kvm: move cpu synchronization code
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blobb2a8e48569c7c324327ef5439e1a19b242266e5e
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "cpu.h"
7 #include "exec/exec-all.h"
8 #include "helper_regs.h"
9 #include "hw/ppc/spapr.h"
10 #include "mmu-hash64.h"
11 #include "cpu-models.h"
12 #include "trace.h"
13 #include "kvm_ppc.h"
14 #include "hw/ppc/spapr_ovec.h"
16 struct SPRSyncState {
17 int spr;
18 target_ulong value;
19 target_ulong mask;
22 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
24 struct SPRSyncState *s = arg.host_ptr;
25 PowerPCCPU *cpu = POWERPC_CPU(cs);
26 CPUPPCState *env = &cpu->env;
28 cpu_synchronize_state(cs);
29 env->spr[s->spr] &= ~s->mask;
30 env->spr[s->spr] |= s->value;
33 static void set_spr(CPUState *cs, int spr, target_ulong value,
34 target_ulong mask)
36 struct SPRSyncState s = {
37 .spr = spr,
38 .value = value,
39 .mask = mask
41 run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
44 static bool has_spr(PowerPCCPU *cpu, int spr)
46 /* We can test whether the SPR is defined by checking for a valid name */
47 return cpu->env.spr_cb[spr].name != NULL;
50 static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index)
53 * hash value/pteg group index is normalized by htab_mask
55 if (((pte_index & ~7ULL) / HPTES_PER_GROUP) & ~env->htab_mask) {
56 return false;
58 return true;
61 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
63 MachineState *machine = MACHINE(spapr);
64 MemoryHotplugState *hpms = &spapr->hotplug_memory;
66 if (addr < machine->ram_size) {
67 return true;
69 if ((addr >= hpms->base)
70 && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
71 return true;
74 return false;
77 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
78 target_ulong opcode, target_ulong *args)
80 CPUPPCState *env = &cpu->env;
81 target_ulong flags = args[0];
82 target_ulong pte_index = args[1];
83 target_ulong pteh = args[2];
84 target_ulong ptel = args[3];
85 unsigned apshift;
86 target_ulong raddr;
87 target_ulong index;
88 uint64_t token;
90 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
91 if (!apshift) {
92 /* Bad page size encoding */
93 return H_PARAMETER;
96 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
98 if (is_ram_address(spapr, raddr)) {
99 /* Regular RAM - should have WIMG=0010 */
100 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
101 return H_PARAMETER;
103 } else {
104 target_ulong wimg_flags;
105 /* Looks like an IO address */
106 /* FIXME: What WIMG combinations could be sensible for IO?
107 * For now we allow WIMG=010x, but are there others? */
108 /* FIXME: Should we check against registered IO addresses? */
109 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
111 if (wimg_flags != HPTE64_R_I &&
112 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
113 return H_PARAMETER;
117 pteh &= ~0x60ULL;
119 if (!valid_pte_index(env, pte_index)) {
120 return H_PARAMETER;
123 index = 0;
124 if (likely((flags & H_EXACT) == 0)) {
125 pte_index &= ~7ULL;
126 token = ppc_hash64_start_access(cpu, pte_index);
127 for (; index < 8; index++) {
128 if (!(ppc_hash64_load_hpte0(cpu, token, index) & HPTE64_V_VALID)) {
129 break;
132 ppc_hash64_stop_access(cpu, token);
133 if (index == 8) {
134 return H_PTEG_FULL;
136 } else {
137 token = ppc_hash64_start_access(cpu, pte_index);
138 if (ppc_hash64_load_hpte0(cpu, token, 0) & HPTE64_V_VALID) {
139 ppc_hash64_stop_access(cpu, token);
140 return H_PTEG_FULL;
142 ppc_hash64_stop_access(cpu, token);
145 ppc_hash64_store_hpte(cpu, pte_index + index,
146 pteh | HPTE64_V_HPTE_DIRTY, ptel);
148 args[0] = pte_index + index;
149 return H_SUCCESS;
152 typedef enum {
153 REMOVE_SUCCESS = 0,
154 REMOVE_NOT_FOUND = 1,
155 REMOVE_PARM = 2,
156 REMOVE_HW = 3,
157 } RemoveResult;
159 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
160 target_ulong avpn,
161 target_ulong flags,
162 target_ulong *vp, target_ulong *rp)
164 CPUPPCState *env = &cpu->env;
165 uint64_t token;
166 target_ulong v, r;
168 if (!valid_pte_index(env, ptex)) {
