audio: UpdateHandler is not used anymore
[qemu/ar7.git] / hw / audio / fmopl.c
blob99d09c55b3fa53d3334b1160269164ffa9922eac
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
12 preliminary :
13 Problem :
14 note:
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #include "qemu/osdep.h"
34 #include <math.h>
35 //#include "driver.h" /* use M.A.M.E. */
36 #include "fmopl.h"
38 #ifndef PI
39 #define PI 3.14159265358979323846
40 #endif
42 #ifndef ARRAY_SIZE
43 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
44 #endif
46 /* -------------------- for debug --------------------- */
47 /* #define OPL_OUTPUT_LOG */
48 #ifdef OPL_OUTPUT_LOG
49 static FILE *opl_dbg_fp = NULL;
50 static FM_OPL *opl_dbg_opl[16];
51 static int opl_dbg_maxchip,opl_dbg_chip;
52 #endif
54 /* -------------------- preliminary define section --------------------- */
55 /* attack/decay rate time rate */
56 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
57 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
59 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
61 #define FREQ_BITS 24 /* frequency turn */
63 /* counter bits = 20 , octerve 7 */
64 #define FREQ_RATE (1<<(FREQ_BITS-20))
65 #define TL_BITS (FREQ_BITS+2)
67 /* final output shift , limit minimum and maximum */
68 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
69 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
70 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
72 /* -------------------- quality selection --------------------- */
74 /* sinwave entries */
75 /* used static memory = SIN_ENT * 4 (byte) */
76 #define SIN_ENT 2048
78 /* output level entries (envelope,sinwave) */
79 /* envelope counter lower bits */
80 #define ENV_BITS 16
81 /* envelope output entries */
82 #define EG_ENT 4096
83 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
84 /* used static memory = EG_ENT*4 (byte) */
86 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
87 #define EG_DED EG_OFF
88 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
89 #define EG_AED EG_DST
90 #define EG_AST 0 /* ATTACK START */
92 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
94 /* LFO table entries */
95 #define VIB_ENT 512
96 #define VIB_SHIFT (32-9)
97 #define AMS_ENT 512
98 #define AMS_SHIFT (32-9)
100 #define VIB_RATE 256
102 /* -------------------- local defines , macros --------------------- */
104 /* register number to channel number , slot offset */
105 #define SLOT1 0
106 #define SLOT2 1
108 /* envelope phase */
109 #define ENV_MOD_RR 0x00
110 #define ENV_MOD_DR 0x01
111 #define ENV_MOD_AR 0x02
113 /* -------------------- tables --------------------- */
114 static const int slot_array[32]=
116 0, 2, 4, 1, 3, 5,-1,-1,
117 6, 8,10, 7, 9,11,-1,-1,
118 12,14,16,13,15,17,-1,-1,
119 -1,-1,-1,-1,-1,-1,-1,-1
122 /* key scale level */
123 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
124 #define DV (EG_STEP/2)
125 static const uint32_t KSL_TABLE[8*16]=
127 /* OCT 0 */
128 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
129 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
130 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132 /* OCT 1 */
133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
136 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
137 /* OCT 2 */
138 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
139 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
140 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
141 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
142 /* OCT 3 */
143 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
144 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
145 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
146 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
147 /* OCT 4 */
148 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
149 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
150 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
151 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
152 /* OCT 5 */
153 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
154 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
155 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
156 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
157 /* OCT 6 */
158 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
159 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
160 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
161 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
162 /* OCT 7 */
