hw/ppc/prep: Drop useless inclusion of "hw/i386/pc.h"
[qemu/ar7.git] / hw / ssi / xilinx_spi.c
blob3dae303d5b5a4092e2221a50cb5a6973cc913fd2
1 /*
2 * QEMU model of the Xilinx SPI Controller
4 * Copyright (C) 2010 Edgar E. Iglesias.
5 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
6 * Copyright (C) 2012 PetaLogix
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "hw/sysbus.h"
29 #include "sysemu/sysemu.h"
30 #include "qemu/log.h"
31 #include "qemu/fifo8.h"
33 #include "hw/ssi/ssi.h"
35 #ifdef XILINX_SPI_ERR_DEBUG
36 #define DB_PRINT(...) do { \
37 fprintf(stderr, ": %s: ", __func__); \
38 fprintf(stderr, ## __VA_ARGS__); \
39 } while (0)
40 #else
41 #define DB_PRINT(...)
42 #endif
44 #define R_DGIER (0x1c / 4)
45 #define R_DGIER_IE (1 << 31)
47 #define R_IPISR (0x20 / 4)
48 #define IRQ_DRR_NOT_EMPTY (1 << (31 - 23))
49 #define IRQ_DRR_OVERRUN (1 << (31 - 26))
50 #define IRQ_DRR_FULL (1 << (31 - 27))
51 #define IRQ_TX_FF_HALF_EMPTY (1 << 6)
52 #define IRQ_DTR_UNDERRUN (1 << 3)
53 #define IRQ_DTR_EMPTY (1 << (31 - 29))
55 #define R_IPIER (0x28 / 4)
56 #define R_SRR (0x40 / 4)
57 #define R_SPICR (0x60 / 4)
58 #define R_SPICR_TXFF_RST (1 << 5)
59 #define R_SPICR_RXFF_RST (1 << 6)
60 #define R_SPICR_MTI (1 << 8)
62 #define R_SPISR (0x64 / 4)
63 #define SR_TX_FULL (1 << 3)
64 #define SR_TX_EMPTY (1 << 2)
65 #define SR_RX_FULL (1 << 1)
66 #define SR_RX_EMPTY (1 << 0)
68 #define R_SPIDTR (0x68 / 4)
69 #define R_SPIDRR (0x6C / 4)
70 #define R_SPISSR (0x70 / 4)
71 #define R_TX_FF_OCY (0x74 / 4)
72 #define R_RX_FF_OCY (0x78 / 4)
73 #define R_MAX (0x7C / 4)
75 #define FIFO_CAPACITY 256
77 #define TYPE_XILINX_SPI "xlnx.xps-spi"
78 #define XILINX_SPI(obj) OBJECT_CHECK(XilinxSPI, (obj), TYPE_XILINX_SPI)
80 typedef struct XilinxSPI {
81 SysBusDevice parent_obj;
83 MemoryRegion mmio;
85 qemu_irq irq;
86 int irqline;
88 uint8_t num_cs;
89 qemu_irq *cs_lines;
91 SSIBus *spi;
93 Fifo8 rx_fifo;
94 Fifo8 tx_fifo;
96 uint32_t regs[R_MAX];
97 } XilinxSPI;
99 static void txfifo_reset(XilinxSPI *s)
101 fifo8_reset(&s->tx_fifo);
103 s->regs[R_SPISR] &= ~SR_TX_FULL;
104 s->regs[R_SPISR] |= SR_TX_EMPTY;
107 static void rxfifo_reset(XilinxSPI *s)
109 fifo8_reset(&s->rx_fifo);
111 s->regs[R_SPISR] |= SR_RX_EMPTY;
112 s->regs[R_SPISR] &= ~SR_RX_FULL;
115 static void xlx_spi_update_cs(XilinxSPI *s)
117 int i;
119 for (i = 0; i < s->num_cs; ++i) {
120 qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
124 static void xlx_spi_update_irq(XilinxSPI *s)
126 uint32_t pending;
128 s->regs[R_IPISR] |=
129 (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
130 (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
132 pending = s->regs[R_IPISR] & s->regs[R_IPIER];
134 pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
135 pending = !!pending;
137 /* This call lies right in the data paths so don't call the
138 irq chain unless things really changed. */
139 if (pending != s->irqline) {
140 s->irqline = pending;
141 DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
142 pending, s->regs[R_IPISR], s->regs[R_IPIER]);
143 qemu_set_irq(s->irq, pending);
148 static void xlx_spi_do_reset(XilinxSPI *s)
150 memset(s->regs, 0, sizeof s->regs);
152 rxfifo_reset(s);
153 txfifo_reset(s);
155 s->regs[R_SPISSR] = ~0;
156 xlx_spi_update_irq(s);
157 xlx_spi_update_cs(s);
160 static void xlx_spi_reset(DeviceState *d)
162 xlx_spi_do_reset(XILINX_SPI(d));
165 static inline int spi_master_enabled(XilinxSPI *s)
167 return !(s->regs[R_SPICR] & R_SPICR_MTI);
170 static void spi_flush_txfifo(XilinxSPI *s)
172 uint32_t tx;
173 uint32_t rx;
175 while (!fifo8_is_empty(&s->tx_fifo)) {
176 tx = (uint32_t)fifo8_pop(&s->tx_fifo);
177 DB_PRINT("data tx:%x\n", tx);
178 rx = ssi_transfer(s->spi, tx);
179 DB_PRINT("data rx:%x\n", rx);
180 if (fifo8_is_full(&s->rx_fifo)) {
181 s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
182 } else {
183 fifo8_push(&s->rx_fifo, (uint8_t)rx);
184 if (fifo8_is_full(&s->rx_fifo)) {
185 s->regs[R_SPISR] |= SR_RX_FULL;
186 s->regs[R_IPISR] |= IRQ_DRR_FULL;
190 s->regs[R_SPISR] &= ~SR_RX_EMPTY;
191 s->regs[R_SPISR] &= ~SR_TX_FULL;
192 s->regs[R_SPISR] |= SR_TX_EMPTY;
194 s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
