize / 8;
52 const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
53 const unsigned kXRegSize = 64;
54 const unsigned kXRegSizeLog2 = 6;
55 const unsigned kXRegSizeInBytes = kXRegSize / 8;
56 const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
57 const unsigned kSRegSize = 32;
58 const unsigned kSRegSizeLog2 = 5;
59 const unsigned kSRegSizeInBytes = kSRegSize / 8;
60 const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
61 const unsigned kDRegSize = 64;
62 const unsigned kDRegSizeLog2 = 6;
63 const unsigned kDRegSizeInBytes = kDRegSize / 8;
64 const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
65 const uint64_t kWRegMask = UINT64_C(0xffffffff);
66 const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
67 const uint64_t kSRegMask = UINT64_C(0xffffffff);
68 const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
69 const uint64_t kSSignMask = UINT64_C(0x80000000);
70 const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
71 const uint64_t kWSignMask = UINT64_C(0x80000000);
72 const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
73 const uint64_t kByteMask = UINT64_C(0xff);
74 const uint64_t kHalfWordMask = UINT64_C(0xffff);
75 const uint64_t kWordMask = UINT64_C(0xffffffff);
76 const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
77 const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
78 const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
79 const int64_t kXMinInt = INT64_C(0x8000000000000000);
80 const int32_t kWMaxInt = INT32_C(0x7fffffff);
81 const int32_t kWMinInt = INT32_C(0x80000000);
82 const unsigned kLinkRegCode = 30;
83 const unsigned kZeroRegCode = 31;
84 const unsigned kSPRegInternalCode = 63;
85 const unsigned kRegCodeMask = 0x1f;
87 const unsigned kAddressTagOffset = 56;
88 const unsigned kAddressTagWidth = 8;
89 const uint64_t kAddressTagMask =
90 ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
91 VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
93 // AArch64 floating-point specifics. These match IEEE-754.
94 const unsigned kDoubleMantissaBits = 52;
95 const unsigned kDoubleExponentBits = 11;
96 const unsigned kFloatMantissaBits = 23;
97 const unsigned kFloatExponentBits = 8;
99 // Floating-point infinity values.
100 extern const float kFP32PositiveInfinity;
101 extern const float kFP32NegativeInfinity;
102 extern const double kFP64PositiveInfinity;
103 extern const double kFP64NegativeInfinity;
105 // The default NaN values (for FPCR.DN=1).
106 extern const double kFP64DefaultNaN;
107 extern const float kFP32DefaultNaN;
110 enum LSDataSize {
111 LSByte = 0,
112 LSHalfword = 1,
113 LSWord = 2,
114 LSDoubleWord = 3
117 LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
119 enum ImmBranchType {
120 UnknownBranchType = 0,
121 CondBranchType = 1,
122 UncondBranchType = 2,
123 CompareBranchType = 3,
124 TestBranchType = 4
127 enum AddrMode {
128 Offset,
129 PreIndex,
130 PostIndex
133 enum FPRounding {
134 // The first four values are encodable directly by FPCR<RMode>.
135 FPTieEven = 0x0,
136 FPPositiveInfinity = 0x1,
137 FPNegativeInfinity = 0x2,
138 FPZero = 0x3,
140 // The final rounding mode is only available when explicitly specified by the
141 // instruction (such as with fcvta). It cannot be set in FPCR.
142 FPTieAway
145 enum Reg31Mode {
146 Reg31IsStackPointer,
147 Reg31IsZeroRegister
150 // Instructions. ---------------------------------------------------------------
152 class Instruction {
153 public:
154 Instr InstructionBits() const {
155 return *(reinterpret_cast<const Instr*>(this));
158 void SetInstructionBits(Instr new_instr) {
159 *(reinterpret_cast<Instr*>(this)) = new_instr;
162 int Bit(int pos) const {
163 return (InstructionBits() >> pos) & 1;
166 uint32_t Bits(int msb, int lsb) const {
167 return unsigned_bitextract_32(msb, lsb, InstructionBits());
170 int32_t SignedBits(int msb, int lsb) const {
171 int32_t bits = *(reinterpret_cast<const int32_t*>(this));
172 return signed_bitextract_32(msb, lsb, bits);
175 Instr Mask(uint32_t mask) const {
176 return InstructionBits() & mask;
179 #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
180 int64_t Name() const { return Func(HighBit, LowBit); }
181 INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
182 #undef DEFINE_GETTER
184 // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
185 // formed from ImmPCRelLo and ImmPCRelHi.
186 int ImmPCRel() const {
187 int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
188 int const width = ImmPCRelLo_width + ImmPCRelHi_width;
189 return signed_bitextract_32(width-1, 0, offset);
192 uint64_t ImmLogical() const;
193 float ImmFP32() const;
194 double ImmFP64() const;
196 LSDataSize SizeLSPair() const {
197 return CalcLSPairDataSize(
198 static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
201 // Helpers.