163 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
164 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
165 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
166 19.875/DV,20.250/DV,20.625/DV,21.000/DV
168 #undef DV
170 /* sustain lebel table (3db per step) */
171 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
172 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
173 static const int32_t SL_TABLE[16]={
174 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
175 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
177 #undef SC
179 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
180 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
181 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
182 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
183 static int32_t *TL_TABLE;
185 /* pointers to TL_TABLE with sinwave output offset */
186 static int32_t **SIN_TABLE;
188 /* LFO table */
189 static int32_t *AMS_TABLE;
190 static int32_t *VIB_TABLE;
192 /* envelope output curve table */
193 /* attack + decay + OFF */
194 static int32_t ENV_CURVE[2*EG_ENT+1];
196 /* multiple table */
197 #define ML 2
198 static const uint32_t MUL_TABLE[16]= {
199 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
200 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
201 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
203 #undef ML
205 /* dummy attack / decay rate ( when rate == 0 ) */
206 static int32_t RATE_0[16]=
207 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
209 /* -------------------- static state --------------------- */
211 /* lock level of common table */
212 static int num_lock = 0;
214 /* work table */
215 static void *cur_chip = NULL; /* current chip point */
216 /* currenct chip state */
217 /* static OPLSAMPLE *bufL,*bufR; */
218 static OPL_CH *S_CH;
219 static OPL_CH *E_CH;
220 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
222 static int32_t outd[1];
223 static int32_t ams;
224 static int32_t vib;
225 static int32_t *ams_table;
226 static int32_t *vib_table;
227 static int32_t amsIncr;
228 static int32_t vibIncr;
229 static int32_t feedback2; /* connect for SLOT 2 */
231 /* log output level */
232 #define LOG_ERR 3 /* ERROR */
233 #define LOG_WAR 2 /* WARNING */
234 #define LOG_INF 1 /* INFORMATION */
236 //#define LOG_LEVEL LOG_INF
237 #define LOG_LEVEL LOG_ERR
239 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
240 #define LOG(n,x)
242 /* --------------------- subroutines --------------------- */
244 static inline int Limit( int val, int max, int min ) {
245 if ( val > max )
246 val = max;
247 else if ( val < min )
248 val = min;
250 return val;
253 /* status set and IRQ handling */
254 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
256 /* set status flag */
257 OPL->status |= flag;
258 if(!(OPL->status & 0x80))
260 if(OPL->status & OPL->statusmask)
261 { /* IRQ on */
262 OPL->status |= 0x80;
267 /* status reset and IRQ handling */
268 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
270 /* reset status flag */
271 OPL->status &=~flag;
272 if((OPL->status & 0x80))
274 if (!(OPL->status & OPL->statusmask) )
276 OPL->status &= 0x7f;
281 /* IRQ mask set */
282 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
284 OPL->statusmask = flag;
285 /* IRQ handling check */
286 OPL_STATUS_SET(OPL,0);
287 OPL_STATUS_RESET(OPL,0);
290 /* ----- key on ----- */
291 static inline void OPL_KEYON(OPL_SLOT *SLOT)
293 /* sin wave restart */
294 SLOT->Cnt = 0;
295 /* set attack */
296 SLOT->evm = ENV_MOD_AR;
297 SLOT->evs = SLOT->evsa;
298 SLOT->evc = EG_AST;
299 SLOT->eve = EG_AED;
301 /* ----- key off ----- */
302 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
304 if( SLOT->evm > ENV_MOD_RR)
306 /* set envelope counter from envleope output */
307 SLOT->evm = ENV_MOD_RR;
308 if( !(SLOT->evc&EG_DST) )
309 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
310 SLOT->evc = EG_DST;
311 SLOT->eve = EG_DED;
312 SLOT->evs = SLOT->evsr;
316 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
317 /* return : envelope output */
318 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
320 /* calcrate envelope generator */
321 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
323 switch( SLOT->evm ){
324 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
325 /* next DR */
326 SLOT->evm = ENV_MOD_DR;
327 SLOT->evc = EG_DST;
328 SLOT->eve = SLOT->SL;
329 SLOT->evs = SLOT->evsd;
330 break;
331 case ENV_MOD_DR: /* DECAY -> SL or RR */
332 SLOT->evc = SLOT->SL;
