4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "hw/semihosting/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
42 static TCGv_i64 cpu_X
[32];
43 static TCGv_i64 cpu_pc
;
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high
;
48 static const char *regnames
[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
56 A64_SHIFT_TYPE_LSL
= 0,
57 A64_SHIFT_TYPE_LSR
= 1,
58 A64_SHIFT_TYPE_ASR
= 2,
59 A64_SHIFT_TYPE_ROR
= 3
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
65 typedef void AArch64DecodeFn(DisasContext
*s
, uint32_t insn
);
67 typedef struct AArch64DecodeTable
{
70 AArch64DecodeFn
*disas_fn
;
73 /* initialize TCG globals. */
74 void a64_translate_init(void)
78 cpu_pc
= tcg_global_mem_new_i64(cpu_env
,
79 offsetof(CPUARMState
, pc
),
81 for (i
= 0; i
< 32; i
++) {
82 cpu_X
[i
] = tcg_global_mem_new_i64(cpu_env
,
83 offsetof(CPUARMState
, xregs
[i
]),
87 cpu_exclusive_high
= tcg_global_mem_new_i64(cpu_env
,
88 offsetof(CPUARMState
, exclusive_high
), "exclusive_high");
92 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
94 static int get_a64_user_mem_index(DisasContext
*s
)
97 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
98 * which is the usual mmu_idx for this cpu state.
100 ARMMMUIdx useridx
= s
->mmu_idx
;
104 * We have pre-computed the condition for AccType_UNPRIV.
105 * Therefore we should never get here with a mmu_idx for
106 * which we do not know the corresponding user mmu_idx.
109 case ARMMMUIdx_E10_1
:
110 case ARMMMUIdx_E10_1_PAN
:
111 useridx
= ARMMMUIdx_E10_0
;
113 case ARMMMUIdx_E20_2
:
114 case ARMMMUIdx_E20_2_PAN
:
115 useridx
= ARMMMUIdx_E20_0
;
117 case ARMMMUIdx_SE10_1
:
118 case ARMMMUIdx_SE10_1_PAN
:
119 useridx
= ARMMMUIdx_SE10_0
;
122 g_assert_not_reached();
125 return arm_to_core_mmu_idx(useridx
);
128 static void reset_btype(DisasContext
*s
)
131 TCGv_i32 zero
= tcg_const_i32(0);
132 tcg_gen_st_i32(zero
, cpu_env
, offsetof(CPUARMState
, btype
));
133 tcg_temp_free_i32(zero
);
138 static void set_btype(DisasContext
*s
, int val
)
142 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
143 tcg_debug_assert(val
>= 1 && val
<= 3);
145 tcg_val
= tcg_const_i32(val
);
146 tcg_gen_st_i32(tcg_val
, cpu_env
, offsetof(CPUARMState
, btype
));
147 tcg_temp_free_i32(tcg_val
);
151 void gen_a64_set_pc_im(uint64_t val
)
153 tcg_gen_movi_i64(cpu_pc
, val
);
157 * Handle Top Byte Ignore (TBI) bits.
159 * If address tagging is enabled via the TCR TBI bits:
160 * + for EL2 and EL3 there is only one TBI bit, and if it is set
161 * then the address is zero-extended, clearing bits [63:56]
162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163 * and TBI1 controls addressses with bit 55 == 1.
164 * If the appropriate TBI bit is set for the address then
165 * the address is sign-extended from bit 55 into bits [63:56]
167 * Here We have concatenated TBI{1,0} into tbi.
169 static void gen_top_byte_ignore(DisasContext
*s
, TCGv_i64 dst
,
170 TCGv_i64 src
, int tbi
)
173 /* Load unmodified address */
174 tcg_gen_mov_i64(dst
, src
);
175 } else if (!regime_has_2_ranges(s
->mmu_idx
)) {
176 /* Force tag byte to all zero */
177 tcg_gen_extract_i64(dst
, src
, 0, 56);
179 /* Sign-extend from bit 55. */
180 tcg_gen_sextract_i64(dst
, src
, 0, 56);
183 TCGv_i64 tcg_zero
= tcg_const_i64(0);
186 * The two TBI bits differ.
187 * If tbi0, then !tbi1: only use the extension if positive.
188 * if !tbi0, then tbi1: only use the extension if negative.
190 tcg_gen_movcond_i64(tbi
== 1 ? TCG_COND_GE
: TCG_COND_LT
,
191 dst
, dst
, tcg_zero
, dst
, src
);
192 tcg_temp_free_i64(tcg_zero
);
197 static void gen_a64_set_pc(DisasContext
*s
, TCGv_i64 src
)
200 * If address tagging is enabled for instructions via the TCR TBI bits,
201 * then loading an address into the PC will clear out any tag.
203 gen_top_byte_ignore(s
, cpu_pc
, src
, s
->tbii
);
207 * Handle MTE and/or TBI.
209 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
210 * for the tag to be present in the FAR_ELx register. But for user-only
211 * mode we do not have a TLB with which to implement this, so we must
212 * remove the top byte now.
214 * Always return a fresh temporary that we can increment independently
215 * of the write-back address.
218 TCGv_i64
clean_data_tbi(DisasContext
*s
, TCGv_i64 addr
)
220 TCGv_i64 clean
= new_tmp_a64(s
);
221 #ifdef CONFIG_USER_ONLY
222 gen_top_byte_ignore(s
, clean
, addr
, s
->tbid
);
224 tcg_gen_mov_i64(clean
, addr
);
229 /* Insert a zero tag into src, with the result at dst. */
230 static void gen_address_with_allocation_tag0(TCGv_i64 dst
, TCGv_i64 src
)
232 tcg_gen_andi_i64(dst
, src
, ~MAKE_64BIT_MASK(56, 4));
235 static void gen_probe_access(DisasContext
*s
, TCGv_i64 ptr
,
236 MMUAccessType acc
, int log2_size
)
238 TCGv_i32 t_acc
= tcg_const_i32(acc
);
239 TCGv_i32 t_idx
= tcg_const_i32(get_mem_index(s
));
240 TCGv_i32 t_size
= tcg_const_i32(1 << log2_size
);
242 gen_helper_probe_access(cpu_env
, ptr
, t_acc
, t_idx
, t_size
);
243 tcg_temp_free_i32(t_acc
);
244 tcg_temp_free_i32(t_idx
);
245 tcg_temp_free_i32(t_size
);
249 * For MTE, check a single logical or atomic access. This probes a single
250 * address, the exact one specified. The size and alignment of the access
251 * is not relevant to MTE, per se, but watchpoints do require the size,
252 * and we want to recognize those before making any other changes to state.
254 static TCGv_i64
gen_mte_check1_mmuidx(DisasContext
*s
, TCGv_i64 addr
,
255 bool is_write
, bool tag_checked
,
256 int log2_size
, bool is_unpriv
,
259 if (tag_checked
&& s
->mte_active
[is_unpriv
]) {
264 desc
= FIELD_DP32(desc
, MTEDESC
, MIDX
, core_idx
);
265 desc
= FIELD_DP32(desc
, MTEDESC
, TBI
, s
->tbid
);
266 desc
= FIELD_DP32(desc
, MTEDESC
, TCMA
, s
->tcma
);
267 desc
= FIELD_DP32(desc
, MTEDESC
, WRITE
, is_write
);
268 desc
= FIELD_DP32(desc
, MTEDESC
, ESIZE
, 1 << log2_size
);
269 tcg_desc
= tcg_const_i32(desc
);
271 ret
= new_tmp_a64(s
);
272 gen_helper_mte_check1(ret
, cpu_env
, tcg_desc
, addr
);
273 tcg_temp_free_i32(tcg_desc
);
277 return clean_data_tbi(s
, addr
);
280 TCGv_i64
gen_mte_check1(DisasContext
*s
, TCGv_i64 addr
, bool is_write
,
281 bool tag_checked
, int log2_size
)
283 return gen_mte_check1_mmuidx(s
, addr
, is_write
, tag_checked
, log2_size
,
284 false, get_mem_index(s
));
288 * For MTE, check multiple logical sequential accesses.
290 TCGv_i64
gen_mte_checkN(DisasContext
*s
, TCGv_i64 addr
, bool is_write
,
291 bool tag_checked
, int log2_esize
, int total_size
)
293 if (tag_checked
&& s
->mte_active
[0] && total_size
!= (1 << log2_esize
)) {
298 desc
= FIELD_DP32(desc
, MTEDESC
, MIDX
, get_mem_index(s
));
299 desc
= FIELD_DP32(desc
, MTEDESC
, TBI
, s
->tbid
);
300 desc
= FIELD_DP32(desc
, MTEDESC
, TCMA
, s
->tcma
);
301 desc
= FIELD_DP32(desc
, MTEDESC
, WRITE
, is_write
);
302 desc
= FIELD_DP32(desc
, MTEDESC
, ESIZE
, 1 << log2_esize
);
303 desc
= FIELD_DP32(desc
, MTEDESC
, TSIZE
, total_size
);
304 tcg_desc
= tcg_const_i32(desc
);
306 ret
= new_tmp_a64(s
);
307 gen_helper_mte_checkN(ret
, cpu_env
, tcg_desc
, addr
);
308 tcg_temp_free_i32(tcg_desc
);
312 return gen_mte_check1(s
, addr
, is_write
, tag_checked
, log2_esize
);
315 typedef struct DisasCompare64
{
320 static void a64_test_cc(DisasCompare64
*c64
, int cc
)
324 arm_test_cc(&c32
, cc
);
326 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
327 * properly. The NE/EQ comparisons are also fine with this choice. */
328 c64
->cond
= c32
.cond
;
329 c64
->value
= tcg_temp_new_i64();
330 tcg_gen_ext_i32_i64(c64
->value
, c32
.value
);
335 static void a64_free_cc(DisasCompare64
*c64
)
337 tcg_temp_free_i64(c64
->value
);
340 static void gen_exception_internal(int excp
)
342 TCGv_i32 tcg_excp
= tcg_const_i32(excp
);
344 assert(excp_is_internal(excp
));
345 gen_helper_exception_internal(cpu_env
, tcg_excp
);
346 tcg_temp_free_i32(tcg_excp
);
349 static void gen_exception_internal_insn(DisasContext
*s
, uint64_t pc
, int excp
)
351 gen_a64_set_pc_im(pc
);
352 gen_exception_internal(excp
);
353 s
->base
.is_jmp
= DISAS_NORETURN
;
356 static void gen_exception_insn(DisasContext
*s
, uint64_t pc
, int excp
,
357 uint32_t syndrome
, uint32_t target_el
)
359 gen_a64_set_pc_im(pc
);
360 gen_exception(excp
, syndrome
, target_el
);
361 s
->base
.is_jmp
= DISAS_NORETURN
;
364 static void gen_exception_bkpt_insn(DisasContext
*s
, uint32_t syndrome
)
368 gen_a64_set_pc_im(s
->pc_curr
);
369 tcg_syn
= tcg_const_i32(syndrome
);
370 gen_helper_exception_bkpt_insn(cpu_env
, tcg_syn
);
371 tcg_temp_free_i32(tcg_syn
);
372 s
->base
.is_jmp
= DISAS_NORETURN
;
375 static void gen_step_complete_exception(DisasContext
*s
)
377 /* We just completed step of an insn. Move from Active-not-pending
378 * to Active-pending, and then also take the swstep exception.
379 * This corresponds to making the (IMPDEF) choice to prioritize
380 * swstep exceptions over asynchronous exceptions taken to an exception
381 * level where debug is disabled. This choice has the advantage that
382 * we do not need to maintain internal state corresponding to the
383 * ISV/EX syndrome bits between completion of the step and generation
384 * of the exception, and our syndrome information is always correct.
387 gen_swstep_exception(s
, 1, s
->is_ldex
);
388 s
->base
.is_jmp
= DISAS_NORETURN
;
391 static inline bool use_goto_tb(DisasContext
*s
, int n
, uint64_t dest
)
393 /* No direct tb linking with singlestep (either QEMU's or the ARM
394 * debug architecture kind) or deterministic io
396 if (s
->base
.singlestep_enabled
|| s
->ss_active
||
397 (tb_cflags(s
->base
.tb
) & CF_LAST_IO
)) {
401 #ifndef CONFIG_USER_ONLY
402 /* Only link tbs from inside the same guest page */
403 if ((s
->base
.tb
->pc
& TARGET_PAGE_MASK
) != (dest
& TARGET_PAGE_MASK
)) {
411 static inline void gen_goto_tb(DisasContext
*s
, int n
, uint64_t dest
)
413 TranslationBlock
*tb
;
416 if (use_goto_tb(s
, n
, dest
)) {
418 gen_a64_set_pc_im(dest
);
419 tcg_gen_exit_tb(tb
, n
);
420 s
->base
.is_jmp
= DISAS_NORETURN
;
422 gen_a64_set_pc_im(dest
);
424 gen_step_complete_exception(s
);
425 } else if (s
->base
.singlestep_enabled
) {
426 gen_exception_internal(EXCP_DEBUG
);
428 tcg_gen_lookup_and_goto_ptr();
429 s
->base
.is_jmp
= DISAS_NORETURN
;
434 void unallocated_encoding(DisasContext
*s
)
436 /* Unallocated and reserved encodings are uncategorized */
437 gen_exception_insn(s
, s
->pc_curr
, EXCP_UDEF
, syn_uncategorized(),
438 default_exception_el(s
));
441 static void init_tmp_a64_array(DisasContext
*s
)
443 #ifdef CONFIG_DEBUG_TCG
444 memset(s
->tmp_a64
, 0, sizeof(s
->tmp_a64
));
446 s
->tmp_a64_count
= 0;
449 static void free_tmp_a64(DisasContext
*s
)
452 for (i
= 0; i
< s
->tmp_a64_count
; i
++) {
453 tcg_temp_free_i64(s
->tmp_a64
[i
]);
455 init_tmp_a64_array(s
);
458 TCGv_i64
new_tmp_a64(DisasContext
*s
)
460 assert(s
->tmp_a64_count
< TMP_A64_MAX
);
461 return s
->tmp_a64
[s
->tmp_a64_count
++] = tcg_temp_new_i64();
464 TCGv_i64
new_tmp_a64_local(DisasContext
*s
)
466 assert(s
->tmp_a64_count
< TMP_A64_MAX
);
467 return s
->tmp_a64
[s
->tmp_a64_count
++] = tcg_temp_local_new_i64();
470 TCGv_i64
new_tmp_a64_zero(DisasContext
*s
)
472 TCGv_i64 t
= new_tmp_a64(s
);
473 tcg_gen_movi_i64(t
, 0);
478 * Register access functions
480 * These functions are used for directly accessing a register in where
481 * changes to the final register value are likely to be made. If you
482 * need to use a register for temporary calculation (e.g. index type
483 * operations) use the read_* form.
485 * B1.2.1 Register mappings
487 * In instruction register encoding 31 can refer to ZR (zero register) or
488 * the SP (stack pointer) depending on context. In QEMU's case we map SP
489 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
490 * This is the point of the _sp forms.
492 TCGv_i64
cpu_reg(DisasContext
*s
, int reg
)
495 return new_tmp_a64_zero(s
);
501 /* register access for when 31 == SP */
502 TCGv_i64
cpu_reg_sp(DisasContext
*s
, int reg
)
507 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
508 * representing the register contents. This TCGv is an auto-freed
509 * temporary so it need not be explicitly freed, and may be modified.
511 TCGv_i64
read_cpu_reg(DisasContext
*s
, int reg
, int sf
)
513 TCGv_i64 v
= new_tmp_a64(s
);
516 tcg_gen_mov_i64(v
, cpu_X
[reg
]);
518 tcg_gen_ext32u_i64(v
, cpu_X
[reg
]);
521 tcg_gen_movi_i64(v
, 0);
526 TCGv_i64
read_cpu_reg_sp(DisasContext
*s
, int reg
, int sf
)
528 TCGv_i64 v
= new_tmp_a64(s
);
530 tcg_gen_mov_i64(v
, cpu_X
[reg
]);
532 tcg_gen_ext32u_i64(v
, cpu_X
[reg
]);
537 /* Return the offset into CPUARMState of a slice (from
538 * the least significant end) of FP register Qn (ie
540 * (Note that this is not the same mapping as for A32; see cpu.h)
542 static inline int fp_reg_offset(DisasContext
*s
, int regno
, MemOp size
)
544 return vec_reg_offset(s
, regno
, 0, size
);
547 /* Offset of the high half of the 128 bit vector Qn */
548 static inline int fp_reg_hi_offset(DisasContext
*s
, int regno
)
550 return vec_reg_offset(s
, regno
, 1, MO_64
);
553 /* Convenience accessors for reading and writing single and double
554 * FP registers. Writing clears the upper parts of the associated
555 * 128 bit vector register, as required by the architecture.
556 * Note that unlike the GP register accessors, the values returned
557 * by the read functions must be manually freed.
559 static TCGv_i64
read_fp_dreg(DisasContext
*s
, int reg
)
561 TCGv_i64 v
= tcg_temp_new_i64();
563 tcg_gen_ld_i64(v
, cpu_env
, fp_reg_offset(s
, reg
, MO_64
));
567 static TCGv_i32
read_fp_sreg(DisasContext
*s
, int reg
)
569 TCGv_i32 v
= tcg_temp_new_i32();
571 tcg_gen_ld_i32(v
, cpu_env
, fp_reg_offset(s
, reg
, MO_32
));
575 static TCGv_i32
read_fp_hreg(DisasContext
*s
, int reg
)
577 TCGv_i32 v
= tcg_temp_new_i32();
579 tcg_gen_ld16u_i32(v
, cpu_env
, fp_reg_offset(s
, reg
, MO_16
));
583 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
584 * If SVE is not enabled, then there are only 128 bits in the vector.
586 static void clear_vec_high(DisasContext
*s
, bool is_q
, int rd
)
588 unsigned ofs
= fp_reg_offset(s
, rd
, MO_64
);
589 unsigned vsz
= vec_full_reg_size(s
);
591 /* Nop move, with side effect of clearing the tail. */
592 tcg_gen_gvec_mov(MO_64
, ofs
, ofs
, is_q
? 16 : 8, vsz
);
595 void write_fp_dreg(DisasContext
*s
, int reg
, TCGv_i64 v
)
597 unsigned ofs
= fp_reg_offset(s
, reg
, MO_64
);
599 tcg_gen_st_i64(v
, cpu_env
, ofs
);
600 clear_vec_high(s
, false, reg
);
603 static void write_fp_sreg(DisasContext
*s
, int reg
, TCGv_i32 v
)
605 TCGv_i64 tmp
= tcg_temp_new_i64();
607 tcg_gen_extu_i32_i64(tmp
, v
);
608 write_fp_dreg(s
, reg
, tmp
);
609 tcg_temp_free_i64(tmp
);
612 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
613 static void gen_gvec_fn2(DisasContext
*s
, bool is_q
, int rd
, int rn
,
614 GVecGen2Fn
*gvec_fn
, int vece
)
616 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
617 is_q
? 16 : 8, vec_full_reg_size(s
));
620 /* Expand a 2-operand + immediate AdvSIMD vector operation using
621 * an expander function.
623 static void gen_gvec_fn2i(DisasContext
*s
, bool is_q
, int rd
, int rn
,
624 int64_t imm
, GVecGen2iFn
*gvec_fn
, int vece
)
626 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
627 imm
, is_q
? 16 : 8, vec_full_reg_size(s
));
630 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
631 static void gen_gvec_fn3(DisasContext
*s
, bool is_q
, int rd
, int rn
, int rm
,
632 GVecGen3Fn
*gvec_fn
, int vece
)
634 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
635 vec_full_reg_offset(s
, rm
), is_q
? 16 : 8, vec_full_reg_size(s
));
638 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
639 static void gen_gvec_fn4(DisasContext
*s
, bool is_q
, int rd
, int rn
, int rm
,
640 int rx
, GVecGen4Fn
*gvec_fn
, int vece
)
642 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
643 vec_full_reg_offset(s
, rm
), vec_full_reg_offset(s
, rx
),
644 is_q
? 16 : 8, vec_full_reg_size(s
));
647 /* Expand a 2-operand operation using an out-of-line helper. */
648 static void gen_gvec_op2_ool(DisasContext
*s
, bool is_q
, int rd
,
649 int rn
, int data
, gen_helper_gvec_2
*fn
)
651 tcg_gen_gvec_2_ool(vec_full_reg_offset(s
, rd
),
652 vec_full_reg_offset(s
, rn
),
653 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
656 /* Expand a 3-operand operation using an out-of-line helper. */
657 static void gen_gvec_op3_ool(DisasContext
*s
, bool is_q
, int rd
,
658 int rn
, int rm
, int data
, gen_helper_gvec_3
*fn
)
660 tcg_gen_gvec_3_ool(vec_full_reg_offset(s
, rd
),
661 vec_full_reg_offset(s
, rn
),
662 vec_full_reg_offset(s
, rm
),
663 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
666 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
667 * an out-of-line helper.
669 static void gen_gvec_op3_fpst(DisasContext
*s
, bool is_q
, int rd
, int rn
,
670 int rm
, bool is_fp16
, int data
,
671 gen_helper_gvec_3_ptr
*fn
)
673 TCGv_ptr fpst
= fpstatus_ptr(is_fp16
? FPST_FPCR_F16
: FPST_FPCR
);
674 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, rd
),
675 vec_full_reg_offset(s
, rn
),
676 vec_full_reg_offset(s
, rm
), fpst
,
677 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
678 tcg_temp_free_ptr(fpst
);
681 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
682 static void gen_gvec_op3_qc(DisasContext
*s
, bool is_q
, int rd
, int rn
,
683 int rm
, gen_helper_gvec_3_ptr
*fn
)
685 TCGv_ptr qc_ptr
= tcg_temp_new_ptr();
687 tcg_gen_addi_ptr(qc_ptr
, cpu_env
, offsetof(CPUARMState
, vfp
.qc
));
688 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, rd
),
689 vec_full_reg_offset(s
, rn
),
690 vec_full_reg_offset(s
, rm
), qc_ptr
,
691 is_q
? 16 : 8, vec_full_reg_size(s
), 0, fn
);
692 tcg_temp_free_ptr(qc_ptr
);
695 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
696 * than the 32 bit equivalent.
698 static inline void gen_set_NZ64(TCGv_i64 result
)
700 tcg_gen_extr_i64_i32(cpu_ZF
, cpu_NF
, result
);
701 tcg_gen_or_i32(cpu_ZF
, cpu_ZF
, cpu_NF
);
704 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
705 static inline void gen_logic_CC(int sf
, TCGv_i64 result
)
708 gen_set_NZ64(result
);
710 tcg_gen_extrl_i64_i32(cpu_ZF
, result
);
711 tcg_gen_mov_i32(cpu_NF
, cpu_ZF
);
713 tcg_gen_movi_i32(cpu_CF
, 0);
714 tcg_gen_movi_i32(cpu_VF
, 0);
717 /* dest = T0 + T1; compute C, N, V and Z flags */
718 static void gen_add_CC(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
721 TCGv_i64 result
, flag
, tmp
;
722 result
= tcg_temp_new_i64();
723 flag
= tcg_temp_new_i64();
724 tmp
= tcg_temp_new_i64();
726 tcg_gen_movi_i64(tmp
, 0);
727 tcg_gen_add2_i64(result
, flag
, t0
, tmp
, t1
, tmp
);
729 tcg_gen_extrl_i64_i32(cpu_CF
, flag
);
731 gen_set_NZ64(result
);
733 tcg_gen_xor_i64(flag
, result
, t0
);
734 tcg_gen_xor_i64(tmp
, t0
, t1
);
735 tcg_gen_andc_i64(flag
, flag
, tmp
);
736 tcg_temp_free_i64(tmp
);
737 tcg_gen_extrh_i64_i32(cpu_VF
, flag
);
739 tcg_gen_mov_i64(dest
, result
);
740 tcg_temp_free_i64(result
);
741 tcg_temp_free_i64(flag
);
743 /* 32 bit arithmetic */
744 TCGv_i32 t0_32
= tcg_temp_new_i32();
745 TCGv_i32 t1_32
= tcg_temp_new_i32();
746 TCGv_i32 tmp
= tcg_temp_new_i32();
748 tcg_gen_movi_i32(tmp
, 0);
749 tcg_gen_extrl_i64_i32(t0_32
, t0
);
750 tcg_gen_extrl_i64_i32(t1_32
, t1
);
751 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, t0_32
, tmp
, t1_32
, tmp
);
752 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
753 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0_32
);
754 tcg_gen_xor_i32(tmp
, t0_32
, t1_32
);
755 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tmp
);
756 tcg_gen_extu_i32_i64(dest
, cpu_NF
);
758 tcg_temp_free_i32(tmp
);
759 tcg_temp_free_i32(t0_32
);
760 tcg_temp_free_i32(t1_32
);
764 /* dest = T0 - T1; compute C, N, V and Z flags */
765 static void gen_sub_CC(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
768 /* 64 bit arithmetic */
769 TCGv_i64 result
, flag
, tmp
;
771 result
= tcg_temp_new_i64();
772 flag
= tcg_temp_new_i64();
773 tcg_gen_sub_i64(result
, t0
, t1
);
775 gen_set_NZ64(result
);
777 tcg_gen_setcond_i64(TCG_COND_GEU
, flag
, t0
, t1
);
778 tcg_gen_extrl_i64_i32(cpu_CF
, flag
);
780 tcg_gen_xor_i64(flag
, result
, t0
);
781 tmp
= tcg_temp_new_i64();
782 tcg_gen_xor_i64(tmp
, t0
, t1
);
783 tcg_gen_and_i64(flag
, flag
, tmp
);
784 tcg_temp_free_i64(tmp
);
785 tcg_gen_extrh_i64_i32(cpu_VF
, flag
);
786 tcg_gen_mov_i64(dest
, result
);
787 tcg_temp_free_i64(flag
);
788 tcg_temp_free_i64(result
);
790 /* 32 bit arithmetic */
791 TCGv_i32 t0_32
= tcg_temp_new_i32();
792 TCGv_i32 t1_32
= tcg_temp_new_i32();
795 tcg_gen_extrl_i64_i32(t0_32
, t0
);
796 tcg_gen_extrl_i64_i32(t1_32
, t1
);
797 tcg_gen_sub_i32(cpu_NF
, t0_32
, t1_32
);
798 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
799 tcg_gen_setcond_i32(TCG_COND_GEU
, cpu_CF
, t0_32
, t1_32
);
800 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0_32
);
801 tmp
= tcg_temp_new_i32();
802 tcg_gen_xor_i32(tmp
, t0_32
, t1_32
);
803 tcg_temp_free_i32(t0_32
);
804 tcg_temp_free_i32(t1_32
);
805 tcg_gen_and_i32(cpu_VF
, cpu_VF
, tmp
);
806 tcg_temp_free_i32(tmp
);
807 tcg_gen_extu_i32_i64(dest
, cpu_NF
);
811 /* dest = T0 + T1 + CF; do not compute flags. */
812 static void gen_adc(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
814 TCGv_i64 flag
= tcg_temp_new_i64();
815 tcg_gen_extu_i32_i64(flag
, cpu_CF
);
816 tcg_gen_add_i64(dest
, t0
, t1
);
817 tcg_gen_add_i64(dest
, dest
, flag
);
818 tcg_temp_free_i64(flag
);
821 tcg_gen_ext32u_i64(dest
, dest
);
825 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
826 static void gen_adc_CC(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
829 TCGv_i64 result
, cf_64
, vf_64
, tmp
;
830 result
= tcg_temp_new_i64();
831 cf_64
= tcg_temp_new_i64();
832 vf_64
= tcg_temp_new_i64();
833 tmp
= tcg_const_i64(0);
835 tcg_gen_extu_i32_i64(cf_64
, cpu_CF
);
836 tcg_gen_add2_i64(result
, cf_64
, t0
, tmp
, cf_64
, tmp
);
837 tcg_gen_add2_i64(result
, cf_64
, result
, cf_64
, t1
, tmp
);
838 tcg_gen_extrl_i64_i32(cpu_CF
, cf_64
);
839 gen_set_NZ64(result
);
841 tcg_gen_xor_i64(vf_64
, result
, t0
);
842 tcg_gen_xor_i64(tmp
, t0
, t1
);
843 tcg_gen_andc_i64(vf_64
, vf_64
, tmp
);
844 tcg_gen_extrh_i64_i32(cpu_VF
, vf_64
);
846 tcg_gen_mov_i64(dest
, result
);
848 tcg_temp_free_i64(tmp
);
849 tcg_temp_free_i64(vf_64
);
850 tcg_temp_free_i64(cf_64
);
851 tcg_temp_free_i64(result
);
853 TCGv_i32 t0_32
, t1_32
, tmp
;
854 t0_32
= tcg_temp_new_i32();
855 t1_32
= tcg_temp_new_i32();
856 tmp
= tcg_const_i32(0);
858 tcg_gen_extrl_i64_i32(t0_32
, t0
);
859 tcg_gen_extrl_i64_i32(t1_32
, t1
);
860 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, t0_32
, tmp
, cpu_CF
, tmp
);
861 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, cpu_NF
, cpu_CF
, t1_32
, tmp
);
863 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
864 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0_32
);
865 tcg_gen_xor_i32(tmp
, t0_32
, t1_32
);
866 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tmp
);
867 tcg_gen_extu_i32_i64(dest
, cpu_NF
);
869 tcg_temp_free_i32(tmp
);
870 tcg_temp_free_i32(t1_32
);
871 tcg_temp_free_i32(t0_32
);
876 * Load/Store generators
880 * Store from GPR register to memory.
882 static void do_gpr_st_memidx(DisasContext
*s
, TCGv_i64 source
,
883 TCGv_i64 tcg_addr
, int size
, int memidx
,
885 unsigned int iss_srt
,
886 bool iss_sf
, bool iss_ar
)
889 tcg_gen_qemu_st_i64(source
, tcg_addr
, memidx
, s
->be_data
+ size
);
894 syn
= syn_data_abort_with_iss(0,
900 0, 0, 0, 0, 0, false);
901 disas_set_insn_syndrome(s
, syn
);
905 static void do_gpr_st(DisasContext
*s
, TCGv_i64 source
,
906 TCGv_i64 tcg_addr
, int size
,
908 unsigned int iss_srt
,
909 bool iss_sf
, bool iss_ar
)
911 do_gpr_st_memidx(s
, source
, tcg_addr
, size
, get_mem_index(s
),
912 iss_valid
, iss_srt
, iss_sf
, iss_ar
);
916 * Load from memory to GPR register
918 static void do_gpr_ld_memidx(DisasContext
*s
,
919 TCGv_i64 dest
, TCGv_i64 tcg_addr
,
920 int size
, bool is_signed
,
921 bool extend
, int memidx
,
922 bool iss_valid
, unsigned int iss_srt
,
923 bool iss_sf
, bool iss_ar
)
925 MemOp memop
= s
->be_data
+ size
;
933 tcg_gen_qemu_ld_i64(dest
, tcg_addr
, memidx
, memop
);
935 if (extend
&& is_signed
) {
937 tcg_gen_ext32u_i64(dest
, dest
);
943 syn
= syn_data_abort_with_iss(0,
949 0, 0, 0, 0, 0, false);
950 disas_set_insn_syndrome(s
, syn
);
954 static void do_gpr_ld(DisasContext
*s
,
955 TCGv_i64 dest
, TCGv_i64 tcg_addr
,
956 int size
, bool is_signed
, bool extend
,
957 bool iss_valid
, unsigned int iss_srt
,
958 bool iss_sf
, bool iss_ar
)
960 do_gpr_ld_memidx(s
, dest
, tcg_addr
, size
, is_signed
, extend
,
962 iss_valid
, iss_srt
, iss_sf
, iss_ar
);
966 * Store from FP register to memory
968 static void do_fp_st(DisasContext
*s
, int srcidx
, TCGv_i64 tcg_addr
, int size
)
970 /* This writes the bottom N bits of a 128 bit wide vector to memory */
971 TCGv_i64 tmp
= tcg_temp_new_i64();
972 tcg_gen_ld_i64(tmp
, cpu_env
, fp_reg_offset(s
, srcidx
, MO_64
));
974 tcg_gen_qemu_st_i64(tmp
, tcg_addr
, get_mem_index(s
),
977 bool be
= s
->be_data
== MO_BE
;
978 TCGv_i64 tcg_hiaddr
= tcg_temp_new_i64();
980 tcg_gen_addi_i64(tcg_hiaddr
, tcg_addr
, 8);
981 tcg_gen_qemu_st_i64(tmp
, be
? tcg_hiaddr
: tcg_addr
, get_mem_index(s
),
983 tcg_gen_ld_i64(tmp
, cpu_env
, fp_reg_hi_offset(s
, srcidx
));
984 tcg_gen_qemu_st_i64(tmp
, be
? tcg_addr
: tcg_hiaddr
, get_mem_index(s
),
986 tcg_temp_free_i64(tcg_hiaddr
);
989 tcg_temp_free_i64(tmp
);
993 * Load from memory to FP register
995 static void do_fp_ld(DisasContext
*s
, int destidx
, TCGv_i64 tcg_addr
, int size
)
997 /* This always zero-extends and writes to a full 128 bit wide vector */
998 TCGv_i64 tmplo
= tcg_temp_new_i64();
999 TCGv_i64 tmphi
= NULL
;
1002 MemOp memop
= s
->be_data
+ size
;
1003 tcg_gen_qemu_ld_i64(tmplo
, tcg_addr
, get_mem_index(s
), memop
);
1005 bool be
= s
->be_data
== MO_BE
;
1006 TCGv_i64 tcg_hiaddr
;
1008 tmphi
= tcg_temp_new_i64();
1009 tcg_hiaddr
= tcg_temp_new_i64();
1011 tcg_gen_addi_i64(tcg_hiaddr
, tcg_addr
, 8);
1012 tcg_gen_qemu_ld_i64(tmplo
, be
? tcg_hiaddr
: tcg_addr
, get_mem_index(s
),
1014 tcg_gen_qemu_ld_i64(tmphi
, be
? tcg_addr
: tcg_hiaddr
, get_mem_index(s
),
1016 tcg_temp_free_i64(tcg_hiaddr
);
1019 tcg_gen_st_i64(tmplo
, cpu_env
, fp_reg_offset(s
, destidx
, MO_64
));
1020 tcg_temp_free_i64(tmplo
);
1023 tcg_gen_st_i64(tmphi
, cpu_env
, fp_reg_hi_offset(s
, destidx
));
1024 tcg_temp_free_i64(tmphi
);
1026 clear_vec_high(s
, tmphi
!= NULL
, destidx
);
1030 * Vector load/store helpers.
1032 * The principal difference between this and a FP load is that we don't
1033 * zero extend as we are filling a partial chunk of the vector register.
1034 * These functions don't support 128 bit loads/stores, which would be
1035 * normal load/store operations.
1037 * The _i32 versions are useful when operating on 32 bit quantities
1038 * (eg for floating point single or using Neon helper functions).
1041 /* Get value of an element within a vector register */
1042 static void read_vec_element(DisasContext
*s
, TCGv_i64 tcg_dest
, int srcidx
,
1043 int element
, MemOp memop
)
1045 int vect_off
= vec_reg_offset(s
, srcidx
, element
, memop
& MO_SIZE
);
1048 tcg_gen_ld8u_i64(tcg_dest
, cpu_env
, vect_off
);
1051 tcg_gen_ld16u_i64(tcg_dest
, cpu_env
, vect_off
);
1054 tcg_gen_ld32u_i64(tcg_dest
, cpu_env
, vect_off
);
1057 tcg_gen_ld8s_i64(tcg_dest
, cpu_env
, vect_off
);
1060 tcg_gen_ld16s_i64(tcg_dest
, cpu_env
, vect_off
);
1063 tcg_gen_ld32s_i64(tcg_dest
, cpu_env
, vect_off
);
1067 tcg_gen_ld_i64(tcg_dest
, cpu_env
, vect_off
);
1070 g_assert_not_reached();
1074 static void read_vec_element_i32(DisasContext
*s
, TCGv_i32 tcg_dest
, int srcidx
,
1075 int element
, MemOp memop
)
1077 int vect_off
= vec_reg_offset(s
, srcidx
, element
, memop
& MO_SIZE
);
1080 tcg_gen_ld8u_i32(tcg_dest
, cpu_env
, vect_off
);
1083 tcg_gen_ld16u_i32(tcg_dest
, cpu_env
, vect_off
);
1086 tcg_gen_ld8s_i32(tcg_dest
, cpu_env
, vect_off
);
1089 tcg_gen_ld16s_i32(tcg_dest
, cpu_env
, vect_off
);
1093 tcg_gen_ld_i32(tcg_dest
, cpu_env
, vect_off
);
1096 g_assert_not_reached();
1100 /* Set value of an element within a vector register */
1101 static void write_vec_element(DisasContext
*s
, TCGv_i64 tcg_src
, int destidx
,
1102 int element
, MemOp memop
)
1104 int vect_off
= vec_reg_offset(s
, destidx
, element
, memop
& MO_SIZE
);
1107 tcg_gen_st8_i64(tcg_src
, cpu_env
, vect_off
);
1110 tcg_gen_st16_i64(tcg_src
, cpu_env
, vect_off
);
1113 tcg_gen_st32_i64(tcg_src
, cpu_env
, vect_off
);
1116 tcg_gen_st_i64(tcg_src
, cpu_env
, vect_off
);
1119 g_assert_not_reached();
1123 static void write_vec_element_i32(DisasContext
*s
, TCGv_i32 tcg_src
,
1124 int destidx
, int element
, MemOp memop
)
1126 int vect_off
= vec_reg_offset(s
, destidx
, element
, memop
& MO_SIZE
);
1129 tcg_gen_st8_i32(tcg_src
, cpu_env
, vect_off
);
1132 tcg_gen_st16_i32(tcg_src
, cpu_env
, vect_off
);
1135 tcg_gen_st_i32(tcg_src
, cpu_env
, vect_off
);
1138 g_assert_not_reached();
1142 /* Store from vector register to memory */
1143 static void do_vec_st(DisasContext
*s
, int srcidx
, int element
,
1144 TCGv_i64 tcg_addr
, int size
, MemOp endian
)
1146 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
1148 read_vec_element(s
, tcg_tmp
, srcidx
, element
, size
);
1149 tcg_gen_qemu_st_i64(tcg_tmp
, tcg_addr
, get_mem_index(s
), endian
| size
);
1151 tcg_temp_free_i64(tcg_tmp
);
1154 /* Load from memory to vector register */
1155 static void do_vec_ld(DisasContext
*s
, int destidx
, int element
,
1156 TCGv_i64 tcg_addr
, int size
, MemOp endian
)
1158 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
1160 tcg_gen_qemu_ld_i64(tcg_tmp
, tcg_addr
, get_mem_index(s
), endian
| size
);
1161 write_vec_element(s
, tcg_tmp
, destidx
, element
, size
);
1163 tcg_temp_free_i64(tcg_tmp
);
1166 /* Check that FP/Neon access is enabled. If it is, return
1167 * true. If not, emit code to generate an appropriate exception,
1168 * and return false; the caller should not emit any code for
1169 * the instruction. Note that this check must happen after all
1170 * unallocated-encoding checks (otherwise the syndrome information
1171 * for the resulting exception will be incorrect).
1173 static bool fp_access_check(DisasContext
*s
)
1175 if (s
->fp_excp_el
) {
1176 assert(!s
->fp_access_checked
);
1177 s
->fp_access_checked
= true;
1179 gen_exception_insn(s
, s
->pc_curr
, EXCP_UDEF
,
1180 syn_fp_access_trap(1, 0xe, false), s
->fp_excp_el
);
1183 s
->fp_access_checked
= true;
1187 /* Check that SVE access is enabled. If it is, return true.
1188 * If not, emit code to generate an appropriate exception and return false.
1190 bool sve_access_check(DisasContext
*s
)
1192 if (s
->sve_excp_el
) {
1193 assert(!s
->sve_access_checked
);
1194 s
->sve_access_checked
= true;
1196 gen_exception_insn(s
, s
->pc_curr
, EXCP_UDEF
,
1197 syn_sve_access_trap(), s
->sve_excp_el
);
1200 s
->sve_access_checked
= true;
1201 return fp_access_check(s
);
1205 * This utility function is for doing register extension with an
1206 * optional shift. You will likely want to pass a temporary for the
1207 * destination register. See DecodeRegExtend() in the ARM ARM.
1209 static void ext_and_shift_reg(TCGv_i64 tcg_out
, TCGv_i64 tcg_in
,
1210 int option
, unsigned int shift
)
1212 int extsize
= extract32(option
, 0, 2);
1213 bool is_signed
= extract32(option
, 2, 1);
1218 tcg_gen_ext8s_i64(tcg_out
, tcg_in
);
1221 tcg_gen_ext16s_i64(tcg_out
, tcg_in
);
1224 tcg_gen_ext32s_i64(tcg_out
, tcg_in
);
1227 tcg_gen_mov_i64(tcg_out
, tcg_in
);
1233 tcg_gen_ext8u_i64(tcg_out
, tcg_in
);
1236 tcg_gen_ext16u_i64(tcg_out
, tcg_in
);
1239 tcg_gen_ext32u_i64(tcg_out
, tcg_in
);
1242 tcg_gen_mov_i64(tcg_out
, tcg_in
);
1248 tcg_gen_shli_i64(tcg_out
, tcg_out
, shift
);
1252 static inline void gen_check_sp_alignment(DisasContext
*s
)
1254 /* The AArch64 architecture mandates that (if enabled via PSTATE
1255 * or SCTLR bits) there is a check that SP is 16-aligned on every
1256 * SP-relative load or store (with an exception generated if it is not).
1257 * In line with general QEMU practice regarding misaligned accesses,
1258 * we omit these checks for the sake of guest program performance.
1259 * This function is provided as a hook so we can more easily add these
1260 * checks in future (possibly as a "favour catching guest program bugs
1261 * over speed" user selectable option).
1266 * This provides a simple table based table lookup decoder. It is
1267 * intended to be used when the relevant bits for decode are too
1268 * awkwardly placed and switch/if based logic would be confusing and
1269 * deeply nested. Since it's a linear search through the table, tables
1270 * should be kept small.
1272 * It returns the first handler where insn & mask == pattern, or
1273 * NULL if there is no match.
1274 * The table is terminated by an empty mask (i.e. 0)
1276 static inline AArch64DecodeFn
*lookup_disas_fn(const AArch64DecodeTable
*table
,
1279 const AArch64DecodeTable
*tptr
= table
;
1281 while (tptr
->mask
) {
1282 if ((insn
& tptr
->mask
) == tptr
->pattern
) {
1283 return tptr
->disas_fn
;
1291 * The instruction disassembly implemented here matches
1292 * the instruction encoding classifications in chapter C4
1293 * of the ARM Architecture Reference Manual (DDI0487B_a);
1294 * classification names and decode diagrams here should generally
1295 * match up with those in the manual.
1298 /* Unconditional branch (immediate)
1300 * +----+-----------+-------------------------------------+
1301 * | op | 0 0 1 0 1 | imm26 |
1302 * +----+-----------+-------------------------------------+
1304 static void disas_uncond_b_imm(DisasContext
*s
, uint32_t insn
)
1306 uint64_t addr
= s
->pc_curr
+ sextract32(insn
, 0, 26) * 4;
1308 if (insn
& (1U << 31)) {
1309 /* BL Branch with link */
1310 tcg_gen_movi_i64(cpu_reg(s
, 30), s
->base
.pc_next
);
1313 /* B Branch / BL Branch with link */
1315 gen_goto_tb(s
, 0, addr
);
1318 /* Compare and branch (immediate)
1319 * 31 30 25 24 23 5 4 0
1320 * +----+-------------+----+---------------------+--------+
1321 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1322 * +----+-------------+----+---------------------+--------+
1324 static void disas_comp_b_imm(DisasContext
*s
, uint32_t insn
)
1326 unsigned int sf
, op
, rt
;
1328 TCGLabel
*label_match
;
1331 sf
= extract32(insn
, 31, 1);
1332 op
= extract32(insn
, 24, 1); /* 0: CBZ; 1: CBNZ */
1333 rt
= extract32(insn
, 0, 5);
1334 addr
= s
->pc_curr
+ sextract32(insn
, 5, 19) * 4;
1336 tcg_cmp
= read_cpu_reg(s
, rt
, sf
);
1337 label_match
= gen_new_label();
1340 tcg_gen_brcondi_i64(op
? TCG_COND_NE
: TCG_COND_EQ
,
1341 tcg_cmp
, 0, label_match
);
1343 gen_goto_tb(s
, 0, s
->base
.pc_next
);
1344 gen_set_label(label_match
);
1345 gen_goto_tb(s
, 1, addr
);
1348 /* Test and branch (immediate)
1349 * 31 30 25 24 23 19 18 5 4 0
1350 * +----+-------------+----+-------+-------------+------+
1351 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1352 * +----+-------------+----+-------+-------------+------+
1354 static void disas_test_b_imm(DisasContext
*s
, uint32_t insn
)
1356 unsigned int bit_pos
, op
, rt
;
1358 TCGLabel
*label_match
;
1361 bit_pos
= (extract32(insn
, 31, 1) << 5) | extract32(insn
, 19, 5);
1362 op
= extract32(insn
, 24, 1); /* 0: TBZ; 1: TBNZ */
1363 addr
= s
->pc_curr
+ sextract32(insn
, 5, 14) * 4;
1364 rt
= extract32(insn
, 0, 5);
1366 tcg_cmp
= tcg_temp_new_i64();
1367 tcg_gen_andi_i64(tcg_cmp
, cpu_reg(s
, rt
), (1ULL << bit_pos
));
1368 label_match
= gen_new_label();
1371 tcg_gen_brcondi_i64(op
? TCG_COND_NE
: TCG_COND_EQ
,
1372 tcg_cmp
, 0, label_match
);
1373 tcg_temp_free_i64(tcg_cmp
);
1374 gen_goto_tb(s
, 0, s
->base
.pc_next
);
1375 gen_set_label(label_match
);
1376 gen_goto_tb(s
, 1, addr
);
1379 /* Conditional branch (immediate)
1380 * 31 25 24 23 5 4 3 0
1381 * +---------------+----+---------------------+----+------+
1382 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1383 * +---------------+----+---------------------+----+------+
1385 static void disas_cond_b_imm(DisasContext
*s
, uint32_t insn
)
1390 if ((insn
& (1 << 4)) || (insn
& (1 << 24))) {
1391 unallocated_encoding(s
);
1394 addr
= s
->pc_curr
+ sextract32(insn
, 5, 19) * 4;
1395 cond
= extract32(insn
, 0, 4);
1399 /* genuinely conditional branches */
1400 TCGLabel
*label_match
= gen_new_label();
1401 arm_gen_test_cc(cond
, label_match
);
1402 gen_goto_tb(s
, 0, s
->base
.pc_next
);
1403 gen_set_label(label_match
);
1404 gen_goto_tb(s
, 1, addr
);
1406 /* 0xe and 0xf are both "always" conditions */
1407 gen_goto_tb(s
, 0, addr
);
1411 /* HINT instruction group, including various allocated HINTs */
1412 static void handle_hint(DisasContext
*s
, uint32_t insn
,
1413 unsigned int op1
, unsigned int op2
, unsigned int crm
)
1415 unsigned int selector
= crm
<< 3 | op2
;
1418 unallocated_encoding(s
);
1423 case 0b00000: /* NOP */
1425 case 0b00011: /* WFI */
1426 s
->base
.is_jmp
= DISAS_WFI
;
1428 case 0b00001: /* YIELD */
1429 /* When running in MTTCG we don't generate jumps to the yield and
1430 * WFE helpers as it won't affect the scheduling of other vCPUs.