169 return REMOVE_PARM;
172 token = ppc_hash64_start_access(cpu, ptex);
173 v = ppc_hash64_load_hpte0(cpu, token, 0);
174 r = ppc_hash64_load_hpte1(cpu, token, 0);
175 ppc_hash64_stop_access(cpu, token);
177 if ((v & HPTE64_V_VALID) == 0 ||
178 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
179 ((flags & H_ANDCOND) && (v & avpn) != 0)) {
180 return REMOVE_NOT_FOUND;
182 *vp = v;
183 *rp = r;
184 ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
185 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
186 return REMOVE_SUCCESS;
189 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
190 target_ulong opcode, target_ulong *args)
192 CPUPPCState *env = &cpu->env;
193 target_ulong flags = args[0];
194 target_ulong pte_index = args[1];
195 target_ulong avpn = args[2];
196 RemoveResult ret;
198 ret = remove_hpte(cpu, pte_index, avpn, flags,
199 &args[0], &args[1]);
201 switch (ret) {
202 case REMOVE_SUCCESS:
203 check_tlb_flush(env, true);
204 return H_SUCCESS;
206 case REMOVE_NOT_FOUND:
207 return H_NOT_FOUND;
209 case REMOVE_PARM:
210 return H_PARAMETER;
212 case REMOVE_HW:
213 return H_HARDWARE;
216 g_assert_not_reached();
219 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
220 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
221 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
222 #define H_BULK_REMOVE_END 0xc000000000000000ULL
223 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
224 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
225 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
226 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
227 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
228 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
229 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
230 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
231 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
232 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
233 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
235 #define H_BULK_REMOVE_MAX_BATCH 4
237 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
238 target_ulong opcode, target_ulong *args)
240 CPUPPCState *env = &cpu->env;
241 int i;
242 target_ulong rc = H_SUCCESS;
244 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
245 target_ulong *tsh = &args[i*2];
246 target_ulong tsl = args[i*2 + 1];
247 target_ulong v, r, ret;
249 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
250 break;
251 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
252 return H_PARAMETER;
255 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
256 *tsh |= H_BULK_REMOVE_RESPONSE;
258 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
259 *tsh |= H_BULK_REMOVE_PARM;
260 return H_PARAMETER;
263 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
264 (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
265 &v, &r);
267 *tsh |= ret << 60;
269 switch (ret) {
270 case REMOVE_SUCCESS:
271 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
272 break;
274 case REMOVE_PARM:
275 rc = H_PARAMETER;
276 goto exit;
278 case REMOVE_HW:
279 rc = H_HARDWARE;
280 goto exit;
283 exit:
284 check_tlb_flush(env, true);
286 return rc;
289 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
290 target_ulong opcode, target_ulong *args)
292 CPUPPCState *env = &cpu->env;
293 target_ulong flags = args[0];
294 target_ulong pte_index = args[1];
295 target_ulong avpn = args[2];
296 uint64_t token;
297 target_ulong v, r;
299 if (!valid_pte_index(env, pte_index)) {
300 return H_PARAMETER;
303 token = ppc_hash64_start_access(cpu, pte_index);
304 v = ppc_hash64_load_hpte0(cpu, token, 0);
305 r = ppc_hash64_load_hpte1(cpu, token, 0);
306 ppc_hash64_stop_access(cpu, token);
308 if ((v & HPTE64_V_VALID) == 0 ||
309 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
310 return H_NOT_FOUND;
313 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
314 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
315 r |= (flags << 55) & HPTE64_R_PP0;
316 r |= (flags << 48) & HPTE64_R_KEY_HI;