333 SLOT->eve = EG_DED;
334 if(SLOT->eg_typ)
336 SLOT->evs = 0;
338 else
340 SLOT->evm = ENV_MOD_RR;
341 SLOT->evs = SLOT->evsr;
343 break;
344 case ENV_MOD_RR: /* RR -> OFF */
345 SLOT->evc = EG_OFF;
346 SLOT->eve = EG_OFF+1;
347 SLOT->evs = 0;
348 break;
351 /* calcrate envelope */
352 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
355 /* set algorithm connection */
356 static void set_algorithm( OPL_CH *CH)
358 int32_t *carrier = &outd[0];
359 CH->connect1 = CH->CON ? carrier : &feedback2;
360 CH->connect2 = carrier;
363 /* ---------- frequency counter for operater update ---------- */
364 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
366 int ksr;
368 /* frequency step counter */
369 SLOT->Incr = CH->fc * SLOT->mul;
370 ksr = CH->kcode >> SLOT->KSR;
372 if( SLOT->ksr != ksr )
374 SLOT->ksr = ksr;
375 /* attack , decay rate recalcration */
376 SLOT->evsa = SLOT->AR[ksr];
377 SLOT->evsd = SLOT->DR[ksr];
378 SLOT->evsr = SLOT->RR[ksr];
380 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
383 /* set multi,am,vib,EG-TYP,KSR,mul */
384 static inline void set_mul(FM_OPL *OPL,int slot,int v)
386 OPL_CH *CH = &OPL->P_CH[slot/2];
387 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
389 SLOT->mul = MUL_TABLE[v&0x0f];
390 SLOT->KSR = (v&0x10) ? 0 : 2;
391 SLOT->eg_typ = (v&0x20)>>5;
392 SLOT->vib = (v&0x40);
393 SLOT->ams = (v&0x80);
394 CALC_FCSLOT(CH,SLOT);
397 /* set ksl & tl */
398 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
400 OPL_CH *CH = &OPL->P_CH[slot/2];
401 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
402 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
404 SLOT->ksl = ksl ? 3-ksl : 31;
405 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
407 if( !(OPL->mode&0x80) )
408 { /* not CSM latch total level */
409 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
413 /* set attack rate & decay rate */
414 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
416 OPL_CH *CH = &OPL->P_CH[slot/2];
417 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
418 int ar = v>>4;
419 int dr = v&0x0f;
421 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
422 SLOT->evsa = SLOT->AR[SLOT->ksr];
423 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
425 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
426 SLOT->evsd = SLOT->DR[SLOT->ksr];
427 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
430 /* set sustain level & release rate */
431 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
433 OPL_CH *CH = &OPL->P_CH[slot/2];
434 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
435 int sl = v>>4;
436 int rr = v & 0x0f;
438 SLOT->SL = SL_TABLE[sl];
439 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
440 SLOT->RR = &OPL->DR_TABLE[rr<<2];
441 SLOT->evsr = SLOT->RR[SLOT->ksr];
442 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
445 /* operator output calcrator */
446 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
447 /* ---------- calcrate one of channel ---------- */
448 static inline void OPL_CALC_CH( OPL_CH *CH )
450 uint32_t env_out;
451 OPL_SLOT *SLOT;
453 feedback2 = 0;
454 /* SLOT 1 */
455 SLOT = &CH->SLOT[SLOT1];
456 env_out=OPL_CALC_SLOT(SLOT);
457 if( env_out < EG_ENT-1 )
459 /* PG */
460 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
461 else SLOT->Cnt += SLOT->Incr;
462 /* connectoion */
463 if(CH->FB)
465 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
466 CH->op1_out[1] = CH->op1_out[0];
467 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
469 else
471 *CH->connect1 += OP_OUT(SLOT,env_out,0);
473 }else
475 CH->op1_out[1] = CH->op1_out[0];
476 CH->op1_out[0] = 0;
478 /* SLOT 2 */
479 SLOT = &CH->SLOT[SLOT2];
480 env_out=OPL_CALC_SLOT(SLOT);
481 if( env_out < EG_ENT-1 )
483 /* PG */
484 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
485 else SLOT->Cnt += SLOT->Incr;
486 /* connectoion */
487 outd[0] += OP_OUT(SLOT,env_out, feedback2);
491 /* ---------- calcrate rhythm block ---------- */
492 #define WHITE_NOISE_db 6.0
493 static inline void OPL_CALC_RH( OPL_CH *CH )
495 uint32_t env_tam,env_sd,env_top,env_hh;
496 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
497 int32_t tone8;
499 OPL_SLOT *SLOT;
500 int env_out;
502 /* BD : same as FM serial mode and output level is large */
503 feedback2 = 0;
504 /* SLOT 1 */
505 SLOT = &CH[6].SLOT[SLOT1];
506 env_out=OPL_CALC_SLOT(SLOT);
507 if( env_out < EG_ENT-1 )
509 /* PG */
510 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
511 else SLOT->Cnt += SLOT->Incr;
512 /* connectoion */