1431 * If we wanted to more completely model WFE/SEV so we don't busy
1432 * spin unnecessarily we would need to do something more involved.
1434 if (!(tb_cflags(s
->base
.tb
) & CF_PARALLEL
)) {
1435 s
->base
.is_jmp
= DISAS_YIELD
;
1438 case 0b00010: /* WFE */
1439 if (!(tb_cflags(s
->base
.tb
) & CF_PARALLEL
)) {
1440 s
->base
.is_jmp
= DISAS_WFE
;
1443 case 0b00100: /* SEV */
1444 case 0b00101: /* SEVL */
1445 /* we treat all as NOP at least for now */
1447 case 0b00111: /* XPACLRI */
1448 if (s
->pauth_active
) {
1449 gen_helper_xpaci(cpu_X
[30], cpu_env
, cpu_X
[30]);
1452 case 0b01000: /* PACIA1716 */
1453 if (s
->pauth_active
) {
1454 gen_helper_pacia(cpu_X
[17], cpu_env
, cpu_X
[17], cpu_X
[16]);
1457 case 0b01010: /* PACIB1716 */
1458 if (s
->pauth_active
) {
1459 gen_helper_pacib(cpu_X
[17], cpu_env
, cpu_X
[17], cpu_X
[16]);
1462 case 0b01100: /* AUTIA1716 */
1463 if (s
->pauth_active
) {
1464 gen_helper_autia(cpu_X
[17], cpu_env
, cpu_X
[17], cpu_X
[16]);
1467 case 0b01110: /* AUTIB1716 */
1468 if (s
->pauth_active
) {
1469 gen_helper_autib(cpu_X
[17], cpu_env
, cpu_X
[17], cpu_X
[16]);
1472 case 0b11000: /* PACIAZ */
1473 if (s
->pauth_active
) {
1474 gen_helper_pacia(cpu_X
[30], cpu_env
, cpu_X
[30],
1475 new_tmp_a64_zero(s
));
1478 case 0b11001: /* PACIASP */
1479 if (s
->pauth_active
) {
1480 gen_helper_pacia(cpu_X
[30], cpu_env
, cpu_X
[30], cpu_X
[31]);
1483 case 0b11010: /* PACIBZ */
1484 if (s
->pauth_active
) {
1485 gen_helper_pacib(cpu_X
[30], cpu_env
, cpu_X
[30],
1486 new_tmp_a64_zero(s
));
1489 case 0b11011: /* PACIBSP */
1490 if (s
->pauth_active
) {
1491 gen_helper_pacib(cpu_X
[30], cpu_env
, cpu_X
[30], cpu_X
[31]);
1494 case 0b11100: /* AUTIAZ */
1495 if (s
->pauth_active
) {
1496 gen_helper_autia(cpu_X
[30], cpu_env
, cpu_X
[30],
1497 new_tmp_a64_zero(s
));
1500 case 0b11101: /* AUTIASP */
1501 if (s
->pauth_active
) {
1502 gen_helper_autia(cpu_X
[30], cpu_env
, cpu_X
[30], cpu_X
[31]);
1505 case 0b11110: /* AUTIBZ */
1506 if (s
->pauth_active
) {
1507 gen_helper_autib(cpu_X
[30], cpu_env
, cpu_X
[30],
1508 new_tmp_a64_zero(s
));
1511 case 0b11111: /* AUTIBSP */
1512 if (s
->pauth_active
) {
1513 gen_helper_autib(cpu_X
[30], cpu_env
, cpu_X
[30], cpu_X
[31]);
1517 /* default specified as NOP equivalent */
1522 static void gen_clrex(DisasContext
*s
, uint32_t insn
)
1524 tcg_gen_movi_i64(cpu_exclusive_addr
, -1);
1527 /* CLREX, DSB, DMB, ISB */
1528 static void handle_sync(DisasContext
*s
, uint32_t insn
,
1529 unsigned int op1
, unsigned int op2
, unsigned int crm
)
1534 unallocated_encoding(s
);
1545 case 1: /* MBReqTypes_Reads */
1546 bar
= TCG_BAR_SC
| TCG_MO_LD_LD
| TCG_MO_LD_ST
;
1548 case 2: /* MBReqTypes_Writes */
1549 bar
= TCG_BAR_SC
| TCG_MO_ST_ST
;
1551 default: /* MBReqTypes_All */
1552 bar
= TCG_BAR_SC
| TCG_MO_ALL
;
1558 /* We need to break the TB after this insn to execute
1559 * a self-modified code correctly and also to take
1560 * any pending interrupts immediately.
1563 gen_goto_tb(s
, 0, s
->base
.pc_next
);
1567 if (crm
!= 0 || !dc_isar_feature(aa64_sb
, s
)) {
1568 goto do_unallocated
;
1571 * TODO: There is no speculation barrier opcode for TCG;
1572 * MB and end the TB instead.
1574 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_SC
);
1575 gen_goto_tb(s
, 0, s
->base
.pc_next
);
1580 unallocated_encoding(s
);
1585 static void gen_xaflag(void)
1587 TCGv_i32 z
= tcg_temp_new_i32();
1589 tcg_gen_setcondi_i32(TCG_COND_EQ
, z
, cpu_ZF
, 0);
1598 tcg_gen_or_i32(cpu_NF
, cpu_CF
, z
);
1599 tcg_gen_subi_i32(cpu_NF
, cpu_NF
, 1);
1602 tcg_gen_and_i32(cpu_ZF
, z
, cpu_CF
);
1603 tcg_gen_xori_i32(cpu_ZF
, cpu_ZF
, 1);
1605 /* (!C & Z) << 31 -> -(Z & ~C) */
1606 tcg_gen_andc_i32(cpu_VF
, z
, cpu_CF
);
1607 tcg_gen_neg_i32(cpu_VF
, cpu_VF
);
1610 tcg_gen_or_i32(cpu_CF
, cpu_CF
, z
);
1612 tcg_temp_free_i32(z
);
1615 static void gen_axflag(void)
1617 tcg_gen_sari_i32(cpu_VF
, cpu_VF
, 31); /* V ? -1 : 0 */
1618 tcg_gen_andc_i32(cpu_CF
, cpu_CF
, cpu_VF
); /* C & !V */
1620 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1621 tcg_gen_andc_i32(cpu_ZF
, cpu_ZF
, cpu_VF
);
1623 tcg_gen_movi_i32(cpu_NF
, 0);
1624 tcg_gen_movi_i32(cpu_VF
, 0);
1627 /* MSR (immediate) - move immediate to processor state field */
1628 static void handle_msr_i(DisasContext
*s
, uint32_t insn
,
1629 unsigned int op1
, unsigned int op2
, unsigned int crm
)
1632 int op
= op1
<< 3 | op2
;
1634 /* End the TB by default, chaining is ok. */
1635 s
->base
.is_jmp
= DISAS_TOO_MANY
;
1638 case 0x00: /* CFINV */
1639 if (crm
!= 0 || !dc_isar_feature(aa64_condm_4
, s
)) {
1640 goto do_unallocated
;
1642 tcg_gen_xori_i32(cpu_CF
, cpu_CF
, 1);
1643 s
->base
.is_jmp
= DISAS_NEXT
;
1646 case 0x01: /* XAFlag */
1647 if (crm
!= 0 || !dc_isar_feature(aa64_condm_5
, s
)) {
1648 goto do_unallocated
;
1651 s
->base
.is_jmp
= DISAS_NEXT
;
1654 case 0x02: /* AXFlag */
1655 if (crm
!= 0 || !dc_isar_feature(aa64_condm_5
, s
)) {
1656 goto do_unallocated
;
1659 s
->base
.is_jmp
= DISAS_NEXT
;
1662 case 0x03: /* UAO */
1663 if (!dc_isar_feature(aa64_uao
, s
) || s
->current_el
== 0) {
1664 goto do_unallocated
;
1667 set_pstate_bits(PSTATE_UAO
);
1669 clear_pstate_bits(PSTATE_UAO
);
1671 t1
= tcg_const_i32(s
->current_el
);
1672 gen_helper_rebuild_hflags_a64(cpu_env
, t1
);
1673 tcg_temp_free_i32(t1
);
1676 case 0x04: /* PAN */
1677 if (!dc_isar_feature(aa64_pan
, s
) || s
->current_el
== 0) {
1678 goto do_unallocated
;
1681 set_pstate_bits(PSTATE_PAN
);
1683 clear_pstate_bits(PSTATE_PAN
);
1685 t1
= tcg_const_i32(s
->current_el
);
1686 gen_helper_rebuild_hflags_a64(cpu_env
, t1
);
1687 tcg_temp_free_i32(t1
);
1690 case 0x05: /* SPSel */
1691 if (s
->current_el
== 0) {
1692 goto do_unallocated
;
1694 t1
= tcg_const_i32(crm
& PSTATE_SP
);
1695 gen_helper_msr_i_spsel(cpu_env
, t1
);
1696 tcg_temp_free_i32(t1
);
1699 case 0x1e: /* DAIFSet */
1700 t1
= tcg_const_i32(crm
);
1701 gen_helper_msr_i_daifset(cpu_env
, t1
);
1702 tcg_temp_free_i32(t1
);
1705 case 0x1f: /* DAIFClear */
1706 t1
= tcg_const_i32(crm
);
1707 gen_helper_msr_i_daifclear(cpu_env
, t1
);
1708 tcg_temp_free_i32(t1
);
1709 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1710 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
1713 case 0x1c: /* TCO */
1714 if (dc_isar_feature(aa64_mte
, s
)) {
1715 /* Full MTE is enabled -- set the TCO bit as directed. */
1717 set_pstate_bits(PSTATE_TCO
);
1719 clear_pstate_bits(PSTATE_TCO
);
1721 t1
= tcg_const_i32(s
->current_el
);
1722 gen_helper_rebuild_hflags_a64(cpu_env
, t1
);
1723 tcg_temp_free_i32(t1
);
1724 /* Many factors, including TCO, go into MTE_ACTIVE. */
1725 s
->base
.is_jmp
= DISAS_UPDATE_NOCHAIN
;
1726 } else if (dc_isar_feature(aa64_mte_insn_reg
, s
)) {
1727 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1728 s
->base
.is_jmp
= DISAS_NEXT
;
1730 goto do_unallocated
;
1736 unallocated_encoding(s
);
1741 static void gen_get_nzcv(TCGv_i64 tcg_rt
)
1743 TCGv_i32 tmp
= tcg_temp_new_i32();
1744 TCGv_i32 nzcv
= tcg_temp_new_i32();
1746 /* build bit 31, N */
1747 tcg_gen_andi_i32(nzcv
, cpu_NF
, (1U << 31));
1748 /* build bit 30, Z */
1749 tcg_gen_setcondi_i32(TCG_COND_EQ
, tmp
, cpu_ZF
, 0);
1750 tcg_gen_deposit_i32(nzcv
, nzcv
, tmp
, 30, 1);
1751 /* build bit 29, C */
1752 tcg_gen_deposit_i32(nzcv
, nzcv
, cpu_CF
, 29, 1);
1753 /* build bit 28, V */
1754 tcg_gen_shri_i32(tmp
, cpu_VF
, 31);
1755 tcg_gen_deposit_i32(nzcv
, nzcv
, tmp
, 28, 1);
1756 /* generate result */
1757 tcg_gen_extu_i32_i64(tcg_rt
, nzcv
);
1759 tcg_temp_free_i32(nzcv
);
1760 tcg_temp_free_i32(tmp
);
1763 static void gen_set_nzcv(TCGv_i64 tcg_rt
)
1765 TCGv_i32 nzcv
= tcg_temp_new_i32();
1767 /* take NZCV from R[t] */
1768 tcg_gen_extrl_i64_i32(nzcv
, tcg_rt
);
1771 tcg_gen_andi_i32(cpu_NF
, nzcv
, (1U << 31));
1773 tcg_gen_andi_i32(cpu_ZF
, nzcv
, (1 << 30));
1774 tcg_gen_setcondi_i32(TCG_COND_EQ
, cpu_ZF
, cpu_ZF
, 0);
1776 tcg_gen_andi_i32(cpu_CF
, nzcv
, (1 << 29));
1777 tcg_gen_shri_i32(cpu_CF
, cpu_CF
, 29);
1779 tcg_gen_andi_i32(cpu_VF
, nzcv
, (1 << 28));
1780 tcg_gen_shli_i32(cpu_VF
, cpu_VF
, 3);
1781 tcg_temp_free_i32(nzcv
);
1784 /* MRS - move from system register
1785 * MSR (register) - move to system register
1788 * These are all essentially the same insn in 'read' and 'write'
1789 * versions, with varying op0 fields.
1791 static void handle_sys(DisasContext
*s
, uint32_t insn
, bool isread
,
1792 unsigned int op0
, unsigned int op1
, unsigned int op2
,
1793 unsigned int crn
, unsigned int crm
, unsigned int rt
)
1795 const ARMCPRegInfo
*ri
;
1798 ri
= get_arm_cp_reginfo(s
->cp_regs
,
1799 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP
,
1800 crn
, crm
, op0
, op1
, op2
));
1803 /* Unknown register; this might be a guest error or a QEMU
1804 * unimplemented feature.
1806 qemu_log_mask(LOG_UNIMP
, "%s access to unsupported AArch64 "
1807 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1808 isread
? "read" : "write", op0
, op1
, crn
, crm
, op2
);
1809 unallocated_encoding(s
);
1813 /* Check access permissions */
1814 if (!cp_access_ok(s
->current_el
, ri
, isread
)) {
1815 unallocated_encoding(s
);
1820 /* Emit code to perform further access permissions checks at
1821 * runtime; this may result in an exception.
1824 TCGv_i32 tcg_syn
, tcg_isread
;
1827 gen_a64_set_pc_im(s
->pc_curr
);
1828 tmpptr
= tcg_const_ptr(ri
);
1829 syndrome
= syn_aa64_sysregtrap(op0
, op1
, op2
, crn
, crm
, rt
, isread
);
1830 tcg_syn
= tcg_const_i32(syndrome
);
1831 tcg_isread
= tcg_const_i32(isread
);
1832 gen_helper_access_check_cp_reg(cpu_env
, tmpptr
, tcg_syn
, tcg_isread
);
1833 tcg_temp_free_ptr(tmpptr
);
1834 tcg_temp_free_i32(tcg_syn
);
1835 tcg_temp_free_i32(tcg_isread
);
1836 } else if (ri
->type
& ARM_CP_RAISES_EXC
) {
1838 * The readfn or writefn might raise an exception;
1839 * synchronize the CPU state in case it does.
1841 gen_a64_set_pc_im(s
->pc_curr
);
1844 /* Handle special cases first */
1845 switch (ri
->type
& ~(ARM_CP_FLAG_MASK
& ~ARM_CP_SPECIAL
)) {
1849 tcg_rt
= cpu_reg(s
, rt
);
1851 gen_get_nzcv(tcg_rt
);
1853 gen_set_nzcv(tcg_rt
);
1856 case ARM_CP_CURRENTEL
:
1857 /* Reads as current EL value from pstate, which is
1858 * guaranteed to be constant by the tb flags.
1860 tcg_rt
= cpu_reg(s
, rt
);
1861 tcg_gen_movi_i64(tcg_rt
, s
->current_el
<< 2);
1864 /* Writes clear the aligned block of memory which rt points into. */
1865 if (s
->mte_active
[0]) {
1869 desc
= FIELD_DP32(desc
, MTEDESC
, MIDX
, get_mem_index(s
));
1870 desc
= FIELD_DP32(desc
, MTEDESC
, TBI
, s
->tbid
);
1871 desc
= FIELD_DP32(desc
, MTEDESC
, TCMA
, s
->tcma
);
1872 t_desc
= tcg_const_i32(desc
);
1874 tcg_rt
= new_tmp_a64(s
);
1875 gen_helper_mte_check_zva(tcg_rt
, cpu_env
, t_desc
, cpu_reg(s
, rt
));
1876 tcg_temp_free_i32(t_desc
);
1878 tcg_rt
= clean_data_tbi(s
, cpu_reg(s
, rt
));
1880 gen_helper_dc_zva(cpu_env
, tcg_rt
);
1884 TCGv_i64 clean_addr
, tag
;
1887 * DC_GVA, like DC_ZVA, requires that we supply the original
1888 * pointer for an invalid page. Probe that address first.
1890 tcg_rt
= cpu_reg(s
, rt
);
1891 clean_addr
= clean_data_tbi(s
, tcg_rt
);
1892 gen_probe_access(s
, clean_addr
, MMU_DATA_STORE
, MO_8
);
1895 /* Extract the tag from the register to match STZGM. */
1896 tag
= tcg_temp_new_i64();
1897 tcg_gen_shri_i64(tag
, tcg_rt
, 56);
1898 gen_helper_stzgm_tags(cpu_env
, clean_addr
, tag
);
1899 tcg_temp_free_i64(tag
);
1903 case ARM_CP_DC_GZVA
:
1905 TCGv_i64 clean_addr
, tag
;
1907 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
1908 tcg_rt
= cpu_reg(s
, rt
);
1909 clean_addr
= clean_data_tbi(s
, tcg_rt
);
1910 gen_helper_dc_zva(cpu_env
, clean_addr
);
1913 /* Extract the tag from the register to match STZGM. */
1914 tag
= tcg_temp_new_i64();
1915 tcg_gen_shri_i64(tag
, tcg_rt
, 56);
1916 gen_helper_stzgm_tags(cpu_env
, clean_addr
, tag
);
1917 tcg_temp_free_i64(tag
);
1924 if ((ri
->type
& ARM_CP_FPU
) && !fp_access_check(s
)) {
1926 } else if ((ri
->type
& ARM_CP_SVE
) && !sve_access_check(s
)) {
1930 if ((tb_cflags(s
->base
.tb
) & CF_USE_ICOUNT
) && (ri
->type
& ARM_CP_IO
)) {
1934 tcg_rt
= cpu_reg(s
, rt
);
1937 if (ri
->type
& ARM_CP_CONST
) {
1938 tcg_gen_movi_i64(tcg_rt
, ri
->resetvalue
);
1939 } else if (ri
->readfn
) {
1941 tmpptr
= tcg_const_ptr(ri
);
1942 gen_helper_get_cp_reg64(tcg_rt
, cpu_env
, tmpptr
);
1943 tcg_temp_free_ptr(tmpptr
);
1945 tcg_gen_ld_i64(tcg_rt
, cpu_env
, ri
->fieldoffset
);
1948 if (ri
->type
& ARM_CP_CONST
) {
1949 /* If not forbidden by access permissions, treat as WI */
1951 } else if (ri
->writefn
) {
1953 tmpptr
= tcg_const_ptr(ri
);
1954 gen_helper_set_cp_reg64(cpu_env
, tmpptr
, tcg_rt
);
1955 tcg_temp_free_ptr(tmpptr
);
1957 tcg_gen_st_i64(tcg_rt
, cpu_env
, ri
->fieldoffset
);
1961 if ((tb_cflags(s
->base
.tb
) & CF_USE_ICOUNT
) && (ri
->type
& ARM_CP_IO
)) {
1962 /* I/O operations must end the TB here (whether read or write) */
1963 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
1965 if (!isread
&& !(ri
->type
& ARM_CP_SUPPRESS_TB_END
)) {
1967 * A write to any coprocessor regiser that ends a TB
1968 * must rebuild the hflags for the next TB.
1970 TCGv_i32 tcg_el
= tcg_const_i32(s
->current_el
);
1971 gen_helper_rebuild_hflags_a64(cpu_env
, tcg_el
);
1972 tcg_temp_free_i32(tcg_el
);
1974 * We default to ending the TB on a coprocessor register write,
1975 * but allow this to be suppressed by the register definition
1976 * (usually only necessary to work around guest bugs).
1978 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
1983 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1984 * +---------------------+---+-----+-----+-------+-------+-----+------+
1985 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1986 * +---------------------+---+-----+-----+-------+-------+-----+------+
1988 static void disas_system(DisasContext
*s
, uint32_t insn
)
1990 unsigned int l
, op0
, op1
, crn
, crm
, op2
, rt
;
1991 l
= extract32(insn
, 21, 1);
1992 op0
= extract32(insn
, 19, 2);
1993 op1
= extract32(insn
, 16, 3);
1994 crn
= extract32(insn
, 12, 4);
1995 crm
= extract32(insn
, 8, 4);
1996 op2
= extract32(insn
, 5, 3);
1997 rt
= extract32(insn
, 0, 5);
2000 if (l
|| rt
!= 31) {
2001 unallocated_encoding(s
);
2005 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2006 handle_hint(s
, insn
, op1
, op2
, crm
);
2008 case 3: /* CLREX, DSB, DMB, ISB */
2009 handle_sync(s
, insn
, op1
, op2
, crm
);
2011 case 4: /* MSR (immediate) */
2012 handle_msr_i(s
, insn
, op1
, op2
, crm
);
2015 unallocated_encoding(s
);
2020 handle_sys(s
, insn
, l
, op0
, op1
, op2
, crn
, crm
, rt
);
2023 /* Exception generation
2025 * 31 24 23 21 20 5 4 2 1 0
2026 * +-----------------+-----+------------------------+-----+----+
2027 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2028 * +-----------------------+------------------------+----------+
2030 static void disas_exc(DisasContext
*s
, uint32_t insn
)
2032 int opc
= extract32(insn
, 21, 3);
2033 int op2_ll
= extract32(insn
, 0, 5);
2034 int imm16
= extract32(insn
, 5, 16);
2039 /* For SVC, HVC and SMC we advance the single-step state
2040 * machine before taking the exception. This is architecturally
2041 * mandated, to ensure that single-stepping a system call
2042 * instruction works properly.
2047 gen_exception_insn(s
, s
->base
.pc_next
, EXCP_SWI
,
2048 syn_aa64_svc(imm16
), default_exception_el(s
));
2051 if (s
->current_el
== 0) {
2052 unallocated_encoding(s
);
2055 /* The pre HVC helper handles cases when HVC gets trapped
2056 * as an undefined insn by runtime configuration.
2058 gen_a64_set_pc_im(s
->pc_curr
);
2059 gen_helper_pre_hvc(cpu_env
);
2061 gen_exception_insn(s
, s
->base
.pc_next
, EXCP_HVC
,
2062 syn_aa64_hvc(imm16
), 2);
2065 if (s
->current_el
== 0) {
2066 unallocated_encoding(s
);
2069 gen_a64_set_pc_im(s
->pc_curr
);
2070 tmp
= tcg_const_i32(syn_aa64_smc(imm16
));
2071 gen_helper_pre_smc(cpu_env
, tmp
);
2072 tcg_temp_free_i32(tmp
);
2074 gen_exception_insn(s
, s
->base
.pc_next
, EXCP_SMC
,
2075 syn_aa64_smc(imm16
), 3);
2078 unallocated_encoding(s
);
2084 unallocated_encoding(s
);
2088 gen_exception_bkpt_insn(s
, syn_aa64_bkpt(imm16
));
2092 unallocated_encoding(s
);
2095 /* HLT. This has two purposes.
2096 * Architecturally, it is an external halting debug instruction.
2097 * Since QEMU doesn't implement external debug, we treat this as
2098 * it is required for halting debug disabled: it will UNDEF.
2099 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2101 if (semihosting_enabled() && imm16
== 0xf000) {
2102 #ifndef CONFIG_USER_ONLY
2103 /* In system mode, don't allow userspace access to semihosting,
2104 * to provide some semblance of security (and for consistency
2105 * with our 32-bit semihosting).
2107 if (s
->current_el
== 0) {
2108 unsupported_encoding(s
, insn
);
2112 gen_exception_internal_insn(s
, s
->pc_curr
, EXCP_SEMIHOST
);
2114 unsupported_encoding(s
, insn
);
2118 if (op2_ll
< 1 || op2_ll
> 3) {
2119 unallocated_encoding(s
);
2122 /* DCPS1, DCPS2, DCPS3 */
2123 unsupported_encoding(s
, insn
);
2126 unallocated_encoding(s
);
2131 /* Unconditional branch (register)
2132 * 31 25 24 21 20 16 15 10 9 5 4 0
2133 * +---------------+-------+-------+-------+------+-------+
2134 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2135 * +---------------+-------+-------+-------+------+-------+
2137 static void disas_uncond_b_reg(DisasContext
*s
, uint32_t insn
)
2139 unsigned int opc
, op2
, op3
, rn
, op4
;
2140 unsigned btype_mod
= 2; /* 0: BR, 1: BLR, 2: other */
2144 opc
= extract32(insn
, 21, 4);
2145 op2
= extract32(insn
, 16, 5);
2146 op3
= extract32(insn
, 10, 6);
2147 rn
= extract32(insn
, 5, 5);
2148 op4
= extract32(insn
, 0, 5);
2151 goto do_unallocated
;
2163 goto do_unallocated
;
2165 dst
= cpu_reg(s
, rn
);
2170 if (!dc_isar_feature(aa64_pauth
, s
)) {
2171 goto do_unallocated
;
2175 if (rn
!= 0x1f || op4
!= 0x1f) {
2176 goto do_unallocated
;
2179 modifier
= cpu_X
[31];
2181 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2183 goto do_unallocated
;
2185 modifier
= new_tmp_a64_zero(s
);
2187 if (s
->pauth_active
) {
2188 dst
= new_tmp_a64(s
);
2190 gen_helper_autia(dst
, cpu_env
, cpu_reg(s
, rn
), modifier
);
2192 gen_helper_autib(dst
, cpu_env
, cpu_reg(s
, rn
), modifier
);
2195 dst
= cpu_reg(s
, rn
);
2200 goto do_unallocated
;
2202 gen_a64_set_pc(s
, dst
);
2203 /* BLR also needs to load return address */
2205 tcg_gen_movi_i64(cpu_reg(s
, 30), s
->base
.pc_next
);
2211 if (!dc_isar_feature(aa64_pauth
, s
)) {
2212 goto do_unallocated
;
2214 if ((op3
& ~1) != 2) {
2215 goto do_unallocated
;
2217 btype_mod
= opc
& 1;
2218 if (s
->pauth_active
) {
2219 dst
= new_tmp_a64(s
);
2220 modifier
= cpu_reg_sp(s
, op4
);
2222 gen_helper_autia(dst
, cpu_env
, cpu_reg(s
, rn
), modifier
);
2224 gen_helper_autib(dst
, cpu_env
, cpu_reg(s
, rn
), modifier
);
2227 dst
= cpu_reg(s
, rn
);
2229 gen_a64_set_pc(s
, dst
);
2230 /* BLRAA also needs to load return address */
2232 tcg_gen_movi_i64(cpu_reg(s
, 30), s
->base
.pc_next
);
2237 if (s
->current_el
== 0) {
2238 goto do_unallocated
;
2243 goto do_unallocated
;
2245 dst
= tcg_temp_new_i64();
2246 tcg_gen_ld_i64(dst
, cpu_env
,
2247 offsetof(CPUARMState
, elr_el
[s
->current_el
]));
2250 case 2: /* ERETAA */
2251 case 3: /* ERETAB */
2252 if (!dc_isar_feature(aa64_pauth
, s
)) {
2253 goto do_unallocated
;
2255 if (rn
!= 0x1f || op4
!= 0x1f) {
2256 goto do_unallocated
;
2258 dst
= tcg_temp_new_i64();
2259 tcg_gen_ld_i64(dst
, cpu_env
,
2260 offsetof(CPUARMState
, elr_el
[s
->current_el
]));
2261 if (s
->pauth_active
) {
2262 modifier
= cpu_X
[31];
2264 gen_helper_autia(dst
, cpu_env
, dst
, modifier
);
2266 gen_helper_autib(dst
, cpu_env
, dst
, modifier
);
2272 goto do_unallocated
;
2274 if (tb_cflags(s
->base
.tb
) & CF_USE_ICOUNT
) {
2278 gen_helper_exception_return(cpu_env
, dst
);
2279 tcg_temp_free_i64(dst
);
2280 /* Must exit loop to check un-masked IRQs */
2281 s
->base
.is_jmp
= DISAS_EXIT
;
2285 if (op3
!= 0 || op4
!= 0 || rn
!= 0x1f) {
2286 goto do_unallocated
;
2288 unsupported_encoding(s
, insn
);
2294 unallocated_encoding(s
);
2298 switch (btype_mod
) {
2300 if (dc_isar_feature(aa64_bti
, s
)) {
2301 /* BR to {x16,x17} or !guard -> 1, else 3. */
2302 set_btype(s
, rn
== 16 || rn
== 17 || !s
->guarded_page
? 1 : 3);
2307 if (dc_isar_feature(aa64_bti
, s
)) {
2308 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2313 default: /* RET or none of the above. */
2314 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2318 s
->base
.is_jmp
= DISAS_JUMP
;
2321 /* Branches, exception generating and system instructions */
2322 static void disas_b_exc_sys(DisasContext
*s
, uint32_t insn
)
2324 switch (extract32(insn
, 25, 7)) {
2325 case 0x0a: case 0x0b:
2326 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2327 disas_uncond_b_imm(s
, insn
);
2329 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2330 disas_comp_b_imm(s
, insn
);
2332 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2333 disas_test_b_imm(s
, insn
);
2335 case 0x2a: /* Conditional branch (immediate) */
2336 disas_cond_b_imm(s
, insn
);
2338 case 0x6a: /* Exception generation / System */
2339 if (insn
& (1 << 24)) {
2340 if (extract32(insn
, 22, 2) == 0) {
2341 disas_system(s
, insn
);
2343 unallocated_encoding(s
);
2349 case 0x6b: /* Unconditional branch (register) */
2350 disas_uncond_b_reg(s
, insn
);
2353 unallocated_encoding(s
);
2359 * Load/Store exclusive instructions are implemented by remembering
2360 * the value/address loaded, and seeing if these are the same
2361 * when the store is performed. This is not actually the architecturally
2362 * mandated semantics, but it works for typical guest code sequences
2363 * and avoids having to monitor regular stores.
2365 * The store exclusive uses the atomic cmpxchg primitives to avoid
2366 * races in multi-threaded linux-user and when MTTCG softmmu is
2369 static void gen_load_exclusive(DisasContext
*s
, int rt
, int rt2
,
2370 TCGv_i64 addr
, int size
, bool is_pair
)
2372 int idx
= get_mem_index(s
);
2373 MemOp memop
= s
->be_data
;
2375 g_assert(size
<= 3);
2377 g_assert(size
>= 2);
2379 /* The pair must be single-copy atomic for the doubleword. */
2380 memop
|= MO_64
| MO_ALIGN
;
2381 tcg_gen_qemu_ld_i64(cpu_exclusive_val
, addr
, idx
, memop
);
2382 if (s
->be_data
== MO_LE
) {
2383 tcg_gen_extract_i64(cpu_reg(s
, rt
), cpu_exclusive_val
, 0, 32);
2384 tcg_gen_extract_i64(cpu_reg(s
, rt2
), cpu_exclusive_val
, 32, 32);
2386 tcg_gen_extract_i64(cpu_reg(s
, rt
), cpu_exclusive_val
, 32, 32);
2387 tcg_gen_extract_i64(cpu_reg(s
, rt2
), cpu_exclusive_val
, 0, 32);
2390 /* The pair must be single-copy atomic for *each* doubleword, not
2391 the entire quadword, however it must be quadword aligned. */
2393 tcg_gen_qemu_ld_i64(cpu_exclusive_val
, addr
, idx
,
2394 memop
| MO_ALIGN_16
);
2396 TCGv_i64 addr2
= tcg_temp_new_i64();
2397 tcg_gen_addi_i64(addr2
, addr
, 8);
2398 tcg_gen_qemu_ld_i64(cpu_exclusive_high
, addr2
, idx
, memop
);
2399 tcg_temp_free_i64(addr2
);
2401 tcg_gen_mov_i64(cpu_reg(s
, rt
), cpu_exclusive_val
);
2402 tcg_gen_mov_i64(cpu_reg(s
, rt2
), cpu_exclusive_high
);
2405 memop
|= size
| MO_ALIGN
;
2406 tcg_gen_qemu_ld_i64(cpu_exclusive_val
, addr
, idx
, memop
);
2407 tcg_gen_mov_i64(cpu_reg(s
, rt
), cpu_exclusive_val
);
2409 tcg_gen_mov_i64(cpu_exclusive_addr
, addr
);
2412 static void gen_store_exclusive(DisasContext
*s
, int rd
, int rt
, int rt2
,
2413 TCGv_i64 addr
, int size
, int is_pair
)
2415 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2416 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2419 * [addr + datasize] = {Rt2};
2425 * env->exclusive_addr = -1;
2427 TCGLabel
*fail_label
= gen_new_label();
2428 TCGLabel
*done_label
= gen_new_label();
2431 tcg_gen_brcond_i64(TCG_COND_NE
, addr
, cpu_exclusive_addr
, fail_label
);
2433 tmp
= tcg_temp_new_i64();
2436 if (s
->be_data
== MO_LE
) {
2437 tcg_gen_concat32_i64(tmp
, cpu_reg(s
, rt
), cpu_reg(s
, rt2
));
2439 tcg_gen_concat32_i64(tmp
, cpu_reg(s
, rt2
), cpu_reg(s
, rt
));
2441 tcg_gen_atomic_cmpxchg_i64(tmp
, cpu_exclusive_addr
,
2442 cpu_exclusive_val
, tmp
,
2444 MO_64
| MO_ALIGN
| s
->be_data
);
2445 tcg_gen_setcond_i64(TCG_COND_NE
, tmp
, tmp
, cpu_exclusive_val
);
2446 } else if (tb_cflags(s
->base
.tb
) & CF_PARALLEL
) {
2447 if (!HAVE_CMPXCHG128
) {
2448 gen_helper_exit_atomic(cpu_env
);
2449 s
->base
.is_jmp
= DISAS_NORETURN
;
2450 } else if (s
->be_data
== MO_LE
) {
2451 gen_helper_paired_cmpxchg64_le_parallel(tmp
, cpu_env
,
2456 gen_helper_paired_cmpxchg64_be_parallel(tmp
, cpu_env
,
2461 } else if (s
->be_data
== MO_LE
) {
2462 gen_helper_paired_cmpxchg64_le(tmp
, cpu_env
, cpu_exclusive_addr
,
2463 cpu_reg(s
, rt
), cpu_reg(s
, rt2
));
2465 gen_helper_paired_cmpxchg64_be(tmp
, cpu_env
, cpu_exclusive_addr
,
2466 cpu_reg(s
, rt
), cpu_reg(s
, rt2
));
2469 tcg_gen_atomic_cmpxchg_i64(tmp
, cpu_exclusive_addr
, cpu_exclusive_val
,
2470 cpu_reg(s
, rt
), get_mem_index(s
),
2471 size
| MO_ALIGN
| s
->be_data
);
2472 tcg_gen_setcond_i64(TCG_COND_NE
, tmp
, tmp
, cpu_exclusive_val
);
2474 tcg_gen_mov_i64(cpu_reg(s
, rd
), tmp
);
2475 tcg_temp_free_i64(tmp
);
2476 tcg_gen_br(done_label
);
2478 gen_set_label(fail_label
);
2479 tcg_gen_movi_i64(cpu_reg(s
, rd
), 1);
2480 gen_set_label(done_label
);
2481 tcg_gen_movi_i64(cpu_exclusive_addr
, -1);
2484 static void gen_compare_and_swap(DisasContext
*s
, int rs
, int rt
,
2487 TCGv_i64 tcg_rs
= cpu_reg(s
, rs
);
2488 TCGv_i64 tcg_rt
= cpu_reg(s
, rt
);
2489 int memidx
= get_mem_index(s
);
2490 TCGv_i64 clean_addr
;
2493 gen_check_sp_alignment(s
);
2495 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
), true, rn
!= 31, size
);
2496 tcg_gen_atomic_cmpxchg_i64(tcg_rs
, clean_addr
, tcg_rs
, tcg_rt
, memidx
,
2497 size
| MO_ALIGN
| s
->be_data
);
2500 static void gen_compare_and_swap_pair(DisasContext
*s
, int rs
, int rt
,
2503 TCGv_i64 s1
= cpu_reg(s
, rs
);
2504 TCGv_i64 s2
= cpu_reg(s
, rs
+ 1);
2505 TCGv_i64 t1
= cpu_reg(s
, rt
);
2506 TCGv_i64 t2
= cpu_reg(s
, rt
+ 1);
2507 TCGv_i64 clean_addr
;
2508 int memidx
= get_mem_index(s
);
2511 gen_check_sp_alignment(s
);
2514 /* This is a single atomic access, despite the "pair". */
2515 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
), true, rn
!= 31, size
+ 1);
2518 TCGv_i64 cmp
= tcg_temp_new_i64();
2519 TCGv_i64 val
= tcg_temp_new_i64();
2521 if (s
->be_data
== MO_LE
) {
2522 tcg_gen_concat32_i64(val
, t1
, t2
);
2523 tcg_gen_concat32_i64(cmp
, s1
, s2
);
2525 tcg_gen_concat32_i64(val
, t2
, t1
);
2526 tcg_gen_concat32_i64(cmp
, s2
, s1
);
2529 tcg_gen_atomic_cmpxchg_i64(cmp
, clean_addr
, cmp
, val
, memidx
,
2530 MO_64
| MO_ALIGN
| s
->be_data
);
2531 tcg_temp_free_i64(val
);
2533 if (s
->be_data
== MO_LE
) {
2534 tcg_gen_extr32_i64(s1
, s2
, cmp
);
2536 tcg_gen_extr32_i64(s2
, s1
, cmp
);
2538 tcg_temp_free_i64(cmp
);
2539 } else if (tb_cflags(s
->base
.tb
) & CF_PARALLEL
) {
2540 if (HAVE_CMPXCHG128
) {
2541 TCGv_i32 tcg_rs
= tcg_const_i32(rs
);
2542 if (s
->be_data
== MO_LE
) {
2543 gen_helper_casp_le_parallel(cpu_env
, tcg_rs
,
2544 clean_addr
, t1
, t2
);
2546 gen_helper_casp_be_parallel(cpu_env
, tcg_rs
,
2547 clean_addr
, t1
, t2
);
2549 tcg_temp_free_i32(tcg_rs
);
2551 gen_helper_exit_atomic(cpu_env
);
2552 s
->base
.is_jmp
= DISAS_NORETURN
;
2555 TCGv_i64 d1
= tcg_temp_new_i64();
2556 TCGv_i64 d2
= tcg_temp_new_i64();
2557 TCGv_i64 a2
= tcg_temp_new_i64();
2558 TCGv_i64 c1
= tcg_temp_new_i64();
2559 TCGv_i64 c2
= tcg_temp_new_i64();
2560 TCGv_i64 zero
= tcg_const_i64(0);
2562 /* Load the two words, in memory order. */
2563 tcg_gen_qemu_ld_i64(d1
, clean_addr
, memidx
,
2564 MO_64
| MO_ALIGN_16
| s
->be_data
);
2565 tcg_gen_addi_i64(a2
, clean_addr
, 8);
2566 tcg_gen_qemu_ld_i64(d2
, a2
, memidx
, MO_64
| s
->be_data
);
2568 /* Compare the two words, also in memory order. */
2569 tcg_gen_setcond_i64(TCG_COND_EQ
, c1
, d1
, s1
);
2570 tcg_gen_setcond_i64(TCG_COND_EQ
, c2
, d2
, s2
);
2571 tcg_gen_and_i64(c2
, c2
, c1
);
2573 /* If compare equal, write back new data, else write back old data. */
2574 tcg_gen_movcond_i64(TCG_COND_NE
, c1
, c2
, zero
, t1
, d1
);
2575 tcg_gen_movcond_i64(TCG_COND_NE
, c2
, c2
, zero
, t2
, d2
);
2576 tcg_gen_qemu_st_i64(c1
, clean_addr
, memidx
, MO_64
| s
->be_data
);
2577 tcg_gen_qemu_st_i64(c2
, a2
, memidx
, MO_64
| s
->be_data
);
2578 tcg_temp_free_i64(a2
);
2579 tcg_temp_free_i64(c1
);
2580 tcg_temp_free_i64(c2
);
2581 tcg_temp_free_i64(zero
);
2583 /* Write back the data from memory to Rs. */
2584 tcg_gen_mov_i64(s1
, d1
);
2585 tcg_gen_mov_i64(s2
, d2
);
2586 tcg_temp_free_i64(d1
);
2587 tcg_temp_free_i64(d2
);
2591 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2592 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2594 static bool disas_ldst_compute_iss_sf(int size
, bool is_signed
, int opc
)
2596 int opc0
= extract32(opc
, 0, 1);
2600 regsize
= opc0
? 32 : 64;
2602 regsize
= size
== 3 ? 64 : 32;
2604 return regsize
== 64;
2607 /* Load/store exclusive
2609 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2610 * +-----+-------------+----+---+----+------+----+-------+------+------+
2611 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2612 * +-----+-------------+----+---+----+------+----+-------+------+------+
2614 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2615 * L: 0 -> store, 1 -> load
2616 * o2: 0 -> exclusive, 1 -> not
2617 * o1: 0 -> single register, 1 -> register pair
2618 * o0: 1 -> load-acquire/store-release, 0 -> not
2620 static void disas_ldst_excl(DisasContext
*s
, uint32_t insn
)
2622 int rt
= extract32(insn
, 0, 5);
2623 int rn
= extract32(insn
, 5, 5);
2624 int rt2
= extract32(insn
, 10, 5);
2625 int rs
= extract32(insn
, 16, 5);
2626 int is_lasr
= extract32(insn
, 15, 1);
2627 int o2_L_o1_o0
= extract32(insn
, 21, 3) * 2 | is_lasr
;
2628 int size
= extract32(insn
, 30, 2);
2629 TCGv_i64 clean_addr
;
2631 switch (o2_L_o1_o0
) {
2632 case 0x0: /* STXR */
2633 case 0x1: /* STLXR */
2635 gen_check_sp_alignment(s
);
2638 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
2640 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
),
2641 true, rn
!= 31, size
);
2642 gen_store_exclusive(s
, rs
, rt
, rt2
, clean_addr
, size
, false);
2645 case 0x4: /* LDXR */
2646 case 0x5: /* LDAXR */
2648 gen_check_sp_alignment(s
);
2650 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
),
2651 false, rn
!= 31, size
);
2653 gen_load_exclusive(s
, rt
, rt2
, clean_addr
, size
, false);
2655 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
2659 case 0x8: /* STLLR */
2660 if (!dc_isar_feature(aa64_lor
, s
)) {
2663 /* StoreLORelease is the same as Store-Release for QEMU. */
2665 case 0x9: /* STLR */
2666 /* Generate ISS for non-exclusive accesses including LASR. */
2668 gen_check_sp_alignment(s
);
2670 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
2671 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
),
2672 true, rn
!= 31, size
);
2673 do_gpr_st(s
, cpu_reg(s
, rt
), clean_addr
, size
, true, rt
,
2674 disas_ldst_compute_iss_sf(size
, false, 0), is_lasr
);
2677 case 0xc: /* LDLAR */
2678 if (!dc_isar_feature(aa64_lor
, s
)) {
2681 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2683 case 0xd: /* LDAR */
2684 /* Generate ISS for non-exclusive accesses including LASR. */
2686 gen_check_sp_alignment(s
);
2688 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
),
2689 false, rn
!= 31, size
);
2690 do_gpr_ld(s
, cpu_reg(s
, rt
), clean_addr
, size
, false, false, true, rt
,
2691 disas_ldst_compute_iss_sf(size
, false, 0), is_lasr
);
2692 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
2695 case 0x2: case 0x3: /* CASP / STXP */
2696 if (size
& 2) { /* STXP / STLXP */
2698 gen_check_sp_alignment(s
);
2701 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
2703 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
),
2704 true, rn
!= 31, size
);
2705 gen_store_exclusive(s
, rs
, rt
, rt2
, clean_addr
, size
, true);
2709 && ((rt
| rs
) & 1) == 0
2710 && dc_isar_feature(aa64_atomics
, s
)) {
2712 gen_compare_and_swap_pair(s
, rs
, rt
, rn
, size
| 2);
2717 case 0x6: case 0x7: /* CASPA / LDXP */
2718 if (size
& 2) { /* LDXP / LDAXP */
2720 gen_check_sp_alignment(s
);
2722 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
),
2723 false, rn
!= 31, size
);
2725 gen_load_exclusive(s
, rt
, rt2
, clean_addr
, size
, true);
2727 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
2732 && ((rt
| rs
) & 1) == 0
2733 && dc_isar_feature(aa64_atomics
, s
)) {
2734 /* CASPA / CASPAL */
2735 gen_compare_and_swap_pair(s
, rs
, rt
, rn
, size
| 2);
2741 case 0xb: /* CASL */
2742 case 0xe: /* CASA */
2743 case 0xf: /* CASAL */
2744 if (rt2
== 31 && dc_isar_feature(aa64_atomics
, s
)) {
2745 gen_compare_and_swap(s
, rs
, rt
, rn
, size
);
2750 unallocated_encoding(s
);
2754 * Load register (literal)
2756 * 31 30 29 27 26 25 24 23 5 4 0
2757 * +-----+-------+---+-----+-------------------+-------+
2758 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2759 * +-----+-------+---+-----+-------------------+-------+
2761 * V: 1 -> vector (simd/fp)
2762 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2763 * 10-> 32 bit signed, 11 -> prefetch
2764 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2766 static void disas_ld_lit(DisasContext
*s
, uint32_t insn
)
2768 int rt
= extract32(insn
, 0, 5);
2769 int64_t imm
= sextract32(insn
, 5, 19) << 2;
2770 bool is_vector
= extract32(insn
, 26, 1);
2771 int opc
= extract32(insn
, 30, 2);
2772 bool is_signed
= false;
2774 TCGv_i64 tcg_rt
, clean_addr
;
2778 unallocated_encoding(s
);
2782 if (!fp_access_check(s
)) {
2787 /* PRFM (literal) : prefetch */
2790 size
= 2 + extract32(opc
, 0, 1);
2791 is_signed
= extract32(opc
, 1, 1);
2794 tcg_rt
= cpu_reg(s
, rt
);
2796 clean_addr
= tcg_const_i64(s
->pc_curr
+ imm
);
2798 do_fp_ld(s
, rt
, clean_addr
, size
);
2800 /* Only unsigned 32bit loads target 32bit registers. */
2801 bool iss_sf
= opc
!= 0;
2803 do_gpr_ld(s
, tcg_rt
, clean_addr
, size
, is_signed
, false,
2804 true, rt
, iss_sf
, false);
2806 tcg_temp_free_i64(clean_addr
);
2810 * LDNP (Load Pair - non-temporal hint)
2811 * LDP (Load Pair - non vector)
2812 * LDPSW (Load Pair Signed Word - non vector)
2813 * STNP (Store Pair - non-temporal hint)
2814 * STP (Store Pair - non vector)
2815 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2816 * LDP (Load Pair of SIMD&FP)
2817 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2818 * STP (Store Pair of SIMD&FP)
2820 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2821 * +-----+-------+---+---+-------+---+-----------------------------+
2822 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2823 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2825 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2827 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2828 * V: 0 -> GPR, 1 -> Vector
2829 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2830 * 10 -> signed offset, 11 -> pre-index
2831 * L: 0 -> Store 1 -> Load
2833 * Rt, Rt2 = GPR or SIMD registers to be stored
2834 * Rn = general purpose register containing address
2835 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2837 static void disas_ldst_pair(DisasContext
*s
, uint32_t insn
)
2839 int rt
= extract32(insn
, 0, 5);
2840 int rn
= extract32(insn
, 5, 5);
2841 int rt2
= extract32(insn
, 10, 5);
2842 uint64_t offset
= sextract64(insn
, 15, 7);
2843 int index
= extract32(insn
, 23, 2);
2844 bool is_vector
= extract32(insn
, 26, 1);
2845 bool is_load
= extract32(insn
, 22, 1);
2846 int opc
= extract32(insn
, 30, 2);
2848 bool is_signed
= false;
2849 bool postindex
= false;
2851 bool set_tag
= false;
2853 TCGv_i64 clean_addr
, dirty_addr
;
2858 unallocated_encoding(s
);
2864 } else if (opc
== 1 && !is_load
) {
2866 if (!dc_isar_feature(aa64_mte_insn_reg
, s
) || index
== 0) {
2867 unallocated_encoding(s
);
2873 size
= 2 + extract32(opc
, 1, 1);
2874 is_signed
= extract32(opc
, 0, 1);
2875 if (!is_load
&& is_signed
) {
2876 unallocated_encoding(s
);
2882 case 1: /* post-index */
2887 /* signed offset with "non-temporal" hint. Since we don't emulate
2888 * caches we don't care about hints to the cache system about
2889 * data access patterns, and handle this identically to plain
2893 /* There is no non-temporal-hint version of LDPSW */
2894 unallocated_encoding(s
);
2899 case 2: /* signed offset, rn not updated */
2902 case 3: /* pre-index */
2908 if (is_vector
&& !fp_access_check(s
)) {
2912 offset
<<= (set_tag
? LOG2_TAG_GRANULE
: size
);
2915 gen_check_sp_alignment(s
);
2918 dirty_addr
= read_cpu_reg_sp(s
, rn
, 1);
2920 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
2926 * TODO: We could rely on the stores below, at least for
2927 * system mode, if we arrange to add MO_ALIGN_16.