317 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
318 ppc_hash64_store_hpte(cpu, pte_index,
319 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
320 ppc_hash64_tlb_flush_hpte(cpu, pte_index, v, r);
321 /* Flush the tlb */
322 check_tlb_flush(env, true);
323 /* Don't need a memory barrier, due to qemu's global lock */
324 ppc_hash64_store_hpte(cpu, pte_index, v | HPTE64_V_HPTE_DIRTY, r);
325 return H_SUCCESS;
328 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
329 target_ulong opcode, target_ulong *args)
331 CPUPPCState *env = &cpu->env;
332 target_ulong flags = args[0];
333 target_ulong pte_index = args[1];
334 uint8_t *hpte;
335 int i, ridx, n_entries = 1;
337 if (!valid_pte_index(env, pte_index)) {
338 return H_PARAMETER;
341 if (flags & H_READ_4) {
342 /* Clear the two low order bits */
343 pte_index &= ~(3ULL);
344 n_entries = 4;
347 hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
349 for (i = 0, ridx = 0; i < n_entries; i++) {
350 args[ridx++] = ldq_p(hpte);
351 args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
352 hpte += HASH_PTE_SIZE_64;
355 return H_SUCCESS;
358 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
359 target_ulong opcode, target_ulong *args)
361 cpu_synchronize_state(CPU(cpu));
362 cpu->env.spr[SPR_SPRG0] = args[0];
364 return H_SUCCESS;
367 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
368 target_ulong opcode, target_ulong *args)
370 if (!has_spr(cpu, SPR_DABR)) {
371 return H_HARDWARE; /* DABR register not available */
373 cpu_synchronize_state(CPU(cpu));
375 if (has_spr(cpu, SPR_DABRX)) {
376 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
377 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
378 return H_RESERVED_DABR;
381 cpu->env.spr[SPR_DABR] = args[0];
382 return H_SUCCESS;
385 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
386 target_ulong opcode, target_ulong *args)
388 target_ulong dabrx = args[1];
390 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
391 return H_HARDWARE;
394 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
395 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
396 return H_PARAMETER;
399 cpu_synchronize_state(CPU(cpu));
400 cpu->env.spr[SPR_DABRX] = dabrx;
401 cpu->env.spr[SPR_DABR] = args[0];
403 return H_SUCCESS;
406 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
407 target_ulong opcode, target_ulong *args)
409 target_ulong flags = args[0];
410 hwaddr dst = args[1];
411 hwaddr src = args[2];
412 hwaddr len = TARGET_PAGE_SIZE;
413 uint8_t *pdst, *psrc;
414 target_long ret = H_SUCCESS;
416 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
417 | H_COPY_PAGE | H_ZERO_PAGE)) {
418 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
419 flags);
420 return H_PARAMETER;
423 /* Map-in destination */
424 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
425 return H_PARAMETER;
427 pdst = cpu_physical_memory_map(dst, &len, 1);
428 if (!pdst || len != TARGET_PAGE_SIZE) {
429 return H_PARAMETER;
432 if (flags & H_COPY_PAGE) {
433 /* Map-in source, copy to destination, and unmap source again */
434 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
435 ret = H_PARAMETER;
436 goto unmap_out;
438 psrc = cpu_physical_memory_map(src, &len, 0);
439 if (!psrc || len != TARGET_PAGE_SIZE) {
440 ret = H_PARAMETER;
441 goto unmap_out;
443 memcpy(pdst, psrc, len);
444 cpu_physical_memory_unmap(psrc, len, 0, len);
445 } else if (flags & H_ZERO_PAGE) {
446 memset(pdst, 0, len); /* Just clear the destination page */
449 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
450 kvmppc_dcbst_range(cpu, pdst, len);
452 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
453 if (kvm_enabled()) {
454 kvmppc_icbi_range(cpu, pdst, len);
455 } else {
456 tb_flush(CPU(cpu));
460 unmap_out:
461 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
462 return ret;
465 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
466 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
467 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
