2 * sigaltstack coroutine initialization code
4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws>
5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
33 #include "qemu-common.h"
34 #include "block/coroutine_int.h"
43 * Per-thread coroutine bookkeeping
46 /** Currently executing coroutine */
49 /** The default coroutine */
50 CoroutineUContext leader
;
52 /** Information for the signal handler (trampoline) */
53 sigjmp_buf tr_reenter
;
54 volatile sig_atomic_t tr_called
;
56 } CoroutineThreadState
;
58 static pthread_key_t thread_state_key
;
60 static CoroutineThreadState
*coroutine_get_thread_state(void)
62 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
65 s
= g_malloc0(sizeof(*s
));
66 s
->current
= &s
->leader
.base
;
67 pthread_setspecific(thread_state_key
, s
);
72 static void qemu_coroutine_thread_cleanup(void *opaque
)
74 CoroutineThreadState
*s
= opaque
;
79 static void __attribute__((constructor
)) coroutine_init(void)
83 ret
= pthread_key_create(&thread_state_key
, qemu_coroutine_thread_cleanup
);
85 fprintf(stderr
, "unable to create leader key: %s\n", strerror(errno
));
91 * This is what starts the coroutine, is called from the trampoline
92 * (from the signal handler when it is not signal handling, read ahead
93 * for more information).
95 static void coroutine_bootstrap(CoroutineUContext
*self
, Coroutine
*co
)
97 /* Initialize longjmp environment and switch back the caller */
98 if (!sigsetjmp(self
->env
, 0)) {
99 siglongjmp(*(sigjmp_buf
*)co
->entry_arg
, 1);
103 co
->entry(co
->entry_arg
);
104 qemu_coroutine_switch(co
, co
->caller
, COROUTINE_TERMINATE
);
109 * This is used as the signal handler. This is called with the brand new stack
110 * (thanks to sigaltstack). We have to return, given that this is a signal
111 * handler and the sigmask and some other things are changed.
113 static void coroutine_trampoline(int signal
)
115 CoroutineUContext
*self
;
117 CoroutineThreadState
*coTS
;
119 /* Get the thread specific information */
120 coTS
= coroutine_get_thread_state();
121 self
= coTS
->tr_handler
;
126 * Here we have to do a bit of a ping pong between the caller, given that
127 * this is a signal handler and we have to do a return "soon". Then the
128 * caller can reestablish everything and do a siglongjmp here again.
130 if (!sigsetjmp(coTS
->tr_reenter
, 0)) {
135 * Ok, the caller has siglongjmp'ed back to us, so now prepare
136 * us for the real machine state switching. We have to jump
137 * into another function here to get a new stack context for
138 * the auto variables (which have to be auto-variables
139 * because the start of the thread happens later). Else with
140 * PIC (i.e. Position Independent Code which is used when PTH
141 * is built as a shared library) most platforms would
142 * horrible core dump as experience showed.
144 coroutine_bootstrap(self
, co
);
147 Coroutine
*qemu_coroutine_new(void)
149 const size_t stack_size
= 1 << 20;
150 CoroutineUContext
*co
;
151 CoroutineThreadState
*coTS
;
153 struct sigaction osa
;
160 /* The way to manipulate stack is with the sigaltstack function. We
161 * prepare a stack, with it delivering a signal to ourselves and then
162 * put sigsetjmp/siglongjmp where needed.
163 * This has been done keeping coroutine-ucontext as a model and with the
164 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
165 * of the coroutines and see pth_mctx.c (from the pth project) for the
166 * sigaltstack way of manipulating stacks.
169 co
= g_malloc0(sizeof(*co
));
170 co
->stack
= g_malloc(stack_size
);
171 co
->base
.entry_arg
= &old_env
; /* stash away our jmp_buf */
173 coTS
= coroutine_get_thread_state();
174 coTS
->tr_handler
= co
;
177 * Preserve the SIGUSR2 signal state, block SIGUSR2,
178 * and establish our signal handler. The signal will
179 * later transfer control onto the signal stack.
182 sigaddset(&sigs
, SIGUSR2
);
183 pthread_sigmask(SIG_BLOCK
, &sigs
, &osigs
);
184 sa
.sa_handler
= coroutine_trampoline
;
185 sigfillset(&sa
.sa_mask
);
186 sa
.sa_flags
= SA_ONSTACK
;
187 if (sigaction(SIGUSR2
, &sa
, &osa
) != 0) {
194 ss
.ss_sp
= co
->stack
;
195 ss
.ss_size
= stack_size
;
197 if (sigaltstack(&ss
, &oss
) < 0) {
202 * Now transfer control onto the signal stack and set it up.
203 * It will return immediately via "return" after the sigsetjmp()
204 * was performed. Be careful here with race conditions. The
205 * signal can be delivered the first time sigsuspend() is
209 pthread_kill(pthread_self(), SIGUSR2
);
211 sigdelset(&sigs
, SIGUSR2
);
212 while (!coTS
->tr_called
) {
217 * Inform the system that we are back off the signal stack by
218 * removing the alternative signal stack. Be careful here: It
219 * first has to be disabled, before it can be removed.
221 sigaltstack(NULL
, &ss
);
222 ss
.ss_flags
= SS_DISABLE
;
223 if (sigaltstack(&ss
, NULL
) < 0) {
226 sigaltstack(NULL
, &ss
);
227 if (!(oss
.ss_flags
& SS_DISABLE
)) {
228 sigaltstack(&oss
, NULL
);
232 * Restore the old SIGUSR2 signal handler and mask
234 sigaction(SIGUSR2
, &osa
, NULL
);
235 pthread_sigmask(SIG_SETMASK
, &osigs
, NULL
);
238 * Now enter the trampoline again, but this time not as a signal
239 * handler. Instead we jump into it directly. The functionally
240 * redundant ping-pong pointer arithmetic is necessary to avoid
241 * type-conversion warnings related to the `volatile' qualifier and
242 * the fact that `jmp_buf' usually is an array type.
244 if (!sigsetjmp(old_env
, 0)) {
245 siglongjmp(coTS
->tr_reenter
, 1);
249 * Ok, we returned again, so now we're finished
255 void qemu_coroutine_delete(Coroutine
*co_
)
257 CoroutineUContext
*co
= DO_UPCAST(CoroutineUContext
, base
, co_
);
263 CoroutineAction
qemu_coroutine_switch(Coroutine
*from_
, Coroutine
*to_
,
264 CoroutineAction action
)
266 CoroutineUContext
*from
= DO_UPCAST(CoroutineUContext
, base
, from_
);
267 CoroutineUContext
*to
= DO_UPCAST(CoroutineUContext
, base
, to_
);
268 CoroutineThreadState
*s
= coroutine_get_thread_state();
273 ret
= sigsetjmp(from
->env
, 0);
275 siglongjmp(to
->env
, action
);
280 Coroutine
*qemu_coroutine_self(void)
282 CoroutineThreadState
*s
= coroutine_get_thread_state();
287 bool qemu_in_coroutine(void)
289 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
291 return s
&& s
->current
->caller
;