2929 gen_helper_stg_stub(cpu_env
, dirty_addr
);
2930 } else if (tb_cflags(s
->base
.tb
) & CF_PARALLEL
) {
2931 gen_helper_stg_parallel(cpu_env
, dirty_addr
, dirty_addr
);
2933 gen_helper_stg(cpu_env
, dirty_addr
, dirty_addr
);
2937 clean_addr
= gen_mte_checkN(s
, dirty_addr
, !is_load
,
2938 (wback
|| rn
!= 31) && !set_tag
,
2943 do_fp_ld(s
, rt
, clean_addr
, size
);
2945 do_fp_st(s
, rt
, clean_addr
, size
);
2947 tcg_gen_addi_i64(clean_addr
, clean_addr
, 1 << size
);
2949 do_fp_ld(s
, rt2
, clean_addr
, size
);
2951 do_fp_st(s
, rt2
, clean_addr
, size
);
2954 TCGv_i64 tcg_rt
= cpu_reg(s
, rt
);
2955 TCGv_i64 tcg_rt2
= cpu_reg(s
, rt2
);
2958 TCGv_i64 tmp
= tcg_temp_new_i64();
2960 /* Do not modify tcg_rt before recognizing any exception
2961 * from the second load.
2963 do_gpr_ld(s
, tmp
, clean_addr
, size
, is_signed
, false,
2964 false, 0, false, false);
2965 tcg_gen_addi_i64(clean_addr
, clean_addr
, 1 << size
);
2966 do_gpr_ld(s
, tcg_rt2
, clean_addr
, size
, is_signed
, false,
2967 false, 0, false, false);
2969 tcg_gen_mov_i64(tcg_rt
, tmp
);
2970 tcg_temp_free_i64(tmp
);
2972 do_gpr_st(s
, tcg_rt
, clean_addr
, size
,
2973 false, 0, false, false);
2974 tcg_gen_addi_i64(clean_addr
, clean_addr
, 1 << size
);
2975 do_gpr_st(s
, tcg_rt2
, clean_addr
, size
,
2976 false, 0, false, false);
2982 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
2984 tcg_gen_mov_i64(cpu_reg_sp(s
, rn
), dirty_addr
);
2989 * Load/store (immediate post-indexed)
2990 * Load/store (immediate pre-indexed)
2991 * Load/store (unscaled immediate)
2993 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2994 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2995 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2996 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2998 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3000 * V = 0 -> non-vector
3001 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3002 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3004 static void disas_ldst_reg_imm9(DisasContext
*s
, uint32_t insn
,
3010 int rn
= extract32(insn
, 5, 5);
3011 int imm9
= sextract32(insn
, 12, 9);
3012 int idx
= extract32(insn
, 10, 2);
3013 bool is_signed
= false;
3014 bool is_store
= false;
3015 bool is_extended
= false;
3016 bool is_unpriv
= (idx
== 2);
3017 bool iss_valid
= !is_vector
;
3022 TCGv_i64 clean_addr
, dirty_addr
;
3025 size
|= (opc
& 2) << 1;
3026 if (size
> 4 || is_unpriv
) {
3027 unallocated_encoding(s
);
3030 is_store
= ((opc
& 1) == 0);
3031 if (!fp_access_check(s
)) {
3035 if (size
== 3 && opc
== 2) {
3036 /* PRFM - prefetch */
3038 unallocated_encoding(s
);
3043 if (opc
== 3 && size
> 1) {
3044 unallocated_encoding(s
);
3047 is_store
= (opc
== 0);
3048 is_signed
= extract32(opc
, 1, 1);
3049 is_extended
= (size
< 3) && extract32(opc
, 0, 1);
3067 g_assert_not_reached();
3071 gen_check_sp_alignment(s
);
3074 dirty_addr
= read_cpu_reg_sp(s
, rn
, 1);
3076 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, imm9
);
3079 memidx
= is_unpriv
? get_a64_user_mem_index(s
) : get_mem_index(s
);
3080 clean_addr
= gen_mte_check1_mmuidx(s
, dirty_addr
, is_store
,
3081 writeback
|| rn
!= 31,
3082 size
, is_unpriv
, memidx
);
3086 do_fp_st(s
, rt
, clean_addr
, size
);
3088 do_fp_ld(s
, rt
, clean_addr
, size
);
3091 TCGv_i64 tcg_rt
= cpu_reg(s
, rt
);
3092 bool iss_sf
= disas_ldst_compute_iss_sf(size
, is_signed
, opc
);
3095 do_gpr_st_memidx(s
, tcg_rt
, clean_addr
, size
, memidx
,
3096 iss_valid
, rt
, iss_sf
, false);
3098 do_gpr_ld_memidx(s
, tcg_rt
, clean_addr
, size
,
3099 is_signed
, is_extended
, memidx
,
3100 iss_valid
, rt
, iss_sf
, false);
3105 TCGv_i64 tcg_rn
= cpu_reg_sp(s
, rn
);
3107 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, imm9
);
3109 tcg_gen_mov_i64(tcg_rn
, dirty_addr
);
3114 * Load/store (register offset)
3116 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3117 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3118 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3119 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3122 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3123 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3125 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3126 * opc<0>: 0 -> store, 1 -> load
3127 * V: 1 -> vector/simd
3128 * opt: extend encoding (see DecodeRegExtend)
3129 * S: if S=1 then scale (essentially index by sizeof(size))
3130 * Rt: register to transfer into/out of
3131 * Rn: address register or SP for base
3132 * Rm: offset register or ZR for offset
3134 static void disas_ldst_reg_roffset(DisasContext
*s
, uint32_t insn
,
3140 int rn
= extract32(insn
, 5, 5);
3141 int shift
= extract32(insn
, 12, 1);
3142 int rm
= extract32(insn
, 16, 5);
3143 int opt
= extract32(insn
, 13, 3);
3144 bool is_signed
= false;
3145 bool is_store
= false;
3146 bool is_extended
= false;
3148 TCGv_i64 tcg_rm
, clean_addr
, dirty_addr
;
3150 if (extract32(opt
, 1, 1) == 0) {
3151 unallocated_encoding(s
);
3156 size
|= (opc
& 2) << 1;
3158 unallocated_encoding(s
);
3161 is_store
= !extract32(opc
, 0, 1);
3162 if (!fp_access_check(s
)) {
3166 if (size
== 3 && opc
== 2) {
3167 /* PRFM - prefetch */
3170 if (opc
== 3 && size
> 1) {
3171 unallocated_encoding(s
);
3174 is_store
= (opc
== 0);
3175 is_signed
= extract32(opc
, 1, 1);
3176 is_extended
= (size
< 3) && extract32(opc
, 0, 1);
3180 gen_check_sp_alignment(s
);
3182 dirty_addr
= read_cpu_reg_sp(s
, rn
, 1);
3184 tcg_rm
= read_cpu_reg(s
, rm
, 1);
3185 ext_and_shift_reg(tcg_rm
, tcg_rm
, opt
, shift
? size
: 0);
3187 tcg_gen_add_i64(dirty_addr
, dirty_addr
, tcg_rm
);
3188 clean_addr
= gen_mte_check1(s
, dirty_addr
, is_store
, true, size
);
3192 do_fp_st(s
, rt
, clean_addr
, size
);
3194 do_fp_ld(s
, rt
, clean_addr
, size
);
3197 TCGv_i64 tcg_rt
= cpu_reg(s
, rt
);
3198 bool iss_sf
= disas_ldst_compute_iss_sf(size
, is_signed
, opc
);
3200 do_gpr_st(s
, tcg_rt
, clean_addr
, size
,
3201 true, rt
, iss_sf
, false);
3203 do_gpr_ld(s
, tcg_rt
, clean_addr
, size
,
3204 is_signed
, is_extended
,
3205 true, rt
, iss_sf
, false);
3211 * Load/store (unsigned immediate)
3213 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3214 * +----+-------+---+-----+-----+------------+-------+------+
3215 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3216 * +----+-------+---+-----+-----+------------+-------+------+
3219 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3220 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3222 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3223 * opc<0>: 0 -> store, 1 -> load
3224 * Rn: base address register (inc SP)
3225 * Rt: target register
3227 static void disas_ldst_reg_unsigned_imm(DisasContext
*s
, uint32_t insn
,
3233 int rn
= extract32(insn
, 5, 5);
3234 unsigned int imm12
= extract32(insn
, 10, 12);
3235 unsigned int offset
;
3237 TCGv_i64 clean_addr
, dirty_addr
;
3240 bool is_signed
= false;
3241 bool is_extended
= false;
3244 size
|= (opc
& 2) << 1;
3246 unallocated_encoding(s
);
3249 is_store
= !extract32(opc
, 0, 1);
3250 if (!fp_access_check(s
)) {
3254 if (size
== 3 && opc
== 2) {
3255 /* PRFM - prefetch */
3258 if (opc
== 3 && size
> 1) {
3259 unallocated_encoding(s
);
3262 is_store
= (opc
== 0);
3263 is_signed
= extract32(opc
, 1, 1);
3264 is_extended
= (size
< 3) && extract32(opc
, 0, 1);
3268 gen_check_sp_alignment(s
);
3270 dirty_addr
= read_cpu_reg_sp(s
, rn
, 1);
3271 offset
= imm12
<< size
;
3272 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
3273 clean_addr
= gen_mte_check1(s
, dirty_addr
, is_store
, rn
!= 31, size
);
3277 do_fp_st(s
, rt
, clean_addr
, size
);
3279 do_fp_ld(s
, rt
, clean_addr
, size
);
3282 TCGv_i64 tcg_rt
= cpu_reg(s
, rt
);
3283 bool iss_sf
= disas_ldst_compute_iss_sf(size
, is_signed
, opc
);
3285 do_gpr_st(s
, tcg_rt
, clean_addr
, size
,
3286 true, rt
, iss_sf
, false);
3288 do_gpr_ld(s
, tcg_rt
, clean_addr
, size
, is_signed
, is_extended
,
3289 true, rt
, iss_sf
, false);
3294 /* Atomic memory operations
3296 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3297 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3298 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3299 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3301 * Rt: the result register
3302 * Rn: base address or SP
3303 * Rs: the source register for the operation
3304 * V: vector flag (always 0 as of v8.3)
3308 static void disas_ldst_atomic(DisasContext
*s
, uint32_t insn
,
3309 int size
, int rt
, bool is_vector
)
3311 int rs
= extract32(insn
, 16, 5);
3312 int rn
= extract32(insn
, 5, 5);
3313 int o3_opc
= extract32(insn
, 12, 4);
3314 bool r
= extract32(insn
, 22, 1);
3315 bool a
= extract32(insn
, 23, 1);
3316 TCGv_i64 tcg_rs
, clean_addr
;
3317 AtomicThreeOpFn
*fn
= NULL
;
3319 if (is_vector
|| !dc_isar_feature(aa64_atomics
, s
)) {
3320 unallocated_encoding(s
);
3324 case 000: /* LDADD */
3325 fn
= tcg_gen_atomic_fetch_add_i64
;
3327 case 001: /* LDCLR */
3328 fn
= tcg_gen_atomic_fetch_and_i64
;
3330 case 002: /* LDEOR */
3331 fn
= tcg_gen_atomic_fetch_xor_i64
;
3333 case 003: /* LDSET */
3334 fn
= tcg_gen_atomic_fetch_or_i64
;
3336 case 004: /* LDSMAX */
3337 fn
= tcg_gen_atomic_fetch_smax_i64
;
3339 case 005: /* LDSMIN */
3340 fn
= tcg_gen_atomic_fetch_smin_i64
;
3342 case 006: /* LDUMAX */
3343 fn
= tcg_gen_atomic_fetch_umax_i64
;
3345 case 007: /* LDUMIN */
3346 fn
= tcg_gen_atomic_fetch_umin_i64
;
3349 fn
= tcg_gen_atomic_xchg_i64
;
3351 case 014: /* LDAPR, LDAPRH, LDAPRB */
3352 if (!dc_isar_feature(aa64_rcpc_8_3
, s
) ||
3353 rs
!= 31 || a
!= 1 || r
!= 0) {
3354 unallocated_encoding(s
);
3359 unallocated_encoding(s
);
3364 gen_check_sp_alignment(s
);
3366 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
), false, rn
!= 31, size
);
3368 if (o3_opc
== 014) {
3370 * LDAPR* are a special case because they are a simple load, not a
3371 * fetch-and-do-something op.
3372 * The architectural consistency requirements here are weaker than
3373 * full load-acquire (we only need "load-acquire processor consistent"),
3374 * but we choose to implement them as full LDAQ.
3376 do_gpr_ld(s
, cpu_reg(s
, rt
), clean_addr
, size
, false, false,
3377 true, rt
, disas_ldst_compute_iss_sf(size
, false, 0), true);
3378 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
3382 tcg_rs
= read_cpu_reg(s
, rs
, true);
3384 if (o3_opc
== 1) { /* LDCLR */
3385 tcg_gen_not_i64(tcg_rs
, tcg_rs
);
3388 /* The tcg atomic primitives are all full barriers. Therefore we
3389 * can ignore the Acquire and Release bits of this instruction.
3391 fn(cpu_reg(s
, rt
), clean_addr
, tcg_rs
, get_mem_index(s
),
3392 s
->be_data
| size
| MO_ALIGN
);
3396 * PAC memory operations
3398 * 31 30 27 26 24 22 21 12 11 10 5 0
3399 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3400 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3401 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3403 * Rt: the result register
3404 * Rn: base address or SP
3405 * V: vector flag (always 0 as of v8.3)
3406 * M: clear for key DA, set for key DB
3407 * W: pre-indexing flag
3410 static void disas_ldst_pac(DisasContext
*s
, uint32_t insn
,
3411 int size
, int rt
, bool is_vector
)
3413 int rn
= extract32(insn
, 5, 5);
3414 bool is_wback
= extract32(insn
, 11, 1);
3415 bool use_key_a
= !extract32(insn
, 23, 1);
3417 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
;
3419 if (size
!= 3 || is_vector
|| !dc_isar_feature(aa64_pauth
, s
)) {
3420 unallocated_encoding(s
);
3425 gen_check_sp_alignment(s
);
3427 dirty_addr
= read_cpu_reg_sp(s
, rn
, 1);
3429 if (s
->pauth_active
) {
3431 gen_helper_autda(dirty_addr
, cpu_env
, dirty_addr
,
3432 new_tmp_a64_zero(s
));
3434 gen_helper_autdb(dirty_addr
, cpu_env
, dirty_addr
,
3435 new_tmp_a64_zero(s
));
3439 /* Form the 10-bit signed, scaled offset. */
3440 offset
= (extract32(insn
, 22, 1) << 9) | extract32(insn
, 12, 9);
3441 offset
= sextract32(offset
<< size
, 0, 10 + size
);
3442 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
3444 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3445 clean_addr
= gen_mte_check1(s
, dirty_addr
, false,
3446 is_wback
|| rn
!= 31, size
);
3448 tcg_rt
= cpu_reg(s
, rt
);
3449 do_gpr_ld(s
, tcg_rt
, clean_addr
, size
, /* is_signed */ false,
3450 /* extend */ false, /* iss_valid */ !is_wback
,
3451 /* iss_srt */ rt
, /* iss_sf */ true, /* iss_ar */ false);
3454 tcg_gen_mov_i64(cpu_reg_sp(s
, rn
), dirty_addr
);
3459 * LDAPR/STLR (unscaled immediate)
3461 * 31 30 24 22 21 12 10 5 0
3462 * +------+-------------+-----+---+--------+-----+----+-----+
3463 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3464 * +------+-------------+-----+---+--------+-----+----+-----+
3466 * Rt: source or destination register
3468 * imm9: unscaled immediate offset
3469 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3470 * size: size of load/store
3472 static void disas_ldst_ldapr_stlr(DisasContext
*s
, uint32_t insn
)
3474 int rt
= extract32(insn
, 0, 5);
3475 int rn
= extract32(insn
, 5, 5);
3476 int offset
= sextract32(insn
, 12, 9);
3477 int opc
= extract32(insn
, 22, 2);
3478 int size
= extract32(insn
, 30, 2);
3479 TCGv_i64 clean_addr
, dirty_addr
;
3480 bool is_store
= false;
3481 bool is_signed
= false;
3482 bool extend
= false;
3485 if (!dc_isar_feature(aa64_rcpc_8_4
, s
)) {
3486 unallocated_encoding(s
);
3491 case 0: /* STLURB */
3494 case 1: /* LDAPUR* */
3496 case 2: /* LDAPURS* 64-bit variant */
3498 unallocated_encoding(s
);
3503 case 3: /* LDAPURS* 32-bit variant */
3505 unallocated_encoding(s
);
3509 extend
= true; /* zero-extend 32->64 after signed load */
3512 g_assert_not_reached();
3515 iss_sf
= disas_ldst_compute_iss_sf(size
, is_signed
, opc
);
3518 gen_check_sp_alignment(s
);
3521 dirty_addr
= read_cpu_reg_sp(s
, rn
, 1);
3522 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
3523 clean_addr
= clean_data_tbi(s
, dirty_addr
);
3526 /* Store-Release semantics */
3527 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
3528 do_gpr_st(s
, cpu_reg(s
, rt
), clean_addr
, size
, true, rt
, iss_sf
, true);
3531 * Load-AcquirePC semantics; we implement as the slightly more
3532 * restrictive Load-Acquire.
3534 do_gpr_ld(s
, cpu_reg(s
, rt
), clean_addr
, size
, is_signed
, extend
,
3535 true, rt
, iss_sf
, true);
3536 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
3540 /* Load/store register (all forms) */
3541 static void disas_ldst_reg(DisasContext
*s
, uint32_t insn
)
3543 int rt
= extract32(insn
, 0, 5);
3544 int opc
= extract32(insn
, 22, 2);
3545 bool is_vector
= extract32(insn
, 26, 1);
3546 int size
= extract32(insn
, 30, 2);
3548 switch (extract32(insn
, 24, 2)) {
3550 if (extract32(insn
, 21, 1) == 0) {
3551 /* Load/store register (unscaled immediate)
3552 * Load/store immediate pre/post-indexed
3553 * Load/store register unprivileged
3555 disas_ldst_reg_imm9(s
, insn
, opc
, size
, rt
, is_vector
);
3558 switch (extract32(insn
, 10, 2)) {
3560 disas_ldst_atomic(s
, insn
, size
, rt
, is_vector
);
3563 disas_ldst_reg_roffset(s
, insn
, opc
, size
, rt
, is_vector
);
3566 disas_ldst_pac(s
, insn
, size
, rt
, is_vector
);
3571 disas_ldst_reg_unsigned_imm(s
, insn
, opc
, size
, rt
, is_vector
);
3574 unallocated_encoding(s
);
3577 /* AdvSIMD load/store multiple structures
3579 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3580 * +---+---+---------------+---+-------------+--------+------+------+------+
3581 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3582 * +---+---+---------------+---+-------------+--------+------+------+------+
3584 * AdvSIMD load/store multiple structures (post-indexed)
3586 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3587 * +---+---+---------------+---+---+---------+--------+------+------+------+
3588 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3589 * +---+---+---------------+---+---+---------+--------+------+------+------+
3591 * Rt: first (or only) SIMD&FP register to be transferred
3592 * Rn: base address or SP
3593 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3595 static void disas_ldst_multiple_struct(DisasContext
*s
, uint32_t insn
)
3597 int rt
= extract32(insn
, 0, 5);
3598 int rn
= extract32(insn
, 5, 5);
3599 int rm
= extract32(insn
, 16, 5);
3600 int size
= extract32(insn
, 10, 2);
3601 int opcode
= extract32(insn
, 12, 4);
3602 bool is_store
= !extract32(insn
, 22, 1);
3603 bool is_postidx
= extract32(insn
, 23, 1);
3604 bool is_q
= extract32(insn
, 30, 1);
3605 TCGv_i64 clean_addr
, tcg_rn
, tcg_ebytes
;
3606 MemOp endian
= s
->be_data
;
3608 int total
; /* total bytes */
3609 int elements
; /* elements per vector */
3610 int rpt
; /* num iterations */
3611 int selem
; /* structure elements */
3614 if (extract32(insn
, 31, 1) || extract32(insn
, 21, 1)) {
3615 unallocated_encoding(s
);
3619 if (!is_postidx
&& rm
!= 0) {
3620 unallocated_encoding(s
);
3624 /* From the shared decode logic */
3655 unallocated_encoding(s
);
3659 if (size
== 3 && !is_q
&& selem
!= 1) {
3661 unallocated_encoding(s
);
3665 if (!fp_access_check(s
)) {
3670 gen_check_sp_alignment(s
);
3673 /* For our purposes, bytes are always little-endian. */
3678 total
= rpt
* selem
* (is_q
? 16 : 8);
3679 tcg_rn
= cpu_reg_sp(s
, rn
);
3682 * Issue the MTE check vs the logical repeat count, before we
3683 * promote consecutive little-endian elements below.
3685 clean_addr
= gen_mte_checkN(s
, tcg_rn
, is_store
, is_postidx
|| rn
!= 31,
3689 * Consecutive little-endian elements from a single register
3690 * can be promoted to a larger little-endian operation.
3692 if (selem
== 1 && endian
== MO_LE
) {
3695 elements
= (is_q
? 16 : 8) >> size
;
3697 tcg_ebytes
= tcg_const_i64(1 << size
);
3698 for (r
= 0; r
< rpt
; r
++) {
3700 for (e
= 0; e
< elements
; e
++) {
3702 for (xs
= 0; xs
< selem
; xs
++) {
3703 int tt
= (rt
+ r
+ xs
) % 32;
3705 do_vec_st(s
, tt
, e
, clean_addr
, size
, endian
);
3707 do_vec_ld(s
, tt
, e
, clean_addr
, size
, endian
);
3709 tcg_gen_add_i64(clean_addr
, clean_addr
, tcg_ebytes
);
3713 tcg_temp_free_i64(tcg_ebytes
);
3716 /* For non-quad operations, setting a slice of the low
3717 * 64 bits of the register clears the high 64 bits (in
3718 * the ARM ARM pseudocode this is implicit in the fact
3719 * that 'rval' is a 64 bit wide variable).
3720 * For quad operations, we might still need to zero the
3723 for (r
= 0; r
< rpt
* selem
; r
++) {
3724 int tt
= (rt
+ r
) % 32;
3725 clear_vec_high(s
, is_q
, tt
);
3731 tcg_gen_addi_i64(tcg_rn
, tcg_rn
, total
);
3733 tcg_gen_add_i64(tcg_rn
, tcg_rn
, cpu_reg(s
, rm
));
3738 /* AdvSIMD load/store single structure
3740 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3741 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3742 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3743 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3745 * AdvSIMD load/store single structure (post-indexed)
3747 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3748 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3749 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3750 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3752 * Rt: first (or only) SIMD&FP register to be transferred
3753 * Rn: base address or SP
3754 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3755 * index = encoded in Q:S:size dependent on size
3757 * lane_size = encoded in R, opc
3758 * transfer width = encoded in opc, S, size
3760 static void disas_ldst_single_struct(DisasContext
*s
, uint32_t insn
)
3762 int rt
= extract32(insn
, 0, 5);
3763 int rn
= extract32(insn
, 5, 5);
3764 int rm
= extract32(insn
, 16, 5);
3765 int size
= extract32(insn
, 10, 2);
3766 int S
= extract32(insn
, 12, 1);
3767 int opc
= extract32(insn
, 13, 3);
3768 int R
= extract32(insn
, 21, 1);
3769 int is_load
= extract32(insn
, 22, 1);
3770 int is_postidx
= extract32(insn
, 23, 1);
3771 int is_q
= extract32(insn
, 30, 1);
3773 int scale
= extract32(opc
, 1, 2);
3774 int selem
= (extract32(opc
, 0, 1) << 1 | R
) + 1;
3775 bool replicate
= false;
3776 int index
= is_q
<< 3 | S
<< 2 | size
;
3778 TCGv_i64 clean_addr
, tcg_rn
, tcg_ebytes
;
3780 if (extract32(insn
, 31, 1)) {
3781 unallocated_encoding(s
);
3784 if (!is_postidx
&& rm
!= 0) {
3785 unallocated_encoding(s
);
3791 if (!is_load
|| S
) {
3792 unallocated_encoding(s
);
3801 if (extract32(size
, 0, 1)) {
3802 unallocated_encoding(s
);
3808 if (extract32(size
, 1, 1)) {
3809 unallocated_encoding(s
);
3812 if (!extract32(size
, 0, 1)) {
3816 unallocated_encoding(s
);
3824 g_assert_not_reached();
3827 if (!fp_access_check(s
)) {
3832 gen_check_sp_alignment(s
);
3835 total
= selem
<< scale
;
3836 tcg_rn
= cpu_reg_sp(s
, rn
);
3838 clean_addr
= gen_mte_checkN(s
, tcg_rn
, !is_load
, is_postidx
|| rn
!= 31,
3841 tcg_ebytes
= tcg_const_i64(1 << scale
);
3842 for (xs
= 0; xs
< selem
; xs
++) {
3844 /* Load and replicate to all elements */
3845 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
3847 tcg_gen_qemu_ld_i64(tcg_tmp
, clean_addr
,
3848 get_mem_index(s
), s
->be_data
+ scale
);
3849 tcg_gen_gvec_dup_i64(scale
, vec_full_reg_offset(s
, rt
),
3850 (is_q
+ 1) * 8, vec_full_reg_size(s
),
3852 tcg_temp_free_i64(tcg_tmp
);
3854 /* Load/store one element per register */
3856 do_vec_ld(s
, rt
, index
, clean_addr
, scale
, s
->be_data
);
3858 do_vec_st(s
, rt
, index
, clean_addr
, scale
, s
->be_data
);
3861 tcg_gen_add_i64(clean_addr
, clean_addr
, tcg_ebytes
);
3864 tcg_temp_free_i64(tcg_ebytes
);
3868 tcg_gen_addi_i64(tcg_rn
, tcg_rn
, total
);
3870 tcg_gen_add_i64(tcg_rn
, tcg_rn
, cpu_reg(s
, rm
));
3876 * Load/Store memory tags
3878 * 31 30 29 24 22 21 12 10 5 0
3879 * +-----+-------------+-----+---+------+-----+------+------+
3880 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3881 * +-----+-------------+-----+---+------+-----+------+------+
3883 static void disas_ldst_tag(DisasContext
*s
, uint32_t insn
)
3885 int rt
= extract32(insn
, 0, 5);
3886 int rn
= extract32(insn
, 5, 5);
3887 uint64_t offset
= sextract64(insn
, 12, 9) << LOG2_TAG_GRANULE
;
3888 int op2
= extract32(insn
, 10, 2);
3889 int op1
= extract32(insn
, 22, 2);
3890 bool is_load
= false, is_pair
= false, is_zero
= false, is_mult
= false;
3892 TCGv_i64 addr
, clean_addr
, tcg_rt
;
3894 /* We checked insn bits [29:24,21] in the caller. */
3895 if (extract32(insn
, 30, 2) != 3) {
3896 goto do_unallocated
;
3900 * @index is a tri-state variable which has 3 states:
3901 * < 0 : post-index, writeback
3902 * = 0 : signed offset
3903 * > 0 : pre-index, writeback
3912 if (s
->current_el
== 0 || offset
!= 0) {
3913 goto do_unallocated
;
3915 is_mult
= is_zero
= true;
3935 if (s
->current_el
== 0 || offset
!= 0) {
3936 goto do_unallocated
;
3944 is_pair
= is_zero
= true;
3948 if (s
->current_el
== 0 || offset
!= 0) {
3949 goto do_unallocated
;
3951 is_mult
= is_load
= true;
3957 unallocated_encoding(s
);
3962 ? !dc_isar_feature(aa64_mte
, s
)
3963 : !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
3964 goto do_unallocated
;
3968 gen_check_sp_alignment(s
);
3971 addr
= read_cpu_reg_sp(s
, rn
, true);
3973 /* pre-index or signed offset */
3974 tcg_gen_addi_i64(addr
, addr
, offset
);
3978 tcg_rt
= cpu_reg(s
, rt
);
3981 int size
= 4 << s
->dcz_blocksize
;
3984 gen_helper_stzgm_tags(cpu_env
, addr
, tcg_rt
);
3987 * The non-tags portion of STZGM is mostly like DC_ZVA,
3988 * except the alignment happens before the access.
3990 clean_addr
= clean_data_tbi(s
, addr
);
3991 tcg_gen_andi_i64(clean_addr
, clean_addr
, -size
);
3992 gen_helper_dc_zva(cpu_env
, clean_addr
);
3993 } else if (s
->ata
) {
3995 gen_helper_ldgm(tcg_rt
, cpu_env
, addr
);
3997 gen_helper_stgm(cpu_env
, addr
, tcg_rt
);
4000 MMUAccessType acc
= is_load
? MMU_DATA_LOAD
: MMU_DATA_STORE
;
4001 int size
= 4 << GMID_EL1_BS
;
4003 clean_addr
= clean_data_tbi(s
, addr
);
4004 tcg_gen_andi_i64(clean_addr
, clean_addr
, -size
);
4005 gen_probe_access(s
, clean_addr
, acc
, size
);
4008 /* The result tags are zeros. */
4009 tcg_gen_movi_i64(tcg_rt
, 0);
4016 tcg_gen_andi_i64(addr
, addr
, -TAG_GRANULE
);
4017 tcg_rt
= cpu_reg(s
, rt
);
4019 gen_helper_ldg(tcg_rt
, cpu_env
, addr
, tcg_rt
);
4021 clean_addr
= clean_data_tbi(s
, addr
);
4022 gen_probe_access(s
, clean_addr
, MMU_DATA_LOAD
, MO_8
);
4023 gen_address_with_allocation_tag0(tcg_rt
, addr
);
4026 tcg_rt
= cpu_reg_sp(s
, rt
);
4029 * For STG and ST2G, we need to check alignment and probe memory.
4030 * TODO: For STZG and STZ2G, we could rely on the stores below,
4031 * at least for system mode; user-only won't enforce alignment.
4034 gen_helper_st2g_stub(cpu_env
, addr
);
4036 gen_helper_stg_stub(cpu_env
, addr
);
4038 } else if (tb_cflags(s
->base
.tb
) & CF_PARALLEL
) {
4040 gen_helper_st2g_parallel(cpu_env
, addr
, tcg_rt
);
4042 gen_helper_stg_parallel(cpu_env
, addr
, tcg_rt
);
4046 gen_helper_st2g(cpu_env
, addr
, tcg_rt
);
4048 gen_helper_stg(cpu_env
, addr
, tcg_rt
);
4054 TCGv_i64 clean_addr
= clean_data_tbi(s
, addr
);
4055 TCGv_i64 tcg_zero
= tcg_const_i64(0);
4056 int mem_index
= get_mem_index(s
);
4057 int i
, n
= (1 + is_pair
) << LOG2_TAG_GRANULE
;
4059 tcg_gen_qemu_st_i64(tcg_zero
, clean_addr
, mem_index
,
4060 MO_Q
| MO_ALIGN_16
);
4061 for (i
= 8; i
< n
; i
+= 8) {
4062 tcg_gen_addi_i64(clean_addr
, clean_addr
, 8);
4063 tcg_gen_qemu_st_i64(tcg_zero
, clean_addr
, mem_index
, MO_Q
);
4065 tcg_temp_free_i64(tcg_zero
);
4069 /* pre-index or post-index */
4072 tcg_gen_addi_i64(addr
, addr
, offset
);
4074 tcg_gen_mov_i64(cpu_reg_sp(s
, rn
), addr
);
4078 /* Loads and stores */
4079 static void disas_ldst(DisasContext
*s
, uint32_t insn
)
4081 switch (extract32(insn
, 24, 6)) {
4082 case 0x08: /* Load/store exclusive */
4083 disas_ldst_excl(s
, insn
);
4085 case 0x18: case 0x1c: /* Load register (literal) */
4086 disas_ld_lit(s
, insn
);
4088 case 0x28: case 0x29:
4089 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4090 disas_ldst_pair(s
, insn
);
4092 case 0x38: case 0x39:
4093 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4094 disas_ldst_reg(s
, insn
);
4096 case 0x0c: /* AdvSIMD load/store multiple structures */
4097 disas_ldst_multiple_struct(s
, insn
);
4099 case 0x0d: /* AdvSIMD load/store single structure */
4100 disas_ldst_single_struct(s
, insn
);
4103 if (extract32(insn
, 21, 1) != 0) {
4104 disas_ldst_tag(s
, insn
);
4105 } else if (extract32(insn
, 10, 2) == 0) {
4106 disas_ldst_ldapr_stlr(s
, insn
);
4108 unallocated_encoding(s
);
4112 unallocated_encoding(s
);
4117 /* PC-rel. addressing
4118 * 31 30 29 28 24 23 5 4 0
4119 * +----+-------+-----------+-------------------+------+
4120 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4121 * +----+-------+-----------+-------------------+------+
4123 static void disas_pc_rel_adr(DisasContext
*s
, uint32_t insn
)
4125 unsigned int page
, rd
;
4129 page
= extract32(insn
, 31, 1);
4130 /* SignExtend(immhi:immlo) -> offset */
4131 offset
= sextract64(insn
, 5, 19);
4132 offset
= offset
<< 2 | extract32(insn
, 29, 2);
4133 rd
= extract32(insn
, 0, 5);
4137 /* ADRP (page based) */
4142 tcg_gen_movi_i64(cpu_reg(s
, rd
), base
+ offset
);
4146 * Add/subtract (immediate)
4148 * 31 30 29 28 23 22 21 10 9 5 4 0
4149 * +--+--+--+-------------+--+-------------+-----+-----+
4150 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4151 * +--+--+--+-------------+--+-------------+-----+-----+
4153 * sf: 0 -> 32bit, 1 -> 64bit
4154 * op: 0 -> add , 1 -> sub
4156 * sh: 1 -> LSL imm by 12
4158 static void disas_add_sub_imm(DisasContext
*s
, uint32_t insn
)
4160 int rd
= extract32(insn
, 0, 5);
4161 int rn
= extract32(insn
, 5, 5);
4162 uint64_t imm
= extract32(insn
, 10, 12);
4163 bool shift
= extract32(insn
, 22, 1);
4164 bool setflags
= extract32(insn
, 29, 1);
4165 bool sub_op
= extract32(insn
, 30, 1);
4166 bool is_64bit
= extract32(insn
, 31, 1);
4168 TCGv_i64 tcg_rn
= cpu_reg_sp(s
, rn
);
4169 TCGv_i64 tcg_rd
= setflags
? cpu_reg(s
, rd
) : cpu_reg_sp(s
, rd
);
4170 TCGv_i64 tcg_result
;
4176 tcg_result
= tcg_temp_new_i64();
4179 tcg_gen_subi_i64(tcg_result
, tcg_rn
, imm
);
4181 tcg_gen_addi_i64(tcg_result
, tcg_rn
, imm
);
4184 TCGv_i64 tcg_imm
= tcg_const_i64(imm
);
4186 gen_sub_CC(is_64bit
, tcg_result
, tcg_rn
, tcg_imm
);
4188 gen_add_CC(is_64bit
, tcg_result
, tcg_rn
, tcg_imm
);
4190 tcg_temp_free_i64(tcg_imm
);
4194 tcg_gen_mov_i64(tcg_rd
, tcg_result
);
4196 tcg_gen_ext32u_i64(tcg_rd
, tcg_result
);
4199 tcg_temp_free_i64(tcg_result
);
4203 * Add/subtract (immediate, with tags)
4205 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4206 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4207 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4208 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4210 * op: 0 -> add, 1 -> sub
4212 static void disas_add_sub_imm_with_tags(DisasContext
*s
, uint32_t insn
)
4214 int rd
= extract32(insn
, 0, 5);
4215 int rn
= extract32(insn
, 5, 5);
4216 int uimm4
= extract32(insn
, 10, 4);
4217 int uimm6
= extract32(insn
, 16, 6);
4218 bool sub_op
= extract32(insn
, 30, 1);
4219 TCGv_i64 tcg_rn
, tcg_rd
;
4222 /* Test all of sf=1, S=0, o2=0, o3=0. */
4223 if ((insn
& 0xa040c000u
) != 0x80000000u
||
4224 !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
4225 unallocated_encoding(s
);
4229 imm
= uimm6
<< LOG2_TAG_GRANULE
;
4234 tcg_rn
= cpu_reg_sp(s
, rn
);
4235 tcg_rd
= cpu_reg_sp(s
, rd
);
4238 TCGv_i32 offset
= tcg_const_i32(imm
);
4239 TCGv_i32 tag_offset
= tcg_const_i32(uimm4
);
4241 gen_helper_addsubg(tcg_rd
, cpu_env
, tcg_rn
, offset
, tag_offset
);
4242 tcg_temp_free_i32(tag_offset
);
4243 tcg_temp_free_i32(offset
);
4245 tcg_gen_addi_i64(tcg_rd
, tcg_rn
, imm
);
4246 gen_address_with_allocation_tag0(tcg_rd
, tcg_rd
);
4250 /* The input should be a value in the bottom e bits (with higher
4251 * bits zero); returns that value replicated into every element
4252 * of size e in a 64 bit integer.
4254 static uint64_t bitfield_replicate(uint64_t mask
, unsigned int e
)
4264 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4265 static inline uint64_t bitmask64(unsigned int length
)
4267 assert(length
> 0 && length
<= 64);
4268 return ~0ULL >> (64 - length
);
4271 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4272 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4273 * value (ie should cause a guest UNDEF exception), and true if they are
4274 * valid, in which case the decoded bit pattern is written to result.
4276 bool logic_imm_decode_wmask(uint64_t *result
, unsigned int immn
,
4277 unsigned int imms
, unsigned int immr
)
4280 unsigned e
, levels
, s
, r
;
4283 assert(immn
< 2 && imms
< 64 && immr
< 64);
4285 /* The bit patterns we create here are 64 bit patterns which
4286 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4287 * 64 bits each. Each element contains the same value: a run
4288 * of between 1 and e-1 non-zero bits, rotated within the
4289 * element by between 0 and e-1 bits.
4291 * The element size and run length are encoded into immn (1 bit)
4292 * and imms (6 bits) as follows:
4293 * 64 bit elements: immn = 1, imms = <length of run - 1>
4294 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4295 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4296 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4297 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4298 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4299 * Notice that immn = 0, imms = 11111x is the only combination
4300 * not covered by one of the above options; this is reserved.
4301 * Further, <length of run - 1> all-ones is a reserved pattern.
4303 * In all cases the rotation is by immr % e (and immr is 6 bits).
4306 /* First determine the element size */
4307 len
= 31 - clz32((immn
<< 6) | (~imms
& 0x3f));
4309 /* This is the immn == 0, imms == 0x11111x case */
4319 /* <length of run - 1> mustn't be all-ones. */
4323 /* Create the value of one element: s+1 set bits rotated
4324 * by r within the element (which is e bits wide)...
4326 mask
= bitmask64(s
+ 1);
4328 mask
= (mask
>> r
) | (mask
<< (e
- r
));
4329 mask
&= bitmask64(e
);
4331 /* ...then replicate the element over the whole 64 bit value */
4332 mask
= bitfield_replicate(mask
, e
);
4337 /* Logical (immediate)
4338 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4339 * +----+-----+-------------+---+------+------+------+------+
4340 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4341 * +----+-----+-------------+---+------+------+------+------+
4343 static void disas_logic_imm(DisasContext
*s
, uint32_t insn
)
4345 unsigned int sf
, opc
, is_n
, immr
, imms
, rn
, rd
;
4346 TCGv_i64 tcg_rd
, tcg_rn
;
4348 bool is_and
= false;
4350 sf
= extract32(insn
, 31, 1);
4351 opc
= extract32(insn
, 29, 2);
4352 is_n
= extract32(insn
, 22, 1);
4353 immr
= extract32(insn
, 16, 6);
4354 imms
= extract32(insn
, 10, 6);
4355 rn
= extract32(insn
, 5, 5);
4356 rd
= extract32(insn
, 0, 5);
4359 unallocated_encoding(s
);
4363 if (opc
== 0x3) { /* ANDS */
4364 tcg_rd
= cpu_reg(s
, rd
);
4366 tcg_rd
= cpu_reg_sp(s
, rd
);
4368 tcg_rn
= cpu_reg(s
, rn
);
4370 if (!logic_imm_decode_wmask(&wmask
, is_n
, imms
, immr
)) {
4371 /* some immediate field values are reserved */
4372 unallocated_encoding(s
);
4377 wmask
&= 0xffffffff;
4381 case 0x3: /* ANDS */
4383 tcg_gen_andi_i64(tcg_rd
, tcg_rn
, wmask
);
4387 tcg_gen_ori_i64(tcg_rd
, tcg_rn
, wmask
);
4390 tcg_gen_xori_i64(tcg_rd
, tcg_rn
, wmask
);
4393 assert(FALSE
); /* must handle all above */
4397 if (!sf
&& !is_and
) {
4398 /* zero extend final result; we know we can skip this for AND
4399 * since the immediate had the high 32 bits clear.