468 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
469 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
470 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
472 #define VPA_MIN_SIZE 640
473 #define VPA_SIZE_OFFSET 0x4
474 #define VPA_SHARED_PROC_OFFSET 0x9
475 #define VPA_SHARED_PROC_VAL 0x2
477 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
479 CPUState *cs = CPU(ppc_env_get_cpu(env));
480 uint16_t size;
481 uint8_t tmp;
483 if (vpa == 0) {
484 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
485 return H_HARDWARE;
488 if (vpa % env->dcache_line_size) {
489 return H_PARAMETER;
491 /* FIXME: bounds check the address */
493 size = lduw_be_phys(cs->as, vpa + 0x4);
495 if (size < VPA_MIN_SIZE) {
496 return H_PARAMETER;
499 /* VPA is not allowed to cross a page boundary */
500 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
501 return H_PARAMETER;
504 env->vpa_addr = vpa;
506 tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
507 tmp |= VPA_SHARED_PROC_VAL;
508 stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
510 return H_SUCCESS;
513 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
515 if (env->slb_shadow_addr) {
516 return H_RESOURCE;
519 if (env->dtl_addr) {
520 return H_RESOURCE;
523 env->vpa_addr = 0;
524 return H_SUCCESS;
527 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
529 CPUState *cs = CPU(ppc_env_get_cpu(env));
530 uint32_t size;
532 if (addr == 0) {
533 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
534 return H_HARDWARE;
537 size = ldl_be_phys(cs->as, addr + 0x4);
538 if (size < 0x8) {
539 return H_PARAMETER;
542 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
543 return H_PARAMETER;
546 if (!env->vpa_addr) {
547 return H_RESOURCE;
550 env->slb_shadow_addr = addr;
551 env->slb_shadow_size = size;
553 return H_SUCCESS;
556 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
558 env->slb_shadow_addr = 0;
559 env->slb_shadow_size = 0;
560 return H_SUCCESS;
563 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
565 CPUState *cs = CPU(ppc_env_get_cpu(env));
566 uint32_t size;
568 if (addr == 0) {
569 hcall_dprintf("Can't cope with DTL at logical 0\n");
570 return H_HARDWARE;
573 size = ldl_be_phys(cs->as, addr + 0x4);
575 if (size < 48) {
576 return H_PARAMETER;
579 if (!env->vpa_addr) {
580 return H_RESOURCE;
583 env->dtl_addr = addr;
584 env->dtl_size = size;
586 return H_SUCCESS;
589 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
591 env->dtl_addr = 0;
592 env->dtl_size = 0;
594 return H_SUCCESS;
597 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
598 target_ulong opcode, target_ulong *args)
600 target_ulong flags = args[0];
601 target_ulong procno = args[1];
602 target_ulong vpa = args[2];
603 target_ulong ret = H_PARAMETER;
604 CPUPPCState *tenv;
605 PowerPCCPU *tcpu;
607 tcpu = ppc_get_vcpu_by_dt_id(procno);
608 if (!tcpu) {
609 return H_PARAMETER;
611 tenv = &tcpu->env;
613 switch (flags) {
614 case FLAGS_REGISTER_VPA:
615 ret = register_vpa(tenv, vpa);
616 break;
618 case FLAGS_DEREGISTER_VPA:
619 ret = deregister_vpa(tenv, vpa);
620 break;
622 case FLAGS_REGISTER_SLBSHADOW:
623 ret = register_slb_shadow(tenv, vpa);
624 break;
626 case FLAGS_DEREGISTER_SLBSHADOW:
627 ret = deregister_slb_shadow(tenv, vpa);
628 break;
630 case FLAGS_REGISTER_DTL:
631 ret = register_dtl(tenv, vpa);
632 break;
634 case FLAGS_DEREGISTER_DTL:
635 ret = deregister_dtl(tenv, vpa);
636 break;
639 return ret;
642 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
643 target_ulong opcode, target_ulong *args)
645 CPUPPCState *env = &cpu->env;
646 CPUState *cs = CPU(cpu);
648 env->msr |= (1ULL << MSR_EE);
649 hreg_compute_hflags(env);
650 if (!cpu_has_work(cs)) {
651 cs->halted = 1;
652 cs->exception_index = EXCP_HLT;
653 cs->exit_request = 1;
655 return H_SUCCESS;
658 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
659 target_ulong opcode, target_ulong *args)
661 target_ulong rtas_r3 = args[0];
662 uint32_t token = rtas_ld(rtas_r3, 0);
663 uint32_t nargs = rtas_ld(rtas_r3, 1);
664 uint32_t nret = rtas_ld(rtas_r3, 2);