513 if(CH[6].FB)
515 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
516 CH[6].op1_out[1] = CH[6].op1_out[0];
517 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
519 else
521 feedback2 = OP_OUT(SLOT,env_out,0);
523 }else
525 feedback2 = 0;
526 CH[6].op1_out[1] = CH[6].op1_out[0];
527 CH[6].op1_out[0] = 0;
529 /* SLOT 2 */
530 SLOT = &CH[6].SLOT[SLOT2];
531 env_out=OPL_CALC_SLOT(SLOT);
532 if( env_out < EG_ENT-1 )
534 /* PG */
535 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
536 else SLOT->Cnt += SLOT->Incr;
537 /* connectoion */
538 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
541 // SD (17) = mul14[fnum7] + white noise
542 // TAM (15) = mul15[fnum8]
543 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
544 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
545 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
546 env_tam=OPL_CALC_SLOT(SLOT8_1);
547 env_top=OPL_CALC_SLOT(SLOT8_2);
548 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
550 /* PG */
551 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
552 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
553 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
554 else SLOT7_2->Cnt += (CH[7].fc*8);
555 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
556 else SLOT8_1->Cnt += SLOT8_1->Incr;
557 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
558 else SLOT8_2->Cnt += (CH[8].fc*48);
560 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
562 /* SD */
563 if( env_sd < EG_ENT-1 )
564 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
565 /* TAM */
566 if( env_tam < EG_ENT-1 )
567 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
568 /* TOP-CY */
569 if( env_top < EG_ENT-1 )
570 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
571 /* HH */
572 if( env_hh < EG_ENT-1 )
573 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
576 /* ----------- initialize time tabls ----------- */
577 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
579 int i;
580 double rate;
582 /* make attack rate & decay rate tables */
583 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
584 for (i = 4;i <= 60;i++){
585 rate = OPL->freqbase; /* frequency rate */
586 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
587 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
588 rate *= (double)(EG_ENT<<ENV_BITS);
589 OPL->AR_TABLE[i] = rate / ARRATE;
590 OPL->DR_TABLE[i] = rate / DRRATE;
592 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
594 OPL->AR_TABLE[i] = EG_AED-1;
595 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
597 #if 0
598 for (i = 0;i < 64 ;i++){ /* make for overflow area */
599 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
600 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
601 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
603 #endif
606 /* ---------- generic table initialize ---------- */
607 static int OPLOpenTable( void )
609 int s,t;
610 double rate;
611 int i,j;
612 double pom;
614 /* allocate dynamic tables */
615 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
616 return 0;
617 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
619 free(TL_TABLE);
620 return 0;
622 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
624 free(TL_TABLE);
625 free(SIN_TABLE);
626 return 0;
628 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
630 free(TL_TABLE);
631 free(SIN_TABLE);
632 free(AMS_TABLE);
633 return 0;
635 /* make total level table */
636 for (t = 0;t < EG_ENT-1 ;t++){
637 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
638 TL_TABLE[ t] = (int)rate;
639 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
640 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
642 /* fill volume off area */
643 for ( t = EG_ENT-1; t < TL_MAX ;t++){
644 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
647 /* make sinwave table (total level offet) */
648 /* degree 0 = degree 180 = off */
649 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
650 for (s = 1;s <= SIN_ENT/4;s++){
651 pom = sin(2*PI*s/SIN_ENT); /* sin */
652 pom = 20*log10(1/pom); /* decibel */
653 j = pom / EG_STEP; /* TL_TABLE steps */
655 /* degree 0 - 90 , degree 180 - 90 : plus section */
656 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
657 /* degree 180 - 270 , degree 360 - 270 : minus section */
658 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
659 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
661 for (s = 0;s < SIN_ENT;s++)
663 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