4401 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4404 if (opc
== 3) { /* ANDS */
4405 gen_logic_CC(sf
, tcg_rd
);
4410 * Move wide (immediate)
4412 * 31 30 29 28 23 22 21 20 5 4 0
4413 * +--+-----+-------------+-----+----------------+------+
4414 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4415 * +--+-----+-------------+-----+----------------+------+
4417 * sf: 0 -> 32 bit, 1 -> 64 bit
4418 * opc: 00 -> N, 10 -> Z, 11 -> K
4419 * hw: shift/16 (0,16, and sf only 32, 48)
4421 static void disas_movw_imm(DisasContext
*s
, uint32_t insn
)
4423 int rd
= extract32(insn
, 0, 5);
4424 uint64_t imm
= extract32(insn
, 5, 16);
4425 int sf
= extract32(insn
, 31, 1);
4426 int opc
= extract32(insn
, 29, 2);
4427 int pos
= extract32(insn
, 21, 2) << 4;
4428 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
4431 if (!sf
&& (pos
>= 32)) {
4432 unallocated_encoding(s
);
4446 tcg_gen_movi_i64(tcg_rd
, imm
);
4449 tcg_imm
= tcg_const_i64(imm
);
4450 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_imm
, pos
, 16);
4451 tcg_temp_free_i64(tcg_imm
);
4453 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4457 unallocated_encoding(s
);
4463 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4464 * +----+-----+-------------+---+------+------+------+------+
4465 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4466 * +----+-----+-------------+---+------+------+------+------+
4468 static void disas_bitfield(DisasContext
*s
, uint32_t insn
)
4470 unsigned int sf
, n
, opc
, ri
, si
, rn
, rd
, bitsize
, pos
, len
;
4471 TCGv_i64 tcg_rd
, tcg_tmp
;
4473 sf
= extract32(insn
, 31, 1);
4474 opc
= extract32(insn
, 29, 2);
4475 n
= extract32(insn
, 22, 1);
4476 ri
= extract32(insn
, 16, 6);
4477 si
= extract32(insn
, 10, 6);
4478 rn
= extract32(insn
, 5, 5);
4479 rd
= extract32(insn
, 0, 5);
4480 bitsize
= sf
? 64 : 32;
4482 if (sf
!= n
|| ri
>= bitsize
|| si
>= bitsize
|| opc
> 2) {
4483 unallocated_encoding(s
);
4487 tcg_rd
= cpu_reg(s
, rd
);
4489 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4490 to be smaller than bitsize, we'll never reference data outside the
4491 low 32-bits anyway. */
4492 tcg_tmp
= read_cpu_reg(s
, rn
, 1);
4494 /* Recognize simple(r) extractions. */
4496 /* Wd<s-r:0> = Wn<s:r> */
4497 len
= (si
- ri
) + 1;
4498 if (opc
== 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4499 tcg_gen_sextract_i64(tcg_rd
, tcg_tmp
, ri
, len
);
4501 } else if (opc
== 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4502 tcg_gen_extract_i64(tcg_rd
, tcg_tmp
, ri
, len
);
4505 /* opc == 1, BFXIL fall through to deposit */
4506 tcg_gen_shri_i64(tcg_tmp
, tcg_tmp
, ri
);
4509 /* Handle the ri > si case with a deposit
4510 * Wd<32+s-r,32-r> = Wn<s:0>
4513 pos
= (bitsize
- ri
) & (bitsize
- 1);
4516 if (opc
== 0 && len
< ri
) {
4517 /* SBFM: sign extend the destination field from len to fill
4518 the balance of the word. Let the deposit below insert all
4519 of those sign bits. */
4520 tcg_gen_sextract_i64(tcg_tmp
, tcg_tmp
, 0, len
);
4524 if (opc
== 1) { /* BFM, BFXIL */
4525 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_tmp
, pos
, len
);
4527 /* SBFM or UBFM: We start with zero, and we haven't modified
4528 any bits outside bitsize, therefore the zero-extension
4529 below is unneeded. */
4530 tcg_gen_deposit_z_i64(tcg_rd
, tcg_tmp
, pos
, len
);
4535 if (!sf
) { /* zero extend final result */
4536 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4541 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4542 * +----+------+-------------+---+----+------+--------+------+------+
4543 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4544 * +----+------+-------------+---+----+------+--------+------+------+
4546 static void disas_extract(DisasContext
*s
, uint32_t insn
)
4548 unsigned int sf
, n
, rm
, imm
, rn
, rd
, bitsize
, op21
, op0
;
4550 sf
= extract32(insn
, 31, 1);
4551 n
= extract32(insn
, 22, 1);
4552 rm
= extract32(insn
, 16, 5);
4553 imm
= extract32(insn
, 10, 6);
4554 rn
= extract32(insn
, 5, 5);
4555 rd
= extract32(insn
, 0, 5);
4556 op21
= extract32(insn
, 29, 2);
4557 op0
= extract32(insn
, 21, 1);
4558 bitsize
= sf
? 64 : 32;
4560 if (sf
!= n
|| op21
|| op0
|| imm
>= bitsize
) {
4561 unallocated_encoding(s
);
4563 TCGv_i64 tcg_rd
, tcg_rm
, tcg_rn
;
4565 tcg_rd
= cpu_reg(s
, rd
);
4567 if (unlikely(imm
== 0)) {
4568 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4569 * so an extract from bit 0 is a special case.
4572 tcg_gen_mov_i64(tcg_rd
, cpu_reg(s
, rm
));
4574 tcg_gen_ext32u_i64(tcg_rd
, cpu_reg(s
, rm
));
4577 tcg_rm
= cpu_reg(s
, rm
);
4578 tcg_rn
= cpu_reg(s
, rn
);
4581 /* Specialization to ROR happens in EXTRACT2. */
4582 tcg_gen_extract2_i64(tcg_rd
, tcg_rm
, tcg_rn
, imm
);
4584 TCGv_i32 t0
= tcg_temp_new_i32();
4586 tcg_gen_extrl_i64_i32(t0
, tcg_rm
);
4588 tcg_gen_rotri_i32(t0
, t0
, imm
);
4590 TCGv_i32 t1
= tcg_temp_new_i32();
4591 tcg_gen_extrl_i64_i32(t1
, tcg_rn
);
4592 tcg_gen_extract2_i32(t0
, t0
, t1
, imm
);
4593 tcg_temp_free_i32(t1
);
4595 tcg_gen_extu_i32_i64(tcg_rd
, t0
);
4596 tcg_temp_free_i32(t0
);
4602 /* Data processing - immediate */
4603 static void disas_data_proc_imm(DisasContext
*s
, uint32_t insn
)
4605 switch (extract32(insn
, 23, 6)) {
4606 case 0x20: case 0x21: /* PC-rel. addressing */
4607 disas_pc_rel_adr(s
, insn
);
4609 case 0x22: /* Add/subtract (immediate) */
4610 disas_add_sub_imm(s
, insn
);
4612 case 0x23: /* Add/subtract (immediate, with tags) */
4613 disas_add_sub_imm_with_tags(s
, insn
);
4615 case 0x24: /* Logical (immediate) */
4616 disas_logic_imm(s
, insn
);
4618 case 0x25: /* Move wide (immediate) */
4619 disas_movw_imm(s
, insn
);
4621 case 0x26: /* Bitfield */
4622 disas_bitfield(s
, insn
);
4624 case 0x27: /* Extract */
4625 disas_extract(s
, insn
);
4628 unallocated_encoding(s
);
4633 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4634 * Note that it is the caller's responsibility to ensure that the
4635 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4636 * mandated semantics for out of range shifts.
4638 static void shift_reg(TCGv_i64 dst
, TCGv_i64 src
, int sf
,
4639 enum a64_shift_type shift_type
, TCGv_i64 shift_amount
)
4641 switch (shift_type
) {
4642 case A64_SHIFT_TYPE_LSL
:
4643 tcg_gen_shl_i64(dst
, src
, shift_amount
);
4645 case A64_SHIFT_TYPE_LSR
:
4646 tcg_gen_shr_i64(dst
, src
, shift_amount
);
4648 case A64_SHIFT_TYPE_ASR
:
4650 tcg_gen_ext32s_i64(dst
, src
);
4652 tcg_gen_sar_i64(dst
, sf
? src
: dst
, shift_amount
);
4654 case A64_SHIFT_TYPE_ROR
:
4656 tcg_gen_rotr_i64(dst
, src
, shift_amount
);
4659 t0
= tcg_temp_new_i32();
4660 t1
= tcg_temp_new_i32();
4661 tcg_gen_extrl_i64_i32(t0
, src
);
4662 tcg_gen_extrl_i64_i32(t1
, shift_amount
);
4663 tcg_gen_rotr_i32(t0
, t0
, t1
);
4664 tcg_gen_extu_i32_i64(dst
, t0
);
4665 tcg_temp_free_i32(t0
);
4666 tcg_temp_free_i32(t1
);
4670 assert(FALSE
); /* all shift types should be handled */
4674 if (!sf
) { /* zero extend final result */
4675 tcg_gen_ext32u_i64(dst
, dst
);
4679 /* Shift a TCGv src by immediate, put result in dst.
4680 * The shift amount must be in range (this should always be true as the
4681 * relevant instructions will UNDEF on bad shift immediates).
4683 static void shift_reg_imm(TCGv_i64 dst
, TCGv_i64 src
, int sf
,
4684 enum a64_shift_type shift_type
, unsigned int shift_i
)
4686 assert(shift_i
< (sf
? 64 : 32));
4689 tcg_gen_mov_i64(dst
, src
);
4691 TCGv_i64 shift_const
;
4693 shift_const
= tcg_const_i64(shift_i
);
4694 shift_reg(dst
, src
, sf
, shift_type
, shift_const
);
4695 tcg_temp_free_i64(shift_const
);
4699 /* Logical (shifted register)
4700 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4701 * +----+-----+-----------+-------+---+------+--------+------+------+
4702 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4703 * +----+-----+-----------+-------+---+------+--------+------+------+
4705 static void disas_logic_reg(DisasContext
*s
, uint32_t insn
)
4707 TCGv_i64 tcg_rd
, tcg_rn
, tcg_rm
;
4708 unsigned int sf
, opc
, shift_type
, invert
, rm
, shift_amount
, rn
, rd
;
4710 sf
= extract32(insn
, 31, 1);
4711 opc
= extract32(insn
, 29, 2);
4712 shift_type
= extract32(insn
, 22, 2);
4713 invert
= extract32(insn
, 21, 1);
4714 rm
= extract32(insn
, 16, 5);
4715 shift_amount
= extract32(insn
, 10, 6);
4716 rn
= extract32(insn
, 5, 5);
4717 rd
= extract32(insn
, 0, 5);
4719 if (!sf
&& (shift_amount
& (1 << 5))) {
4720 unallocated_encoding(s
);
4724 tcg_rd
= cpu_reg(s
, rd
);
4726 if (opc
== 1 && shift_amount
== 0 && shift_type
== 0 && rn
== 31) {
4727 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4728 * register-register MOV and MVN, so it is worth special casing.
4730 tcg_rm
= cpu_reg(s
, rm
);
4732 tcg_gen_not_i64(tcg_rd
, tcg_rm
);
4734 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4738 tcg_gen_mov_i64(tcg_rd
, tcg_rm
);
4740 tcg_gen_ext32u_i64(tcg_rd
, tcg_rm
);
4746 tcg_rm
= read_cpu_reg(s
, rm
, sf
);
4749 shift_reg_imm(tcg_rm
, tcg_rm
, sf
, shift_type
, shift_amount
);
4752 tcg_rn
= cpu_reg(s
, rn
);
4754 switch (opc
| (invert
<< 2)) {
4757 tcg_gen_and_i64(tcg_rd
, tcg_rn
, tcg_rm
);
4760 tcg_gen_or_i64(tcg_rd
, tcg_rn
, tcg_rm
);
4763 tcg_gen_xor_i64(tcg_rd
, tcg_rn
, tcg_rm
);
4767 tcg_gen_andc_i64(tcg_rd
, tcg_rn
, tcg_rm
);
4770 tcg_gen_orc_i64(tcg_rd
, tcg_rn
, tcg_rm
);
4773 tcg_gen_eqv_i64(tcg_rd
, tcg_rn
, tcg_rm
);
4781 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4785 gen_logic_CC(sf
, tcg_rd
);
4790 * Add/subtract (extended register)
4792 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4793 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4794 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4795 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4797 * sf: 0 -> 32bit, 1 -> 64bit
4798 * op: 0 -> add , 1 -> sub
4801 * option: extension type (see DecodeRegExtend)
4802 * imm3: optional shift to Rm
4804 * Rd = Rn + LSL(extend(Rm), amount)
4806 static void disas_add_sub_ext_reg(DisasContext
*s
, uint32_t insn
)
4808 int rd
= extract32(insn
, 0, 5);
4809 int rn
= extract32(insn
, 5, 5);
4810 int imm3
= extract32(insn
, 10, 3);
4811 int option
= extract32(insn
, 13, 3);
4812 int rm
= extract32(insn
, 16, 5);
4813 int opt
= extract32(insn
, 22, 2);
4814 bool setflags
= extract32(insn
, 29, 1);
4815 bool sub_op
= extract32(insn
, 30, 1);
4816 bool sf
= extract32(insn
, 31, 1);
4818 TCGv_i64 tcg_rm
, tcg_rn
; /* temps */
4820 TCGv_i64 tcg_result
;
4822 if (imm3
> 4 || opt
!= 0) {
4823 unallocated_encoding(s
);
4827 /* non-flag setting ops may use SP */
4829 tcg_rd
= cpu_reg_sp(s
, rd
);
4831 tcg_rd
= cpu_reg(s
, rd
);
4833 tcg_rn
= read_cpu_reg_sp(s
, rn
, sf
);
4835 tcg_rm
= read_cpu_reg(s
, rm
, sf
);
4836 ext_and_shift_reg(tcg_rm
, tcg_rm
, option
, imm3
);
4838 tcg_result
= tcg_temp_new_i64();
4842 tcg_gen_sub_i64(tcg_result
, tcg_rn
, tcg_rm
);
4844 tcg_gen_add_i64(tcg_result
, tcg_rn
, tcg_rm
);
4848 gen_sub_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
4850 gen_add_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
4855 tcg_gen_mov_i64(tcg_rd
, tcg_result
);
4857 tcg_gen_ext32u_i64(tcg_rd
, tcg_result
);
4860 tcg_temp_free_i64(tcg_result
);
4864 * Add/subtract (shifted register)
4866 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4867 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4868 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4869 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4871 * sf: 0 -> 32bit, 1 -> 64bit
4872 * op: 0 -> add , 1 -> sub
4874 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4875 * imm6: Shift amount to apply to Rm before the add/sub
4877 static void disas_add_sub_reg(DisasContext
*s
, uint32_t insn
)
4879 int rd
= extract32(insn
, 0, 5);
4880 int rn
= extract32(insn
, 5, 5);
4881 int imm6
= extract32(insn
, 10, 6);
4882 int rm
= extract32(insn
, 16, 5);
4883 int shift_type
= extract32(insn
, 22, 2);
4884 bool setflags
= extract32(insn
, 29, 1);
4885 bool sub_op
= extract32(insn
, 30, 1);
4886 bool sf
= extract32(insn
, 31, 1);
4888 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
4889 TCGv_i64 tcg_rn
, tcg_rm
;
4890 TCGv_i64 tcg_result
;
4892 if ((shift_type
== 3) || (!sf
&& (imm6
> 31))) {
4893 unallocated_encoding(s
);
4897 tcg_rn
= read_cpu_reg(s
, rn
, sf
);
4898 tcg_rm
= read_cpu_reg(s
, rm
, sf
);
4900 shift_reg_imm(tcg_rm
, tcg_rm
, sf
, shift_type
, imm6
);
4902 tcg_result
= tcg_temp_new_i64();
4906 tcg_gen_sub_i64(tcg_result
, tcg_rn
, tcg_rm
);
4908 tcg_gen_add_i64(tcg_result
, tcg_rn
, tcg_rm
);
4912 gen_sub_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
4914 gen_add_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
4919 tcg_gen_mov_i64(tcg_rd
, tcg_result
);
4921 tcg_gen_ext32u_i64(tcg_rd
, tcg_result
);
4924 tcg_temp_free_i64(tcg_result
);
4927 /* Data-processing (3 source)
4929 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4930 * +--+------+-----------+------+------+----+------+------+------+
4931 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4932 * +--+------+-----------+------+------+----+------+------+------+
4934 static void disas_data_proc_3src(DisasContext
*s
, uint32_t insn
)
4936 int rd
= extract32(insn
, 0, 5);
4937 int rn
= extract32(insn
, 5, 5);
4938 int ra
= extract32(insn
, 10, 5);
4939 int rm
= extract32(insn
, 16, 5);
4940 int op_id
= (extract32(insn
, 29, 3) << 4) |
4941 (extract32(insn
, 21, 3) << 1) |
4942 extract32(insn
, 15, 1);
4943 bool sf
= extract32(insn
, 31, 1);
4944 bool is_sub
= extract32(op_id
, 0, 1);
4945 bool is_high
= extract32(op_id
, 2, 1);
4946 bool is_signed
= false;
4951 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4953 case 0x42: /* SMADDL */
4954 case 0x43: /* SMSUBL */
4955 case 0x44: /* SMULH */
4958 case 0x0: /* MADD (32bit) */
4959 case 0x1: /* MSUB (32bit) */
4960 case 0x40: /* MADD (64bit) */
4961 case 0x41: /* MSUB (64bit) */
4962 case 0x4a: /* UMADDL */
4963 case 0x4b: /* UMSUBL */
4964 case 0x4c: /* UMULH */
4967 unallocated_encoding(s
);
4972 TCGv_i64 low_bits
= tcg_temp_new_i64(); /* low bits discarded */
4973 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
4974 TCGv_i64 tcg_rn
= cpu_reg(s
, rn
);
4975 TCGv_i64 tcg_rm
= cpu_reg(s
, rm
);
4978 tcg_gen_muls2_i64(low_bits
, tcg_rd
, tcg_rn
, tcg_rm
);
4980 tcg_gen_mulu2_i64(low_bits
, tcg_rd
, tcg_rn
, tcg_rm
);
4983 tcg_temp_free_i64(low_bits
);
4987 tcg_op1
= tcg_temp_new_i64();
4988 tcg_op2
= tcg_temp_new_i64();
4989 tcg_tmp
= tcg_temp_new_i64();
4992 tcg_gen_mov_i64(tcg_op1
, cpu_reg(s
, rn
));
4993 tcg_gen_mov_i64(tcg_op2
, cpu_reg(s
, rm
));
4996 tcg_gen_ext32s_i64(tcg_op1
, cpu_reg(s
, rn
));
4997 tcg_gen_ext32s_i64(tcg_op2
, cpu_reg(s
, rm
));
4999 tcg_gen_ext32u_i64(tcg_op1
, cpu_reg(s
, rn
));
5000 tcg_gen_ext32u_i64(tcg_op2
, cpu_reg(s
, rm
));
5004 if (ra
== 31 && !is_sub
) {
5005 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5006 tcg_gen_mul_i64(cpu_reg(s
, rd
), tcg_op1
, tcg_op2
);
5008 tcg_gen_mul_i64(tcg_tmp
, tcg_op1
, tcg_op2
);
5010 tcg_gen_sub_i64(cpu_reg(s
, rd
), cpu_reg(s
, ra
), tcg_tmp
);
5012 tcg_gen_add_i64(cpu_reg(s
, rd
), cpu_reg(s
, ra
), tcg_tmp
);
5017 tcg_gen_ext32u_i64(cpu_reg(s
, rd
), cpu_reg(s
, rd
));
5020 tcg_temp_free_i64(tcg_op1
);
5021 tcg_temp_free_i64(tcg_op2
);
5022 tcg_temp_free_i64(tcg_tmp
);
5025 /* Add/subtract (with carry)
5026 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5027 * +--+--+--+------------------------+------+-------------+------+-----+
5028 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5029 * +--+--+--+------------------------+------+-------------+------+-----+
5032 static void disas_adc_sbc(DisasContext
*s
, uint32_t insn
)
5034 unsigned int sf
, op
, setflags
, rm
, rn
, rd
;
5035 TCGv_i64 tcg_y
, tcg_rn
, tcg_rd
;
5037 sf
= extract32(insn
, 31, 1);
5038 op
= extract32(insn
, 30, 1);
5039 setflags
= extract32(insn
, 29, 1);
5040 rm
= extract32(insn
, 16, 5);
5041 rn
= extract32(insn
, 5, 5);
5042 rd
= extract32(insn
, 0, 5);
5044 tcg_rd
= cpu_reg(s
, rd
);
5045 tcg_rn
= cpu_reg(s
, rn
);
5048 tcg_y
= new_tmp_a64(s
);
5049 tcg_gen_not_i64(tcg_y
, cpu_reg(s
, rm
));
5051 tcg_y
= cpu_reg(s
, rm
);
5055 gen_adc_CC(sf
, tcg_rd
, tcg_rn
, tcg_y
);
5057 gen_adc(sf
, tcg_rd
, tcg_rn
, tcg_y
);
5062 * Rotate right into flags
5063 * 31 30 29 21 15 10 5 4 0
5064 * +--+--+--+-----------------+--------+-----------+------+--+------+
5065 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5066 * +--+--+--+-----------------+--------+-----------+------+--+------+
5068 static void disas_rotate_right_into_flags(DisasContext
*s
, uint32_t insn
)
5070 int mask
= extract32(insn
, 0, 4);
5071 int o2
= extract32(insn
, 4, 1);
5072 int rn
= extract32(insn
, 5, 5);
5073 int imm6
= extract32(insn
, 15, 6);
5074 int sf_op_s
= extract32(insn
, 29, 3);
5078 if (sf_op_s
!= 5 || o2
!= 0 || !dc_isar_feature(aa64_condm_4
, s
)) {
5079 unallocated_encoding(s
);
5083 tcg_rn
= read_cpu_reg(s
, rn
, 1);
5084 tcg_gen_rotri_i64(tcg_rn
, tcg_rn
, imm6
);
5086 nzcv
= tcg_temp_new_i32();
5087 tcg_gen_extrl_i64_i32(nzcv
, tcg_rn
);
5089 if (mask
& 8) { /* N */
5090 tcg_gen_shli_i32(cpu_NF
, nzcv
, 31 - 3);
5092 if (mask
& 4) { /* Z */
5093 tcg_gen_not_i32(cpu_ZF
, nzcv
);
5094 tcg_gen_andi_i32(cpu_ZF
, cpu_ZF
, 4);
5096 if (mask
& 2) { /* C */
5097 tcg_gen_extract_i32(cpu_CF
, nzcv
, 1, 1);
5099 if (mask
& 1) { /* V */
5100 tcg_gen_shli_i32(cpu_VF
, nzcv
, 31 - 0);
5103 tcg_temp_free_i32(nzcv
);
5107 * Evaluate into flags
5108 * 31 30 29 21 15 14 10 5 4 0
5109 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5110 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5111 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5113 static void disas_evaluate_into_flags(DisasContext
*s
, uint32_t insn
)
5115 int o3_mask
= extract32(insn
, 0, 5);
5116 int rn
= extract32(insn
, 5, 5);
5117 int o2
= extract32(insn
, 15, 6);
5118 int sz
= extract32(insn
, 14, 1);
5119 int sf_op_s
= extract32(insn
, 29, 3);
5123 if (sf_op_s
!= 1 || o2
!= 0 || o3_mask
!= 0xd ||
5124 !dc_isar_feature(aa64_condm_4
, s
)) {
5125 unallocated_encoding(s
);
5128 shift
= sz
? 16 : 24; /* SETF16 or SETF8 */
5130 tmp
= tcg_temp_new_i32();
5131 tcg_gen_extrl_i64_i32(tmp
, cpu_reg(s
, rn
));
5132 tcg_gen_shli_i32(cpu_NF
, tmp
, shift
);
5133 tcg_gen_shli_i32(cpu_VF
, tmp
, shift
- 1);
5134 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
5135 tcg_gen_xor_i32(cpu_VF
, cpu_VF
, cpu_NF
);
5136 tcg_temp_free_i32(tmp
);
5139 /* Conditional compare (immediate / register)
5140 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5141 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5142 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5143 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5146 static void disas_cc(DisasContext
*s
, uint32_t insn
)
5148 unsigned int sf
, op
, y
, cond
, rn
, nzcv
, is_imm
;
5149 TCGv_i32 tcg_t0
, tcg_t1
, tcg_t2
;
5150 TCGv_i64 tcg_tmp
, tcg_y
, tcg_rn
;
5153 if (!extract32(insn
, 29, 1)) {
5154 unallocated_encoding(s
);
5157 if (insn
& (1 << 10 | 1 << 4)) {
5158 unallocated_encoding(s
);
5161 sf
= extract32(insn
, 31, 1);
5162 op
= extract32(insn
, 30, 1);
5163 is_imm
= extract32(insn
, 11, 1);
5164 y
= extract32(insn
, 16, 5); /* y = rm (reg) or imm5 (imm) */
5165 cond
= extract32(insn
, 12, 4);
5166 rn
= extract32(insn
, 5, 5);
5167 nzcv
= extract32(insn
, 0, 4);
5169 /* Set T0 = !COND. */
5170 tcg_t0
= tcg_temp_new_i32();
5171 arm_test_cc(&c
, cond
);
5172 tcg_gen_setcondi_i32(tcg_invert_cond(c
.cond
), tcg_t0
, c
.value
, 0);
5175 /* Load the arguments for the new comparison. */
5177 tcg_y
= new_tmp_a64(s
);
5178 tcg_gen_movi_i64(tcg_y
, y
);
5180 tcg_y
= cpu_reg(s
, y
);
5182 tcg_rn
= cpu_reg(s
, rn
);
5184 /* Set the flags for the new comparison. */
5185 tcg_tmp
= tcg_temp_new_i64();
5187 gen_sub_CC(sf
, tcg_tmp
, tcg_rn
, tcg_y
);
5189 gen_add_CC(sf
, tcg_tmp
, tcg_rn
, tcg_y
);
5191 tcg_temp_free_i64(tcg_tmp
);
5193 /* If COND was false, force the flags to #nzcv. Compute two masks
5194 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5195 * For tcg hosts that support ANDC, we can make do with just T1.
5196 * In either case, allow the tcg optimizer to delete any unused mask.
5198 tcg_t1
= tcg_temp_new_i32();
5199 tcg_t2
= tcg_temp_new_i32();
5200 tcg_gen_neg_i32(tcg_t1
, tcg_t0
);
5201 tcg_gen_subi_i32(tcg_t2
, tcg_t0
, 1);
5203 if (nzcv
& 8) { /* N */
5204 tcg_gen_or_i32(cpu_NF
, cpu_NF
, tcg_t1
);
5206 if (TCG_TARGET_HAS_andc_i32
) {
5207 tcg_gen_andc_i32(cpu_NF
, cpu_NF
, tcg_t1
);
5209 tcg_gen_and_i32(cpu_NF
, cpu_NF
, tcg_t2
);
5212 if (nzcv
& 4) { /* Z */
5213 if (TCG_TARGET_HAS_andc_i32
) {
5214 tcg_gen_andc_i32(cpu_ZF
, cpu_ZF
, tcg_t1
);
5216 tcg_gen_and_i32(cpu_ZF
, cpu_ZF
, tcg_t2
);
5219 tcg_gen_or_i32(cpu_ZF
, cpu_ZF
, tcg_t0
);
5221 if (nzcv
& 2) { /* C */
5222 tcg_gen_or_i32(cpu_CF
, cpu_CF
, tcg_t0
);
5224 if (TCG_TARGET_HAS_andc_i32
) {
5225 tcg_gen_andc_i32(cpu_CF
, cpu_CF
, tcg_t1
);
5227 tcg_gen_and_i32(cpu_CF
, cpu_CF
, tcg_t2
);
5230 if (nzcv
& 1) { /* V */
5231 tcg_gen_or_i32(cpu_VF
, cpu_VF
, tcg_t1
);
5233 if (TCG_TARGET_HAS_andc_i32
) {
5234 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tcg_t1
);
5236 tcg_gen_and_i32(cpu_VF
, cpu_VF
, tcg_t2
);
5239 tcg_temp_free_i32(tcg_t0
);
5240 tcg_temp_free_i32(tcg_t1
);
5241 tcg_temp_free_i32(tcg_t2
);
5244 /* Conditional select
5245 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5246 * +----+----+---+-----------------+------+------+-----+------+------+
5247 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5248 * +----+----+---+-----------------+------+------+-----+------+------+
5250 static void disas_cond_select(DisasContext
*s
, uint32_t insn
)
5252 unsigned int sf
, else_inv
, rm
, cond
, else_inc
, rn
, rd
;
5253 TCGv_i64 tcg_rd
, zero
;
5256 if (extract32(insn
, 29, 1) || extract32(insn
, 11, 1)) {
5257 /* S == 1 or op2<1> == 1 */
5258 unallocated_encoding(s
);
5261 sf
= extract32(insn
, 31, 1);
5262 else_inv
= extract32(insn
, 30, 1);
5263 rm
= extract32(insn
, 16, 5);
5264 cond
= extract32(insn
, 12, 4);
5265 else_inc
= extract32(insn
, 10, 1);
5266 rn
= extract32(insn
, 5, 5);
5267 rd
= extract32(insn
, 0, 5);
5269 tcg_rd
= cpu_reg(s
, rd
);
5271 a64_test_cc(&c
, cond
);
5272 zero
= tcg_const_i64(0);
5274 if (rn
== 31 && rm
== 31 && (else_inc
^ else_inv
)) {
5276 tcg_gen_setcond_i64(tcg_invert_cond(c
.cond
), tcg_rd
, c
.value
, zero
);
5278 tcg_gen_neg_i64(tcg_rd
, tcg_rd
);
5281 TCGv_i64 t_true
= cpu_reg(s
, rn
);
5282 TCGv_i64 t_false
= read_cpu_reg(s
, rm
, 1);
5283 if (else_inv
&& else_inc
) {
5284 tcg_gen_neg_i64(t_false
, t_false
);
5285 } else if (else_inv
) {
5286 tcg_gen_not_i64(t_false
, t_false
);
5287 } else if (else_inc
) {
5288 tcg_gen_addi_i64(t_false
, t_false
, 1);
5290 tcg_gen_movcond_i64(c
.cond
, tcg_rd
, c
.value
, zero
, t_true
, t_false
);
5293 tcg_temp_free_i64(zero
);
5297 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
5301 static void handle_clz(DisasContext
*s
, unsigned int sf
,
5302 unsigned int rn
, unsigned int rd
)
5304 TCGv_i64 tcg_rd
, tcg_rn
;
5305 tcg_rd
= cpu_reg(s
, rd
);
5306 tcg_rn
= cpu_reg(s
, rn
);
5309 tcg_gen_clzi_i64(tcg_rd
, tcg_rn
, 64);
5311 TCGv_i32 tcg_tmp32
= tcg_temp_new_i32();
5312 tcg_gen_extrl_i64_i32(tcg_tmp32
, tcg_rn
);
5313 tcg_gen_clzi_i32(tcg_tmp32
, tcg_tmp32
, 32);
5314 tcg_gen_extu_i32_i64(tcg_rd
, tcg_tmp32
);
5315 tcg_temp_free_i32(tcg_tmp32
);
5319 static void handle_cls(DisasContext
*s
, unsigned int sf
,
5320 unsigned int rn
, unsigned int rd
)
5322 TCGv_i64 tcg_rd
, tcg_rn
;
5323 tcg_rd
= cpu_reg(s
, rd
);
5324 tcg_rn
= cpu_reg(s
, rn
);
5327 tcg_gen_clrsb_i64(tcg_rd
, tcg_rn
);
5329 TCGv_i32 tcg_tmp32
= tcg_temp_new_i32();
5330 tcg_gen_extrl_i64_i32(tcg_tmp32
, tcg_rn
);
5331 tcg_gen_clrsb_i32(tcg_tmp32
, tcg_tmp32
);
5332 tcg_gen_extu_i32_i64(tcg_rd
, tcg_tmp32
);
5333 tcg_temp_free_i32(tcg_tmp32
);
5337 static void handle_rbit(DisasContext
*s
, unsigned int sf
,
5338 unsigned int rn
, unsigned int rd
)
5340 TCGv_i64 tcg_rd
, tcg_rn
;
5341 tcg_rd
= cpu_reg(s
, rd
);
5342 tcg_rn
= cpu_reg(s
, rn
);
5345 gen_helper_rbit64(tcg_rd
, tcg_rn
);
5347 TCGv_i32 tcg_tmp32
= tcg_temp_new_i32();
5348 tcg_gen_extrl_i64_i32(tcg_tmp32
, tcg_rn
);
5349 gen_helper_rbit(tcg_tmp32
, tcg_tmp32
);
5350 tcg_gen_extu_i32_i64(tcg_rd
, tcg_tmp32
);
5351 tcg_temp_free_i32(tcg_tmp32
);
5355 /* REV with sf==1, opcode==3 ("REV64") */
5356 static void handle_rev64(DisasContext
*s
, unsigned int sf
,
5357 unsigned int rn
, unsigned int rd
)
5360 unallocated_encoding(s
);
5363 tcg_gen_bswap64_i64(cpu_reg(s
, rd
), cpu_reg(s
, rn
));
5366 /* REV with sf==0, opcode==2
5367 * REV32 (sf==1, opcode==2)
5369 static void handle_rev32(DisasContext
*s
, unsigned int sf
,
5370 unsigned int rn
, unsigned int rd
)
5372 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
5375 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
5376 TCGv_i64 tcg_rn
= read_cpu_reg(s
, rn
, sf
);
5378 /* bswap32_i64 requires zero high word */
5379 tcg_gen_ext32u_i64(tcg_tmp
, tcg_rn
);
5380 tcg_gen_bswap32_i64(tcg_rd
, tcg_tmp
);
5381 tcg_gen_shri_i64(tcg_tmp
, tcg_rn
, 32);
5382 tcg_gen_bswap32_i64(tcg_tmp
, tcg_tmp
);
5383 tcg_gen_concat32_i64(tcg_rd
, tcg_rd
, tcg_tmp
);
5385 tcg_temp_free_i64(tcg_tmp
);
5387 tcg_gen_ext32u_i64(tcg_rd
, cpu_reg(s
, rn
));
5388 tcg_gen_bswap32_i64(tcg_rd
, tcg_rd
);
5392 /* REV16 (opcode==1) */
5393 static void handle_rev16(DisasContext
*s
, unsigned int sf
,
5394 unsigned int rn
, unsigned int rd
)
5396 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
5397 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
5398 TCGv_i64 tcg_rn
= read_cpu_reg(s
, rn
, sf
);
5399 TCGv_i64 mask
= tcg_const_i64(sf
? 0x00ff00ff00ff00ffull
: 0x00ff00ff);
5401 tcg_gen_shri_i64(tcg_tmp
, tcg_rn
, 8);
5402 tcg_gen_and_i64(tcg_rd
, tcg_rn
, mask
);
5403 tcg_gen_and_i64(tcg_tmp
, tcg_tmp
, mask
);
5404 tcg_gen_shli_i64(tcg_rd
, tcg_rd
, 8);
5405 tcg_gen_or_i64(tcg_rd
, tcg_rd
, tcg_tmp
);
5407 tcg_temp_free_i64(mask
);
5408 tcg_temp_free_i64(tcg_tmp
);
5411 /* Data-processing (1 source)
5412 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5413 * +----+---+---+-----------------+---------+--------+------+------+
5414 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5415 * +----+---+---+-----------------+---------+--------+------+------+
5417 static void disas_data_proc_1src(DisasContext
*s
, uint32_t insn
)
5419 unsigned int sf
, opcode
, opcode2
, rn
, rd
;
5422 if (extract32(insn
, 29, 1)) {
5423 unallocated_encoding(s
);
5427 sf
= extract32(insn
, 31, 1);
5428 opcode
= extract32(insn
, 10, 6);
5429 opcode2
= extract32(insn
, 16, 5);
5430 rn
= extract32(insn
, 5, 5);
5431 rd
= extract32(insn
, 0, 5);
5433 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5435 switch (MAP(sf
, opcode2
, opcode
)) {
5436 case MAP(0, 0x00, 0x00): /* RBIT */
5437 case MAP(1, 0x00, 0x00):
5438 handle_rbit(s
, sf
, rn
, rd
);
5440 case MAP(0, 0x00, 0x01): /* REV16 */
5441 case MAP(1, 0x00, 0x01):
5442 handle_rev16(s
, sf
, rn
, rd
);
5444 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5445 case MAP(1, 0x00, 0x02):
5446 handle_rev32(s
, sf
, rn
, rd
);
5448 case MAP(1, 0x00, 0x03): /* REV64 */
5449 handle_rev64(s
, sf
, rn
, rd
);
5451 case MAP(0, 0x00, 0x04): /* CLZ */
5452 case MAP(1, 0x00, 0x04):
5453 handle_clz(s
, sf
, rn
, rd
);
5455 case MAP(0, 0x00, 0x05): /* CLS */
5456 case MAP(1, 0x00, 0x05):
5457 handle_cls(s
, sf
, rn
, rd
);
5459 case MAP(1, 0x01, 0x00): /* PACIA */
5460 if (s
->pauth_active
) {
5461 tcg_rd
= cpu_reg(s
, rd
);
5462 gen_helper_pacia(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5463 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5464 goto do_unallocated
;
5467 case MAP(1, 0x01, 0x01): /* PACIB */
5468 if (s
->pauth_active
) {
5469 tcg_rd
= cpu_reg(s
, rd
);
5470 gen_helper_pacib(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5471 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5472 goto do_unallocated
;
5475 case MAP(1, 0x01, 0x02): /* PACDA */
5476 if (s
->pauth_active
) {
5477 tcg_rd
= cpu_reg(s
, rd
);
5478 gen_helper_pacda(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5479 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5480 goto do_unallocated
;
5483 case MAP(1, 0x01, 0x03): /* PACDB */
5484 if (s
->pauth_active
) {
5485 tcg_rd
= cpu_reg(s
, rd
);
5486 gen_helper_pacdb(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5487 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5488 goto do_unallocated
;
5491 case MAP(1, 0x01, 0x04): /* AUTIA */
5492 if (s
->pauth_active
) {
5493 tcg_rd
= cpu_reg(s
, rd
);
5494 gen_helper_autia(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5495 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5496 goto do_unallocated
;
5499 case MAP(1, 0x01, 0x05): /* AUTIB */
5500 if (s
->pauth_active
) {
5501 tcg_rd
= cpu_reg(s
, rd
);
5502 gen_helper_autib(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5503 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5504 goto do_unallocated
;
5507 case MAP(1, 0x01, 0x06): /* AUTDA */
5508 if (s
->pauth_active
) {
5509 tcg_rd
= cpu_reg(s
, rd
);
5510 gen_helper_autda(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5511 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5512 goto do_unallocated
;
5515 case MAP(1, 0x01, 0x07): /* AUTDB */
5516 if (s
->pauth_active
) {
5517 tcg_rd
= cpu_reg(s
, rd
);
5518 gen_helper_autdb(tcg_rd
, cpu_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
5519 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
5520 goto do_unallocated
;
5523 case MAP(1, 0x01, 0x08): /* PACIZA */
5524 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5525 goto do_unallocated
;
5526 } else if (s
->pauth_active
) {
5527 tcg_rd
= cpu_reg(s
, rd
);
5528 gen_helper_pacia(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5531 case MAP(1, 0x01, 0x09): /* PACIZB */
5532 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5533 goto do_unallocated
;
5534 } else if (s
->pauth_active
) {
5535 tcg_rd
= cpu_reg(s
, rd
);
5536 gen_helper_pacib(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5539 case MAP(1, 0x01, 0x0a): /* PACDZA */
5540 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5541 goto do_unallocated
;
5542 } else if (s
->pauth_active
) {
5543 tcg_rd
= cpu_reg(s
, rd
);
5544 gen_helper_pacda(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5547 case MAP(1, 0x01, 0x0b): /* PACDZB */
5548 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5549 goto do_unallocated
;
5550 } else if (s
->pauth_active
) {
5551 tcg_rd
= cpu_reg(s
, rd
);
5552 gen_helper_pacdb(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5555 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5556 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5557 goto do_unallocated
;
5558 } else if (s
->pauth_active
) {
5559 tcg_rd
= cpu_reg(s
, rd
);
5560 gen_helper_autia(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5563 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5564 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5565 goto do_unallocated
;
5566 } else if (s
->pauth_active
) {
5567 tcg_rd
= cpu_reg(s
, rd
);
5568 gen_helper_autib(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5571 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5572 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5573 goto do_unallocated
;
5574 } else if (s
->pauth_active
) {
5575 tcg_rd
= cpu_reg(s
, rd
);
5576 gen_helper_autda(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5579 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5580 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5581 goto do_unallocated
;
5582 } else if (s
->pauth_active
) {
5583 tcg_rd
= cpu_reg(s
, rd
);
5584 gen_helper_autdb(tcg_rd
, cpu_env
, tcg_rd
, new_tmp_a64_zero(s
));
5587 case MAP(1, 0x01, 0x10): /* XPACI */
5588 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5589 goto do_unallocated
;
5590 } else if (s
->pauth_active
) {
5591 tcg_rd
= cpu_reg(s
, rd
);
5592 gen_helper_xpaci(tcg_rd
, cpu_env
, tcg_rd
);
5595 case MAP(1, 0x01, 0x11): /* XPACD */
5596 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
5597 goto do_unallocated
;
5598 } else if (s
->pauth_active
) {
5599 tcg_rd
= cpu_reg(s
, rd
);
5600 gen_helper_xpacd(tcg_rd
, cpu_env
, tcg_rd
);
5605 unallocated_encoding(s
);
5612 static void handle_div(DisasContext
*s
, bool is_signed
, unsigned int sf
,
5613 unsigned int rm
, unsigned int rn
, unsigned int rd
)
5615 TCGv_i64 tcg_n
, tcg_m
, tcg_rd
;
5616 tcg_rd
= cpu_reg(s
, rd
);
5618 if (!sf
&& is_signed
) {
5619 tcg_n
= new_tmp_a64(s
);
5620 tcg_m
= new_tmp_a64(s
);
5621 tcg_gen_ext32s_i64(tcg_n
, cpu_reg(s
, rn
));
5622 tcg_gen_ext32s_i64(tcg_m
, cpu_reg(s
, rm
));
5624 tcg_n
= read_cpu_reg(s
, rn
, sf
);
5625 tcg_m
= read_cpu_reg(s
, rm
, sf
);
5629 gen_helper_sdiv64(tcg_rd
, tcg_n
, tcg_m
);
5631 gen_helper_udiv64(tcg_rd
, tcg_n
, tcg_m
);
5634 if (!sf
) { /* zero extend final result */
5635 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
5639 /* LSLV, LSRV, ASRV, RORV */
5640 static void handle_shift_reg(DisasContext
*s
,
5641 enum a64_shift_type shift_type
, unsigned int sf
,
5642 unsigned int rm
, unsigned int rn
, unsigned int rd
)
5644 TCGv_i64 tcg_shift
= tcg_temp_new_i64();
5645 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
5646 TCGv_i64 tcg_rn
= read_cpu_reg(s
, rn
, sf
);
5648 tcg_gen_andi_i64(tcg_shift
, cpu_reg(s
, rm
), sf
? 63 : 31);
5649 shift_reg(tcg_rd
, tcg_rn
, sf
, shift_type
, tcg_shift
);
5650 tcg_temp_free_i64(tcg_shift
);
5653 /* CRC32[BHWX], CRC32C[BHWX] */
5654 static void handle_crc32(DisasContext
*s
,
5655 unsigned int sf
, unsigned int sz
, bool crc32c
,
5656 unsigned int rm
, unsigned int rn
, unsigned int rd
)
5658 TCGv_i64 tcg_acc
, tcg_val
;
5661 if (!dc_isar_feature(aa64_crc32
, s
)
5662 || (sf
== 1 && sz
!= 3)
5663 || (sf
== 0 && sz
== 3)) {
5664 unallocated_encoding(s
);
5669 tcg_val
= cpu_reg(s
, rm
);
5683 g_assert_not_reached();
5685 tcg_val
= new_tmp_a64(s
);
5686 tcg_gen_andi_i64(tcg_val
, cpu_reg(s
, rm
), mask
);
5689 tcg_acc
= cpu_reg(s
, rn
);
5690 tcg_bytes
= tcg_const_i32(1 << sz
);
5693 gen_helper_crc32c_64(cpu_reg(s
, rd
), tcg_acc
, tcg_val
, tcg_bytes
);
5695 gen_helper_crc32_64(cpu_reg(s
, rd
), tcg_acc
, tcg_val
, tcg_bytes
);
5698 tcg_temp_free_i32(tcg_bytes
);
5701 /* Data-processing (2 source)
5702 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5703 * +----+---+---+-----------------+------+--------+------+------+