666 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
667 nret, rtas_r3 + 12 + 4*nargs);
670 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
671 target_ulong opcode, target_ulong *args)
673 CPUState *cs = CPU(cpu);
674 target_ulong size = args[0];
675 target_ulong addr = args[1];
677 switch (size) {
678 case 1:
679 args[0] = ldub_phys(cs->as, addr);
680 return H_SUCCESS;
681 case 2:
682 args[0] = lduw_phys(cs->as, addr);
683 return H_SUCCESS;
684 case 4:
685 args[0] = ldl_phys(cs->as, addr);
686 return H_SUCCESS;
687 case 8:
688 args[0] = ldq_phys(cs->as, addr);
689 return H_SUCCESS;
691 return H_PARAMETER;
694 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
695 target_ulong opcode, target_ulong *args)
697 CPUState *cs = CPU(cpu);
699 target_ulong size = args[0];
700 target_ulong addr = args[1];
701 target_ulong val = args[2];
703 switch (size) {
704 case 1:
705 stb_phys(cs->as, addr, val);
706 return H_SUCCESS;
707 case 2:
708 stw_phys(cs->as, addr, val);
709 return H_SUCCESS;
710 case 4:
711 stl_phys(cs->as, addr, val);
712 return H_SUCCESS;
713 case 8:
714 stq_phys(cs->as, addr, val);
715 return H_SUCCESS;
717 return H_PARAMETER;
720 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
721 target_ulong opcode, target_ulong *args)
723 CPUState *cs = CPU(cpu);
725 target_ulong dst = args[0]; /* Destination address */
726 target_ulong src = args[1]; /* Source address */
727 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
728 target_ulong count = args[3]; /* Element count */
729 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
730 uint64_t tmp;
731 unsigned int mask = (1 << esize) - 1;
732 int step = 1 << esize;
734 if (count > 0x80000000) {
735 return H_PARAMETER;
738 if ((dst & mask) || (src & mask) || (op > 1)) {
739 return H_PARAMETER;
742 if (dst >= src && dst < (src + (count << esize))) {
743 dst = dst + ((count - 1) << esize);
744 src = src + ((count - 1) << esize);
745 step = -step;
748 while (count--) {
749 switch (esize) {
750 case 0:
751 tmp = ldub_phys(cs->as, src);
752 break;
753 case 1:
754 tmp = lduw_phys(cs->as, src);
755 break;
756 case 2:
757 tmp = ldl_phys(cs->as, src);
758 break;
759 case 3:
760 tmp = ldq_phys(cs->as, src);
761 break;
762 default:
763 return H_PARAMETER;
765 if (op == 1) {
766 tmp = ~tmp;
768 switch (esize) {
769 case 0:
770 stb_phys(cs->as, dst, tmp);
771 break;
772 case 1:
773 stw_phys(cs->as, dst, tmp);
774 break;
775 case 2:
776 stl_phys(cs->as, dst, tmp);
777 break;
778 case 3:
779 stq_phys(cs->as, dst, tmp);
780 break;
782 dst = dst + step;
783 src = src + step;
786 return H_SUCCESS;
789 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
790 target_ulong opcode, target_ulong *args)
792 /* Nothing to do on emulation, KVM will trap this in the kernel */
793 return H_SUCCESS;
796 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
797 target_ulong opcode, target_ulong *args)
799 /* Nothing to do on emulation, KVM will trap this in the kernel */
800 return H_SUCCESS;
803 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
804 target_ulong mflags,
805 target_ulong value1,
806 target_ulong value2)
808 CPUState *cs;
810 if (value1) {
811 return H_P3;
813 if (value2) {
814 return H_P4;
817 switch (mflags) {
818 case H_SET_MODE_ENDIAN_BIG:
819 CPU_FOREACH(cs) {
820 set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
822 spapr_pci_switch_vga(true);
823 return H_SUCCESS;
825 case H_SET_MODE_ENDIAN_LITTLE:
826 CPU_FOREACH(cs) {
827 set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
829 spapr_pci_switch_vga(false);
830 return H_SUCCESS;
833 return H_UNSUPPORTED_FLAG;
836 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
837 target_ulong mflags,
838 target_ulong value1,
839 target_ulong value2)
841 CPUState *cs;
842 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
844 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
845 return H_P2;
847 if (value1) {
848 return H_P3;
850 if (value2) {
851 return H_P4;
854 if (mflags == AIL_RESERVED) {
855 return H_UNSUPPORTED_FLAG;
858 CPU_FOREACH(cs) {