664 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
665 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
668 /* envelope counter -> envelope output table */
669 for (i=0; i<EG_ENT; i++)
671 /* ATTACK curve */
672 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
673 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
674 ENV_CURVE[i] = (int)pom;
675 /* DECAY ,RELEASE curve */
676 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
678 /* off */
679 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
680 /* make LFO ams table */
681 for (i=0; i<AMS_ENT; i++)
683 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
684 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
685 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
687 /* make LFO vibrate table */
688 for (i=0; i<VIB_ENT; i++)
690 /* 100cent = 1seminote = 6% ?? */
691 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
692 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
693 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
694 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
696 return 1;
700 static void OPLCloseTable( void )
702 free(TL_TABLE);
703 free(SIN_TABLE);
704 free(AMS_TABLE);
705 free(VIB_TABLE);
708 /* CSM Key Control */
709 static inline void CSMKeyControll(OPL_CH *CH)
711 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
712 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
713 /* all key off */
714 OPL_KEYOFF(slot1);
715 OPL_KEYOFF(slot2);
716 /* total level latch */
717 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
718 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
719 /* key on */
720 CH->op1_out[0] = CH->op1_out[1] = 0;
721 OPL_KEYON(slot1);
722 OPL_KEYON(slot2);
725 /* ---------- opl initialize ---------- */
726 static void OPL_initialize(FM_OPL *OPL)
728 int fn;
730 /* frequency base */
731 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
732 /* Timer base time */
733 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
734 /* make time tables */
735 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
736 /* make fnumber -> increment counter table */
737 for( fn=0 ; fn < 1024 ; fn++ )
739 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
741 /* LFO freq.table */
742 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
743 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
746 /* ---------- write a OPL registers ---------- */
747 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
749 OPL_CH *CH;
750 int slot;
751 int block_fnum;
753 switch(r&0xe0)
755 case 0x00: /* 00-1f:control */
756 switch(r&0x1f)
758 case 0x01:
759 /* wave selector enable */
760 OPL->wavesel = v&0x20;
761 if(!OPL->wavesel)
763 /* preset compatible mode */
764 int c;
765 for(c=0;c<OPL->max_ch;c++)
767 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
768 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
771 return;
772 case 0x02: /* Timer 1 */
773 OPL->T[0] = (256-v)*4;
774 break;
775 case 0x03: /* Timer 2 */
776 OPL->T[1] = (256-v)*16;
777 return;
778 case 0x04: /* IRQ clear / mask and Timer enable */
779 if(v&0x80)
780 { /* IRQ flag clear */
781 OPL_STATUS_RESET(OPL,0x7f);
783 else
784 { /* set IRQ mask ,timer enable*/
785 uint8_t st1 = v&1;
786 uint8_t st2 = (v>>1)&1;
787 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
788 OPL_STATUS_RESET(OPL,v&0x78);
789 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
790 /* timer 2 */
791 if(OPL->st[1] != st2)
793 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
794 OPL->st[1] = st2;
795 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
797 /* timer 1 */
798 if(OPL->st[0] != st1)
800 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
801 OPL->st[0] = st1;
802 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
805 return;
807 break;
808 case 0x20: /* am,vib,ksr,eg type,mul */
809 slot = slot_array[r&0x1f];
810 if(slot == -1) return;
811 set_mul(OPL,slot,v);
812 return;
813 case 0x40:
814 slot = slot_array[r&0x1f];
815 if(slot == -1) return;
816 set_ksl_tl(OPL,slot,v);
817 return;
818 case 0x60:
819 slot = slot_array[r&0x1f];
820 if(slot == -1) return;
821 set_ar_dr(OPL,slot,v);
822 return;
823 case 0x80:
824 slot = slot_array[r&0x1f];
825 if(slot == -1) return;
826 set_sl_rr(OPL,slot,v);
827 return;
828 case 0xa0:
829 switch(r)
831 case 0xbd:
832 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
834 uint8_t rkey = OPL->rhythm^v;
835 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