5704 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5705 * +----+---+---+-----------------+------+--------+------+------+
5707 static void disas_data_proc_2src(DisasContext
*s
, uint32_t insn
)
5709 unsigned int sf
, rm
, opcode
, rn
, rd
, setflag
;
5710 sf
= extract32(insn
, 31, 1);
5711 setflag
= extract32(insn
, 29, 1);
5712 rm
= extract32(insn
, 16, 5);
5713 opcode
= extract32(insn
, 10, 6);
5714 rn
= extract32(insn
, 5, 5);
5715 rd
= extract32(insn
, 0, 5);
5717 if (setflag
&& opcode
!= 0) {
5718 unallocated_encoding(s
);
5723 case 0: /* SUBP(S) */
5724 if (sf
== 0 || !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
5725 goto do_unallocated
;
5727 TCGv_i64 tcg_n
, tcg_m
, tcg_d
;
5729 tcg_n
= read_cpu_reg_sp(s
, rn
, true);
5730 tcg_m
= read_cpu_reg_sp(s
, rm
, true);
5731 tcg_gen_sextract_i64(tcg_n
, tcg_n
, 0, 56);
5732 tcg_gen_sextract_i64(tcg_m
, tcg_m
, 0, 56);
5733 tcg_d
= cpu_reg(s
, rd
);
5736 gen_sub_CC(true, tcg_d
, tcg_n
, tcg_m
);
5738 tcg_gen_sub_i64(tcg_d
, tcg_n
, tcg_m
);
5743 handle_div(s
, false, sf
, rm
, rn
, rd
);
5746 handle_div(s
, true, sf
, rm
, rn
, rd
);
5749 if (sf
== 0 || !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
5750 goto do_unallocated
;
5753 gen_helper_irg(cpu_reg_sp(s
, rd
), cpu_env
,
5754 cpu_reg_sp(s
, rn
), cpu_reg(s
, rm
));
5756 gen_address_with_allocation_tag0(cpu_reg_sp(s
, rd
),
5761 if (sf
== 0 || !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
5762 goto do_unallocated
;
5764 TCGv_i64 t1
= tcg_const_i64(1);
5765 TCGv_i64 t2
= tcg_temp_new_i64();
5767 tcg_gen_extract_i64(t2
, cpu_reg_sp(s
, rn
), 56, 4);
5768 tcg_gen_shl_i64(t1
, t1
, t2
);
5769 tcg_gen_or_i64(cpu_reg(s
, rd
), cpu_reg(s
, rm
), t1
);
5771 tcg_temp_free_i64(t1
);
5772 tcg_temp_free_i64(t2
);
5776 handle_shift_reg(s
, A64_SHIFT_TYPE_LSL
, sf
, rm
, rn
, rd
);
5779 handle_shift_reg(s
, A64_SHIFT_TYPE_LSR
, sf
, rm
, rn
, rd
);
5782 handle_shift_reg(s
, A64_SHIFT_TYPE_ASR
, sf
, rm
, rn
, rd
);
5785 handle_shift_reg(s
, A64_SHIFT_TYPE_ROR
, sf
, rm
, rn
, rd
);
5787 case 12: /* PACGA */
5788 if (sf
== 0 || !dc_isar_feature(aa64_pauth
, s
)) {
5789 goto do_unallocated
;
5791 gen_helper_pacga(cpu_reg(s
, rd
), cpu_env
,
5792 cpu_reg(s
, rn
), cpu_reg_sp(s
, rm
));
5801 case 23: /* CRC32 */
5803 int sz
= extract32(opcode
, 0, 2);
5804 bool crc32c
= extract32(opcode
, 2, 1);
5805 handle_crc32(s
, sf
, sz
, crc32c
, rm
, rn
, rd
);
5810 unallocated_encoding(s
);
5816 * Data processing - register
5817 * 31 30 29 28 25 21 20 16 10 0
5818 * +--+---+--+---+-------+-----+-------+-------+---------+
5819 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5820 * +--+---+--+---+-------+-----+-------+-------+---------+
5822 static void disas_data_proc_reg(DisasContext
*s
, uint32_t insn
)
5824 int op0
= extract32(insn
, 30, 1);
5825 int op1
= extract32(insn
, 28, 1);
5826 int op2
= extract32(insn
, 21, 4);
5827 int op3
= extract32(insn
, 10, 6);
5832 /* Add/sub (extended register) */
5833 disas_add_sub_ext_reg(s
, insn
);
5835 /* Add/sub (shifted register) */
5836 disas_add_sub_reg(s
, insn
);
5839 /* Logical (shifted register) */
5840 disas_logic_reg(s
, insn
);
5848 case 0x00: /* Add/subtract (with carry) */
5849 disas_adc_sbc(s
, insn
);
5852 case 0x01: /* Rotate right into flags */
5854 disas_rotate_right_into_flags(s
, insn
);
5857 case 0x02: /* Evaluate into flags */
5861 disas_evaluate_into_flags(s
, insn
);
5865 goto do_unallocated
;
5869 case 0x2: /* Conditional compare */
5870 disas_cc(s
, insn
); /* both imm and reg forms */
5873 case 0x4: /* Conditional select */
5874 disas_cond_select(s
, insn
);
5877 case 0x6: /* Data-processing */
5878 if (op0
) { /* (1 source) */
5879 disas_data_proc_1src(s
, insn
);
5880 } else { /* (2 source) */
5881 disas_data_proc_2src(s
, insn
);
5884 case 0x8 ... 0xf: /* (3 source) */
5885 disas_data_proc_3src(s
, insn
);
5890 unallocated_encoding(s
);
5895 static void handle_fp_compare(DisasContext
*s
, int size
,
5896 unsigned int rn
, unsigned int rm
,
5897 bool cmp_with_zero
, bool signal_all_nans
)
5899 TCGv_i64 tcg_flags
= tcg_temp_new_i64();
5900 TCGv_ptr fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
5902 if (size
== MO_64
) {
5903 TCGv_i64 tcg_vn
, tcg_vm
;
5905 tcg_vn
= read_fp_dreg(s
, rn
);
5906 if (cmp_with_zero
) {
5907 tcg_vm
= tcg_const_i64(0);
5909 tcg_vm
= read_fp_dreg(s
, rm
);
5911 if (signal_all_nans
) {
5912 gen_helper_vfp_cmped_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
5914 gen_helper_vfp_cmpd_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
5916 tcg_temp_free_i64(tcg_vn
);
5917 tcg_temp_free_i64(tcg_vm
);
5919 TCGv_i32 tcg_vn
= tcg_temp_new_i32();
5920 TCGv_i32 tcg_vm
= tcg_temp_new_i32();
5922 read_vec_element_i32(s
, tcg_vn
, rn
, 0, size
);
5923 if (cmp_with_zero
) {
5924 tcg_gen_movi_i32(tcg_vm
, 0);
5926 read_vec_element_i32(s
, tcg_vm
, rm
, 0, size
);
5931 if (signal_all_nans
) {
5932 gen_helper_vfp_cmpes_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
5934 gen_helper_vfp_cmps_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
5938 if (signal_all_nans
) {
5939 gen_helper_vfp_cmpeh_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
5941 gen_helper_vfp_cmph_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
5945 g_assert_not_reached();
5948 tcg_temp_free_i32(tcg_vn
);
5949 tcg_temp_free_i32(tcg_vm
);
5952 tcg_temp_free_ptr(fpst
);
5954 gen_set_nzcv(tcg_flags
);
5956 tcg_temp_free_i64(tcg_flags
);
5959 /* Floating point compare
5960 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5961 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5962 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5963 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5965 static void disas_fp_compare(DisasContext
*s
, uint32_t insn
)
5967 unsigned int mos
, type
, rm
, op
, rn
, opc
, op2r
;
5970 mos
= extract32(insn
, 29, 3);
5971 type
= extract32(insn
, 22, 2);
5972 rm
= extract32(insn
, 16, 5);
5973 op
= extract32(insn
, 14, 2);
5974 rn
= extract32(insn
, 5, 5);
5975 opc
= extract32(insn
, 3, 2);
5976 op2r
= extract32(insn
, 0, 3);
5978 if (mos
|| op
|| op2r
) {
5979 unallocated_encoding(s
);
5992 if (dc_isar_feature(aa64_fp16
, s
)) {
5997 unallocated_encoding(s
);
6001 if (!fp_access_check(s
)) {
6005 handle_fp_compare(s
, size
, rn
, rm
, opc
& 1, opc
& 2);
6008 /* Floating point conditional compare
6009 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6010 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6011 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6012 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6014 static void disas_fp_ccomp(DisasContext
*s
, uint32_t insn
)
6016 unsigned int mos
, type
, rm
, cond
, rn
, op
, nzcv
;
6018 TCGLabel
*label_continue
= NULL
;
6021 mos
= extract32(insn
, 29, 3);
6022 type
= extract32(insn
, 22, 2);
6023 rm
= extract32(insn
, 16, 5);
6024 cond
= extract32(insn
, 12, 4);
6025 rn
= extract32(insn
, 5, 5);
6026 op
= extract32(insn
, 4, 1);
6027 nzcv
= extract32(insn
, 0, 4);
6030 unallocated_encoding(s
);
6043 if (dc_isar_feature(aa64_fp16
, s
)) {
6048 unallocated_encoding(s
);
6052 if (!fp_access_check(s
)) {
6056 if (cond
< 0x0e) { /* not always */
6057 TCGLabel
*label_match
= gen_new_label();
6058 label_continue
= gen_new_label();
6059 arm_gen_test_cc(cond
, label_match
);
6061 tcg_flags
= tcg_const_i64(nzcv
<< 28);
6062 gen_set_nzcv(tcg_flags
);
6063 tcg_temp_free_i64(tcg_flags
);
6064 tcg_gen_br(label_continue
);
6065 gen_set_label(label_match
);
6068 handle_fp_compare(s
, size
, rn
, rm
, false, op
);
6071 gen_set_label(label_continue
);
6075 /* Floating point conditional select
6076 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6077 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6078 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6079 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6081 static void disas_fp_csel(DisasContext
*s
, uint32_t insn
)
6083 unsigned int mos
, type
, rm
, cond
, rn
, rd
;
6084 TCGv_i64 t_true
, t_false
, t_zero
;
6088 mos
= extract32(insn
, 29, 3);
6089 type
= extract32(insn
, 22, 2);
6090 rm
= extract32(insn
, 16, 5);
6091 cond
= extract32(insn
, 12, 4);
6092 rn
= extract32(insn
, 5, 5);
6093 rd
= extract32(insn
, 0, 5);
6096 unallocated_encoding(s
);
6109 if (dc_isar_feature(aa64_fp16
, s
)) {
6114 unallocated_encoding(s
);
6118 if (!fp_access_check(s
)) {
6122 /* Zero extend sreg & hreg inputs to 64 bits now. */
6123 t_true
= tcg_temp_new_i64();
6124 t_false
= tcg_temp_new_i64();
6125 read_vec_element(s
, t_true
, rn
, 0, sz
);
6126 read_vec_element(s
, t_false
, rm
, 0, sz
);
6128 a64_test_cc(&c
, cond
);
6129 t_zero
= tcg_const_i64(0);
6130 tcg_gen_movcond_i64(c
.cond
, t_true
, c
.value
, t_zero
, t_true
, t_false
);
6131 tcg_temp_free_i64(t_zero
);
6132 tcg_temp_free_i64(t_false
);
6135 /* Note that sregs & hregs write back zeros to the high bits,
6136 and we've already done the zero-extension. */
6137 write_fp_dreg(s
, rd
, t_true
);
6138 tcg_temp_free_i64(t_true
);
6141 /* Floating-point data-processing (1 source) - half precision */
6142 static void handle_fp_1src_half(DisasContext
*s
, int opcode
, int rd
, int rn
)
6144 TCGv_ptr fpst
= NULL
;
6145 TCGv_i32 tcg_op
= read_fp_hreg(s
, rn
);
6146 TCGv_i32 tcg_res
= tcg_temp_new_i32();
6149 case 0x0: /* FMOV */
6150 tcg_gen_mov_i32(tcg_res
, tcg_op
);
6152 case 0x1: /* FABS */
6153 tcg_gen_andi_i32(tcg_res
, tcg_op
, 0x7fff);
6155 case 0x2: /* FNEG */
6156 tcg_gen_xori_i32(tcg_res
, tcg_op
, 0x8000);
6158 case 0x3: /* FSQRT */
6159 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
6160 gen_helper_sqrt_f16(tcg_res
, tcg_op
, fpst
);
6162 case 0x8: /* FRINTN */
6163 case 0x9: /* FRINTP */
6164 case 0xa: /* FRINTM */
6165 case 0xb: /* FRINTZ */
6166 case 0xc: /* FRINTA */
6168 TCGv_i32 tcg_rmode
= tcg_const_i32(arm_rmode_to_sf(opcode
& 7));
6169 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
6171 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, fpst
);
6172 gen_helper_advsimd_rinth(tcg_res
, tcg_op
, fpst
);
6174 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, fpst
);
6175 tcg_temp_free_i32(tcg_rmode
);
6178 case 0xe: /* FRINTX */
6179 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
6180 gen_helper_advsimd_rinth_exact(tcg_res
, tcg_op
, fpst
);
6182 case 0xf: /* FRINTI */
6183 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
6184 gen_helper_advsimd_rinth(tcg_res
, tcg_op
, fpst
);
6190 write_fp_sreg(s
, rd
, tcg_res
);
6193 tcg_temp_free_ptr(fpst
);
6195 tcg_temp_free_i32(tcg_op
);
6196 tcg_temp_free_i32(tcg_res
);
6199 /* Floating-point data-processing (1 source) - single precision */
6200 static void handle_fp_1src_single(DisasContext
*s
, int opcode
, int rd
, int rn
)
6202 void (*gen_fpst
)(TCGv_i32
, TCGv_i32
, TCGv_ptr
);
6203 TCGv_i32 tcg_op
, tcg_res
;
6207 tcg_op
= read_fp_sreg(s
, rn
);
6208 tcg_res
= tcg_temp_new_i32();
6211 case 0x0: /* FMOV */
6212 tcg_gen_mov_i32(tcg_res
, tcg_op
);
6214 case 0x1: /* FABS */
6215 gen_helper_vfp_abss(tcg_res
, tcg_op
);
6217 case 0x2: /* FNEG */
6218 gen_helper_vfp_negs(tcg_res
, tcg_op
);
6220 case 0x3: /* FSQRT */
6221 gen_helper_vfp_sqrts(tcg_res
, tcg_op
, cpu_env
);
6223 case 0x8: /* FRINTN */
6224 case 0x9: /* FRINTP */
6225 case 0xa: /* FRINTM */
6226 case 0xb: /* FRINTZ */
6227 case 0xc: /* FRINTA */
6228 rmode
= arm_rmode_to_sf(opcode
& 7);
6229 gen_fpst
= gen_helper_rints
;
6231 case 0xe: /* FRINTX */
6232 gen_fpst
= gen_helper_rints_exact
;
6234 case 0xf: /* FRINTI */
6235 gen_fpst
= gen_helper_rints
;
6237 case 0x10: /* FRINT32Z */
6238 rmode
= float_round_to_zero
;
6239 gen_fpst
= gen_helper_frint32_s
;
6241 case 0x11: /* FRINT32X */
6242 gen_fpst
= gen_helper_frint32_s
;
6244 case 0x12: /* FRINT64Z */
6245 rmode
= float_round_to_zero
;
6246 gen_fpst
= gen_helper_frint64_s
;
6248 case 0x13: /* FRINT64X */
6249 gen_fpst
= gen_helper_frint64_s
;
6252 g_assert_not_reached();
6255 fpst
= fpstatus_ptr(FPST_FPCR
);
6257 TCGv_i32 tcg_rmode
= tcg_const_i32(rmode
);
6258 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, fpst
);
6259 gen_fpst(tcg_res
, tcg_op
, fpst
);
6260 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, fpst
);
6261 tcg_temp_free_i32(tcg_rmode
);
6263 gen_fpst(tcg_res
, tcg_op
, fpst
);
6265 tcg_temp_free_ptr(fpst
);
6268 write_fp_sreg(s
, rd
, tcg_res
);
6269 tcg_temp_free_i32(tcg_op
);
6270 tcg_temp_free_i32(tcg_res
);
6273 /* Floating-point data-processing (1 source) - double precision */
6274 static void handle_fp_1src_double(DisasContext
*s
, int opcode
, int rd
, int rn
)
6276 void (*gen_fpst
)(TCGv_i64
, TCGv_i64
, TCGv_ptr
);
6277 TCGv_i64 tcg_op
, tcg_res
;
6282 case 0x0: /* FMOV */
6283 gen_gvec_fn2(s
, false, rd
, rn
, tcg_gen_gvec_mov
, 0);
6287 tcg_op
= read_fp_dreg(s
, rn
);
6288 tcg_res
= tcg_temp_new_i64();
6291 case 0x1: /* FABS */
6292 gen_helper_vfp_absd(tcg_res
, tcg_op
);
6294 case 0x2: /* FNEG */
6295 gen_helper_vfp_negd(tcg_res
, tcg_op
);
6297 case 0x3: /* FSQRT */
6298 gen_helper_vfp_sqrtd(tcg_res
, tcg_op
, cpu_env
);
6300 case 0x8: /* FRINTN */
6301 case 0x9: /* FRINTP */
6302 case 0xa: /* FRINTM */
6303 case 0xb: /* FRINTZ */
6304 case 0xc: /* FRINTA */
6305 rmode
= arm_rmode_to_sf(opcode
& 7);
6306 gen_fpst
= gen_helper_rintd
;
6308 case 0xe: /* FRINTX */
6309 gen_fpst
= gen_helper_rintd_exact
;
6311 case 0xf: /* FRINTI */
6312 gen_fpst
= gen_helper_rintd
;
6314 case 0x10: /* FRINT32Z */
6315 rmode
= float_round_to_zero
;
6316 gen_fpst
= gen_helper_frint32_d
;
6318 case 0x11: /* FRINT32X */
6319 gen_fpst
= gen_helper_frint32_d
;
6321 case 0x12: /* FRINT64Z */
6322 rmode
= float_round_to_zero
;
6323 gen_fpst
= gen_helper_frint64_d
;
6325 case 0x13: /* FRINT64X */
6326 gen_fpst
= gen_helper_frint64_d
;
6329 g_assert_not_reached();
6332 fpst
= fpstatus_ptr(FPST_FPCR
);
6334 TCGv_i32 tcg_rmode
= tcg_const_i32(rmode
);
6335 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, fpst
);
6336 gen_fpst(tcg_res
, tcg_op
, fpst
);
6337 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, fpst
);
6338 tcg_temp_free_i32(tcg_rmode
);
6340 gen_fpst(tcg_res
, tcg_op
, fpst
);
6342 tcg_temp_free_ptr(fpst
);
6345 write_fp_dreg(s
, rd
, tcg_res
);
6346 tcg_temp_free_i64(tcg_op
);
6347 tcg_temp_free_i64(tcg_res
);
6350 static void handle_fp_fcvt(DisasContext
*s
, int opcode
,
6351 int rd
, int rn
, int dtype
, int ntype
)
6356 TCGv_i32 tcg_rn
= read_fp_sreg(s
, rn
);
6358 /* Single to double */
6359 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
6360 gen_helper_vfp_fcvtds(tcg_rd
, tcg_rn
, cpu_env
);
6361 write_fp_dreg(s
, rd
, tcg_rd
);
6362 tcg_temp_free_i64(tcg_rd
);
6364 /* Single to half */
6365 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
6366 TCGv_i32 ahp
= get_ahp_flag();
6367 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
6369 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd
, tcg_rn
, fpst
, ahp
);
6370 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6371 write_fp_sreg(s
, rd
, tcg_rd
);
6372 tcg_temp_free_i32(tcg_rd
);
6373 tcg_temp_free_i32(ahp
);
6374 tcg_temp_free_ptr(fpst
);
6376 tcg_temp_free_i32(tcg_rn
);
6381 TCGv_i64 tcg_rn
= read_fp_dreg(s
, rn
);
6382 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
6384 /* Double to single */
6385 gen_helper_vfp_fcvtsd(tcg_rd
, tcg_rn
, cpu_env
);
6387 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
6388 TCGv_i32 ahp
= get_ahp_flag();
6389 /* Double to half */
6390 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd
, tcg_rn
, fpst
, ahp
);
6391 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6392 tcg_temp_free_ptr(fpst
);
6393 tcg_temp_free_i32(ahp
);
6395 write_fp_sreg(s
, rd
, tcg_rd
);
6396 tcg_temp_free_i32(tcg_rd
);
6397 tcg_temp_free_i64(tcg_rn
);
6402 TCGv_i32 tcg_rn
= read_fp_sreg(s
, rn
);
6403 TCGv_ptr tcg_fpst
= fpstatus_ptr(FPST_FPCR
);
6404 TCGv_i32 tcg_ahp
= get_ahp_flag();
6405 tcg_gen_ext16u_i32(tcg_rn
, tcg_rn
);
6407 /* Half to single */
6408 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
6409 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd
, tcg_rn
, tcg_fpst
, tcg_ahp
);
6410 write_fp_sreg(s
, rd
, tcg_rd
);
6411 tcg_temp_free_i32(tcg_rd
);
6413 /* Half to double */
6414 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
6415 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd
, tcg_rn
, tcg_fpst
, tcg_ahp
);
6416 write_fp_dreg(s
, rd
, tcg_rd
);
6417 tcg_temp_free_i64(tcg_rd
);
6419 tcg_temp_free_i32(tcg_rn
);
6420 tcg_temp_free_ptr(tcg_fpst
);
6421 tcg_temp_free_i32(tcg_ahp
);
6429 /* Floating point data-processing (1 source)
6430 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6431 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6432 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6433 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6435 static void disas_fp_1src(DisasContext
*s
, uint32_t insn
)
6437 int mos
= extract32(insn
, 29, 3);
6438 int type
= extract32(insn
, 22, 2);
6439 int opcode
= extract32(insn
, 15, 6);
6440 int rn
= extract32(insn
, 5, 5);
6441 int rd
= extract32(insn
, 0, 5);
6444 unallocated_encoding(s
);
6449 case 0x4: case 0x5: case 0x7:
6451 /* FCVT between half, single and double precision */
6452 int dtype
= extract32(opcode
, 0, 2);
6453 if (type
== 2 || dtype
== type
) {
6454 unallocated_encoding(s
);
6457 if (!fp_access_check(s
)) {
6461 handle_fp_fcvt(s
, opcode
, rd
, rn
, dtype
, type
);
6465 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6466 if (type
> 1 || !dc_isar_feature(aa64_frint
, s
)) {
6467 unallocated_encoding(s
);
6474 /* 32-to-32 and 64-to-64 ops */
6477 if (!fp_access_check(s
)) {
6480 handle_fp_1src_single(s
, opcode
, rd
, rn
);
6483 if (!fp_access_check(s
)) {
6486 handle_fp_1src_double(s
, opcode
, rd
, rn
);
6489 if (!dc_isar_feature(aa64_fp16
, s
)) {
6490 unallocated_encoding(s
);
6494 if (!fp_access_check(s
)) {
6497 handle_fp_1src_half(s
, opcode
, rd
, rn
);
6500 unallocated_encoding(s
);
6505 unallocated_encoding(s
);
6510 /* Floating-point data-processing (2 source) - single precision */
6511 static void handle_fp_2src_single(DisasContext
*s
, int opcode
,
6512 int rd
, int rn
, int rm
)
6519 tcg_res
= tcg_temp_new_i32();
6520 fpst
= fpstatus_ptr(FPST_FPCR
);
6521 tcg_op1
= read_fp_sreg(s
, rn
);
6522 tcg_op2
= read_fp_sreg(s
, rm
);
6525 case 0x0: /* FMUL */
6526 gen_helper_vfp_muls(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6528 case 0x1: /* FDIV */
6529 gen_helper_vfp_divs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6531 case 0x2: /* FADD */
6532 gen_helper_vfp_adds(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6534 case 0x3: /* FSUB */
6535 gen_helper_vfp_subs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6537 case 0x4: /* FMAX */
6538 gen_helper_vfp_maxs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6540 case 0x5: /* FMIN */
6541 gen_helper_vfp_mins(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6543 case 0x6: /* FMAXNM */
6544 gen_helper_vfp_maxnums(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6546 case 0x7: /* FMINNM */
6547 gen_helper_vfp_minnums(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6549 case 0x8: /* FNMUL */
6550 gen_helper_vfp_muls(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6551 gen_helper_vfp_negs(tcg_res
, tcg_res
);
6555 write_fp_sreg(s
, rd
, tcg_res
);
6557 tcg_temp_free_ptr(fpst
);
6558 tcg_temp_free_i32(tcg_op1
);
6559 tcg_temp_free_i32(tcg_op2
);
6560 tcg_temp_free_i32(tcg_res
);
6563 /* Floating-point data-processing (2 source) - double precision */
6564 static void handle_fp_2src_double(DisasContext
*s
, int opcode
,
6565 int rd
, int rn
, int rm
)
6572 tcg_res
= tcg_temp_new_i64();
6573 fpst
= fpstatus_ptr(FPST_FPCR
);
6574 tcg_op1
= read_fp_dreg(s
, rn
);
6575 tcg_op2
= read_fp_dreg(s
, rm
);
6578 case 0x0: /* FMUL */
6579 gen_helper_vfp_muld(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6581 case 0x1: /* FDIV */
6582 gen_helper_vfp_divd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6584 case 0x2: /* FADD */
6585 gen_helper_vfp_addd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6587 case 0x3: /* FSUB */
6588 gen_helper_vfp_subd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6590 case 0x4: /* FMAX */
6591 gen_helper_vfp_maxd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6593 case 0x5: /* FMIN */
6594 gen_helper_vfp_mind(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6596 case 0x6: /* FMAXNM */
6597 gen_helper_vfp_maxnumd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6599 case 0x7: /* FMINNM */
6600 gen_helper_vfp_minnumd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6602 case 0x8: /* FNMUL */
6603 gen_helper_vfp_muld(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6604 gen_helper_vfp_negd(tcg_res
, tcg_res
);
6608 write_fp_dreg(s
, rd
, tcg_res
);
6610 tcg_temp_free_ptr(fpst
);
6611 tcg_temp_free_i64(tcg_op1
);
6612 tcg_temp_free_i64(tcg_op2
);
6613 tcg_temp_free_i64(tcg_res
);
6616 /* Floating-point data-processing (2 source) - half precision */
6617 static void handle_fp_2src_half(DisasContext
*s
, int opcode
,
6618 int rd
, int rn
, int rm
)
6625 tcg_res
= tcg_temp_new_i32();
6626 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
6627 tcg_op1
= read_fp_hreg(s
, rn
);
6628 tcg_op2
= read_fp_hreg(s
, rm
);
6631 case 0x0: /* FMUL */
6632 gen_helper_advsimd_mulh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6634 case 0x1: /* FDIV */
6635 gen_helper_advsimd_divh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6637 case 0x2: /* FADD */
6638 gen_helper_advsimd_addh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6640 case 0x3: /* FSUB */
6641 gen_helper_advsimd_subh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6643 case 0x4: /* FMAX */
6644 gen_helper_advsimd_maxh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6646 case 0x5: /* FMIN */
6647 gen_helper_advsimd_minh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6649 case 0x6: /* FMAXNM */
6650 gen_helper_advsimd_maxnumh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6652 case 0x7: /* FMINNM */
6653 gen_helper_advsimd_minnumh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6655 case 0x8: /* FNMUL */
6656 gen_helper_advsimd_mulh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
6657 tcg_gen_xori_i32(tcg_res
, tcg_res
, 0x8000);
6660 g_assert_not_reached();
6663 write_fp_sreg(s
, rd
, tcg_res
);
6665 tcg_temp_free_ptr(fpst
);
6666 tcg_temp_free_i32(tcg_op1
);
6667 tcg_temp_free_i32(tcg_op2
);
6668 tcg_temp_free_i32(tcg_res
);
6671 /* Floating point data-processing (2 source)
6672 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6673 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6674 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6675 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6677 static void disas_fp_2src(DisasContext
*s
, uint32_t insn
)
6679 int mos
= extract32(insn
, 29, 3);
6680 int type
= extract32(insn
, 22, 2);
6681 int rd
= extract32(insn
, 0, 5);
6682 int rn
= extract32(insn
, 5, 5);
6683 int rm
= extract32(insn
, 16, 5);
6684 int opcode
= extract32(insn
, 12, 4);
6686 if (opcode
> 8 || mos
) {
6687 unallocated_encoding(s
);
6693 if (!fp_access_check(s
)) {
6696 handle_fp_2src_single(s
, opcode
, rd
, rn
, rm
);
6699 if (!fp_access_check(s
)) {
6702 handle_fp_2src_double(s
, opcode
, rd
, rn
, rm
);
6705 if (!dc_isar_feature(aa64_fp16
, s
)) {
6706 unallocated_encoding(s
);
6709 if (!fp_access_check(s
)) {
6712 handle_fp_2src_half(s
, opcode
, rd
, rn
, rm
);
6715 unallocated_encoding(s
);
6719 /* Floating-point data-processing (3 source) - single precision */
6720 static void handle_fp_3src_single(DisasContext
*s
, bool o0
, bool o1
,
6721 int rd
, int rn
, int rm
, int ra
)
6723 TCGv_i32 tcg_op1
, tcg_op2
, tcg_op3
;
6724 TCGv_i32 tcg_res
= tcg_temp_new_i32();
6725 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
6727 tcg_op1
= read_fp_sreg(s
, rn
);
6728 tcg_op2
= read_fp_sreg(s
, rm
);
6729 tcg_op3
= read_fp_sreg(s
, ra
);
6731 /* These are fused multiply-add, and must be done as one
6732 * floating point operation with no rounding between the
6733 * multiplication and addition steps.
6734 * NB that doing the negations here as separate steps is
6735 * correct : an input NaN should come out with its sign bit
6736 * flipped if it is a negated-input.
6739 gen_helper_vfp_negs(tcg_op3
, tcg_op3
);
6743 gen_helper_vfp_negs(tcg_op1
, tcg_op1
);
6746 gen_helper_vfp_muladds(tcg_res
, tcg_op1
, tcg_op2
, tcg_op3
, fpst
);
6748 write_fp_sreg(s
, rd
, tcg_res
);
6750 tcg_temp_free_ptr(fpst
);
6751 tcg_temp_free_i32(tcg_op1
);
6752 tcg_temp_free_i32(tcg_op2
);
6753 tcg_temp_free_i32(tcg_op3
);
6754 tcg_temp_free_i32(tcg_res
);
6757 /* Floating-point data-processing (3 source) - double precision */
6758 static void handle_fp_3src_double(DisasContext
*s
, bool o0
, bool o1
,
6759 int rd
, int rn
, int rm
, int ra
)
6761 TCGv_i64 tcg_op1
, tcg_op2
, tcg_op3
;
6762 TCGv_i64 tcg_res
= tcg_temp_new_i64();
6763 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
6765 tcg_op1
= read_fp_dreg(s
, rn
);
6766 tcg_op2
= read_fp_dreg(s
, rm
);
6767 tcg_op3
= read_fp_dreg(s
, ra
);
6769 /* These are fused multiply-add, and must be done as one
6770 * floating point operation with no rounding between the
6771 * multiplication and addition steps.
6772 * NB that doing the negations here as separate steps is
6773 * correct : an input NaN should come out with its sign bit
6774 * flipped if it is a negated-input.
6777 gen_helper_vfp_negd(tcg_op3
, tcg_op3
);
6781 gen_helper_vfp_negd(tcg_op1
, tcg_op1
);
6784 gen_helper_vfp_muladdd(tcg_res
, tcg_op1
, tcg_op2
, tcg_op3
, fpst
);
6786 write_fp_dreg(s
, rd
, tcg_res
);
6788 tcg_temp_free_ptr(fpst
);
6789 tcg_temp_free_i64(tcg_op1
);
6790 tcg_temp_free_i64(tcg_op2
);
6791 tcg_temp_free_i64(tcg_op3
);
6792 tcg_temp_free_i64(tcg_res
);
6795 /* Floating-point data-processing (3 source) - half precision */
6796 static void handle_fp_3src_half(DisasContext
*s
, bool o0
, bool o1
,
6797 int rd
, int rn
, int rm
, int ra
)
6799 TCGv_i32 tcg_op1
, tcg_op2
, tcg_op3
;
6800 TCGv_i32 tcg_res
= tcg_temp_new_i32();
6801 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR_F16
);
6803 tcg_op1
= read_fp_hreg(s
, rn
);
6804 tcg_op2
= read_fp_hreg(s
, rm
);
6805 tcg_op3
= read_fp_hreg(s
, ra
);
6807 /* These are fused multiply-add, and must be done as one
6808 * floating point operation with no rounding between the
6809 * multiplication and addition steps.
6810 * NB that doing the negations here as separate steps is
6811 * correct : an input NaN should come out with its sign bit
6812 * flipped if it is a negated-input.
6815 tcg_gen_xori_i32(tcg_op3
, tcg_op3
, 0x8000);
6819 tcg_gen_xori_i32(tcg_op1
, tcg_op1
, 0x8000);
6822 gen_helper_advsimd_muladdh(tcg_res
, tcg_op1
, tcg_op2
, tcg_op3
, fpst
);
6824 write_fp_sreg(s
, rd
, tcg_res
);
6826 tcg_temp_free_ptr(fpst
);
6827 tcg_temp_free_i32(tcg_op1
);
6828 tcg_temp_free_i32(tcg_op2
);
6829 tcg_temp_free_i32(tcg_op3
);
6830 tcg_temp_free_i32(tcg_res
);
6833 /* Floating point data-processing (3 source)
6834 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6835 * +---+---+---+-----------+------+----+------+----+------+------+------+
6836 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6837 * +---+---+---+-----------+------+----+------+----+------+------+------+
6839 static void disas_fp_3src(DisasContext
*s
, uint32_t insn
)
6841 int mos
= extract32(insn
, 29, 3);
6842 int type
= extract32(insn
, 22, 2);
6843 int rd
= extract32(insn
, 0, 5);
6844 int rn
= extract32(insn
, 5, 5);
6845 int ra
= extract32(insn
, 10, 5);
6846 int rm
= extract32(insn
, 16, 5);
6847 bool o0
= extract32(insn
, 15, 1);
6848 bool o1
= extract32(insn
, 21, 1);
6851 unallocated_encoding(s
);
6857 if (!fp_access_check(s
)) {
6860 handle_fp_3src_single(s
, o0
, o1
, rd
, rn
, rm
, ra
);
6863 if (!fp_access_check(s
)) {
6866 handle_fp_3src_double(s
, o0
, o1
, rd
, rn
, rm
, ra
);
6869 if (!dc_isar_feature(aa64_fp16
, s
)) {
6870 unallocated_encoding(s
);
6873 if (!fp_access_check(s
)) {
6876 handle_fp_3src_half(s
, o0
, o1
, rd
, rn
, rm
, ra
);
6879 unallocated_encoding(s
);
6883 /* Floating point immediate
6884 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6885 * +---+---+---+-----------+------+---+------------+-------+------+------+
6886 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6887 * +---+---+---+-----------+------+---+------------+-------+------+------+
6889 static void disas_fp_imm(DisasContext
*s
, uint32_t insn
)
6891 int rd
= extract32(insn
, 0, 5);
6892 int imm5
= extract32(insn
, 5, 5);
6893 int imm8
= extract32(insn
, 13, 8);
6894 int type
= extract32(insn
, 22, 2);
6895 int mos
= extract32(insn
, 29, 3);
6901 unallocated_encoding(s
);
6914 if (dc_isar_feature(aa64_fp16
, s
)) {
6919 unallocated_encoding(s
);
6923 if (!fp_access_check(s
)) {
6927 imm
= vfp_expand_imm(sz
, imm8
);
6929 tcg_res
= tcg_const_i64(imm
);
6930 write_fp_dreg(s
, rd
, tcg_res
);
6931 tcg_temp_free_i64(tcg_res
);
6934 /* Handle floating point <=> fixed point conversions. Note that we can
6935 * also deal with fp <=> integer conversions as a special case (scale == 64)
6936 * OPTME: consider handling that special case specially or at least skipping
6937 * the call to scalbn in the helpers for zero shifts.
6939 static void handle_fpfpcvt(DisasContext
*s
, int rd
, int rn
, int opcode
,
6940 bool itof
, int rmode
, int scale
, int sf
, int type
)
6942 bool is_signed
= !(opcode
& 1);
6943 TCGv_ptr tcg_fpstatus
;
6944 TCGv_i32 tcg_shift
, tcg_single
;
6945 TCGv_i64 tcg_double
;
6947 tcg_fpstatus
= fpstatus_ptr(type
== 3 ? FPST_FPCR_F16
: FPST_FPCR
);
6949 tcg_shift
= tcg_const_i32(64 - scale
);
6952 TCGv_i64 tcg_int
= cpu_reg(s
, rn
);
6954 TCGv_i64 tcg_extend
= new_tmp_a64(s
);
6957 tcg_gen_ext32s_i64(tcg_extend
, tcg_int
);
6959 tcg_gen_ext32u_i64(tcg_extend
, tcg_int
);
6962 tcg_int
= tcg_extend
;
6966 case 1: /* float64 */
6967 tcg_double
= tcg_temp_new_i64();
6969 gen_helper_vfp_sqtod(tcg_double
, tcg_int
,
6970 tcg_shift
, tcg_fpstatus
);
6972 gen_helper_vfp_uqtod(tcg_double
, tcg_int
,
6973 tcg_shift
, tcg_fpstatus
);
6975 write_fp_dreg(s
, rd
, tcg_double
);
6976 tcg_temp_free_i64(tcg_double
);
6979 case 0: /* float32 */
6980 tcg_single
= tcg_temp_new_i32();
6982 gen_helper_vfp_sqtos(tcg_single
, tcg_int
,
6983 tcg_shift
, tcg_fpstatus
);
6985 gen_helper_vfp_uqtos(tcg_single
, tcg_int
,
6986 tcg_shift
, tcg_fpstatus
);
6988 write_fp_sreg(s
, rd
, tcg_single
);
6989 tcg_temp_free_i32(tcg_single
);
6992 case 3: /* float16 */
6993 tcg_single
= tcg_temp_new_i32();
6995 gen_helper_vfp_sqtoh(tcg_single
, tcg_int
,
6996 tcg_shift
, tcg_fpstatus
);
6998 gen_helper_vfp_uqtoh(tcg_single
, tcg_int
,
6999 tcg_shift
, tcg_fpstatus
);
7001 write_fp_sreg(s
, rd
, tcg_single
);
7002 tcg_temp_free_i32(tcg_single
);
7006 g_assert_not_reached();
7009 TCGv_i64 tcg_int
= cpu_reg(s
, rd
);
7012 if (extract32(opcode
, 2, 1)) {
7013 /* There are too many rounding modes to all fit into rmode,
7014 * so FCVTA[US] is a special case.
7016 rmode
= FPROUNDING_TIEAWAY
;
7019 tcg_rmode
= tcg_const_i32(arm_rmode_to_sf(rmode
));
7021 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
7024 case 1: /* float64 */
7025 tcg_double
= read_fp_dreg(s
, rn
);
7028 gen_helper_vfp_tosld(tcg_int
, tcg_double
,
7029 tcg_shift
, tcg_fpstatus
);
7031 gen_helper_vfp_tosqd(tcg_int
, tcg_double
,
7032 tcg_shift
, tcg_fpstatus
);
7036 gen_helper_vfp_tould(tcg_int
, tcg_double
,
7037 tcg_shift
, tcg_fpstatus
);
7039 gen_helper_vfp_touqd(tcg_int
, tcg_double
,
7040 tcg_shift
, tcg_fpstatus
);
7044 tcg_gen_ext32u_i64(tcg_int
, tcg_int
);
7046 tcg_temp_free_i64(tcg_double
);
7049 case 0: /* float32 */
7050 tcg_single
= read_fp_sreg(s
, rn
);
7053 gen_helper_vfp_tosqs(tcg_int
, tcg_single
,
7054 tcg_shift
, tcg_fpstatus
);
7056 gen_helper_vfp_touqs(tcg_int
, tcg_single
,
7057 tcg_shift
, tcg_fpstatus
);
7060 TCGv_i32 tcg_dest
= tcg_temp_new_i32();
7062 gen_helper_vfp_tosls(tcg_dest
, tcg_single
,
7063 tcg_shift
, tcg_fpstatus
);
7065 gen_helper_vfp_touls(tcg_dest
, tcg_single
,
7066 tcg_shift
, tcg_fpstatus
);
7068 tcg_gen_extu_i32_i64(tcg_int
, tcg_dest
);
7069 tcg_temp_free_i32(tcg_dest
);
7071 tcg_temp_free_i32(tcg_single
);
7074 case 3: /* float16 */
7075 tcg_single
= read_fp_sreg(s
, rn
);
7078 gen_helper_vfp_tosqh(tcg_int
, tcg_single
,
7079 tcg_shift
, tcg_fpstatus
);
7081 gen_helper_vfp_touqh(tcg_int
, tcg_single
,
7082 tcg_shift
, tcg_fpstatus
);
7085 TCGv_i32 tcg_dest
= tcg_temp_new_i32();
7087 gen_helper_vfp_toslh(tcg_dest
, tcg_single
,
7088 tcg_shift
, tcg_fpstatus
);
7090 gen_helper_vfp_toulh(tcg_dest
, tcg_single
,
7091 tcg_shift
, tcg_fpstatus
);
7093 tcg_gen_extu_i32_i64(tcg_int
, tcg_dest
);
7094 tcg_temp_free_i32(tcg_dest
);
7096 tcg_temp_free_i32(tcg_single
);
7100 g_assert_not_reached();
7103 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
7104 tcg_temp_free_i32(tcg_rmode
);
7107 tcg_temp_free_ptr(tcg_fpstatus
);
7108 tcg_temp_free_i32(tcg_shift
);
7111 /* Floating point <-> fixed point conversions
7112 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7113 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7114 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7115 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7117 static void disas_fp_fixed_conv(DisasContext
*s
, uint32_t insn
)
7119 int rd
= extract32(insn
, 0, 5);
7120 int rn
= extract32(insn
, 5, 5);
7121 int scale
= extract32(insn
, 10, 6);
7122 int opcode
= extract32(insn
, 16, 3);
7123 int rmode
= extract32(insn
, 19, 2);
7124 int type
= extract32(insn
, 22, 2);
7125 bool sbit
= extract32(insn
, 29, 1);
7126 bool sf
= extract32(insn
, 31, 1);
7129 if (sbit
|| (!sf
&& scale
< 32)) {
7130 unallocated_encoding(s
);
7135 case 0: /* float32 */
7136 case 1: /* float64 */
7138 case 3: /* float16 */
7139 if (dc_isar_feature(aa64_fp16
, s
)) {
7144 unallocated_encoding(s
);
7148 switch ((rmode
<< 3) | opcode
) {
7149 case 0x2: /* SCVTF */
7150 case 0x3: /* UCVTF */
7153 case 0x18: /* FCVTZS */
7154 case 0x19: /* FCVTZU */
7158 unallocated_encoding(s
);
7162 if (!fp_access_check(s
)) {
7166 handle_fpfpcvt(s
, rd
, rn
, opcode
, itof
, FPROUNDING_ZERO
, scale
, sf
, type
);
7169 static void handle_fmov(DisasContext
*s
, int rd
, int rn
, int type
, bool itof
)
7171 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7172 * without conversion.