202 bool IsCondBranchImm() const {
203 return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
206 bool IsUncondBranchImm() const {
207 return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
210 bool IsCompareBranch() const {
211 return Mask(CompareBranchFMask) == CompareBranchFixed;
214 bool IsTestBranch() const {
215 return Mask(TestBranchFMask) == TestBranchFixed;
218 bool IsPCRelAddressing() const {
219 return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
222 bool IsLogicalImmediate() const {
223 return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
226 bool IsAddSubImmediate() const {
227 return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
230 bool IsAddSubExtended() const {
231 return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
234 bool IsLoadOrStore() const {
235 return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
238 bool IsLoad() const;
239 bool IsStore() const;
241 bool IsLoadLiteral() const {
242 // This includes PRFM_lit.
243 return Mask(LoadLiteralFMask) == LoadLiteralFixed;
246 bool IsMovn() const {
247 return (Mask(MoveWideImmediateMask) == MOVN_x) ||
248 (Mask(MoveWideImmediateMask) == MOVN_w);
251 // Indicate whether Rd can be the stack pointer or the zero register. This
252 // does not check that the instruction actually has an Rd field.
253 Reg31Mode RdMode() const {
254 // The following instructions use sp or wsp as Rd:
255 // Add/sub (immediate) when not setting the flags.
256 // Add/sub (extended) when not setting the flags.
257 // Logical (immediate) when not setting the flags.
258 // Otherwise, r31 is the zero register.
259 if (IsAddSubImmediate() || IsAddSubExtended()) {
260 if (Mask(AddSubSetFlagsBit)) {
261 return Reg31IsZeroRegister;
262 } else {
263 return Reg31IsStackPointer;
266 if (IsLogicalImmediate()) {
267 // Of the logical (immediate) instructions, only ANDS (and its aliases)
268 // can set the flags. The others can all write into sp.
269 // Note that some logical operations are not available to
270 // immediate-operand instructions, so we have to combine two masks here.
271 if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
272 return Reg31IsZeroRegister;
273 } else {
274 return Reg31IsStackPointer;
277 return Reg31IsZeroRegister;
280 // Indicate whether Rn can be the stack pointer or the zero register. This
281 // does not check that the instruction actually has an Rn field.
282 Reg31Mode RnMode() const {
283 // The following instructions use sp or wsp as Rn:
284 // All loads and stores.
285 // Add/sub (immediate).
286 // Add/sub (extended).
287 // Otherwise, r31 is the zero register.
288 if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
289 return Reg31IsStackPointer;
291 return Reg31IsZeroRegister;
294 ImmBranchType BranchType() const {
295 if (IsCondBranchImm()) {
296 return CondBranchType;
297 } else if (IsUncondBranchImm()) {
298 return UncondBranchType;
299 } else if (IsCompareBranch()) {
300 return CompareBranchType;
301 } else if (IsTestBranch()) {
302 return TestBranchType;
303 } else {
304 return UnknownBranchType;
308 // Find the target of this instruction. 'this' may be a branch or a
309 // PC-relative addressing instruction.
310 const Instruction* ImmPCOffsetTarget() const;
312 // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
313 // a PC-relative addressing instruction.
314 void SetImmPCOffsetTarget(const Instruction* target);
315 // Patch a literal load instruction to load from 'source'.
316 void SetImmLLiteral(const Instruction* source);
318 // Calculate the address of a literal referred to by a load-literal
319 // instruction, and return it as the specified type.
321 // The literal itself is safely mutable only if the backing buffer is safely
322 // mutable.
323 template <typename T>
324 T LiteralAddress() const {
325 uint64_t base_raw = reinterpret_cast<uintptr_t>(this);
326 ptrdiff_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
327 uint64_t address_raw = base_raw + offset;
329 // Cast the address using a C-style cast. A reinterpret_cast would be
330 // appropriate, but it can't cast one integral type to another.
331 T address = (T)(address_raw);
333 // Assert that the address can be represented by the specified type.
334 VIXL_ASSERT((uint64_t)(address) == address_raw);
336 return address;
339 uint32_t Literal32() const {
340 uint32_t literal;
341 memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
342 return literal;
345 uint64_t Literal64() const {
346 uint64_t literal;
347 memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
348 return literal;
351 float LiteralFP32() const {
352 return rawbits_to_float(Literal32());
355 double LiteralFP64() const {
356 return rawbits_to_double(Literal64());
359 const Instruction* NextInstruction() const {
360 return this + kInstructionSize;
363 const Instruction* InstructionAtOffset(int64_t offset) const {
364 VIXL_ASSERT(IsWordAligned(this + offset));
365 return this + offset;
368 template<typename T> static Instruction* Cast(T src) {
369 return reinterpret_cast<Instruction*>(src);
372 template<typename T> static const Instruction* CastConst(T src) {
373 return reinterpret_cast<const Instruction*>(src);
376 private:
377 int ImmBranch() const;
379 void SetPCRelImmTarget(const Instruction* target);
380 void SetBranchImmTarget(const Instruction* target);
382 } // namespace vixl
384 #endif // VIXL_A64_INSTRUCTIONS_A64_H_