836 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
837 OPL->rhythm = v&0x3f;
838 if(OPL->rhythm&0x20)
840 #if 0
841 usrintf_showmessage("OPL Rhythm mode select");
842 #endif
843 /* BD key on/off */
844 if(rkey&0x10)
846 if(v&0x10)
848 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
849 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
850 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
852 else
854 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
855 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
858 /* SD key on/off */
859 if(rkey&0x08)
861 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
862 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
863 }/* TAM key on/off */
864 if(rkey&0x04)
866 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
867 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
869 /* TOP-CY key on/off */
870 if(rkey&0x02)
872 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
873 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
875 /* HH key on/off */
876 if(rkey&0x01)
878 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
879 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
883 return;
885 /* keyon,block,fnum */
886 if( (r&0x0f) > 8) return;
887 CH = &OPL->P_CH[r&0x0f];
888 if(!(r&0x10))
889 { /* a0-a8 */
890 block_fnum = (CH->block_fnum&0x1f00) | v;
892 else
893 { /* b0-b8 */
894 int keyon = (v>>5)&1;
895 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
896 if(CH->keyon != keyon)
898 if( (CH->keyon=keyon) )
900 CH->op1_out[0] = CH->op1_out[1] = 0;
901 OPL_KEYON(&CH->SLOT[SLOT1]);
902 OPL_KEYON(&CH->SLOT[SLOT2]);
904 else
906 OPL_KEYOFF(&CH->SLOT[SLOT1]);
907 OPL_KEYOFF(&CH->SLOT[SLOT2]);
911 /* update */
912 if(CH->block_fnum != block_fnum)
914 int blockRv = 7-(block_fnum>>10);
915 int fnum = block_fnum&0x3ff;
916 CH->block_fnum = block_fnum;
918 CH->ksl_base = KSL_TABLE[block_fnum>>6];
919 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
920 CH->kcode = CH->block_fnum>>9;
921 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
922 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
923 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
925 return;
926 case 0xc0:
927 /* FB,C */
928 if( (r&0x0f) > 8) return;
929 CH = &OPL->P_CH[r&0x0f];
931 int feedback = (v>>1)&7;
932 CH->FB = feedback ? (8+1) - feedback : 0;
933 CH->CON = v&1;
934 set_algorithm(CH);
936 return;
937 case 0xe0: /* wave type */
938 slot = slot_array[r&0x1f];
939 if(slot == -1) return;
940 CH = &OPL->P_CH[slot/2];
941 if(OPL->wavesel)
943 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
944 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
946 return;
950 /* lock/unlock for common table */
951 static int OPL_LockTable(void)
953 num_lock++;
954 if(num_lock>1) return 0;
955 /* first time */
956 cur_chip = NULL;
957 /* allocate total level table (128kb space) */
958 if( !OPLOpenTable() )
960 num_lock--;
961 return -1;
963 return 0;
966 static void OPL_UnLockTable(void)
968 if(num_lock) num_lock--;
969 if(num_lock) return;
970 /* last time */
971 cur_chip = NULL;
972 OPLCloseTable();
975 /*******************************************************************************/
976 /* YM3812 local section */
977 /*******************************************************************************/
979 /* ---------- update one of chip ----------- */
980 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
982 int i;
983 int data;
984 int16_t *buf = buffer;
985 uint32_t amsCnt = OPL->amsCnt;
986 uint32_t vibCnt = OPL->vibCnt;
987 uint8_t rhythm = OPL->rhythm&0x20;
988 OPL_CH *CH,*R_CH;
990 if( (void *)OPL != cur_chip ){
991 cur_chip = (void *)OPL;
992 /* channel pointers */
993 S_CH = OPL->P_CH;
994 E_CH = &S_CH[9];
995 /* rhythm slot */
996 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
997 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
998 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
999 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1000 /* LFO state */
1001 amsIncr = OPL->amsIncr;
1002 vibIncr = OPL->vibIncr;
1003 ams_table = OPL->ams_table;
1004 vib_table = OPL->vib_table;
1006 R_CH = rhythm ? &S_CH[6] : E_CH;
1007 for( i=0; i < length ; i++ )
1009 /* channel A channel B channel C */
1010 /* LFO */
1011 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1012 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1013 outd[0] = 0;
1014 /* FM part */
1015 for(CH=S_CH ; CH < R_CH ; CH++)
1016 OPL_CALC_CH(CH);
1017 /* Rythn part */
1018 if(rhythm)
1019 OPL_CALC_RH(S_CH);