7176 TCGv_i64 tcg_rn
= cpu_reg(s
, rn
);
7182 tmp
= tcg_temp_new_i64();
7183 tcg_gen_ext32u_i64(tmp
, tcg_rn
);
7184 write_fp_dreg(s
, rd
, tmp
);
7185 tcg_temp_free_i64(tmp
);
7189 write_fp_dreg(s
, rd
, tcg_rn
);
7192 /* 64 bit to top half. */
7193 tcg_gen_st_i64(tcg_rn
, cpu_env
, fp_reg_hi_offset(s
, rd
));
7194 clear_vec_high(s
, true, rd
);
7198 tmp
= tcg_temp_new_i64();
7199 tcg_gen_ext16u_i64(tmp
, tcg_rn
);
7200 write_fp_dreg(s
, rd
, tmp
);
7201 tcg_temp_free_i64(tmp
);
7204 g_assert_not_reached();
7207 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
7212 tcg_gen_ld32u_i64(tcg_rd
, cpu_env
, fp_reg_offset(s
, rn
, MO_32
));
7216 tcg_gen_ld_i64(tcg_rd
, cpu_env
, fp_reg_offset(s
, rn
, MO_64
));
7219 /* 64 bits from top half */
7220 tcg_gen_ld_i64(tcg_rd
, cpu_env
, fp_reg_hi_offset(s
, rn
));
7224 tcg_gen_ld16u_i64(tcg_rd
, cpu_env
, fp_reg_offset(s
, rn
, MO_16
));
7227 g_assert_not_reached();
7232 static void handle_fjcvtzs(DisasContext
*s
, int rd
, int rn
)
7234 TCGv_i64 t
= read_fp_dreg(s
, rn
);
7235 TCGv_ptr fpstatus
= fpstatus_ptr(FPST_FPCR
);
7237 gen_helper_fjcvtzs(t
, t
, fpstatus
);
7239 tcg_temp_free_ptr(fpstatus
);
7241 tcg_gen_ext32u_i64(cpu_reg(s
, rd
), t
);
7242 tcg_gen_extrh_i64_i32(cpu_ZF
, t
);
7243 tcg_gen_movi_i32(cpu_CF
, 0);
7244 tcg_gen_movi_i32(cpu_NF
, 0);
7245 tcg_gen_movi_i32(cpu_VF
, 0);
7247 tcg_temp_free_i64(t
);
7250 /* Floating point <-> integer conversions
7251 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7252 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7253 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7254 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7256 static void disas_fp_int_conv(DisasContext
*s
, uint32_t insn
)
7258 int rd
= extract32(insn
, 0, 5);
7259 int rn
= extract32(insn
, 5, 5);
7260 int opcode
= extract32(insn
, 16, 3);
7261 int rmode
= extract32(insn
, 19, 2);
7262 int type
= extract32(insn
, 22, 2);
7263 bool sbit
= extract32(insn
, 29, 1);
7264 bool sf
= extract32(insn
, 31, 1);
7268 goto do_unallocated
;
7276 case 4: /* FCVTAS */
7277 case 5: /* FCVTAU */
7279 goto do_unallocated
;
7282 case 0: /* FCVT[NPMZ]S */
7283 case 1: /* FCVT[NPMZ]U */
7285 case 0: /* float32 */
7286 case 1: /* float64 */
7288 case 3: /* float16 */
7289 if (!dc_isar_feature(aa64_fp16
, s
)) {
7290 goto do_unallocated
;
7294 goto do_unallocated
;
7296 if (!fp_access_check(s
)) {
7299 handle_fpfpcvt(s
, rd
, rn
, opcode
, itof
, rmode
, 64, sf
, type
);
7303 switch (sf
<< 7 | type
<< 5 | rmode
<< 3 | opcode
) {
7304 case 0b01100110: /* FMOV half <-> 32-bit int */
7306 case 0b11100110: /* FMOV half <-> 64-bit int */
7308 if (!dc_isar_feature(aa64_fp16
, s
)) {
7309 goto do_unallocated
;
7312 case 0b00000110: /* FMOV 32-bit */
7314 case 0b10100110: /* FMOV 64-bit */
7316 case 0b11001110: /* FMOV top half of 128-bit */
7318 if (!fp_access_check(s
)) {
7322 handle_fmov(s
, rd
, rn
, type
, itof
);
7325 case 0b00111110: /* FJCVTZS */
7326 if (!dc_isar_feature(aa64_jscvt
, s
)) {
7327 goto do_unallocated
;
7328 } else if (fp_access_check(s
)) {
7329 handle_fjcvtzs(s
, rd
, rn
);
7335 unallocated_encoding(s
);
7342 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7343 * 31 30 29 28 25 24 0
7344 * +---+---+---+---------+-----------------------------+
7345 * | | 0 | | 1 1 1 1 | |
7346 * +---+---+---+---------+-----------------------------+
7348 static void disas_data_proc_fp(DisasContext
*s
, uint32_t insn
)
7350 if (extract32(insn
, 24, 1)) {
7351 /* Floating point data-processing (3 source) */
7352 disas_fp_3src(s
, insn
);
7353 } else if (extract32(insn
, 21, 1) == 0) {
7354 /* Floating point to fixed point conversions */
7355 disas_fp_fixed_conv(s
, insn
);
7357 switch (extract32(insn
, 10, 2)) {
7359 /* Floating point conditional compare */
7360 disas_fp_ccomp(s
, insn
);
7363 /* Floating point data-processing (2 source) */
7364 disas_fp_2src(s
, insn
);
7367 /* Floating point conditional select */
7368 disas_fp_csel(s
, insn
);
7371 switch (ctz32(extract32(insn
, 12, 4))) {
7372 case 0: /* [15:12] == xxx1 */
7373 /* Floating point immediate */
7374 disas_fp_imm(s
, insn
);
7376 case 1: /* [15:12] == xx10 */
7377 /* Floating point compare */
7378 disas_fp_compare(s
, insn
);
7380 case 2: /* [15:12] == x100 */
7381 /* Floating point data-processing (1 source) */
7382 disas_fp_1src(s
, insn
);
7384 case 3: /* [15:12] == 1000 */
7385 unallocated_encoding(s
);
7387 default: /* [15:12] == 0000 */
7388 /* Floating point <-> integer conversions */
7389 disas_fp_int_conv(s
, insn
);
7397 static void do_ext64(DisasContext
*s
, TCGv_i64 tcg_left
, TCGv_i64 tcg_right
,
7400 /* Extract 64 bits from the middle of two concatenated 64 bit
7401 * vector register slices left:right. The extracted bits start
7402 * at 'pos' bits into the right (least significant) side.
7403 * We return the result in tcg_right, and guarantee not to
7406 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
7407 assert(pos
> 0 && pos
< 64);
7409 tcg_gen_shri_i64(tcg_right
, tcg_right
, pos
);
7410 tcg_gen_shli_i64(tcg_tmp
, tcg_left
, 64 - pos
);
7411 tcg_gen_or_i64(tcg_right
, tcg_right
, tcg_tmp
);
7413 tcg_temp_free_i64(tcg_tmp
);
7417 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7418 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7419 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7420 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7422 static void disas_simd_ext(DisasContext
*s
, uint32_t insn
)
7424 int is_q
= extract32(insn
, 30, 1);
7425 int op2
= extract32(insn
, 22, 2);
7426 int imm4
= extract32(insn
, 11, 4);
7427 int rm
= extract32(insn
, 16, 5);
7428 int rn
= extract32(insn
, 5, 5);
7429 int rd
= extract32(insn
, 0, 5);
7430 int pos
= imm4
<< 3;
7431 TCGv_i64 tcg_resl
, tcg_resh
;
7433 if (op2
!= 0 || (!is_q
&& extract32(imm4
, 3, 1))) {
7434 unallocated_encoding(s
);
7438 if (!fp_access_check(s
)) {
7442 tcg_resh
= tcg_temp_new_i64();
7443 tcg_resl
= tcg_temp_new_i64();
7445 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7446 * either extracting 128 bits from a 128:128 concatenation, or
7447 * extracting 64 bits from a 64:64 concatenation.
7450 read_vec_element(s
, tcg_resl
, rn
, 0, MO_64
);
7452 read_vec_element(s
, tcg_resh
, rm
, 0, MO_64
);
7453 do_ext64(s
, tcg_resh
, tcg_resl
, pos
);
7461 EltPosns eltposns
[] = { {rn
, 0}, {rn
, 1}, {rm
, 0}, {rm
, 1} };
7462 EltPosns
*elt
= eltposns
;
7469 read_vec_element(s
, tcg_resl
, elt
->reg
, elt
->elt
, MO_64
);
7471 read_vec_element(s
, tcg_resh
, elt
->reg
, elt
->elt
, MO_64
);
7474 do_ext64(s
, tcg_resh
, tcg_resl
, pos
);
7475 tcg_hh
= tcg_temp_new_i64();
7476 read_vec_element(s
, tcg_hh
, elt
->reg
, elt
->elt
, MO_64
);
7477 do_ext64(s
, tcg_hh
, tcg_resh
, pos
);
7478 tcg_temp_free_i64(tcg_hh
);
7482 write_vec_element(s
, tcg_resl
, rd
, 0, MO_64
);
7483 tcg_temp_free_i64(tcg_resl
);
7485 write_vec_element(s
, tcg_resh
, rd
, 1, MO_64
);
7487 tcg_temp_free_i64(tcg_resh
);
7488 clear_vec_high(s
, is_q
, rd
);
7492 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7493 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7494 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7495 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7497 static void disas_simd_tb(DisasContext
*s
, uint32_t insn
)
7499 int op2
= extract32(insn
, 22, 2);
7500 int is_q
= extract32(insn
, 30, 1);
7501 int rm
= extract32(insn
, 16, 5);
7502 int rn
= extract32(insn
, 5, 5);
7503 int rd
= extract32(insn
, 0, 5);
7504 int is_tblx
= extract32(insn
, 12, 1);
7505 int len
= extract32(insn
, 13, 2);
7506 TCGv_i64 tcg_resl
, tcg_resh
, tcg_idx
;
7507 TCGv_i32 tcg_regno
, tcg_numregs
;
7510 unallocated_encoding(s
);
7514 if (!fp_access_check(s
)) {
7518 /* This does a table lookup: for every byte element in the input
7519 * we index into a table formed from up to four vector registers,
7520 * and then the output is the result of the lookups. Our helper
7521 * function does the lookup operation for a single 64 bit part of
7524 tcg_resl
= tcg_temp_new_i64();
7528 read_vec_element(s
, tcg_resl
, rd
, 0, MO_64
);
7530 tcg_gen_movi_i64(tcg_resl
, 0);
7534 tcg_resh
= tcg_temp_new_i64();
7536 read_vec_element(s
, tcg_resh
, rd
, 1, MO_64
);
7538 tcg_gen_movi_i64(tcg_resh
, 0);
7542 tcg_idx
= tcg_temp_new_i64();
7543 tcg_regno
= tcg_const_i32(rn
);
7544 tcg_numregs
= tcg_const_i32(len
+ 1);
7545 read_vec_element(s
, tcg_idx
, rm
, 0, MO_64
);
7546 gen_helper_simd_tbl(tcg_resl
, cpu_env
, tcg_resl
, tcg_idx
,
7547 tcg_regno
, tcg_numregs
);
7549 read_vec_element(s
, tcg_idx
, rm
, 1, MO_64
);
7550 gen_helper_simd_tbl(tcg_resh
, cpu_env
, tcg_resh
, tcg_idx
,
7551 tcg_regno
, tcg_numregs
);
7553 tcg_temp_free_i64(tcg_idx
);
7554 tcg_temp_free_i32(tcg_regno
);
7555 tcg_temp_free_i32(tcg_numregs
);
7557 write_vec_element(s
, tcg_resl
, rd
, 0, MO_64
);
7558 tcg_temp_free_i64(tcg_resl
);
7561 write_vec_element(s
, tcg_resh
, rd
, 1, MO_64
);
7562 tcg_temp_free_i64(tcg_resh
);
7564 clear_vec_high(s
, is_q
, rd
);
7568 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7569 * +---+---+-------------+------+---+------+---+------------------+------+
7570 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7571 * +---+---+-------------+------+---+------+---+------------------+------+
7573 static void disas_simd_zip_trn(DisasContext
*s
, uint32_t insn
)
7575 int rd
= extract32(insn
, 0, 5);
7576 int rn
= extract32(insn
, 5, 5);
7577 int rm
= extract32(insn
, 16, 5);
7578 int size
= extract32(insn
, 22, 2);
7579 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7580 * bit 2 indicates 1 vs 2 variant of the insn.
7582 int opcode
= extract32(insn
, 12, 2);
7583 bool part
= extract32(insn
, 14, 1);
7584 bool is_q
= extract32(insn
, 30, 1);
7585 int esize
= 8 << size
;
7587 int datasize
= is_q
? 128 : 64;
7588 int elements
= datasize
/ esize
;
7589 TCGv_i64 tcg_res
, tcg_resl
, tcg_resh
;
7591 if (opcode
== 0 || (size
== 3 && !is_q
)) {
7592 unallocated_encoding(s
);
7596 if (!fp_access_check(s
)) {
7600 tcg_resl
= tcg_const_i64(0);
7601 tcg_resh
= is_q
? tcg_const_i64(0) : NULL
;
7602 tcg_res
= tcg_temp_new_i64();
7604 for (i
= 0; i
< elements
; i
++) {
7606 case 1: /* UZP1/2 */
7608 int midpoint
= elements
/ 2;
7610 read_vec_element(s
, tcg_res
, rn
, 2 * i
+ part
, size
);
7612 read_vec_element(s
, tcg_res
, rm
,
7613 2 * (i
- midpoint
) + part
, size
);
7617 case 2: /* TRN1/2 */
7619 read_vec_element(s
, tcg_res
, rm
, (i
& ~1) + part
, size
);
7621 read_vec_element(s
, tcg_res
, rn
, (i
& ~1) + part
, size
);
7624 case 3: /* ZIP1/2 */
7626 int base
= part
* elements
/ 2;
7628 read_vec_element(s
, tcg_res
, rm
, base
+ (i
>> 1), size
);
7630 read_vec_element(s
, tcg_res
, rn
, base
+ (i
>> 1), size
);
7635 g_assert_not_reached();
7640 tcg_gen_shli_i64(tcg_res
, tcg_res
, ofs
);
7641 tcg_gen_or_i64(tcg_resl
, tcg_resl
, tcg_res
);
7643 tcg_gen_shli_i64(tcg_res
, tcg_res
, ofs
- 64);
7644 tcg_gen_or_i64(tcg_resh
, tcg_resh
, tcg_res
);
7648 tcg_temp_free_i64(tcg_res
);
7650 write_vec_element(s
, tcg_resl
, rd
, 0, MO_64
);
7651 tcg_temp_free_i64(tcg_resl
);
7654 write_vec_element(s
, tcg_resh
, rd
, 1, MO_64
);
7655 tcg_temp_free_i64(tcg_resh
);
7657 clear_vec_high(s
, is_q
, rd
);
7661 * do_reduction_op helper
7663 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7664 * important for correct NaN propagation that we do these
7665 * operations in exactly the order specified by the pseudocode.
7667 * This is a recursive function, TCG temps should be freed by the
7668 * calling function once it is done with the values.
7670 static TCGv_i32
do_reduction_op(DisasContext
*s
, int fpopcode
, int rn
,
7671 int esize
, int size
, int vmap
, TCGv_ptr fpst
)
7673 if (esize
== size
) {
7675 MemOp msize
= esize
== 16 ? MO_16
: MO_32
;
7678 /* We should have one register left here */
7679 assert(ctpop8(vmap
) == 1);
7680 element
= ctz32(vmap
);
7681 assert(element
< 8);
7683 tcg_elem
= tcg_temp_new_i32();
7684 read_vec_element_i32(s
, tcg_elem
, rn
, element
, msize
);
7687 int bits
= size
/ 2;
7688 int shift
= ctpop8(vmap
) / 2;
7689 int vmap_lo
= (vmap
>> shift
) & vmap
;
7690 int vmap_hi
= (vmap
& ~vmap_lo
);
7691 TCGv_i32 tcg_hi
, tcg_lo
, tcg_res
;
7693 tcg_hi
= do_reduction_op(s
, fpopcode
, rn
, esize
, bits
, vmap_hi
, fpst
);
7694 tcg_lo
= do_reduction_op(s
, fpopcode
, rn
, esize
, bits
, vmap_lo
, fpst
);
7695 tcg_res
= tcg_temp_new_i32();
7698 case 0x0c: /* fmaxnmv half-precision */
7699 gen_helper_advsimd_maxnumh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7701 case 0x0f: /* fmaxv half-precision */
7702 gen_helper_advsimd_maxh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7704 case 0x1c: /* fminnmv half-precision */
7705 gen_helper_advsimd_minnumh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7707 case 0x1f: /* fminv half-precision */
7708 gen_helper_advsimd_minh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7710 case 0x2c: /* fmaxnmv */
7711 gen_helper_vfp_maxnums(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7713 case 0x2f: /* fmaxv */
7714 gen_helper_vfp_maxs(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7716 case 0x3c: /* fminnmv */
7717 gen_helper_vfp_minnums(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7719 case 0x3f: /* fminv */
7720 gen_helper_vfp_mins(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
7723 g_assert_not_reached();
7726 tcg_temp_free_i32(tcg_hi
);
7727 tcg_temp_free_i32(tcg_lo
);
7732 /* AdvSIMD across lanes
7733 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7734 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7735 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7736 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7738 static void disas_simd_across_lanes(DisasContext
*s
, uint32_t insn
)
7740 int rd
= extract32(insn
, 0, 5);
7741 int rn
= extract32(insn
, 5, 5);
7742 int size
= extract32(insn
, 22, 2);
7743 int opcode
= extract32(insn
, 12, 5);
7744 bool is_q
= extract32(insn
, 30, 1);
7745 bool is_u
= extract32(insn
, 29, 1);
7747 bool is_min
= false;
7751 TCGv_i64 tcg_res
, tcg_elt
;
7754 case 0x1b: /* ADDV */
7756 unallocated_encoding(s
);
7760 case 0x3: /* SADDLV, UADDLV */
7761 case 0xa: /* SMAXV, UMAXV */
7762 case 0x1a: /* SMINV, UMINV */
7763 if (size
== 3 || (size
== 2 && !is_q
)) {
7764 unallocated_encoding(s
);
7768 case 0xc: /* FMAXNMV, FMINNMV */
7769 case 0xf: /* FMAXV, FMINV */
7770 /* Bit 1 of size field encodes min vs max and the actual size
7771 * depends on the encoding of the U bit. If not set (and FP16
7772 * enabled) then we do half-precision float instead of single
7775 is_min
= extract32(size
, 1, 1);
7777 if (!is_u
&& dc_isar_feature(aa64_fp16
, s
)) {
7779 } else if (!is_u
|| !is_q
|| extract32(size
, 0, 1)) {
7780 unallocated_encoding(s
);
7787 unallocated_encoding(s
);
7791 if (!fp_access_check(s
)) {
7796 elements
= (is_q
? 128 : 64) / esize
;
7798 tcg_res
= tcg_temp_new_i64();
7799 tcg_elt
= tcg_temp_new_i64();
7801 /* These instructions operate across all lanes of a vector
7802 * to produce a single result. We can guarantee that a 64
7803 * bit intermediate is sufficient:
7804 * + for [US]ADDLV the maximum element size is 32 bits, and
7805 * the result type is 64 bits
7806 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7807 * same as the element size, which is 32 bits at most
7808 * For the integer operations we can choose to work at 64
7809 * or 32 bits and truncate at the end; for simplicity
7810 * we use 64 bits always. The floating point
7811 * ops do require 32 bit intermediates, though.
7814 read_vec_element(s
, tcg_res
, rn
, 0, size
| (is_u
? 0 : MO_SIGN
));
7816 for (i
= 1; i
< elements
; i
++) {
7817 read_vec_element(s
, tcg_elt
, rn
, i
, size
| (is_u
? 0 : MO_SIGN
));
7820 case 0x03: /* SADDLV / UADDLV */
7821 case 0x1b: /* ADDV */
7822 tcg_gen_add_i64(tcg_res
, tcg_res
, tcg_elt
);
7824 case 0x0a: /* SMAXV / UMAXV */
7826 tcg_gen_umax_i64(tcg_res
, tcg_res
, tcg_elt
);
7828 tcg_gen_smax_i64(tcg_res
, tcg_res
, tcg_elt
);
7831 case 0x1a: /* SMINV / UMINV */
7833 tcg_gen_umin_i64(tcg_res
, tcg_res
, tcg_elt
);
7835 tcg_gen_smin_i64(tcg_res
, tcg_res
, tcg_elt
);
7839 g_assert_not_reached();
7844 /* Floating point vector reduction ops which work across 32
7845 * bit (single) or 16 bit (half-precision) intermediates.
7846 * Note that correct NaN propagation requires that we do these
7847 * operations in exactly the order specified by the pseudocode.
7849 TCGv_ptr fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
7850 int fpopcode
= opcode
| is_min
<< 4 | is_u
<< 5;
7851 int vmap
= (1 << elements
) - 1;
7852 TCGv_i32 tcg_res32
= do_reduction_op(s
, fpopcode
, rn
, esize
,
7853 (is_q
? 128 : 64), vmap
, fpst
);
7854 tcg_gen_extu_i32_i64(tcg_res
, tcg_res32
);
7855 tcg_temp_free_i32(tcg_res32
);
7856 tcg_temp_free_ptr(fpst
);
7859 tcg_temp_free_i64(tcg_elt
);
7861 /* Now truncate the result to the width required for the final output */
7862 if (opcode
== 0x03) {
7863 /* SADDLV, UADDLV: result is 2*esize */
7869 tcg_gen_ext8u_i64(tcg_res
, tcg_res
);
7872 tcg_gen_ext16u_i64(tcg_res
, tcg_res
);
7875 tcg_gen_ext32u_i64(tcg_res
, tcg_res
);
7880 g_assert_not_reached();
7883 write_fp_dreg(s
, rd
, tcg_res
);
7884 tcg_temp_free_i64(tcg_res
);
7887 /* DUP (Element, Vector)
7889 * 31 30 29 21 20 16 15 10 9 5 4 0
7890 * +---+---+-------------------+--------+-------------+------+------+
7891 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7892 * +---+---+-------------------+--------+-------------+------+------+
7894 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7896 static void handle_simd_dupe(DisasContext
*s
, int is_q
, int rd
, int rn
,
7899 int size
= ctz32(imm5
);
7902 if (size
> 3 || (size
== 3 && !is_q
)) {
7903 unallocated_encoding(s
);
7907 if (!fp_access_check(s
)) {
7911 index
= imm5
>> (size
+ 1);
7912 tcg_gen_gvec_dup_mem(size
, vec_full_reg_offset(s
, rd
),
7913 vec_reg_offset(s
, rn
, index
, size
),
7914 is_q
? 16 : 8, vec_full_reg_size(s
));
7917 /* DUP (element, scalar)
7918 * 31 21 20 16 15 10 9 5 4 0
7919 * +-----------------------+--------+-------------+------+------+
7920 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7921 * +-----------------------+--------+-------------+------+------+
7923 static void handle_simd_dupes(DisasContext
*s
, int rd
, int rn
,
7926 int size
= ctz32(imm5
);
7931 unallocated_encoding(s
);
7935 if (!fp_access_check(s
)) {
7939 index
= imm5
>> (size
+ 1);
7941 /* This instruction just extracts the specified element and
7942 * zero-extends it into the bottom of the destination register.
7944 tmp
= tcg_temp_new_i64();
7945 read_vec_element(s
, tmp
, rn
, index
, size
);
7946 write_fp_dreg(s
, rd
, tmp
);
7947 tcg_temp_free_i64(tmp
);
7952 * 31 30 29 21 20 16 15 10 9 5 4 0
7953 * +---+---+-------------------+--------+-------------+------+------+
7954 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7955 * +---+---+-------------------+--------+-------------+------+------+
7957 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7959 static void handle_simd_dupg(DisasContext
*s
, int is_q
, int rd
, int rn
,
7962 int size
= ctz32(imm5
);
7963 uint32_t dofs
, oprsz
, maxsz
;
7965 if (size
> 3 || ((size
== 3) && !is_q
)) {
7966 unallocated_encoding(s
);
7970 if (!fp_access_check(s
)) {
7974 dofs
= vec_full_reg_offset(s
, rd
);
7975 oprsz
= is_q
? 16 : 8;
7976 maxsz
= vec_full_reg_size(s
);
7978 tcg_gen_gvec_dup_i64(size
, dofs
, oprsz
, maxsz
, cpu_reg(s
, rn
));
7983 * 31 21 20 16 15 14 11 10 9 5 4 0
7984 * +-----------------------+--------+------------+---+------+------+
7985 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7986 * +-----------------------+--------+------------+---+------+------+
7988 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7989 * index: encoded in imm5<4:size+1>
7991 static void handle_simd_inse(DisasContext
*s
, int rd
, int rn
,
7994 int size
= ctz32(imm5
);
7995 int src_index
, dst_index
;
7999 unallocated_encoding(s
);
8003 if (!fp_access_check(s
)) {
8007 dst_index
= extract32(imm5
, 1+size
, 5);
8008 src_index
= extract32(imm4
, size
, 4);
8010 tmp
= tcg_temp_new_i64();
8012 read_vec_element(s
, tmp
, rn
, src_index
, size
);
8013 write_vec_element(s
, tmp
, rd
, dst_index
, size
);
8015 tcg_temp_free_i64(tmp
);
8017 /* INS is considered a 128-bit write for SVE. */
8018 clear_vec_high(s
, true, rd
);
8024 * 31 21 20 16 15 10 9 5 4 0
8025 * +-----------------------+--------+-------------+------+------+
8026 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
8027 * +-----------------------+--------+-------------+------+------+
8029 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8030 * index: encoded in imm5<4:size+1>
8032 static void handle_simd_insg(DisasContext
*s
, int rd
, int rn
, int imm5
)
8034 int size
= ctz32(imm5
);
8038 unallocated_encoding(s
);
8042 if (!fp_access_check(s
)) {
8046 idx
= extract32(imm5
, 1 + size
, 4 - size
);
8047 write_vec_element(s
, cpu_reg(s
, rn
), rd
, idx
, size
);
8049 /* INS is considered a 128-bit write for SVE. */
8050 clear_vec_high(s
, true, rd
);
8057 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8058 * +---+---+-------------------+--------+-------------+------+------+
8059 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8060 * +---+---+-------------------+--------+-------------+------+------+
8062 * U: unsigned when set
8063 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8065 static void handle_simd_umov_smov(DisasContext
*s
, int is_q
, int is_signed
,
8066 int rn
, int rd
, int imm5
)
8068 int size
= ctz32(imm5
);
8072 /* Check for UnallocatedEncodings */
8074 if (size
> 2 || (size
== 2 && !is_q
)) {
8075 unallocated_encoding(s
);
8080 || (size
< 3 && is_q
)
8081 || (size
== 3 && !is_q
)) {
8082 unallocated_encoding(s
);
8087 if (!fp_access_check(s
)) {
8091 element
= extract32(imm5
, 1+size
, 4);
8093 tcg_rd
= cpu_reg(s
, rd
);
8094 read_vec_element(s
, tcg_rd
, rn
, element
, size
| (is_signed
? MO_SIGN
: 0));
8095 if (is_signed
&& !is_q
) {
8096 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
8101 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8102 * +---+---+----+-----------------+------+---+------+---+------+------+
8103 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8104 * +---+---+----+-----------------+------+---+------+---+------+------+
8106 static void disas_simd_copy(DisasContext
*s
, uint32_t insn
)
8108 int rd
= extract32(insn
, 0, 5);
8109 int rn
= extract32(insn
, 5, 5);
8110 int imm4
= extract32(insn
, 11, 4);
8111 int op
= extract32(insn
, 29, 1);
8112 int is_q
= extract32(insn
, 30, 1);
8113 int imm5
= extract32(insn
, 16, 5);
8118 handle_simd_inse(s
, rd
, rn
, imm4
, imm5
);
8120 unallocated_encoding(s
);
8125 /* DUP (element - vector) */
8126 handle_simd_dupe(s
, is_q
, rd
, rn
, imm5
);
8130 handle_simd_dupg(s
, is_q
, rd
, rn
, imm5
);
8135 handle_simd_insg(s
, rd
, rn
, imm5
);
8137 unallocated_encoding(s
);
8142 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8143 handle_simd_umov_smov(s
, is_q
, (imm4
== 5), rn
, rd
, imm5
);
8146 unallocated_encoding(s
);
8152 /* AdvSIMD modified immediate
8153 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8154 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8155 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8156 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8158 * There are a number of operations that can be carried out here:
8159 * MOVI - move (shifted) imm into register
8160 * MVNI - move inverted (shifted) imm into register
8161 * ORR - bitwise OR of (shifted) imm with register
8162 * BIC - bitwise clear of (shifted) imm with register
8163 * With ARMv8.2 we also have:
8164 * FMOV half-precision
8166 static void disas_simd_mod_imm(DisasContext
*s
, uint32_t insn
)
8168 int rd
= extract32(insn
, 0, 5);
8169 int cmode
= extract32(insn
, 12, 4);
8170 int cmode_3_1
= extract32(cmode
, 1, 3);
8171 int cmode_0
= extract32(cmode
, 0, 1);
8172 int o2
= extract32(insn
, 11, 1);
8173 uint64_t abcdefgh
= extract32(insn
, 5, 5) | (extract32(insn
, 16, 3) << 5);
8174 bool is_neg
= extract32(insn
, 29, 1);
8175 bool is_q
= extract32(insn
, 30, 1);
8178 if (o2
!= 0 || ((cmode
== 0xf) && is_neg
&& !is_q
)) {
8179 /* Check for FMOV (vector, immediate) - half-precision */
8180 if (!(dc_isar_feature(aa64_fp16
, s
) && o2
&& cmode
== 0xf)) {
8181 unallocated_encoding(s
);
8186 if (!fp_access_check(s
)) {
8190 /* See AdvSIMDExpandImm() in ARM ARM */
8191 switch (cmode_3_1
) {
8192 case 0: /* Replicate(Zeros(24):imm8, 2) */
8193 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
8194 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
8195 case 3: /* Replicate(imm8:Zeros(24), 2) */
8197 int shift
= cmode_3_1
* 8;
8198 imm
= bitfield_replicate(abcdefgh
<< shift
, 32);
8201 case 4: /* Replicate(Zeros(8):imm8, 4) */
8202 case 5: /* Replicate(imm8:Zeros(8), 4) */
8204 int shift
= (cmode_3_1
& 0x1) * 8;
8205 imm
= bitfield_replicate(abcdefgh
<< shift
, 16);
8210 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
8211 imm
= (abcdefgh
<< 16) | 0xffff;
8213 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
8214 imm
= (abcdefgh
<< 8) | 0xff;
8216 imm
= bitfield_replicate(imm
, 32);
8219 if (!cmode_0
&& !is_neg
) {
8220 imm
= bitfield_replicate(abcdefgh
, 8);
8221 } else if (!cmode_0
&& is_neg
) {
8224 for (i
= 0; i
< 8; i
++) {
8225 if ((abcdefgh
) & (1 << i
)) {
8226 imm
|= 0xffULL
<< (i
* 8);
8229 } else if (cmode_0
) {
8231 imm
= (abcdefgh
& 0x3f) << 48;
8232 if (abcdefgh
& 0x80) {
8233 imm
|= 0x8000000000000000ULL
;
8235 if (abcdefgh
& 0x40) {
8236 imm
|= 0x3fc0000000000000ULL
;
8238 imm
|= 0x4000000000000000ULL
;
8242 /* FMOV (vector, immediate) - half-precision */
8243 imm
= vfp_expand_imm(MO_16
, abcdefgh
);
8244 /* now duplicate across the lanes */
8245 imm
= bitfield_replicate(imm
, 16);
8247 imm
= (abcdefgh
& 0x3f) << 19;
8248 if (abcdefgh
& 0x80) {
8251 if (abcdefgh
& 0x40) {
8262 fprintf(stderr
, "%s: cmode_3_1: %x\n", __func__
, cmode_3_1
);
8263 g_assert_not_reached();
8266 if (cmode_3_1
!= 7 && is_neg
) {
8270 if (!((cmode
& 0x9) == 0x1 || (cmode
& 0xd) == 0x9)) {
8271 /* MOVI or MVNI, with MVNI negation handled above. */
8272 tcg_gen_gvec_dup_imm(MO_64
, vec_full_reg_offset(s
, rd
), is_q
? 16 : 8,
8273 vec_full_reg_size(s
), imm
);
8275 /* ORR or BIC, with BIC negation to AND handled above. */
8277 gen_gvec_fn2i(s
, is_q
, rd
, rd
, imm
, tcg_gen_gvec_andi
, MO_64
);
8279 gen_gvec_fn2i(s
, is_q
, rd
, rd
, imm
, tcg_gen_gvec_ori
, MO_64
);
8284 /* AdvSIMD scalar copy
8285 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8286 * +-----+----+-----------------+------+---+------+---+------+------+
8287 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8288 * +-----+----+-----------------+------+---+------+---+------+------+
8290 static void disas_simd_scalar_copy(DisasContext
*s
, uint32_t insn
)
8292 int rd
= extract32(insn
, 0, 5);
8293 int rn
= extract32(insn
, 5, 5);
8294 int imm4
= extract32(insn
, 11, 4);
8295 int imm5
= extract32(insn
, 16, 5);
8296 int op
= extract32(insn
, 29, 1);
8298 if (op
!= 0 || imm4
!= 0) {
8299 unallocated_encoding(s
);
8303 /* DUP (element, scalar) */
8304 handle_simd_dupes(s
, rd
, rn
, imm5
);
8307 /* AdvSIMD scalar pairwise
8308 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8309 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8310 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8311 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8313 static void disas_simd_scalar_pairwise(DisasContext
*s
, uint32_t insn
)
8315 int u
= extract32(insn
, 29, 1);
8316 int size
= extract32(insn
, 22, 2);
8317 int opcode
= extract32(insn
, 12, 5);
8318 int rn
= extract32(insn
, 5, 5);
8319 int rd
= extract32(insn
, 0, 5);
8322 /* For some ops (the FP ones), size[1] is part of the encoding.
8323 * For ADDP strictly it is not but size[1] is always 1 for valid
8326 opcode
|= (extract32(size
, 1, 1) << 5);
8329 case 0x3b: /* ADDP */
8330 if (u
|| size
!= 3) {
8331 unallocated_encoding(s
);
8334 if (!fp_access_check(s
)) {
8340 case 0xc: /* FMAXNMP */
8341 case 0xd: /* FADDP */
8342 case 0xf: /* FMAXP */
8343 case 0x2c: /* FMINNMP */
8344 case 0x2f: /* FMINP */
8345 /* FP op, size[0] is 32 or 64 bit*/
8347 if (!dc_isar_feature(aa64_fp16
, s
)) {
8348 unallocated_encoding(s
);
8354 size
= extract32(size
, 0, 1) ? MO_64
: MO_32
;
8357 if (!fp_access_check(s
)) {
8361 fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
8364 unallocated_encoding(s
);
8368 if (size
== MO_64
) {
8369 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
8370 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
8371 TCGv_i64 tcg_res
= tcg_temp_new_i64();
8373 read_vec_element(s
, tcg_op1
, rn
, 0, MO_64
);
8374 read_vec_element(s
, tcg_op2
, rn
, 1, MO_64
);
8377 case 0x3b: /* ADDP */
8378 tcg_gen_add_i64(tcg_res
, tcg_op1
, tcg_op2
);
8380 case 0xc: /* FMAXNMP */
8381 gen_helper_vfp_maxnumd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8383 case 0xd: /* FADDP */
8384 gen_helper_vfp_addd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8386 case 0xf: /* FMAXP */
8387 gen_helper_vfp_maxd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8389 case 0x2c: /* FMINNMP */
8390 gen_helper_vfp_minnumd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8392 case 0x2f: /* FMINP */
8393 gen_helper_vfp_mind(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8396 g_assert_not_reached();
8399 write_fp_dreg(s
, rd
, tcg_res
);
8401 tcg_temp_free_i64(tcg_op1
);
8402 tcg_temp_free_i64(tcg_op2
);
8403 tcg_temp_free_i64(tcg_res
);
8405 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
8406 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
8407 TCGv_i32 tcg_res
= tcg_temp_new_i32();
8409 read_vec_element_i32(s
, tcg_op1
, rn
, 0, size
);
8410 read_vec_element_i32(s
, tcg_op2
, rn
, 1, size
);
8412 if (size
== MO_16
) {
8414 case 0xc: /* FMAXNMP */
8415 gen_helper_advsimd_maxnumh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8417 case 0xd: /* FADDP */
8418 gen_helper_advsimd_addh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8420 case 0xf: /* FMAXP */
8421 gen_helper_advsimd_maxh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8423 case 0x2c: /* FMINNMP */
8424 gen_helper_advsimd_minnumh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8426 case 0x2f: /* FMINP */
8427 gen_helper_advsimd_minh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8430 g_assert_not_reached();
8434 case 0xc: /* FMAXNMP */
8435 gen_helper_vfp_maxnums(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8437 case 0xd: /* FADDP */
8438 gen_helper_vfp_adds(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8440 case 0xf: /* FMAXP */
8441 gen_helper_vfp_maxs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8443 case 0x2c: /* FMINNMP */
8444 gen_helper_vfp_minnums(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8446 case 0x2f: /* FMINP */
8447 gen_helper_vfp_mins(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
8450 g_assert_not_reached();
8454 write_fp_sreg(s
, rd
, tcg_res
);
8456 tcg_temp_free_i32(tcg_op1
);
8457 tcg_temp_free_i32(tcg_op2
);
8458 tcg_temp_free_i32(tcg_res
);
8462 tcg_temp_free_ptr(fpst
);
8467 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8469 * This code is handles the common shifting code and is used by both
8470 * the vector and scalar code.
8472 static void handle_shri_with_rndacc(TCGv_i64 tcg_res
, TCGv_i64 tcg_src
,
8473 TCGv_i64 tcg_rnd
, bool accumulate
,
8474 bool is_u
, int size
, int shift
)
8476 bool extended_result
= false;
8477 bool round
= tcg_rnd
!= NULL
;
8479 TCGv_i64 tcg_src_hi
;
8481 if (round
&& size
== 3) {
8482 extended_result
= true;
8483 ext_lshift
= 64 - shift
;
8484 tcg_src_hi
= tcg_temp_new_i64();
8485 } else if (shift
== 64) {
8486 if (!accumulate
&& is_u
) {
8487 /* result is zero */
8488 tcg_gen_movi_i64(tcg_res
, 0);
8493 /* Deal with the rounding step */
8495 if (extended_result
) {
8496 TCGv_i64 tcg_zero
= tcg_const_i64(0);
8498 /* take care of sign extending tcg_res */
8499 tcg_gen_sari_i64(tcg_src_hi
, tcg_src
, 63);
8500 tcg_gen_add2_i64(tcg_src
, tcg_src_hi
,
8501 tcg_src
, tcg_src_hi
,
8504 tcg_gen_add2_i64(tcg_src
, tcg_src_hi
,
8508 tcg_temp_free_i64(tcg_zero
);
8510 tcg_gen_add_i64(tcg_src
, tcg_src
, tcg_rnd
);
8514 /* Now do the shift right */
8515 if (round
&& extended_result
) {
8516 /* extended case, >64 bit precision required */
8517 if (ext_lshift
== 0) {
8518 /* special case, only high bits matter */
8519 tcg_gen_mov_i64(tcg_src
, tcg_src_hi
);
8521 tcg_gen_shri_i64(tcg_src
, tcg_src
, shift
);
8522 tcg_gen_shli_i64(tcg_src_hi
, tcg_src_hi
, ext_lshift
);
8523 tcg_gen_or_i64(tcg_src
, tcg_src
, tcg_src_hi
);
8528 /* essentially shifting in 64 zeros */
8529 tcg_gen_movi_i64(tcg_src
, 0);
8531 tcg_gen_shri_i64(tcg_src
, tcg_src
, shift
);
8535 /* effectively extending the sign-bit */
8536 tcg_gen_sari_i64(tcg_src
, tcg_src
, 63);
8538 tcg_gen_sari_i64(tcg_src
, tcg_src
, shift
);
8544 tcg_gen_add_i64(tcg_res
, tcg_res
, tcg_src
);
8546 tcg_gen_mov_i64(tcg_res
, tcg_src
);
8549 if (extended_result
) {
8550 tcg_temp_free_i64(tcg_src_hi
);
8554 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8555 static void handle_scalar_simd_shri(DisasContext
*s
,
8556 bool is_u
, int immh
, int immb
,
8557 int opcode
, int rn
, int rd
)
8560 int immhb
= immh
<< 3 | immb
;
8561 int shift
= 2 * (8 << size
) - immhb
;
8562 bool accumulate
= false;
8564 bool insert
= false;
8569 if (!extract32(immh
, 3, 1)) {
8570 unallocated_encoding(s
);
8574 if (!fp_access_check(s
)) {
8579 case 0x02: /* SSRA / USRA (accumulate) */
8582 case 0x04: /* SRSHR / URSHR (rounding) */
8585 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8586 accumulate
= round
= true;
8588 case 0x08: /* SRI */
8594 uint64_t round_const
= 1ULL << (shift
- 1);
8595 tcg_round
= tcg_const_i64(round_const
);
8600 tcg_rn
= read_fp_dreg(s
, rn
);
8601 tcg_rd
= (accumulate
|| insert
) ? read_fp_dreg(s
, rd
) : tcg_temp_new_i64();
8604 /* shift count same as element size is valid but does nothing;
8605 * special case to avoid potential shift by 64.
8607 int esize
= 8 << size
;
8608 if (shift
!= esize
) {
8609 tcg_gen_shri_i64(tcg_rn
, tcg_rn
, shift
);
8610 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_rn
, 0, esize
- shift
);
8613 handle_shri_with_rndacc(tcg_rd
, tcg_rn
, tcg_round
,
8614 accumulate
, is_u
, size
, shift
);
8617 write_fp_dreg(s
, rd
, tcg_rd
);
8619 tcg_temp_free_i64(tcg_rn
);
8620 tcg_temp_free_i64(tcg_rd
);
8622 tcg_temp_free_i64(tcg_round
);
8626 /* SHL/SLI - Scalar shift left */
8627 static void handle_scalar_simd_shli(DisasContext
*s
, bool insert
,
8628 int immh
, int immb
, int opcode
,
8631 int size
= 32 - clz32(immh
) - 1;
8632 int immhb
= immh
<< 3 | immb
;
8633 int shift
= immhb
- (8 << size
);
8637 if (!extract32(immh
, 3, 1)) {
8638 unallocated_encoding(s
);
8642 if (!fp_access_check(s
)) {
8646 tcg_rn
= read_fp_dreg(s
, rn
);
8647 tcg_rd
= insert
? read_fp_dreg(s
, rd
) : tcg_temp_new_i64();
8650 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_rn
, shift
, 64 - shift
);
8652 tcg_gen_shli_i64(tcg_rd
, tcg_rn
, shift
);
8655 write_fp_dreg(s
, rd
, tcg_rd
);
8657 tcg_temp_free_i64(tcg_rn
);
8658 tcg_temp_free_i64(tcg_rd
);
8661 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8662 * (signed/unsigned) narrowing */
8663 static void handle_vec_simd_sqshrn(DisasContext
*s
, bool is_scalar
, bool is_q
,
8664 bool is_u_shift
, bool is_u_narrow
,
8665 int immh
, int immb
, int opcode
,
8668 int immhb
= immh
<< 3 | immb
;
8669 int size
= 32 - clz32(immh
) - 1;
8670 int esize
= 8 << size
;
8671 int shift
= (2 * esize
) - immhb
;
8672 int elements
= is_scalar
? 1 : (64 / esize
);
8673 bool round
= extract32(opcode
, 0, 1);
8674 MemOp ldop
= (size
+ 1) | (is_u_shift
? 0 : MO_SIGN
);
8675 TCGv_i64 tcg_rn
, tcg_rd
, tcg_round
;
8676 TCGv_i32 tcg_rd_narrowed
;
8679 static NeonGenNarrowEnvFn
* const signed_narrow_fns
[4][2] = {
8680 { gen_helper_neon_narrow_sat_s8
,
8681 gen_helper_neon_unarrow_sat8
},
8682 { gen_helper_neon_narrow_sat_s16
,
8683 gen_helper_neon_unarrow_sat16
},
8684 { gen_helper_neon_narrow_sat_s32
,
8685 gen_helper_neon_unarrow_sat32
},
8688 static NeonGenNarrowEnvFn
* const unsigned_narrow_fns
[4] = {
8689 gen_helper_neon_narrow_sat_u8
,
8690 gen_helper_neon_narrow_sat_u16
,
8691 gen_helper_neon_narrow_sat_u32
,
8694 NeonGenNarrowEnvFn
*narrowfn
;
8700 if (extract32(immh
, 3, 1)) {
8701 unallocated_encoding(s
);
8705 if (!fp_access_check(s
)) {
8710 narrowfn
= unsigned_narrow_fns
[size
];
8712 narrowfn
= signed_narrow_fns
[size
][is_u_narrow
? 1 : 0];
8715 tcg_rn
= tcg_temp_new_i64();
8716 tcg_rd
= tcg_temp_new_i64();
8717 tcg_rd_narrowed
= tcg_temp_new_i32();
8718 tcg_final
= tcg_const_i64(0);
8721 uint64_t round_const
= 1ULL << (shift
- 1);
8722 tcg_round
= tcg_const_i64(round_const
);
8727 for (i
= 0; i
< elements
; i
++) {
8728 read_vec_element(s
, tcg_rn
, rn
, i
, ldop
);
8729 handle_shri_with_rndacc(tcg_rd
, tcg_rn
, tcg_round
,
8730 false, is_u_shift
, size
+1, shift
);
8731 narrowfn(tcg_rd_narrowed
, cpu_env
, tcg_rd
);
8732 tcg_gen_extu_i32_i64(tcg_rd
, tcg_rd_narrowed
);
8733 tcg_gen_deposit_i64(tcg_final
, tcg_final
, tcg_rd
, esize
* i
, esize
);
8737 write_vec_element(s
, tcg_final
, rd
, 0, MO_64
);
8739 write_vec_element(s
, tcg_final
, rd
, 1, MO_64
);
8743 tcg_temp_free_i64(tcg_round
);
8745 tcg_temp_free_i64(tcg_rn
);
8746 tcg_temp_free_i64(tcg_rd
);
8747 tcg_temp_free_i32(tcg_rd_narrowed
);
8748 tcg_temp_free_i64(tcg_final
);
8750 clear_vec_high(s
, is_q
, rd
);
8753 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8754 static void handle_simd_qshl(DisasContext
*s
, bool scalar
, bool is_q
,
8755 bool src_unsigned
, bool dst_unsigned
,
8756 int immh
, int immb
, int rn
, int rd
)
8758 int immhb
= immh
<< 3 | immb
;
8759 int size
= 32 - clz32(immh
) - 1;
8760 int shift
= immhb
- (8 << size
);
8764 assert(!(scalar
&& is_q
));
8767 if (!is_q
&& extract32(immh
, 3, 1)) {
8768 unallocated_encoding(s
);
8772 /* Since we use the variable-shift helpers we must
8773 * replicate the shift count into each element of
8774 * the tcg_shift value.