859 set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
862 return H_SUCCESS;
865 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
866 target_ulong opcode, target_ulong *args)
868 target_ulong resource = args[1];
869 target_ulong ret = H_P2;
871 switch (resource) {
872 case H_SET_MODE_RESOURCE_LE:
873 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
874 break;
875 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
876 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
877 args[2], args[3]);
878 break;
881 return ret;
884 typedef struct {
885 uint32_t cpu_version;
886 Error *err;
887 } SetCompatState;
889 static void do_set_compat(CPUState *cs, run_on_cpu_data arg)
891 PowerPCCPU *cpu = POWERPC_CPU(cs);
892 SetCompatState *s = arg.host_ptr;
894 cpu_synchronize_state(cs);
895 ppc_set_compat(cpu, s->cpu_version, &s->err);
898 #define get_compat_level(cpuver) ( \
899 ((cpuver) == CPU_POWERPC_LOGICAL_2_05) ? 2050 : \
900 ((cpuver) == CPU_POWERPC_LOGICAL_2_06) ? 2060 : \
901 ((cpuver) == CPU_POWERPC_LOGICAL_2_06_PLUS) ? 2061 : \
902 ((cpuver) == CPU_POWERPC_LOGICAL_2_07) ? 2070 : 0)
904 static void cas_handle_compat_cpu(PowerPCCPUClass *pcc, uint32_t pvr,
905 unsigned max_lvl, unsigned *compat_lvl,
906 unsigned *cpu_version)
908 unsigned lvl = get_compat_level(pvr);
909 bool is205, is206, is207;
911 if (!lvl) {
912 return;
915 /* If it is a logical PVR, try to determine the highest level */
916 is205 = (pcc->pcr_supported & PCR_COMPAT_2_05) &&
917 (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_05));
918 is206 = (pcc->pcr_supported & PCR_COMPAT_2_06) &&
919 ((lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06)) ||
920 (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06_PLUS)));
921 is207 = (pcc->pcr_supported & PCR_COMPAT_2_07) &&
922 (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_07));
924 if (is205 || is206 || is207) {
925 if (!max_lvl) {
926 /* User did not set the level, choose the highest */
927 if (*compat_lvl <= lvl) {
928 *compat_lvl = lvl;
929 *cpu_version = pvr;
931 } else if (max_lvl >= lvl) {
932 /* User chose the level, don't set higher than this */
933 *compat_lvl = lvl;
934 *cpu_version = pvr;
939 static target_ulong h_client_architecture_support(PowerPCCPU *cpu_,
940 sPAPRMachineState *spapr,
941 target_ulong opcode,
942 target_ulong *args)
944 target_ulong list = ppc64_phys_to_real(args[0]);
945 target_ulong ov_table;
946 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu_);
947 CPUState *cs;
948 bool cpu_match = false, cpu_update = true;
949 unsigned old_cpu_version = cpu_->cpu_version;
950 unsigned compat_lvl = 0, cpu_version = 0;
951 unsigned max_lvl = get_compat_level(cpu_->max_compat);
952 int counter;
953 sPAPROptionVector *ov5_guest, *ov5_cas_old, *ov5_updates;
955 /* Parse PVR list */
956 for (counter = 0; counter < 512; ++counter) {
957 uint32_t pvr, pvr_mask;
959 pvr_mask = ldl_be_phys(&address_space_memory, list);
960 list += 4;
961 pvr = ldl_be_phys(&address_space_memory, list);
962 list += 4;
964 trace_spapr_cas_pvr_try(pvr);
965 if (!max_lvl &&
966 ((cpu_->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask))) {
967 cpu_match = true;
968 cpu_version = 0;
969 } else if (pvr == cpu_->cpu_version) {
970 cpu_match = true;
971 cpu_version = cpu_->cpu_version;
972 } else if (!cpu_match) {
973 cas_handle_compat_cpu(pcc, pvr, max_lvl, &compat_lvl, &cpu_version);
975 /* Terminator record */
976 if (~pvr_mask & pvr) {
977 break;
981 /* Parsing finished */
982 trace_spapr_cas_pvr(cpu_->cpu_version, cpu_match,
983 cpu_version, pcc->pcr_mask);
985 /* Update CPUs */
986 if (old_cpu_version != cpu_version) {
987 CPU_FOREACH(cs) {
988 SetCompatState s = {
989 .cpu_version = cpu_version,
990 .err = NULL,
993 run_on_cpu(cs, do_set_compat, RUN_ON_CPU_HOST_PTR(&s));
995 if (s.err) {
996 error_report_err(s.err);
997 return H_HARDWARE;
1002 if (!cpu_version) {
1003 cpu_update = false;
1006 /* For the future use: here @ov_table points to the first option vector */
1007 ov_table = list;