195 s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
200 static uint64_t
201 spi_read(void *opaque, hwaddr addr, unsigned int size)
203 XilinxSPI *s = opaque;
204 uint32_t r = 0;
206 addr >>= 2;
207 switch (addr) {
208 case R_SPIDRR:
209 if (fifo8_is_empty(&s->rx_fifo)) {
210 DB_PRINT("Read from empty FIFO!\n");
211 return 0xdeadbeef;
214 s->regs[R_SPISR] &= ~SR_RX_FULL;
215 r = fifo8_pop(&s->rx_fifo);
216 if (fifo8_is_empty(&s->rx_fifo)) {
217 s->regs[R_SPISR] |= SR_RX_EMPTY;
219 break;
221 case R_SPISR:
222 r = s->regs[addr];
223 break;
225 default:
226 if (addr < ARRAY_SIZE(s->regs)) {
227 r = s->regs[addr];
229 break;
232 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
233 xlx_spi_update_irq(s);
234 return r;
237 static void
238 spi_write(void *opaque, hwaddr addr,
239 uint64_t val64, unsigned int size)
241 XilinxSPI *s = opaque;
242 uint32_t value = val64;
244 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
245 addr >>= 2;
246 switch (addr) {
247 case R_SRR:
248 if (value != 0xa) {
249 DB_PRINT("Invalid write to SRR %x\n", value);
250 } else {
251 xlx_spi_do_reset(s);
253 break;
255 case R_SPIDTR:
256 s->regs[R_SPISR] &= ~SR_TX_EMPTY;
257 fifo8_push(&s->tx_fifo, (uint8_t)value);
258 if (fifo8_is_full(&s->tx_fifo)) {
259 s->regs[R_SPISR] |= SR_TX_FULL;
261 if (!spi_master_enabled(s)) {
262 goto done;
263 } else {
264 DB_PRINT("DTR and master enabled\n");
266 spi_flush_txfifo(s);
267 break;
269 case R_SPISR:
270 DB_PRINT("Invalid write to SPISR %x\n", value);
271 break;
273 case R_IPISR:
274 /* Toggle the bits. */
275 s->regs[addr] ^= value;
276 break;
278 /* Slave Select Register. */
279 case R_SPISSR:
280 s->regs[addr] = value;
281 xlx_spi_update_cs(s);
282 break;
284 case R_SPICR:
285 /* FIXME: reset irq and sr state to empty queues. */
286 if (value & R_SPICR_RXFF_RST) {
287 rxfifo_reset(s);
290 if (value & R_SPICR_TXFF_RST) {
291 txfifo_reset(s);
293 value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
294 s->regs[addr] = value;
296 if (!(value & R_SPICR_MTI)) {
297 spi_flush_txfifo(s);
299 break;
301 default:
302 if (addr < ARRAY_SIZE(s->regs)) {
303 s->regs[addr] = value;
305 break;
308 done:
309 xlx_spi_update_irq(s);
312 static const MemoryRegionOps spi_ops = {
313 .read = spi_read,
314 .write = spi_write,
315 .endianness = DEVICE_NATIVE_ENDIAN,
316 .valid = {
317 .min_access_size = 4,
318 .max_access_size = 4
322 static void xilinx_spi_realize(DeviceState *dev, Error **errp)
324 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
325 XilinxSPI *s = XILINX_SPI(dev);
326 int i;
328 DB_PRINT("\n");
330 s->spi = ssi_create_bus(dev, "spi");
332 sysbus_init_irq(sbd, &s->irq);
333 s->cs_lines = g_new0(qemu_irq, s->num_cs);
334 ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
335 for (i = 0; i < s->num_cs; ++i) {
336 sysbus_init_irq(sbd, &s->cs_lines[i]);
339 memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
340 "xilinx-spi", R_MAX * 4);
341 sysbus_init_mmio(sbd, &s->mmio);
343 s->irqline = -1;
345 fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
346 fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
349 static const VMStateDescription vmstate_xilinx_spi = {
350 .name = "xilinx_spi",
351 .version_id = 1,
352 .minimum_version_id = 1,
353 .fields = (VMStateField[]) {
354 VMSTATE_FIFO8(tx_fifo, XilinxSPI),
355 VMSTATE_FIFO8(rx_fifo, XilinxSPI),
356 VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
357 VMSTATE_END_OF_LIST()
361 static Property xilinx_spi_properties[] = {
362 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
363 DEFINE_PROP_END_OF_LIST(),
366 static void xilinx_spi_class_init(ObjectClass *klass, void *data)
368 DeviceClass *dc = DEVICE_CLASS(klass);
370 dc->realize = xilinx_spi_realize;
371 dc->reset = xlx_spi_reset;
372 dc->props = xilinx_spi_properties;
373 dc->vmsd = &vmstate_xilinx_spi;
376 static const TypeInfo xilinx_spi_info = {
377 .name = TYPE_XILINX_SPI,
378 .parent = TYPE_SYS_BUS_DEVICE,
379 .instance_size = sizeof(XilinxSPI),
380 .class_init = xilinx_spi_class_init,
383 static void xilinx_spi_register_types(void)
385 type_register_static(&xilinx_spi_info);
388 type_init(xilinx_spi_register_types)