8778 shift
|= shift
<< 8;
8781 shift
|= shift
<< 16;
8787 g_assert_not_reached();
8791 if (!fp_access_check(s
)) {
8796 TCGv_i64 tcg_shift
= tcg_const_i64(shift
);
8797 static NeonGenTwo64OpEnvFn
* const fns
[2][2] = {
8798 { gen_helper_neon_qshl_s64
, gen_helper_neon_qshlu_s64
},
8799 { NULL
, gen_helper_neon_qshl_u64
},
8801 NeonGenTwo64OpEnvFn
*genfn
= fns
[src_unsigned
][dst_unsigned
];
8802 int maxpass
= is_q
? 2 : 1;
8804 for (pass
= 0; pass
< maxpass
; pass
++) {
8805 TCGv_i64 tcg_op
= tcg_temp_new_i64();
8807 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
8808 genfn(tcg_op
, cpu_env
, tcg_op
, tcg_shift
);
8809 write_vec_element(s
, tcg_op
, rd
, pass
, MO_64
);
8811 tcg_temp_free_i64(tcg_op
);
8813 tcg_temp_free_i64(tcg_shift
);
8814 clear_vec_high(s
, is_q
, rd
);
8816 TCGv_i32 tcg_shift
= tcg_const_i32(shift
);
8817 static NeonGenTwoOpEnvFn
* const fns
[2][2][3] = {
8819 { gen_helper_neon_qshl_s8
,
8820 gen_helper_neon_qshl_s16
,
8821 gen_helper_neon_qshl_s32
},
8822 { gen_helper_neon_qshlu_s8
,
8823 gen_helper_neon_qshlu_s16
,
8824 gen_helper_neon_qshlu_s32
}
8826 { NULL
, NULL
, NULL
},
8827 { gen_helper_neon_qshl_u8
,
8828 gen_helper_neon_qshl_u16
,
8829 gen_helper_neon_qshl_u32
}
8832 NeonGenTwoOpEnvFn
*genfn
= fns
[src_unsigned
][dst_unsigned
][size
];
8833 MemOp memop
= scalar
? size
: MO_32
;
8834 int maxpass
= scalar
? 1 : is_q
? 4 : 2;
8836 for (pass
= 0; pass
< maxpass
; pass
++) {
8837 TCGv_i32 tcg_op
= tcg_temp_new_i32();
8839 read_vec_element_i32(s
, tcg_op
, rn
, pass
, memop
);
8840 genfn(tcg_op
, cpu_env
, tcg_op
, tcg_shift
);
8844 tcg_gen_ext8u_i32(tcg_op
, tcg_op
);
8847 tcg_gen_ext16u_i32(tcg_op
, tcg_op
);
8852 g_assert_not_reached();
8854 write_fp_sreg(s
, rd
, tcg_op
);
8856 write_vec_element_i32(s
, tcg_op
, rd
, pass
, MO_32
);
8859 tcg_temp_free_i32(tcg_op
);
8861 tcg_temp_free_i32(tcg_shift
);
8864 clear_vec_high(s
, is_q
, rd
);
8869 /* Common vector code for handling integer to FP conversion */
8870 static void handle_simd_intfp_conv(DisasContext
*s
, int rd
, int rn
,
8871 int elements
, int is_signed
,
8872 int fracbits
, int size
)
8874 TCGv_ptr tcg_fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
8875 TCGv_i32 tcg_shift
= NULL
;
8877 MemOp mop
= size
| (is_signed
? MO_SIGN
: 0);
8880 if (fracbits
|| size
== MO_64
) {
8881 tcg_shift
= tcg_const_i32(fracbits
);
8884 if (size
== MO_64
) {
8885 TCGv_i64 tcg_int64
= tcg_temp_new_i64();
8886 TCGv_i64 tcg_double
= tcg_temp_new_i64();
8888 for (pass
= 0; pass
< elements
; pass
++) {
8889 read_vec_element(s
, tcg_int64
, rn
, pass
, mop
);
8892 gen_helper_vfp_sqtod(tcg_double
, tcg_int64
,
8893 tcg_shift
, tcg_fpst
);
8895 gen_helper_vfp_uqtod(tcg_double
, tcg_int64
,
8896 tcg_shift
, tcg_fpst
);
8898 if (elements
== 1) {
8899 write_fp_dreg(s
, rd
, tcg_double
);
8901 write_vec_element(s
, tcg_double
, rd
, pass
, MO_64
);
8905 tcg_temp_free_i64(tcg_int64
);
8906 tcg_temp_free_i64(tcg_double
);
8909 TCGv_i32 tcg_int32
= tcg_temp_new_i32();
8910 TCGv_i32 tcg_float
= tcg_temp_new_i32();
8912 for (pass
= 0; pass
< elements
; pass
++) {
8913 read_vec_element_i32(s
, tcg_int32
, rn
, pass
, mop
);
8919 gen_helper_vfp_sltos(tcg_float
, tcg_int32
,
8920 tcg_shift
, tcg_fpst
);
8922 gen_helper_vfp_ultos(tcg_float
, tcg_int32
,
8923 tcg_shift
, tcg_fpst
);
8927 gen_helper_vfp_sitos(tcg_float
, tcg_int32
, tcg_fpst
);
8929 gen_helper_vfp_uitos(tcg_float
, tcg_int32
, tcg_fpst
);
8936 gen_helper_vfp_sltoh(tcg_float
, tcg_int32
,
8937 tcg_shift
, tcg_fpst
);
8939 gen_helper_vfp_ultoh(tcg_float
, tcg_int32
,
8940 tcg_shift
, tcg_fpst
);
8944 gen_helper_vfp_sitoh(tcg_float
, tcg_int32
, tcg_fpst
);
8946 gen_helper_vfp_uitoh(tcg_float
, tcg_int32
, tcg_fpst
);
8951 g_assert_not_reached();
8954 if (elements
== 1) {
8955 write_fp_sreg(s
, rd
, tcg_float
);
8957 write_vec_element_i32(s
, tcg_float
, rd
, pass
, size
);
8961 tcg_temp_free_i32(tcg_int32
);
8962 tcg_temp_free_i32(tcg_float
);
8965 tcg_temp_free_ptr(tcg_fpst
);
8967 tcg_temp_free_i32(tcg_shift
);
8970 clear_vec_high(s
, elements
<< size
== 16, rd
);
8973 /* UCVTF/SCVTF - Integer to FP conversion */
8974 static void handle_simd_shift_intfp_conv(DisasContext
*s
, bool is_scalar
,
8975 bool is_q
, bool is_u
,
8976 int immh
, int immb
, int opcode
,
8979 int size
, elements
, fracbits
;
8980 int immhb
= immh
<< 3 | immb
;
8984 if (!is_scalar
&& !is_q
) {
8985 unallocated_encoding(s
);
8988 } else if (immh
& 4) {
8990 } else if (immh
& 2) {
8992 if (!dc_isar_feature(aa64_fp16
, s
)) {
8993 unallocated_encoding(s
);
8997 /* immh == 0 would be a failure of the decode logic */
8998 g_assert(immh
== 1);
8999 unallocated_encoding(s
);
9006 elements
= (8 << is_q
) >> size
;
9008 fracbits
= (16 << size
) - immhb
;
9010 if (!fp_access_check(s
)) {
9014 handle_simd_intfp_conv(s
, rd
, rn
, elements
, !is_u
, fracbits
, size
);
9017 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9018 static void handle_simd_shift_fpint_conv(DisasContext
*s
, bool is_scalar
,
9019 bool is_q
, bool is_u
,
9020 int immh
, int immb
, int rn
, int rd
)
9022 int immhb
= immh
<< 3 | immb
;
9023 int pass
, size
, fracbits
;
9024 TCGv_ptr tcg_fpstatus
;
9025 TCGv_i32 tcg_rmode
, tcg_shift
;
9029 if (!is_scalar
&& !is_q
) {
9030 unallocated_encoding(s
);
9033 } else if (immh
& 0x4) {
9035 } else if (immh
& 0x2) {
9037 if (!dc_isar_feature(aa64_fp16
, s
)) {
9038 unallocated_encoding(s
);
9042 /* Should have split out AdvSIMD modified immediate earlier. */
9044 unallocated_encoding(s
);
9048 if (!fp_access_check(s
)) {
9052 assert(!(is_scalar
&& is_q
));
9054 tcg_rmode
= tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO
));
9055 tcg_fpstatus
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
9056 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
9057 fracbits
= (16 << size
) - immhb
;
9058 tcg_shift
= tcg_const_i32(fracbits
);
9060 if (size
== MO_64
) {
9061 int maxpass
= is_scalar
? 1 : 2;
9063 for (pass
= 0; pass
< maxpass
; pass
++) {
9064 TCGv_i64 tcg_op
= tcg_temp_new_i64();
9066 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
9068 gen_helper_vfp_touqd(tcg_op
, tcg_op
, tcg_shift
, tcg_fpstatus
);
9070 gen_helper_vfp_tosqd(tcg_op
, tcg_op
, tcg_shift
, tcg_fpstatus
);
9072 write_vec_element(s
, tcg_op
, rd
, pass
, MO_64
);
9073 tcg_temp_free_i64(tcg_op
);
9075 clear_vec_high(s
, is_q
, rd
);
9077 void (*fn
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_ptr
);
9078 int maxpass
= is_scalar
? 1 : ((8 << is_q
) >> size
);
9083 fn
= gen_helper_vfp_touhh
;
9085 fn
= gen_helper_vfp_toshh
;
9090 fn
= gen_helper_vfp_touls
;
9092 fn
= gen_helper_vfp_tosls
;
9096 g_assert_not_reached();
9099 for (pass
= 0; pass
< maxpass
; pass
++) {
9100 TCGv_i32 tcg_op
= tcg_temp_new_i32();
9102 read_vec_element_i32(s
, tcg_op
, rn
, pass
, size
);
9103 fn(tcg_op
, tcg_op
, tcg_shift
, tcg_fpstatus
);
9105 write_fp_sreg(s
, rd
, tcg_op
);
9107 write_vec_element_i32(s
, tcg_op
, rd
, pass
, size
);
9109 tcg_temp_free_i32(tcg_op
);
9112 clear_vec_high(s
, is_q
, rd
);
9116 tcg_temp_free_ptr(tcg_fpstatus
);
9117 tcg_temp_free_i32(tcg_shift
);
9118 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
9119 tcg_temp_free_i32(tcg_rmode
);
9122 /* AdvSIMD scalar shift by immediate
9123 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9124 * +-----+---+-------------+------+------+--------+---+------+------+
9125 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9126 * +-----+---+-------------+------+------+--------+---+------+------+
9128 * This is the scalar version so it works on a fixed sized registers
9130 static void disas_simd_scalar_shift_imm(DisasContext
*s
, uint32_t insn
)
9132 int rd
= extract32(insn
, 0, 5);
9133 int rn
= extract32(insn
, 5, 5);
9134 int opcode
= extract32(insn
, 11, 5);
9135 int immb
= extract32(insn
, 16, 3);
9136 int immh
= extract32(insn
, 19, 4);
9137 bool is_u
= extract32(insn
, 29, 1);
9140 unallocated_encoding(s
);
9145 case 0x08: /* SRI */
9147 unallocated_encoding(s
);
9151 case 0x00: /* SSHR / USHR */
9152 case 0x02: /* SSRA / USRA */
9153 case 0x04: /* SRSHR / URSHR */
9154 case 0x06: /* SRSRA / URSRA */
9155 handle_scalar_simd_shri(s
, is_u
, immh
, immb
, opcode
, rn
, rd
);
9157 case 0x0a: /* SHL / SLI */
9158 handle_scalar_simd_shli(s
, is_u
, immh
, immb
, opcode
, rn
, rd
);
9160 case 0x1c: /* SCVTF, UCVTF */
9161 handle_simd_shift_intfp_conv(s
, true, false, is_u
, immh
, immb
,
9164 case 0x10: /* SQSHRUN, SQSHRUN2 */
9165 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9167 unallocated_encoding(s
);
9170 handle_vec_simd_sqshrn(s
, true, false, false, true,
9171 immh
, immb
, opcode
, rn
, rd
);
9173 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9174 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9175 handle_vec_simd_sqshrn(s
, true, false, is_u
, is_u
,
9176 immh
, immb
, opcode
, rn
, rd
);
9178 case 0xc: /* SQSHLU */
9180 unallocated_encoding(s
);
9183 handle_simd_qshl(s
, true, false, false, true, immh
, immb
, rn
, rd
);
9185 case 0xe: /* SQSHL, UQSHL */
9186 handle_simd_qshl(s
, true, false, is_u
, is_u
, immh
, immb
, rn
, rd
);
9188 case 0x1f: /* FCVTZS, FCVTZU */
9189 handle_simd_shift_fpint_conv(s
, true, false, is_u
, immh
, immb
, rn
, rd
);
9192 unallocated_encoding(s
);
9197 /* AdvSIMD scalar three different
9198 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9199 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9200 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9201 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9203 static void disas_simd_scalar_three_reg_diff(DisasContext
*s
, uint32_t insn
)
9205 bool is_u
= extract32(insn
, 29, 1);
9206 int size
= extract32(insn
, 22, 2);
9207 int opcode
= extract32(insn
, 12, 4);
9208 int rm
= extract32(insn
, 16, 5);
9209 int rn
= extract32(insn
, 5, 5);
9210 int rd
= extract32(insn
, 0, 5);
9213 unallocated_encoding(s
);
9218 case 0x9: /* SQDMLAL, SQDMLAL2 */
9219 case 0xb: /* SQDMLSL, SQDMLSL2 */
9220 case 0xd: /* SQDMULL, SQDMULL2 */
9221 if (size
== 0 || size
== 3) {
9222 unallocated_encoding(s
);
9227 unallocated_encoding(s
);
9231 if (!fp_access_check(s
)) {
9236 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
9237 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
9238 TCGv_i64 tcg_res
= tcg_temp_new_i64();
9240 read_vec_element(s
, tcg_op1
, rn
, 0, MO_32
| MO_SIGN
);
9241 read_vec_element(s
, tcg_op2
, rm
, 0, MO_32
| MO_SIGN
);
9243 tcg_gen_mul_i64(tcg_res
, tcg_op1
, tcg_op2
);
9244 gen_helper_neon_addl_saturate_s64(tcg_res
, cpu_env
, tcg_res
, tcg_res
);
9247 case 0xd: /* SQDMULL, SQDMULL2 */
9249 case 0xb: /* SQDMLSL, SQDMLSL2 */
9250 tcg_gen_neg_i64(tcg_res
, tcg_res
);
9252 case 0x9: /* SQDMLAL, SQDMLAL2 */
9253 read_vec_element(s
, tcg_op1
, rd
, 0, MO_64
);
9254 gen_helper_neon_addl_saturate_s64(tcg_res
, cpu_env
,
9258 g_assert_not_reached();
9261 write_fp_dreg(s
, rd
, tcg_res
);
9263 tcg_temp_free_i64(tcg_op1
);
9264 tcg_temp_free_i64(tcg_op2
);
9265 tcg_temp_free_i64(tcg_res
);
9267 TCGv_i32 tcg_op1
= read_fp_hreg(s
, rn
);
9268 TCGv_i32 tcg_op2
= read_fp_hreg(s
, rm
);
9269 TCGv_i64 tcg_res
= tcg_temp_new_i64();
9271 gen_helper_neon_mull_s16(tcg_res
, tcg_op1
, tcg_op2
);
9272 gen_helper_neon_addl_saturate_s32(tcg_res
, cpu_env
, tcg_res
, tcg_res
);
9275 case 0xd: /* SQDMULL, SQDMULL2 */
9277 case 0xb: /* SQDMLSL, SQDMLSL2 */
9278 gen_helper_neon_negl_u32(tcg_res
, tcg_res
);
9280 case 0x9: /* SQDMLAL, SQDMLAL2 */
9282 TCGv_i64 tcg_op3
= tcg_temp_new_i64();
9283 read_vec_element(s
, tcg_op3
, rd
, 0, MO_32
);
9284 gen_helper_neon_addl_saturate_s32(tcg_res
, cpu_env
,
9286 tcg_temp_free_i64(tcg_op3
);
9290 g_assert_not_reached();
9293 tcg_gen_ext32u_i64(tcg_res
, tcg_res
);
9294 write_fp_dreg(s
, rd
, tcg_res
);
9296 tcg_temp_free_i32(tcg_op1
);
9297 tcg_temp_free_i32(tcg_op2
);
9298 tcg_temp_free_i64(tcg_res
);
9302 static void handle_3same_64(DisasContext
*s
, int opcode
, bool u
,
9303 TCGv_i64 tcg_rd
, TCGv_i64 tcg_rn
, TCGv_i64 tcg_rm
)
9305 /* Handle 64x64->64 opcodes which are shared between the scalar
9306 * and vector 3-same groups. We cover every opcode where size == 3
9307 * is valid in either the three-reg-same (integer, not pairwise)
9308 * or scalar-three-reg-same groups.
9313 case 0x1: /* SQADD */
9315 gen_helper_neon_qadd_u64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9317 gen_helper_neon_qadd_s64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9320 case 0x5: /* SQSUB */
9322 gen_helper_neon_qsub_u64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9324 gen_helper_neon_qsub_s64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9327 case 0x6: /* CMGT, CMHI */
9328 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9329 * We implement this using setcond (test) and then negating.
9331 cond
= u
? TCG_COND_GTU
: TCG_COND_GT
;
9333 tcg_gen_setcond_i64(cond
, tcg_rd
, tcg_rn
, tcg_rm
);
9334 tcg_gen_neg_i64(tcg_rd
, tcg_rd
);
9336 case 0x7: /* CMGE, CMHS */
9337 cond
= u
? TCG_COND_GEU
: TCG_COND_GE
;
9339 case 0x11: /* CMTST, CMEQ */
9344 gen_cmtst_i64(tcg_rd
, tcg_rn
, tcg_rm
);
9346 case 0x8: /* SSHL, USHL */
9348 gen_ushl_i64(tcg_rd
, tcg_rn
, tcg_rm
);
9350 gen_sshl_i64(tcg_rd
, tcg_rn
, tcg_rm
);
9353 case 0x9: /* SQSHL, UQSHL */
9355 gen_helper_neon_qshl_u64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9357 gen_helper_neon_qshl_s64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9360 case 0xa: /* SRSHL, URSHL */
9362 gen_helper_neon_rshl_u64(tcg_rd
, tcg_rn
, tcg_rm
);
9364 gen_helper_neon_rshl_s64(tcg_rd
, tcg_rn
, tcg_rm
);
9367 case 0xb: /* SQRSHL, UQRSHL */
9369 gen_helper_neon_qrshl_u64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9371 gen_helper_neon_qrshl_s64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rm
);
9374 case 0x10: /* ADD, SUB */
9376 tcg_gen_sub_i64(tcg_rd
, tcg_rn
, tcg_rm
);
9378 tcg_gen_add_i64(tcg_rd
, tcg_rn
, tcg_rm
);
9382 g_assert_not_reached();
9386 /* Handle the 3-same-operands float operations; shared by the scalar
9387 * and vector encodings. The caller must filter out any encodings
9388 * not allocated for the encoding it is dealing with.
9390 static void handle_3same_float(DisasContext
*s
, int size
, int elements
,
9391 int fpopcode
, int rd
, int rn
, int rm
)
9394 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
9396 for (pass
= 0; pass
< elements
; pass
++) {
9399 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
9400 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
9401 TCGv_i64 tcg_res
= tcg_temp_new_i64();
9403 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
9404 read_vec_element(s
, tcg_op2
, rm
, pass
, MO_64
);
9407 case 0x39: /* FMLS */
9408 /* As usual for ARM, separate negation for fused multiply-add */
9409 gen_helper_vfp_negd(tcg_op1
, tcg_op1
);
9411 case 0x19: /* FMLA */
9412 read_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
9413 gen_helper_vfp_muladdd(tcg_res
, tcg_op1
, tcg_op2
,
9416 case 0x18: /* FMAXNM */
9417 gen_helper_vfp_maxnumd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9419 case 0x1a: /* FADD */
9420 gen_helper_vfp_addd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9422 case 0x1b: /* FMULX */
9423 gen_helper_vfp_mulxd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9425 case 0x1c: /* FCMEQ */
9426 gen_helper_neon_ceq_f64(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9428 case 0x1e: /* FMAX */
9429 gen_helper_vfp_maxd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9431 case 0x1f: /* FRECPS */
9432 gen_helper_recpsf_f64(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9434 case 0x38: /* FMINNM */
9435 gen_helper_vfp_minnumd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9437 case 0x3a: /* FSUB */
9438 gen_helper_vfp_subd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9440 case 0x3e: /* FMIN */
9441 gen_helper_vfp_mind(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9443 case 0x3f: /* FRSQRTS */
9444 gen_helper_rsqrtsf_f64(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9446 case 0x5b: /* FMUL */
9447 gen_helper_vfp_muld(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9449 case 0x5c: /* FCMGE */
9450 gen_helper_neon_cge_f64(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9452 case 0x5d: /* FACGE */
9453 gen_helper_neon_acge_f64(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9455 case 0x5f: /* FDIV */
9456 gen_helper_vfp_divd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9458 case 0x7a: /* FABD */
9459 gen_helper_vfp_subd(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9460 gen_helper_vfp_absd(tcg_res
, tcg_res
);
9462 case 0x7c: /* FCMGT */
9463 gen_helper_neon_cgt_f64(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9465 case 0x7d: /* FACGT */
9466 gen_helper_neon_acgt_f64(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9469 g_assert_not_reached();
9472 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
9474 tcg_temp_free_i64(tcg_res
);
9475 tcg_temp_free_i64(tcg_op1
);
9476 tcg_temp_free_i64(tcg_op2
);
9479 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
9480 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
9481 TCGv_i32 tcg_res
= tcg_temp_new_i32();
9483 read_vec_element_i32(s
, tcg_op1
, rn
, pass
, MO_32
);
9484 read_vec_element_i32(s
, tcg_op2
, rm
, pass
, MO_32
);
9487 case 0x39: /* FMLS */
9488 /* As usual for ARM, separate negation for fused multiply-add */
9489 gen_helper_vfp_negs(tcg_op1
, tcg_op1
);
9491 case 0x19: /* FMLA */
9492 read_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
9493 gen_helper_vfp_muladds(tcg_res
, tcg_op1
, tcg_op2
,
9496 case 0x1a: /* FADD */
9497 gen_helper_vfp_adds(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9499 case 0x1b: /* FMULX */
9500 gen_helper_vfp_mulxs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9502 case 0x1c: /* FCMEQ */
9503 gen_helper_neon_ceq_f32(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9505 case 0x1e: /* FMAX */
9506 gen_helper_vfp_maxs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9508 case 0x1f: /* FRECPS */
9509 gen_helper_recpsf_f32(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9511 case 0x18: /* FMAXNM */
9512 gen_helper_vfp_maxnums(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9514 case 0x38: /* FMINNM */
9515 gen_helper_vfp_minnums(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9517 case 0x3a: /* FSUB */
9518 gen_helper_vfp_subs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9520 case 0x3e: /* FMIN */
9521 gen_helper_vfp_mins(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9523 case 0x3f: /* FRSQRTS */
9524 gen_helper_rsqrtsf_f32(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9526 case 0x5b: /* FMUL */
9527 gen_helper_vfp_muls(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9529 case 0x5c: /* FCMGE */
9530 gen_helper_neon_cge_f32(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9532 case 0x5d: /* FACGE */
9533 gen_helper_neon_acge_f32(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9535 case 0x5f: /* FDIV */
9536 gen_helper_vfp_divs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9538 case 0x7a: /* FABD */
9539 gen_helper_vfp_subs(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9540 gen_helper_vfp_abss(tcg_res
, tcg_res
);
9542 case 0x7c: /* FCMGT */
9543 gen_helper_neon_cgt_f32(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9545 case 0x7d: /* FACGT */
9546 gen_helper_neon_acgt_f32(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9549 g_assert_not_reached();
9552 if (elements
== 1) {
9553 /* scalar single so clear high part */
9554 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
9556 tcg_gen_extu_i32_i64(tcg_tmp
, tcg_res
);
9557 write_vec_element(s
, tcg_tmp
, rd
, pass
, MO_64
);
9558 tcg_temp_free_i64(tcg_tmp
);
9560 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
9563 tcg_temp_free_i32(tcg_res
);
9564 tcg_temp_free_i32(tcg_op1
);
9565 tcg_temp_free_i32(tcg_op2
);
9569 tcg_temp_free_ptr(fpst
);
9571 clear_vec_high(s
, elements
* (size
? 8 : 4) > 8, rd
);
9574 /* AdvSIMD scalar three same
9575 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9576 * +-----+---+-----------+------+---+------+--------+---+------+------+
9577 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9578 * +-----+---+-----------+------+---+------+--------+---+------+------+
9580 static void disas_simd_scalar_three_reg_same(DisasContext
*s
, uint32_t insn
)
9582 int rd
= extract32(insn
, 0, 5);
9583 int rn
= extract32(insn
, 5, 5);
9584 int opcode
= extract32(insn
, 11, 5);
9585 int rm
= extract32(insn
, 16, 5);
9586 int size
= extract32(insn
, 22, 2);
9587 bool u
= extract32(insn
, 29, 1);
9590 if (opcode
>= 0x18) {
9591 /* Floating point: U, size[1] and opcode indicate operation */
9592 int fpopcode
= opcode
| (extract32(size
, 1, 1) << 5) | (u
<< 6);
9594 case 0x1b: /* FMULX */
9595 case 0x1f: /* FRECPS */
9596 case 0x3f: /* FRSQRTS */
9597 case 0x5d: /* FACGE */
9598 case 0x7d: /* FACGT */
9599 case 0x1c: /* FCMEQ */
9600 case 0x5c: /* FCMGE */
9601 case 0x7c: /* FCMGT */
9602 case 0x7a: /* FABD */
9605 unallocated_encoding(s
);
9609 if (!fp_access_check(s
)) {
9613 handle_3same_float(s
, extract32(size
, 0, 1), 1, fpopcode
, rd
, rn
, rm
);
9618 case 0x1: /* SQADD, UQADD */
9619 case 0x5: /* SQSUB, UQSUB */
9620 case 0x9: /* SQSHL, UQSHL */
9621 case 0xb: /* SQRSHL, UQRSHL */
9623 case 0x8: /* SSHL, USHL */
9624 case 0xa: /* SRSHL, URSHL */
9625 case 0x6: /* CMGT, CMHI */
9626 case 0x7: /* CMGE, CMHS */
9627 case 0x11: /* CMTST, CMEQ */
9628 case 0x10: /* ADD, SUB (vector) */
9630 unallocated_encoding(s
);
9634 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9635 if (size
!= 1 && size
!= 2) {
9636 unallocated_encoding(s
);
9641 unallocated_encoding(s
);
9645 if (!fp_access_check(s
)) {
9649 tcg_rd
= tcg_temp_new_i64();
9652 TCGv_i64 tcg_rn
= read_fp_dreg(s
, rn
);
9653 TCGv_i64 tcg_rm
= read_fp_dreg(s
, rm
);
9655 handle_3same_64(s
, opcode
, u
, tcg_rd
, tcg_rn
, tcg_rm
);
9656 tcg_temp_free_i64(tcg_rn
);
9657 tcg_temp_free_i64(tcg_rm
);
9659 /* Do a single operation on the lowest element in the vector.
9660 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9661 * no side effects for all these operations.
9662 * OPTME: special-purpose helpers would avoid doing some
9663 * unnecessary work in the helper for the 8 and 16 bit cases.
9665 NeonGenTwoOpEnvFn
*genenvfn
;
9666 TCGv_i32 tcg_rn
= tcg_temp_new_i32();
9667 TCGv_i32 tcg_rm
= tcg_temp_new_i32();
9668 TCGv_i32 tcg_rd32
= tcg_temp_new_i32();
9670 read_vec_element_i32(s
, tcg_rn
, rn
, 0, size
);
9671 read_vec_element_i32(s
, tcg_rm
, rm
, 0, size
);
9674 case 0x1: /* SQADD, UQADD */
9676 static NeonGenTwoOpEnvFn
* const fns
[3][2] = {
9677 { gen_helper_neon_qadd_s8
, gen_helper_neon_qadd_u8
},
9678 { gen_helper_neon_qadd_s16
, gen_helper_neon_qadd_u16
},
9679 { gen_helper_neon_qadd_s32
, gen_helper_neon_qadd_u32
},
9681 genenvfn
= fns
[size
][u
];
9684 case 0x5: /* SQSUB, UQSUB */
9686 static NeonGenTwoOpEnvFn
* const fns
[3][2] = {
9687 { gen_helper_neon_qsub_s8
, gen_helper_neon_qsub_u8
},
9688 { gen_helper_neon_qsub_s16
, gen_helper_neon_qsub_u16
},
9689 { gen_helper_neon_qsub_s32
, gen_helper_neon_qsub_u32
},
9691 genenvfn
= fns
[size
][u
];
9694 case 0x9: /* SQSHL, UQSHL */
9696 static NeonGenTwoOpEnvFn
* const fns
[3][2] = {
9697 { gen_helper_neon_qshl_s8
, gen_helper_neon_qshl_u8
},
9698 { gen_helper_neon_qshl_s16
, gen_helper_neon_qshl_u16
},
9699 { gen_helper_neon_qshl_s32
, gen_helper_neon_qshl_u32
},
9701 genenvfn
= fns
[size
][u
];
9704 case 0xb: /* SQRSHL, UQRSHL */
9706 static NeonGenTwoOpEnvFn
* const fns
[3][2] = {
9707 { gen_helper_neon_qrshl_s8
, gen_helper_neon_qrshl_u8
},
9708 { gen_helper_neon_qrshl_s16
, gen_helper_neon_qrshl_u16
},
9709 { gen_helper_neon_qrshl_s32
, gen_helper_neon_qrshl_u32
},
9711 genenvfn
= fns
[size
][u
];
9714 case 0x16: /* SQDMULH, SQRDMULH */
9716 static NeonGenTwoOpEnvFn
* const fns
[2][2] = {
9717 { gen_helper_neon_qdmulh_s16
, gen_helper_neon_qrdmulh_s16
},
9718 { gen_helper_neon_qdmulh_s32
, gen_helper_neon_qrdmulh_s32
},
9720 assert(size
== 1 || size
== 2);
9721 genenvfn
= fns
[size
- 1][u
];
9725 g_assert_not_reached();
9728 genenvfn(tcg_rd32
, cpu_env
, tcg_rn
, tcg_rm
);
9729 tcg_gen_extu_i32_i64(tcg_rd
, tcg_rd32
);
9730 tcg_temp_free_i32(tcg_rd32
);
9731 tcg_temp_free_i32(tcg_rn
);
9732 tcg_temp_free_i32(tcg_rm
);
9735 write_fp_dreg(s
, rd
, tcg_rd
);
9737 tcg_temp_free_i64(tcg_rd
);
9740 /* AdvSIMD scalar three same FP16
9741 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9742 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9743 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9744 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9745 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9746 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9748 static void disas_simd_scalar_three_reg_same_fp16(DisasContext
*s
,
9751 int rd
= extract32(insn
, 0, 5);
9752 int rn
= extract32(insn
, 5, 5);
9753 int opcode
= extract32(insn
, 11, 3);
9754 int rm
= extract32(insn
, 16, 5);
9755 bool u
= extract32(insn
, 29, 1);
9756 bool a
= extract32(insn
, 23, 1);
9757 int fpopcode
= opcode
| (a
<< 3) | (u
<< 4);
9764 case 0x03: /* FMULX */
9765 case 0x04: /* FCMEQ (reg) */
9766 case 0x07: /* FRECPS */
9767 case 0x0f: /* FRSQRTS */
9768 case 0x14: /* FCMGE (reg) */
9769 case 0x15: /* FACGE */
9770 case 0x1a: /* FABD */
9771 case 0x1c: /* FCMGT (reg) */
9772 case 0x1d: /* FACGT */
9775 unallocated_encoding(s
);
9779 if (!dc_isar_feature(aa64_fp16
, s
)) {
9780 unallocated_encoding(s
);
9783 if (!fp_access_check(s
)) {
9787 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
9789 tcg_op1
= read_fp_hreg(s
, rn
);
9790 tcg_op2
= read_fp_hreg(s
, rm
);
9791 tcg_res
= tcg_temp_new_i32();
9794 case 0x03: /* FMULX */
9795 gen_helper_advsimd_mulxh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9797 case 0x04: /* FCMEQ (reg) */
9798 gen_helper_advsimd_ceq_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9800 case 0x07: /* FRECPS */
9801 gen_helper_recpsf_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9803 case 0x0f: /* FRSQRTS */
9804 gen_helper_rsqrtsf_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9806 case 0x14: /* FCMGE (reg) */
9807 gen_helper_advsimd_cge_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9809 case 0x15: /* FACGE */
9810 gen_helper_advsimd_acge_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9812 case 0x1a: /* FABD */
9813 gen_helper_advsimd_subh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9814 tcg_gen_andi_i32(tcg_res
, tcg_res
, 0x7fff);
9816 case 0x1c: /* FCMGT (reg) */
9817 gen_helper_advsimd_cgt_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9819 case 0x1d: /* FACGT */
9820 gen_helper_advsimd_acgt_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
9823 g_assert_not_reached();
9826 write_fp_sreg(s
, rd
, tcg_res
);
9829 tcg_temp_free_i32(tcg_res
);
9830 tcg_temp_free_i32(tcg_op1
);
9831 tcg_temp_free_i32(tcg_op2
);
9832 tcg_temp_free_ptr(fpst
);
9835 /* AdvSIMD scalar three same extra
9836 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9837 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9838 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9839 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9841 static void disas_simd_scalar_three_reg_same_extra(DisasContext
*s
,
9844 int rd
= extract32(insn
, 0, 5);
9845 int rn
= extract32(insn
, 5, 5);
9846 int opcode
= extract32(insn
, 11, 4);
9847 int rm
= extract32(insn
, 16, 5);
9848 int size
= extract32(insn
, 22, 2);
9849 bool u
= extract32(insn
, 29, 1);
9850 TCGv_i32 ele1
, ele2
, ele3
;
9854 switch (u
* 16 + opcode
) {
9855 case 0x10: /* SQRDMLAH (vector) */
9856 case 0x11: /* SQRDMLSH (vector) */
9857 if (size
!= 1 && size
!= 2) {
9858 unallocated_encoding(s
);
9861 feature
= dc_isar_feature(aa64_rdm
, s
);
9864 unallocated_encoding(s
);
9868 unallocated_encoding(s
);
9871 if (!fp_access_check(s
)) {
9875 /* Do a single operation on the lowest element in the vector.
9876 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9877 * with no side effects for all these operations.
9878 * OPTME: special-purpose helpers would avoid doing some
9879 * unnecessary work in the helper for the 16 bit cases.
9881 ele1
= tcg_temp_new_i32();
9882 ele2
= tcg_temp_new_i32();
9883 ele3
= tcg_temp_new_i32();
9885 read_vec_element_i32(s
, ele1
, rn
, 0, size
);
9886 read_vec_element_i32(s
, ele2
, rm
, 0, size
);
9887 read_vec_element_i32(s
, ele3
, rd
, 0, size
);
9890 case 0x0: /* SQRDMLAH */
9892 gen_helper_neon_qrdmlah_s16(ele3
, cpu_env
, ele1
, ele2
, ele3
);
9894 gen_helper_neon_qrdmlah_s32(ele3
, cpu_env
, ele1
, ele2
, ele3
);
9897 case 0x1: /* SQRDMLSH */
9899 gen_helper_neon_qrdmlsh_s16(ele3
, cpu_env
, ele1
, ele2
, ele3
);
9901 gen_helper_neon_qrdmlsh_s32(ele3
, cpu_env
, ele1
, ele2
, ele3
);
9905 g_assert_not_reached();
9907 tcg_temp_free_i32(ele1
);
9908 tcg_temp_free_i32(ele2
);
9910 res
= tcg_temp_new_i64();
9911 tcg_gen_extu_i32_i64(res
, ele3
);
9912 tcg_temp_free_i32(ele3
);
9914 write_fp_dreg(s
, rd
, res
);
9915 tcg_temp_free_i64(res
);
9918 static void handle_2misc_64(DisasContext
*s
, int opcode
, bool u
,
9919 TCGv_i64 tcg_rd
, TCGv_i64 tcg_rn
,
9920 TCGv_i32 tcg_rmode
, TCGv_ptr tcg_fpstatus
)
9922 /* Handle 64->64 opcodes which are shared between the scalar and
9923 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9924 * is valid in either group and also the double-precision fp ops.
9925 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9931 case 0x4: /* CLS, CLZ */
9933 tcg_gen_clzi_i64(tcg_rd
, tcg_rn
, 64);
9935 tcg_gen_clrsb_i64(tcg_rd
, tcg_rn
);
9939 /* This opcode is shared with CNT and RBIT but we have earlier
9940 * enforced that size == 3 if and only if this is the NOT insn.
9942 tcg_gen_not_i64(tcg_rd
, tcg_rn
);
9944 case 0x7: /* SQABS, SQNEG */
9946 gen_helper_neon_qneg_s64(tcg_rd
, cpu_env
, tcg_rn
);
9948 gen_helper_neon_qabs_s64(tcg_rd
, cpu_env
, tcg_rn
);
9951 case 0xa: /* CMLT */
9952 /* 64 bit integer comparison against zero, result is
9953 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9958 tcg_gen_setcondi_i64(cond
, tcg_rd
, tcg_rn
, 0);
9959 tcg_gen_neg_i64(tcg_rd
, tcg_rd
);
9961 case 0x8: /* CMGT, CMGE */
9962 cond
= u
? TCG_COND_GE
: TCG_COND_GT
;
9964 case 0x9: /* CMEQ, CMLE */
9965 cond
= u
? TCG_COND_LE
: TCG_COND_EQ
;
9967 case 0xb: /* ABS, NEG */
9969 tcg_gen_neg_i64(tcg_rd
, tcg_rn
);
9971 tcg_gen_abs_i64(tcg_rd
, tcg_rn
);
9974 case 0x2f: /* FABS */
9975 gen_helper_vfp_absd(tcg_rd
, tcg_rn
);
9977 case 0x6f: /* FNEG */
9978 gen_helper_vfp_negd(tcg_rd
, tcg_rn
);
9980 case 0x7f: /* FSQRT */
9981 gen_helper_vfp_sqrtd(tcg_rd
, tcg_rn
, cpu_env
);
9983 case 0x1a: /* FCVTNS */
9984 case 0x1b: /* FCVTMS */
9985 case 0x1c: /* FCVTAS */
9986 case 0x3a: /* FCVTPS */
9987 case 0x3b: /* FCVTZS */
9989 TCGv_i32 tcg_shift
= tcg_const_i32(0);
9990 gen_helper_vfp_tosqd(tcg_rd
, tcg_rn
, tcg_shift
, tcg_fpstatus
);
9991 tcg_temp_free_i32(tcg_shift
);
9994 case 0x5a: /* FCVTNU */
9995 case 0x5b: /* FCVTMU */
9996 case 0x5c: /* FCVTAU */
9997 case 0x7a: /* FCVTPU */
9998 case 0x7b: /* FCVTZU */
10000 TCGv_i32 tcg_shift
= tcg_const_i32(0);
10001 gen_helper_vfp_touqd(tcg_rd
, tcg_rn
, tcg_shift
, tcg_fpstatus
);
10002 tcg_temp_free_i32(tcg_shift
);
10005 case 0x18: /* FRINTN */
10006 case 0x19: /* FRINTM */
10007 case 0x38: /* FRINTP */
10008 case 0x39: /* FRINTZ */
10009 case 0x58: /* FRINTA */
10010 case 0x79: /* FRINTI */
10011 gen_helper_rintd(tcg_rd
, tcg_rn
, tcg_fpstatus
);
10013 case 0x59: /* FRINTX */
10014 gen_helper_rintd_exact(tcg_rd
, tcg_rn
, tcg_fpstatus
);
10016 case 0x1e: /* FRINT32Z */
10017 case 0x5e: /* FRINT32X */
10018 gen_helper_frint32_d(tcg_rd
, tcg_rn
, tcg_fpstatus
);
10020 case 0x1f: /* FRINT64Z */
10021 case 0x5f: /* FRINT64X */
10022 gen_helper_frint64_d(tcg_rd
, tcg_rn
, tcg_fpstatus
);
10025 g_assert_not_reached();
10029 static void handle_2misc_fcmp_zero(DisasContext
*s
, int opcode
,
10030 bool is_scalar
, bool is_u
, bool is_q
,
10031 int size
, int rn
, int rd
)
10033 bool is_double
= (size
== MO_64
);
10036 if (!fp_access_check(s
)) {
10040 fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
10043 TCGv_i64 tcg_op
= tcg_temp_new_i64();
10044 TCGv_i64 tcg_zero
= tcg_const_i64(0);
10045 TCGv_i64 tcg_res
= tcg_temp_new_i64();
10046 NeonGenTwoDoubleOpFn
*genfn
;
10051 case 0x2e: /* FCMLT (zero) */
10054 case 0x2c: /* FCMGT (zero) */
10055 genfn
= gen_helper_neon_cgt_f64
;
10057 case 0x2d: /* FCMEQ (zero) */
10058 genfn
= gen_helper_neon_ceq_f64
;
10060 case 0x6d: /* FCMLE (zero) */
10063 case 0x6c: /* FCMGE (zero) */
10064 genfn
= gen_helper_neon_cge_f64
;
10067 g_assert_not_reached();
10070 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
10071 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
10073 genfn(tcg_res
, tcg_zero
, tcg_op
, fpst
);
10075 genfn(tcg_res
, tcg_op
, tcg_zero
, fpst
);
10077 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
10079 tcg_temp_free_i64(tcg_res
);
10080 tcg_temp_free_i64(tcg_zero
);
10081 tcg_temp_free_i64(tcg_op
);
10083 clear_vec_high(s
, !is_scalar
, rd
);
10085 TCGv_i32 tcg_op
= tcg_temp_new_i32();
10086 TCGv_i32 tcg_zero
= tcg_const_i32(0);
10087 TCGv_i32 tcg_res
= tcg_temp_new_i32();
10088 NeonGenTwoSingleOpFn
*genfn
;
10090 int pass
, maxpasses
;
10092 if (size
== MO_16
) {
10094 case 0x2e: /* FCMLT (zero) */
10097 case 0x2c: /* FCMGT (zero) */
10098 genfn
= gen_helper_advsimd_cgt_f16
;
10100 case 0x2d: /* FCMEQ (zero) */
10101 genfn
= gen_helper_advsimd_ceq_f16
;
10103 case 0x6d: /* FCMLE (zero) */
10106 case 0x6c: /* FCMGE (zero) */
10107 genfn
= gen_helper_advsimd_cge_f16
;
10110 g_assert_not_reached();
10114 case 0x2e: /* FCMLT (zero) */
10117 case 0x2c: /* FCMGT (zero) */
10118 genfn
= gen_helper_neon_cgt_f32
;
10120 case 0x2d: /* FCMEQ (zero) */
10121 genfn
= gen_helper_neon_ceq_f32
;
10123 case 0x6d: /* FCMLE (zero) */
10126 case 0x6c: /* FCMGE (zero) */
10127 genfn
= gen_helper_neon_cge_f32
;
10130 g_assert_not_reached();
10137 int vector_size
= 8 << is_q
;
10138 maxpasses
= vector_size
>> size
;
10141 for (pass
= 0; pass
< maxpasses
; pass
++) {
10142 read_vec_element_i32(s
, tcg_op
, rn
, pass
, size
);
10144 genfn(tcg_res
, tcg_zero
, tcg_op
, fpst
);
10146 genfn(tcg_res
, tcg_op
, tcg_zero
, fpst
);
10149 write_fp_sreg(s
, rd
, tcg_res
);
10151 write_vec_element_i32(s
, tcg_res
, rd
, pass
, size
);
10154 tcg_temp_free_i32(tcg_res
);
10155 tcg_temp_free_i32(tcg_zero
);
10156 tcg_temp_free_i32(tcg_op
);
10158 clear_vec_high(s
, is_q
, rd
);
10162 tcg_temp_free_ptr(fpst
);
10165 static void handle_2misc_reciprocal(DisasContext
*s
, int opcode
,
10166 bool is_scalar
, bool is_u
, bool is_q
,
10167 int size
, int rn
, int rd
)
10169 bool is_double
= (size
== 3);
10170 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
10173 TCGv_i64 tcg_op
= tcg_temp_new_i64();
10174 TCGv_i64 tcg_res
= tcg_temp_new_i64();
10177 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
10178 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
10180 case 0x3d: /* FRECPE */
10181 gen_helper_recpe_f64(tcg_res
, tcg_op
, fpst
);
10183 case 0x3f: /* FRECPX */
10184 gen_helper_frecpx_f64(tcg_res
, tcg_op
, fpst
);
10186 case 0x7d: /* FRSQRTE */
10187 gen_helper_rsqrte_f64(tcg_res
, tcg_op
, fpst
);
10190 g_assert_not_reached();
10192 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
10194 tcg_temp_free_i64(tcg_res
);
10195 tcg_temp_free_i64(tcg_op
);
10196 clear_vec_high(s
, !is_scalar
, rd
);
10198 TCGv_i32 tcg_op
= tcg_temp_new_i32();
10199 TCGv_i32 tcg_res
= tcg_temp_new_i32();
10200 int pass
, maxpasses
;
10205 maxpasses
= is_q
? 4 : 2;
10208 for (pass
= 0; pass
< maxpasses
; pass
++) {
10209 read_vec_element_i32(s
, tcg_op
, rn
, pass
, MO_32
);
10212 case 0x3c: /* URECPE */
10213 gen_helper_recpe_u32(tcg_res
, tcg_op
);
10215 case 0x3d: /* FRECPE */
10216 gen_helper_recpe_f32(tcg_res
, tcg_op
, fpst
);
10218 case 0x3f: /* FRECPX */
10219 gen_helper_frecpx_f32(tcg_res
, tcg_op
, fpst
);
10221 case 0x7d: /* FRSQRTE */
10222 gen_helper_rsqrte_f32(tcg_res
, tcg_op
, fpst
);
10225 g_assert_not_reached();
10229 write_fp_sreg(s
, rd
, tcg_res
);
10231 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
10234 tcg_temp_free_i32(tcg_res
);
10235 tcg_temp_free_i32(tcg_op
);
10237 clear_vec_high(s
, is_q
, rd
);
10240 tcg_temp_free_ptr(fpst
);
10243 static void handle_2misc_narrow(DisasContext
*s
, bool scalar
,
10244 int opcode
, bool u
, bool is_q
,
10245 int size
, int rn
, int rd
)
10247 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10248 * in the source becomes a size element in the destination).