1009 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1011 /* NOTE: there are actually a number of ov5 bits where input from the
1012 * guest is always zero, and the platform/QEMU enables them independently
1013 * of guest input. To model these properly we'd want some sort of mask,
1014 * but since they only currently apply to memory migration as defined
1015 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1016 * to worry about this for now.
1018 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1019 /* full range of negotiated ov5 capabilities */
1020 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1021 spapr_ovec_cleanup(ov5_guest);
1022 /* capabilities that have been added since CAS-generated guest reset.
1023 * if capabilities have since been removed, generate another reset
1025 ov5_updates = spapr_ovec_new();
1026 spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1027 ov5_cas_old, spapr->ov5_cas);
1029 if (!spapr->cas_reboot) {
1030 spapr->cas_reboot =
1031 (spapr_h_cas_compose_response(spapr, args[1], args[2], cpu_update,
1032 ov5_updates) != 0);
1034 spapr_ovec_cleanup(ov5_updates);
1036 if (spapr->cas_reboot) {
1037 qemu_system_reset_request();
1040 return H_SUCCESS;
1043 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1044 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1046 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1048 spapr_hcall_fn *slot;
1050 if (opcode <= MAX_HCALL_OPCODE) {
1051 assert((opcode & 0x3) == 0);
1053 slot = &papr_hypercall_table[opcode / 4];
1054 } else {
1055 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1057 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1060 assert(!(*slot));
1061 *slot = fn;
1064 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1065 target_ulong *args)
1067 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1069 if ((opcode <= MAX_HCALL_OPCODE)
1070 && ((opcode & 0x3) == 0)) {
1071 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1073 if (fn) {
1074 return fn(cpu, spapr, opcode, args);
1076 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1077 (opcode <= KVMPPC_HCALL_MAX)) {
1078 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1080 if (fn) {
1081 return fn(cpu, spapr, opcode, args);
1085 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1086 opcode);
1087 return H_FUNCTION;
1090 static void hypercall_register_types(void)
1092 /* hcall-pft */
1093 spapr_register_hypercall(H_ENTER, h_enter);
1094 spapr_register_hypercall(H_REMOVE, h_remove);
1095 spapr_register_hypercall(H_PROTECT, h_protect);
1096 spapr_register_hypercall(H_READ, h_read);
1098 /* hcall-bulk */
1099 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1101 /* hcall-splpar */
1102 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1103 spapr_register_hypercall(H_CEDE, h_cede);
1105 /* processor register resource access h-calls */
1106 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1107 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1108 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1109 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1110 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1112 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1113 * here between the "CI" and the "CACHE" variants, they will use whatever
1114 * mapping attributes qemu is using. When using KVM, the kernel will
1115 * enforce the attributes more strongly
1117 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1118 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1119 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1120 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1121 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1122 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1123 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1125 /* qemu/KVM-PPC specific hcalls */
1126 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1128 /* ibm,client-architecture-support support */
1129 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1132 type_init(hypercall_register_types)