1020 /* limit check */
1021 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1022 /* store to sound buffer */
1023 buf[i] = data >> OPL_OUTSB;
1026 OPL->amsCnt = amsCnt;
1027 OPL->vibCnt = vibCnt;
1028 #ifdef OPL_OUTPUT_LOG
1029 if(opl_dbg_fp)
1031 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1032 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1033 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1035 #endif
1038 /* ---------- reset one of chip ---------- */
1039 void OPLResetChip(FM_OPL *OPL)
1041 int c,s;
1042 int i;
1044 /* reset chip */
1045 OPL->mode = 0; /* normal mode */
1046 OPL_STATUS_RESET(OPL,0x7f);
1047 /* reset with register write */
1048 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1049 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1050 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1051 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1052 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1053 /* reset operator parameter */
1054 for( c = 0 ; c < OPL->max_ch ; c++ )
1056 OPL_CH *CH = &OPL->P_CH[c];
1057 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1058 for(s = 0 ; s < 2 ; s++ )
1060 /* wave table */
1061 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1062 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1063 CH->SLOT[s].evc = EG_OFF;
1064 CH->SLOT[s].eve = EG_OFF+1;
1065 CH->SLOT[s].evs = 0;
1070 /* ---------- Create one of vietual YM3812 ---------- */
1071 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1072 FM_OPL *OPLCreate(int clock, int rate)
1074 char *ptr;
1075 FM_OPL *OPL;
1076 int state_size;
1077 int max_ch = 9; /* normaly 9 channels */
1079 if( OPL_LockTable() ==-1) return NULL;
1080 /* allocate OPL state space */
1081 state_size = sizeof(FM_OPL);
1082 state_size += sizeof(OPL_CH)*max_ch;
1083 /* allocate memory block */
1084 ptr = malloc(state_size);
1085 if(ptr==NULL) return NULL;
1086 /* clear */
1087 memset(ptr,0,state_size);
1088 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1089 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1090 /* set channel state pointer */
1091 OPL->clock = clock;
1092 OPL->rate = rate;
1093 OPL->max_ch = max_ch;
1094 /* init grobal tables */
1095 OPL_initialize(OPL);
1096 /* reset chip */
1097 OPLResetChip(OPL);
1098 #ifdef OPL_OUTPUT_LOG
1099 if(!opl_dbg_fp)
1101 opl_dbg_fp = fopen("opllog.opl","wb");
1102 opl_dbg_maxchip = 0;
1104 if(opl_dbg_fp)
1106 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1107 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1108 type,
1109 clock&0xff,
1110 (clock/0x100)&0xff,
1111 (clock/0x10000)&0xff,
1112 (clock/0x1000000)&0xff);
1113 opl_dbg_maxchip++;
1115 #endif
1116 return OPL;
1119 /* ---------- Destroy one of vietual YM3812 ---------- */
1120 void OPLDestroy(FM_OPL *OPL)
1122 #ifdef OPL_OUTPUT_LOG
1123 if(opl_dbg_fp)
1125 fclose(opl_dbg_fp);
1126 opl_dbg_fp = NULL;
1128 #endif
1129 OPL_UnLockTable();
1130 free(OPL);
1133 /* ---------- Option handlers ---------- */
1135 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1137 OPL->TimerHandler = TimerHandler;
1138 OPL->TimerParam = channelOffset;
1141 /* ---------- YM3812 I/O interface ---------- */
1142 int OPLWrite(FM_OPL *OPL,int a,int v)
1144 if( !(a&1) )
1145 { /* address port */
1146 OPL->address = v & 0xff;
1148 else
1149 { /* data port */
1150 #ifdef OPL_OUTPUT_LOG
1151 if(opl_dbg_fp)
1153 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1154 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1155 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1157 #endif
1158 OPLWriteReg(OPL,OPL->address,v);
1160 return OPL->status>>7;
1163 unsigned char OPLRead(FM_OPL *OPL,int a)
1165 if( !(a&1) )
1166 { /* status port */
1167 return OPL->status & (OPL->statusmask|0x80);
1169 /* data port */
1170 switch(OPL->address)
1172 case 0x05: /* KeyBoard IN */
1173 return 0;
1174 #if 0
1175 case 0x0f: /* ADPCM-DATA */
1176 return 0;
1177 #endif
1178 case 0x19: /* I/O DATA */
1179 return 0;
1180 case 0x1a: /* PCM-DATA */
1181 return 0;
1183 return 0;
1186 int OPLTimerOver(FM_OPL *OPL,int c)
1188 if( c )
1189 { /* Timer B */
1190 OPL_STATUS_SET(OPL,0x20);
1192 else
1193 { /* Timer A */
1194 OPL_STATUS_SET(OPL,0x40);
1195 /* CSM mode key,TL control */
1196 if( OPL->mode & 0x80 )
1197 { /* CSM mode total level latch and auto key on */
1198 int ch;
1199 for(ch=0;ch<9;ch++)
1200 CSMKeyControll( &OPL->P_CH[ch] );
1203 /* reload timer */
1204 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1205 return OPL->status>>7;