10251 TCGv_i32 tcg_res
[2];
10252 int destelt
= is_q
? 2 : 0;
10253 int passes
= scalar
? 1 : 2;
10256 tcg_res
[1] = tcg_const_i32(0);
10259 for (pass
= 0; pass
< passes
; pass
++) {
10260 TCGv_i64 tcg_op
= tcg_temp_new_i64();
10261 NeonGenNarrowFn
*genfn
= NULL
;
10262 NeonGenNarrowEnvFn
*genenvfn
= NULL
;
10265 read_vec_element(s
, tcg_op
, rn
, pass
, size
+ 1);
10267 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
10269 tcg_res
[pass
] = tcg_temp_new_i32();
10272 case 0x12: /* XTN, SQXTUN */
10274 static NeonGenNarrowFn
* const xtnfns
[3] = {
10275 gen_helper_neon_narrow_u8
,
10276 gen_helper_neon_narrow_u16
,
10277 tcg_gen_extrl_i64_i32
,
10279 static NeonGenNarrowEnvFn
* const sqxtunfns
[3] = {
10280 gen_helper_neon_unarrow_sat8
,
10281 gen_helper_neon_unarrow_sat16
,
10282 gen_helper_neon_unarrow_sat32
,
10285 genenvfn
= sqxtunfns
[size
];
10287 genfn
= xtnfns
[size
];
10291 case 0x14: /* SQXTN, UQXTN */
10293 static NeonGenNarrowEnvFn
* const fns
[3][2] = {
10294 { gen_helper_neon_narrow_sat_s8
,
10295 gen_helper_neon_narrow_sat_u8
},
10296 { gen_helper_neon_narrow_sat_s16
,
10297 gen_helper_neon_narrow_sat_u16
},
10298 { gen_helper_neon_narrow_sat_s32
,
10299 gen_helper_neon_narrow_sat_u32
},
10301 genenvfn
= fns
[size
][u
];
10304 case 0x16: /* FCVTN, FCVTN2 */
10305 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10307 gen_helper_vfp_fcvtsd(tcg_res
[pass
], tcg_op
, cpu_env
);
10309 TCGv_i32 tcg_lo
= tcg_temp_new_i32();
10310 TCGv_i32 tcg_hi
= tcg_temp_new_i32();
10311 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
10312 TCGv_i32 ahp
= get_ahp_flag();
10314 tcg_gen_extr_i64_i32(tcg_lo
, tcg_hi
, tcg_op
);
10315 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo
, tcg_lo
, fpst
, ahp
);
10316 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi
, tcg_hi
, fpst
, ahp
);
10317 tcg_gen_deposit_i32(tcg_res
[pass
], tcg_lo
, tcg_hi
, 16, 16);
10318 tcg_temp_free_i32(tcg_lo
);
10319 tcg_temp_free_i32(tcg_hi
);
10320 tcg_temp_free_ptr(fpst
);
10321 tcg_temp_free_i32(ahp
);
10324 case 0x56: /* FCVTXN, FCVTXN2 */
10325 /* 64 bit to 32 bit float conversion
10326 * with von Neumann rounding (round to odd)
10329 gen_helper_fcvtx_f64_to_f32(tcg_res
[pass
], tcg_op
, cpu_env
);
10332 g_assert_not_reached();
10336 genfn(tcg_res
[pass
], tcg_op
);
10337 } else if (genenvfn
) {
10338 genenvfn(tcg_res
[pass
], cpu_env
, tcg_op
);
10341 tcg_temp_free_i64(tcg_op
);
10344 for (pass
= 0; pass
< 2; pass
++) {
10345 write_vec_element_i32(s
, tcg_res
[pass
], rd
, destelt
+ pass
, MO_32
);
10346 tcg_temp_free_i32(tcg_res
[pass
]);
10348 clear_vec_high(s
, is_q
, rd
);
10351 /* Remaining saturating accumulating ops */
10352 static void handle_2misc_satacc(DisasContext
*s
, bool is_scalar
, bool is_u
,
10353 bool is_q
, int size
, int rn
, int rd
)
10355 bool is_double
= (size
== 3);
10358 TCGv_i64 tcg_rn
= tcg_temp_new_i64();
10359 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
10362 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
10363 read_vec_element(s
, tcg_rn
, rn
, pass
, MO_64
);
10364 read_vec_element(s
, tcg_rd
, rd
, pass
, MO_64
);
10366 if (is_u
) { /* USQADD */
10367 gen_helper_neon_uqadd_s64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10368 } else { /* SUQADD */
10369 gen_helper_neon_sqadd_u64(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10371 write_vec_element(s
, tcg_rd
, rd
, pass
, MO_64
);
10373 tcg_temp_free_i64(tcg_rd
);
10374 tcg_temp_free_i64(tcg_rn
);
10375 clear_vec_high(s
, !is_scalar
, rd
);
10377 TCGv_i32 tcg_rn
= tcg_temp_new_i32();
10378 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
10379 int pass
, maxpasses
;
10384 maxpasses
= is_q
? 4 : 2;
10387 for (pass
= 0; pass
< maxpasses
; pass
++) {
10389 read_vec_element_i32(s
, tcg_rn
, rn
, pass
, size
);
10390 read_vec_element_i32(s
, tcg_rd
, rd
, pass
, size
);
10392 read_vec_element_i32(s
, tcg_rn
, rn
, pass
, MO_32
);
10393 read_vec_element_i32(s
, tcg_rd
, rd
, pass
, MO_32
);
10396 if (is_u
) { /* USQADD */
10399 gen_helper_neon_uqadd_s8(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10402 gen_helper_neon_uqadd_s16(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10405 gen_helper_neon_uqadd_s32(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10408 g_assert_not_reached();
10410 } else { /* SUQADD */
10413 gen_helper_neon_sqadd_u8(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10416 gen_helper_neon_sqadd_u16(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10419 gen_helper_neon_sqadd_u32(tcg_rd
, cpu_env
, tcg_rn
, tcg_rd
);
10422 g_assert_not_reached();
10427 TCGv_i64 tcg_zero
= tcg_const_i64(0);
10428 write_vec_element(s
, tcg_zero
, rd
, 0, MO_64
);
10429 tcg_temp_free_i64(tcg_zero
);
10431 write_vec_element_i32(s
, tcg_rd
, rd
, pass
, MO_32
);
10433 tcg_temp_free_i32(tcg_rd
);
10434 tcg_temp_free_i32(tcg_rn
);
10435 clear_vec_high(s
, is_q
, rd
);
10439 /* AdvSIMD scalar two reg misc
10440 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10441 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10442 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10443 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10445 static void disas_simd_scalar_two_reg_misc(DisasContext
*s
, uint32_t insn
)
10447 int rd
= extract32(insn
, 0, 5);
10448 int rn
= extract32(insn
, 5, 5);
10449 int opcode
= extract32(insn
, 12, 5);
10450 int size
= extract32(insn
, 22, 2);
10451 bool u
= extract32(insn
, 29, 1);
10452 bool is_fcvt
= false;
10454 TCGv_i32 tcg_rmode
;
10455 TCGv_ptr tcg_fpstatus
;
10458 case 0x3: /* USQADD / SUQADD*/
10459 if (!fp_access_check(s
)) {
10462 handle_2misc_satacc(s
, true, u
, false, size
, rn
, rd
);
10464 case 0x7: /* SQABS / SQNEG */
10466 case 0xa: /* CMLT */
10468 unallocated_encoding(s
);
10472 case 0x8: /* CMGT, CMGE */
10473 case 0x9: /* CMEQ, CMLE */
10474 case 0xb: /* ABS, NEG */
10476 unallocated_encoding(s
);
10480 case 0x12: /* SQXTUN */
10482 unallocated_encoding(s
);
10486 case 0x14: /* SQXTN, UQXTN */
10488 unallocated_encoding(s
);
10491 if (!fp_access_check(s
)) {
10494 handle_2misc_narrow(s
, true, opcode
, u
, false, size
, rn
, rd
);
10497 case 0x16 ... 0x1d:
10499 /* Floating point: U, size[1] and opcode indicate operation;
10500 * size[0] indicates single or double precision.
10502 opcode
|= (extract32(size
, 1, 1) << 5) | (u
<< 6);
10503 size
= extract32(size
, 0, 1) ? 3 : 2;
10505 case 0x2c: /* FCMGT (zero) */
10506 case 0x2d: /* FCMEQ (zero) */
10507 case 0x2e: /* FCMLT (zero) */
10508 case 0x6c: /* FCMGE (zero) */
10509 case 0x6d: /* FCMLE (zero) */
10510 handle_2misc_fcmp_zero(s
, opcode
, true, u
, true, size
, rn
, rd
);
10512 case 0x1d: /* SCVTF */
10513 case 0x5d: /* UCVTF */
10515 bool is_signed
= (opcode
== 0x1d);
10516 if (!fp_access_check(s
)) {
10519 handle_simd_intfp_conv(s
, rd
, rn
, 1, is_signed
, 0, size
);
10522 case 0x3d: /* FRECPE */
10523 case 0x3f: /* FRECPX */
10524 case 0x7d: /* FRSQRTE */
10525 if (!fp_access_check(s
)) {
10528 handle_2misc_reciprocal(s
, opcode
, true, u
, true, size
, rn
, rd
);
10530 case 0x1a: /* FCVTNS */
10531 case 0x1b: /* FCVTMS */
10532 case 0x3a: /* FCVTPS */
10533 case 0x3b: /* FCVTZS */
10534 case 0x5a: /* FCVTNU */
10535 case 0x5b: /* FCVTMU */
10536 case 0x7a: /* FCVTPU */
10537 case 0x7b: /* FCVTZU */
10539 rmode
= extract32(opcode
, 5, 1) | (extract32(opcode
, 0, 1) << 1);
10541 case 0x1c: /* FCVTAS */
10542 case 0x5c: /* FCVTAU */
10543 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10545 rmode
= FPROUNDING_TIEAWAY
;
10547 case 0x56: /* FCVTXN, FCVTXN2 */
10549 unallocated_encoding(s
);
10552 if (!fp_access_check(s
)) {
10555 handle_2misc_narrow(s
, true, opcode
, u
, false, size
- 1, rn
, rd
);
10558 unallocated_encoding(s
);
10563 unallocated_encoding(s
);
10567 if (!fp_access_check(s
)) {
10572 tcg_rmode
= tcg_const_i32(arm_rmode_to_sf(rmode
));
10573 tcg_fpstatus
= fpstatus_ptr(FPST_FPCR
);
10574 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
10577 tcg_fpstatus
= NULL
;
10581 TCGv_i64 tcg_rn
= read_fp_dreg(s
, rn
);
10582 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
10584 handle_2misc_64(s
, opcode
, u
, tcg_rd
, tcg_rn
, tcg_rmode
, tcg_fpstatus
);
10585 write_fp_dreg(s
, rd
, tcg_rd
);
10586 tcg_temp_free_i64(tcg_rd
);
10587 tcg_temp_free_i64(tcg_rn
);
10589 TCGv_i32 tcg_rn
= tcg_temp_new_i32();
10590 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
10592 read_vec_element_i32(s
, tcg_rn
, rn
, 0, size
);
10595 case 0x7: /* SQABS, SQNEG */
10597 NeonGenOneOpEnvFn
*genfn
;
10598 static NeonGenOneOpEnvFn
* const fns
[3][2] = {
10599 { gen_helper_neon_qabs_s8
, gen_helper_neon_qneg_s8
},
10600 { gen_helper_neon_qabs_s16
, gen_helper_neon_qneg_s16
},
10601 { gen_helper_neon_qabs_s32
, gen_helper_neon_qneg_s32
},
10603 genfn
= fns
[size
][u
];
10604 genfn(tcg_rd
, cpu_env
, tcg_rn
);
10607 case 0x1a: /* FCVTNS */
10608 case 0x1b: /* FCVTMS */
10609 case 0x1c: /* FCVTAS */
10610 case 0x3a: /* FCVTPS */
10611 case 0x3b: /* FCVTZS */
10613 TCGv_i32 tcg_shift
= tcg_const_i32(0);
10614 gen_helper_vfp_tosls(tcg_rd
, tcg_rn
, tcg_shift
, tcg_fpstatus
);
10615 tcg_temp_free_i32(tcg_shift
);
10618 case 0x5a: /* FCVTNU */
10619 case 0x5b: /* FCVTMU */
10620 case 0x5c: /* FCVTAU */
10621 case 0x7a: /* FCVTPU */
10622 case 0x7b: /* FCVTZU */
10624 TCGv_i32 tcg_shift
= tcg_const_i32(0);
10625 gen_helper_vfp_touls(tcg_rd
, tcg_rn
, tcg_shift
, tcg_fpstatus
);
10626 tcg_temp_free_i32(tcg_shift
);
10630 g_assert_not_reached();
10633 write_fp_sreg(s
, rd
, tcg_rd
);
10634 tcg_temp_free_i32(tcg_rd
);
10635 tcg_temp_free_i32(tcg_rn
);
10639 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
10640 tcg_temp_free_i32(tcg_rmode
);
10641 tcg_temp_free_ptr(tcg_fpstatus
);
10645 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10646 static void handle_vec_simd_shri(DisasContext
*s
, bool is_q
, bool is_u
,
10647 int immh
, int immb
, int opcode
, int rn
, int rd
)
10649 int size
= 32 - clz32(immh
) - 1;
10650 int immhb
= immh
<< 3 | immb
;
10651 int shift
= 2 * (8 << size
) - immhb
;
10652 GVecGen2iFn
*gvec_fn
;
10654 if (extract32(immh
, 3, 1) && !is_q
) {
10655 unallocated_encoding(s
);
10658 tcg_debug_assert(size
<= 3);
10660 if (!fp_access_check(s
)) {
10665 case 0x02: /* SSRA / USRA (accumulate) */
10666 gvec_fn
= is_u
? gen_gvec_usra
: gen_gvec_ssra
;
10669 case 0x08: /* SRI */
10670 gvec_fn
= gen_gvec_sri
;
10673 case 0x00: /* SSHR / USHR */
10675 if (shift
== 8 << size
) {
10676 /* Shift count the same size as element size produces zero. */
10677 tcg_gen_gvec_dup_imm(size
, vec_full_reg_offset(s
, rd
),
10678 is_q
? 16 : 8, vec_full_reg_size(s
), 0);
10681 gvec_fn
= tcg_gen_gvec_shri
;
10683 /* Shift count the same size as element size produces all sign. */
10684 if (shift
== 8 << size
) {
10687 gvec_fn
= tcg_gen_gvec_sari
;
10691 case 0x04: /* SRSHR / URSHR (rounding) */
10692 gvec_fn
= is_u
? gen_gvec_urshr
: gen_gvec_srshr
;
10695 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10696 gvec_fn
= is_u
? gen_gvec_ursra
: gen_gvec_srsra
;
10700 g_assert_not_reached();
10703 gen_gvec_fn2i(s
, is_q
, rd
, rn
, shift
, gvec_fn
, size
);
10706 /* SHL/SLI - Vector shift left */
10707 static void handle_vec_simd_shli(DisasContext
*s
, bool is_q
, bool insert
,
10708 int immh
, int immb
, int opcode
, int rn
, int rd
)
10710 int size
= 32 - clz32(immh
) - 1;
10711 int immhb
= immh
<< 3 | immb
;
10712 int shift
= immhb
- (8 << size
);
10714 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10715 assert(size
>= 0 && size
<= 3);
10717 if (extract32(immh
, 3, 1) && !is_q
) {
10718 unallocated_encoding(s
);
10722 if (!fp_access_check(s
)) {
10727 gen_gvec_fn2i(s
, is_q
, rd
, rn
, shift
, gen_gvec_sli
, size
);
10729 gen_gvec_fn2i(s
, is_q
, rd
, rn
, shift
, tcg_gen_gvec_shli
, size
);
10733 /* USHLL/SHLL - Vector shift left with widening */
10734 static void handle_vec_simd_wshli(DisasContext
*s
, bool is_q
, bool is_u
,
10735 int immh
, int immb
, int opcode
, int rn
, int rd
)
10737 int size
= 32 - clz32(immh
) - 1;
10738 int immhb
= immh
<< 3 | immb
;
10739 int shift
= immhb
- (8 << size
);
10741 int esize
= 8 << size
;
10742 int elements
= dsize
/esize
;
10743 TCGv_i64 tcg_rn
= new_tmp_a64(s
);
10744 TCGv_i64 tcg_rd
= new_tmp_a64(s
);
10748 unallocated_encoding(s
);
10752 if (!fp_access_check(s
)) {
10756 /* For the LL variants the store is larger than the load,
10757 * so if rd == rn we would overwrite parts of our input.
10758 * So load everything right now and use shifts in the main loop.
10760 read_vec_element(s
, tcg_rn
, rn
, is_q
? 1 : 0, MO_64
);
10762 for (i
= 0; i
< elements
; i
++) {
10763 tcg_gen_shri_i64(tcg_rd
, tcg_rn
, i
* esize
);
10764 ext_and_shift_reg(tcg_rd
, tcg_rd
, size
| (!is_u
<< 2), 0);
10765 tcg_gen_shli_i64(tcg_rd
, tcg_rd
, shift
);
10766 write_vec_element(s
, tcg_rd
, rd
, i
, size
+ 1);
10770 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10771 static void handle_vec_simd_shrn(DisasContext
*s
, bool is_q
,
10772 int immh
, int immb
, int opcode
, int rn
, int rd
)
10774 int immhb
= immh
<< 3 | immb
;
10775 int size
= 32 - clz32(immh
) - 1;
10777 int esize
= 8 << size
;
10778 int elements
= dsize
/esize
;
10779 int shift
= (2 * esize
) - immhb
;
10780 bool round
= extract32(opcode
, 0, 1);
10781 TCGv_i64 tcg_rn
, tcg_rd
, tcg_final
;
10782 TCGv_i64 tcg_round
;
10785 if (extract32(immh
, 3, 1)) {
10786 unallocated_encoding(s
);
10790 if (!fp_access_check(s
)) {
10794 tcg_rn
= tcg_temp_new_i64();
10795 tcg_rd
= tcg_temp_new_i64();
10796 tcg_final
= tcg_temp_new_i64();
10797 read_vec_element(s
, tcg_final
, rd
, is_q
? 1 : 0, MO_64
);
10800 uint64_t round_const
= 1ULL << (shift
- 1);
10801 tcg_round
= tcg_const_i64(round_const
);
10806 for (i
= 0; i
< elements
; i
++) {
10807 read_vec_element(s
, tcg_rn
, rn
, i
, size
+1);
10808 handle_shri_with_rndacc(tcg_rd
, tcg_rn
, tcg_round
,
10809 false, true, size
+1, shift
);
10811 tcg_gen_deposit_i64(tcg_final
, tcg_final
, tcg_rd
, esize
* i
, esize
);
10815 write_vec_element(s
, tcg_final
, rd
, 0, MO_64
);
10817 write_vec_element(s
, tcg_final
, rd
, 1, MO_64
);
10820 tcg_temp_free_i64(tcg_round
);
10822 tcg_temp_free_i64(tcg_rn
);
10823 tcg_temp_free_i64(tcg_rd
);
10824 tcg_temp_free_i64(tcg_final
);
10826 clear_vec_high(s
, is_q
, rd
);
10830 /* AdvSIMD shift by immediate
10831 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10832 * +---+---+---+-------------+------+------+--------+---+------+------+
10833 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10834 * +---+---+---+-------------+------+------+--------+---+------+------+
10836 static void disas_simd_shift_imm(DisasContext
*s
, uint32_t insn
)
10838 int rd
= extract32(insn
, 0, 5);
10839 int rn
= extract32(insn
, 5, 5);
10840 int opcode
= extract32(insn
, 11, 5);
10841 int immb
= extract32(insn
, 16, 3);
10842 int immh
= extract32(insn
, 19, 4);
10843 bool is_u
= extract32(insn
, 29, 1);
10844 bool is_q
= extract32(insn
, 30, 1);
10846 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10850 case 0x08: /* SRI */
10852 unallocated_encoding(s
);
10856 case 0x00: /* SSHR / USHR */
10857 case 0x02: /* SSRA / USRA (accumulate) */
10858 case 0x04: /* SRSHR / URSHR (rounding) */
10859 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10860 handle_vec_simd_shri(s
, is_q
, is_u
, immh
, immb
, opcode
, rn
, rd
);
10862 case 0x0a: /* SHL / SLI */
10863 handle_vec_simd_shli(s
, is_q
, is_u
, immh
, immb
, opcode
, rn
, rd
);
10865 case 0x10: /* SHRN */
10866 case 0x11: /* RSHRN / SQRSHRUN */
10868 handle_vec_simd_sqshrn(s
, false, is_q
, false, true, immh
, immb
,
10871 handle_vec_simd_shrn(s
, is_q
, immh
, immb
, opcode
, rn
, rd
);
10874 case 0x12: /* SQSHRN / UQSHRN */
10875 case 0x13: /* SQRSHRN / UQRSHRN */
10876 handle_vec_simd_sqshrn(s
, false, is_q
, is_u
, is_u
, immh
, immb
,
10879 case 0x14: /* SSHLL / USHLL */
10880 handle_vec_simd_wshli(s
, is_q
, is_u
, immh
, immb
, opcode
, rn
, rd
);
10882 case 0x1c: /* SCVTF / UCVTF */
10883 handle_simd_shift_intfp_conv(s
, false, is_q
, is_u
, immh
, immb
,
10886 case 0xc: /* SQSHLU */
10888 unallocated_encoding(s
);
10891 handle_simd_qshl(s
, false, is_q
, false, true, immh
, immb
, rn
, rd
);
10893 case 0xe: /* SQSHL, UQSHL */
10894 handle_simd_qshl(s
, false, is_q
, is_u
, is_u
, immh
, immb
, rn
, rd
);
10896 case 0x1f: /* FCVTZS/ FCVTZU */
10897 handle_simd_shift_fpint_conv(s
, false, is_q
, is_u
, immh
, immb
, rn
, rd
);
10900 unallocated_encoding(s
);
10905 /* Generate code to do a "long" addition or subtraction, ie one done in
10906 * TCGv_i64 on vector lanes twice the width specified by size.
10908 static void gen_neon_addl(int size
, bool is_sub
, TCGv_i64 tcg_res
,
10909 TCGv_i64 tcg_op1
, TCGv_i64 tcg_op2
)
10911 static NeonGenTwo64OpFn
* const fns
[3][2] = {
10912 { gen_helper_neon_addl_u16
, gen_helper_neon_subl_u16
},
10913 { gen_helper_neon_addl_u32
, gen_helper_neon_subl_u32
},
10914 { tcg_gen_add_i64
, tcg_gen_sub_i64
},
10916 NeonGenTwo64OpFn
*genfn
;
10919 genfn
= fns
[size
][is_sub
];
10920 genfn(tcg_res
, tcg_op1
, tcg_op2
);
10923 static void handle_3rd_widening(DisasContext
*s
, int is_q
, int is_u
, int size
,
10924 int opcode
, int rd
, int rn
, int rm
)
10926 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10927 TCGv_i64 tcg_res
[2];
10930 tcg_res
[0] = tcg_temp_new_i64();
10931 tcg_res
[1] = tcg_temp_new_i64();
10933 /* Does this op do an adding accumulate, a subtracting accumulate,
10934 * or no accumulate at all?
10952 read_vec_element(s
, tcg_res
[0], rd
, 0, MO_64
);
10953 read_vec_element(s
, tcg_res
[1], rd
, 1, MO_64
);
10956 /* size == 2 means two 32x32->64 operations; this is worth special
10957 * casing because we can generally handle it inline.
10960 for (pass
= 0; pass
< 2; pass
++) {
10961 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
10962 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
10963 TCGv_i64 tcg_passres
;
10964 MemOp memop
= MO_32
| (is_u
? 0 : MO_SIGN
);
10966 int elt
= pass
+ is_q
* 2;
10968 read_vec_element(s
, tcg_op1
, rn
, elt
, memop
);
10969 read_vec_element(s
, tcg_op2
, rm
, elt
, memop
);
10972 tcg_passres
= tcg_res
[pass
];
10974 tcg_passres
= tcg_temp_new_i64();
10978 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10979 tcg_gen_add_i64(tcg_passres
, tcg_op1
, tcg_op2
);
10981 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10982 tcg_gen_sub_i64(tcg_passres
, tcg_op1
, tcg_op2
);
10984 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10985 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10987 TCGv_i64 tcg_tmp1
= tcg_temp_new_i64();
10988 TCGv_i64 tcg_tmp2
= tcg_temp_new_i64();
10990 tcg_gen_sub_i64(tcg_tmp1
, tcg_op1
, tcg_op2
);
10991 tcg_gen_sub_i64(tcg_tmp2
, tcg_op2
, tcg_op1
);
10992 tcg_gen_movcond_i64(is_u
? TCG_COND_GEU
: TCG_COND_GE
,
10994 tcg_op1
, tcg_op2
, tcg_tmp1
, tcg_tmp2
);
10995 tcg_temp_free_i64(tcg_tmp1
);
10996 tcg_temp_free_i64(tcg_tmp2
);
10999 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11000 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11001 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11002 tcg_gen_mul_i64(tcg_passres
, tcg_op1
, tcg_op2
);
11004 case 9: /* SQDMLAL, SQDMLAL2 */
11005 case 11: /* SQDMLSL, SQDMLSL2 */
11006 case 13: /* SQDMULL, SQDMULL2 */
11007 tcg_gen_mul_i64(tcg_passres
, tcg_op1
, tcg_op2
);
11008 gen_helper_neon_addl_saturate_s64(tcg_passres
, cpu_env
,
11009 tcg_passres
, tcg_passres
);
11012 g_assert_not_reached();
11015 if (opcode
== 9 || opcode
== 11) {
11016 /* saturating accumulate ops */
11018 tcg_gen_neg_i64(tcg_passres
, tcg_passres
);
11020 gen_helper_neon_addl_saturate_s64(tcg_res
[pass
], cpu_env
,
11021 tcg_res
[pass
], tcg_passres
);
11022 } else if (accop
> 0) {
11023 tcg_gen_add_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
11024 } else if (accop
< 0) {
11025 tcg_gen_sub_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
11029 tcg_temp_free_i64(tcg_passres
);
11032 tcg_temp_free_i64(tcg_op1
);
11033 tcg_temp_free_i64(tcg_op2
);
11036 /* size 0 or 1, generally helper functions */
11037 for (pass
= 0; pass
< 2; pass
++) {
11038 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
11039 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
11040 TCGv_i64 tcg_passres
;
11041 int elt
= pass
+ is_q
* 2;
11043 read_vec_element_i32(s
, tcg_op1
, rn
, elt
, MO_32
);
11044 read_vec_element_i32(s
, tcg_op2
, rm
, elt
, MO_32
);
11047 tcg_passres
= tcg_res
[pass
];
11049 tcg_passres
= tcg_temp_new_i64();
11053 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11054 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11056 TCGv_i64 tcg_op2_64
= tcg_temp_new_i64();
11057 static NeonGenWidenFn
* const widenfns
[2][2] = {
11058 { gen_helper_neon_widen_s8
, gen_helper_neon_widen_u8
},
11059 { gen_helper_neon_widen_s16
, gen_helper_neon_widen_u16
},
11061 NeonGenWidenFn
*widenfn
= widenfns
[size
][is_u
];
11063 widenfn(tcg_op2_64
, tcg_op2
);
11064 widenfn(tcg_passres
, tcg_op1
);
11065 gen_neon_addl(size
, (opcode
== 2), tcg_passres
,
11066 tcg_passres
, tcg_op2_64
);
11067 tcg_temp_free_i64(tcg_op2_64
);
11070 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11071 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11074 gen_helper_neon_abdl_u16(tcg_passres
, tcg_op1
, tcg_op2
);
11076 gen_helper_neon_abdl_s16(tcg_passres
, tcg_op1
, tcg_op2
);
11080 gen_helper_neon_abdl_u32(tcg_passres
, tcg_op1
, tcg_op2
);
11082 gen_helper_neon_abdl_s32(tcg_passres
, tcg_op1
, tcg_op2
);
11086 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11087 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11088 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11091 gen_helper_neon_mull_u8(tcg_passres
, tcg_op1
, tcg_op2
);
11093 gen_helper_neon_mull_s8(tcg_passres
, tcg_op1
, tcg_op2
);
11097 gen_helper_neon_mull_u16(tcg_passres
, tcg_op1
, tcg_op2
);
11099 gen_helper_neon_mull_s16(tcg_passres
, tcg_op1
, tcg_op2
);
11103 case 9: /* SQDMLAL, SQDMLAL2 */
11104 case 11: /* SQDMLSL, SQDMLSL2 */
11105 case 13: /* SQDMULL, SQDMULL2 */
11107 gen_helper_neon_mull_s16(tcg_passres
, tcg_op1
, tcg_op2
);
11108 gen_helper_neon_addl_saturate_s32(tcg_passres
, cpu_env
,
11109 tcg_passres
, tcg_passres
);
11112 g_assert_not_reached();
11114 tcg_temp_free_i32(tcg_op1
);
11115 tcg_temp_free_i32(tcg_op2
);
11118 if (opcode
== 9 || opcode
== 11) {
11119 /* saturating accumulate ops */
11121 gen_helper_neon_negl_u32(tcg_passres
, tcg_passres
);
11123 gen_helper_neon_addl_saturate_s32(tcg_res
[pass
], cpu_env
,
11127 gen_neon_addl(size
, (accop
< 0), tcg_res
[pass
],
11128 tcg_res
[pass
], tcg_passres
);
11130 tcg_temp_free_i64(tcg_passres
);
11135 write_vec_element(s
, tcg_res
[0], rd
, 0, MO_64
);
11136 write_vec_element(s
, tcg_res
[1], rd
, 1, MO_64
);
11137 tcg_temp_free_i64(tcg_res
[0]);
11138 tcg_temp_free_i64(tcg_res
[1]);
11141 static void handle_3rd_wide(DisasContext
*s
, int is_q
, int is_u
, int size
,
11142 int opcode
, int rd
, int rn
, int rm
)
11144 TCGv_i64 tcg_res
[2];
11145 int part
= is_q
? 2 : 0;
11148 for (pass
= 0; pass
< 2; pass
++) {
11149 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
11150 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
11151 TCGv_i64 tcg_op2_wide
= tcg_temp_new_i64();
11152 static NeonGenWidenFn
* const widenfns
[3][2] = {
11153 { gen_helper_neon_widen_s8
, gen_helper_neon_widen_u8
},
11154 { gen_helper_neon_widen_s16
, gen_helper_neon_widen_u16
},
11155 { tcg_gen_ext_i32_i64
, tcg_gen_extu_i32_i64
},
11157 NeonGenWidenFn
*widenfn
= widenfns
[size
][is_u
];
11159 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
11160 read_vec_element_i32(s
, tcg_op2
, rm
, part
+ pass
, MO_32
);
11161 widenfn(tcg_op2_wide
, tcg_op2
);
11162 tcg_temp_free_i32(tcg_op2
);
11163 tcg_res
[pass
] = tcg_temp_new_i64();
11164 gen_neon_addl(size
, (opcode
== 3),
11165 tcg_res
[pass
], tcg_op1
, tcg_op2_wide
);
11166 tcg_temp_free_i64(tcg_op1
);
11167 tcg_temp_free_i64(tcg_op2_wide
);
11170 for (pass
= 0; pass
< 2; pass
++) {
11171 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
11172 tcg_temp_free_i64(tcg_res
[pass
]);
11176 static void do_narrow_round_high_u32(TCGv_i32 res
, TCGv_i64 in
)
11178 tcg_gen_addi_i64(in
, in
, 1U << 31);
11179 tcg_gen_extrh_i64_i32(res
, in
);
11182 static void handle_3rd_narrowing(DisasContext
*s
, int is_q
, int is_u
, int size
,
11183 int opcode
, int rd
, int rn
, int rm
)
11185 TCGv_i32 tcg_res
[2];
11186 int part
= is_q
? 2 : 0;
11189 for (pass
= 0; pass
< 2; pass
++) {
11190 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
11191 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
11192 TCGv_i64 tcg_wideres
= tcg_temp_new_i64();
11193 static NeonGenNarrowFn
* const narrowfns
[3][2] = {
11194 { gen_helper_neon_narrow_high_u8
,
11195 gen_helper_neon_narrow_round_high_u8
},
11196 { gen_helper_neon_narrow_high_u16
,
11197 gen_helper_neon_narrow_round_high_u16
},
11198 { tcg_gen_extrh_i64_i32
, do_narrow_round_high_u32
},
11200 NeonGenNarrowFn
*gennarrow
= narrowfns
[size
][is_u
];
11202 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
11203 read_vec_element(s
, tcg_op2
, rm
, pass
, MO_64
);
11205 gen_neon_addl(size
, (opcode
== 6), tcg_wideres
, tcg_op1
, tcg_op2
);
11207 tcg_temp_free_i64(tcg_op1
);
11208 tcg_temp_free_i64(tcg_op2
);
11210 tcg_res
[pass
] = tcg_temp_new_i32();
11211 gennarrow(tcg_res
[pass
], tcg_wideres
);
11212 tcg_temp_free_i64(tcg_wideres
);
11215 for (pass
= 0; pass
< 2; pass
++) {
11216 write_vec_element_i32(s
, tcg_res
[pass
], rd
, pass
+ part
, MO_32
);
11217 tcg_temp_free_i32(tcg_res
[pass
]);
11219 clear_vec_high(s
, is_q
, rd
);
11222 /* AdvSIMD three different
11223 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11224 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11225 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11226 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11228 static void disas_simd_three_reg_diff(DisasContext
*s
, uint32_t insn
)
11230 /* Instructions in this group fall into three basic classes
11231 * (in each case with the operation working on each element in
11232 * the input vectors):
11233 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11235 * (2) wide 64 x 128 -> 128
11236 * (3) narrowing 128 x 128 -> 64
11237 * Here we do initial decode, catch unallocated cases and
11238 * dispatch to separate functions for each class.
11240 int is_q
= extract32(insn
, 30, 1);
11241 int is_u
= extract32(insn
, 29, 1);
11242 int size
= extract32(insn
, 22, 2);
11243 int opcode
= extract32(insn
, 12, 4);
11244 int rm
= extract32(insn
, 16, 5);
11245 int rn
= extract32(insn
, 5, 5);
11246 int rd
= extract32(insn
, 0, 5);
11249 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11250 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11251 /* 64 x 128 -> 128 */
11253 unallocated_encoding(s
);
11256 if (!fp_access_check(s
)) {
11259 handle_3rd_wide(s
, is_q
, is_u
, size
, opcode
, rd
, rn
, rm
);
11261 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11262 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11263 /* 128 x 128 -> 64 */
11265 unallocated_encoding(s
);
11268 if (!fp_access_check(s
)) {
11271 handle_3rd_narrowing(s
, is_q
, is_u
, size
, opcode
, rd
, rn
, rm
);
11273 case 14: /* PMULL, PMULL2 */
11275 unallocated_encoding(s
);
11279 case 0: /* PMULL.P8 */
11280 if (!fp_access_check(s
)) {
11283 /* The Q field specifies lo/hi half input for this insn. */
11284 gen_gvec_op3_ool(s
, true, rd
, rn
, rm
, is_q
,
11285 gen_helper_neon_pmull_h
);
11288 case 3: /* PMULL.P64 */
11289 if (!dc_isar_feature(aa64_pmull
, s
)) {
11290 unallocated_encoding(s
);
11293 if (!fp_access_check(s
)) {
11296 /* The Q field specifies lo/hi half input for this insn. */
11297 gen_gvec_op3_ool(s
, true, rd
, rn
, rm
, is_q
,
11298 gen_helper_gvec_pmull_q
);
11302 unallocated_encoding(s
);
11306 case 9: /* SQDMLAL, SQDMLAL2 */
11307 case 11: /* SQDMLSL, SQDMLSL2 */
11308 case 13: /* SQDMULL, SQDMULL2 */
11309 if (is_u
|| size
== 0) {
11310 unallocated_encoding(s
);
11314 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11315 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11316 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11317 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11318 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11319 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11320 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11321 /* 64 x 64 -> 128 */
11323 unallocated_encoding(s
);
11326 if (!fp_access_check(s
)) {
11330 handle_3rd_widening(s
, is_q
, is_u
, size
, opcode
, rd
, rn
, rm
);
11333 /* opcode 15 not allocated */
11334 unallocated_encoding(s
);
11339 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11340 static void disas_simd_3same_logic(DisasContext
*s
, uint32_t insn
)
11342 int rd
= extract32(insn
, 0, 5);
11343 int rn
= extract32(insn
, 5, 5);
11344 int rm
= extract32(insn
, 16, 5);
11345 int size
= extract32(insn
, 22, 2);
11346 bool is_u
= extract32(insn
, 29, 1);
11347 bool is_q
= extract32(insn
, 30, 1);
11349 if (!fp_access_check(s
)) {
11353 switch (size
+ 4 * is_u
) {
11355 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_and
, 0);
11358 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_andc
, 0);
11361 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_or
, 0);
11364 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_orc
, 0);
11367 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_xor
, 0);
11370 case 5: /* BSL bitwise select */
11371 gen_gvec_fn4(s
, is_q
, rd
, rd
, rn
, rm
, tcg_gen_gvec_bitsel
, 0);
11373 case 6: /* BIT, bitwise insert if true */
11374 gen_gvec_fn4(s
, is_q
, rd
, rm
, rn
, rd
, tcg_gen_gvec_bitsel
, 0);
11376 case 7: /* BIF, bitwise insert if false */
11377 gen_gvec_fn4(s
, is_q
, rd
, rm
, rd
, rn
, tcg_gen_gvec_bitsel
, 0);
11381 g_assert_not_reached();
11385 /* Pairwise op subgroup of C3.6.16.
11387 * This is called directly or via the handle_3same_float for float pairwise
11388 * operations where the opcode and size are calculated differently.
11390 static void handle_simd_3same_pair(DisasContext
*s
, int is_q
, int u
, int opcode
,
11391 int size
, int rn
, int rm
, int rd
)
11396 /* Floating point operations need fpst */
11397 if (opcode
>= 0x58) {
11398 fpst
= fpstatus_ptr(FPST_FPCR
);
11403 if (!fp_access_check(s
)) {
11407 /* These operations work on the concatenated rm:rn, with each pair of
11408 * adjacent elements being operated on to produce an element in the result.
11411 TCGv_i64 tcg_res
[2];
11413 for (pass
= 0; pass
< 2; pass
++) {
11414 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
11415 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
11416 int passreg
= (pass
== 0) ? rn
: rm
;
11418 read_vec_element(s
, tcg_op1
, passreg
, 0, MO_64
);
11419 read_vec_element(s
, tcg_op2
, passreg
, 1, MO_64
);
11420 tcg_res
[pass
] = tcg_temp_new_i64();
11423 case 0x17: /* ADDP */
11424 tcg_gen_add_i64(tcg_res
[pass
], tcg_op1
, tcg_op2
);
11426 case 0x58: /* FMAXNMP */
11427 gen_helper_vfp_maxnumd(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11429 case 0x5a: /* FADDP */
11430 gen_helper_vfp_addd(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11432 case 0x5e: /* FMAXP */
11433 gen_helper_vfp_maxd(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11435 case 0x78: /* FMINNMP */
11436 gen_helper_vfp_minnumd(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11438 case 0x7e: /* FMINP */
11439 gen_helper_vfp_mind(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11442 g_assert_not_reached();
11445 tcg_temp_free_i64(tcg_op1
);
11446 tcg_temp_free_i64(tcg_op2
);
11449 for (pass
= 0; pass
< 2; pass
++) {
11450 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
11451 tcg_temp_free_i64(tcg_res
[pass
]);
11454 int maxpass
= is_q
? 4 : 2;
11455 TCGv_i32 tcg_res
[4];
11457 for (pass
= 0; pass
< maxpass
; pass
++) {
11458 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
11459 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
11460 NeonGenTwoOpFn
*genfn
= NULL
;
11461 int passreg
= pass
< (maxpass
/ 2) ? rn
: rm
;
11462 int passelt
= (is_q
&& (pass
& 1)) ? 2 : 0;
11464 read_vec_element_i32(s
, tcg_op1
, passreg
, passelt
, MO_32
);
11465 read_vec_element_i32(s
, tcg_op2
, passreg
, passelt
+ 1, MO_32
);
11466 tcg_res
[pass
] = tcg_temp_new_i32();
11469 case 0x17: /* ADDP */
11471 static NeonGenTwoOpFn
* const fns
[3] = {
11472 gen_helper_neon_padd_u8
,
11473 gen_helper_neon_padd_u16
,
11479 case 0x14: /* SMAXP, UMAXP */
11481 static NeonGenTwoOpFn
* const fns
[3][2] = {
11482 { gen_helper_neon_pmax_s8
, gen_helper_neon_pmax_u8
},
11483 { gen_helper_neon_pmax_s16
, gen_helper_neon_pmax_u16
},
11484 { tcg_gen_smax_i32
, tcg_gen_umax_i32
},
11486 genfn
= fns
[size
][u
];
11489 case 0x15: /* SMINP, UMINP */
11491 static NeonGenTwoOpFn
* const fns
[3][2] = {
11492 { gen_helper_neon_pmin_s8
, gen_helper_neon_pmin_u8
},
11493 { gen_helper_neon_pmin_s16
, gen_helper_neon_pmin_u16
},
11494 { tcg_gen_smin_i32
, tcg_gen_umin_i32
},
11496 genfn
= fns
[size
][u
];
11499 /* The FP operations are all on single floats (32 bit) */
11500 case 0x58: /* FMAXNMP */
11501 gen_helper_vfp_maxnums(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11503 case 0x5a: /* FADDP */
11504 gen_helper_vfp_adds(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11506 case 0x5e: /* FMAXP */
11507 gen_helper_vfp_maxs(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11509 case 0x78: /* FMINNMP */
11510 gen_helper_vfp_minnums(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11512 case 0x7e: /* FMINP */
11513 gen_helper_vfp_mins(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
11516 g_assert_not_reached();
11519 /* FP ops called directly, otherwise call now */
11521 genfn(tcg_res
[pass
], tcg_op1
, tcg_op2
);
11524 tcg_temp_free_i32(tcg_op1
);
11525 tcg_temp_free_i32(tcg_op2
);
11528 for (pass
= 0; pass
< maxpass
; pass
++) {
11529 write_vec_element_i32(s
, tcg_res
[pass
], rd
, pass
, MO_32
);
11530 tcg_temp_free_i32(tcg_res
[pass
]);
11532 clear_vec_high(s
, is_q
, rd
);
11536 tcg_temp_free_ptr(fpst
);
11540 /* Floating point op subgroup of C3.6.16. */
11541 static void disas_simd_3same_float(DisasContext
*s
, uint32_t insn
)
11543 /* For floating point ops, the U, size[1] and opcode bits
11544 * together indicate the operation. size[0] indicates single
11547 int fpopcode
= extract32(insn
, 11, 5)
11548 | (extract32(insn
, 23, 1) << 5)
11549 | (extract32(insn
, 29, 1) << 6);
11550 int is_q
= extract32(insn
, 30, 1);
11551 int size
= extract32(insn
, 22, 1);
11552 int rm
= extract32(insn
, 16, 5);
11553 int rn
= extract32(insn
, 5, 5);
11554 int rd
= extract32(insn
, 0, 5);
11556 int datasize
= is_q
? 128 : 64;
11557 int esize
= 32 << size
;
11558 int elements
= datasize
/ esize
;
11560 if (size
== 1 && !is_q
) {
11561 unallocated_encoding(s
);
11565 switch (fpopcode
) {
11566 case 0x58: /* FMAXNMP */
11567 case 0x5a: /* FADDP */
11568 case 0x5e: /* FMAXP */
11569 case 0x78: /* FMINNMP */
11570 case 0x7e: /* FMINP */
11571 if (size
&& !is_q
) {
11572 unallocated_encoding(s
);
11575 handle_simd_3same_pair(s
, is_q
, 0, fpopcode
, size
? MO_64
: MO_32
,
11578 case 0x1b: /* FMULX */
11579 case 0x1f: /* FRECPS */
11580 case 0x3f: /* FRSQRTS */
11581 case 0x5d: /* FACGE */
11582 case 0x7d: /* FACGT */
11583 case 0x19: /* FMLA */
11584 case 0x39: /* FMLS */
11585 case 0x18: /* FMAXNM */
11586 case 0x1a: /* FADD */
11587 case 0x1c: /* FCMEQ */
11588 case 0x1e: /* FMAX */
11589 case 0x38: /* FMINNM */
11590 case 0x3a: /* FSUB */
11591 case 0x3e: /* FMIN */
11592 case 0x5b: /* FMUL */
11593 case 0x5c: /* FCMGE */
11594 case 0x5f: /* FDIV */
11595 case 0x7a: /* FABD */
11596 case 0x7c: /* FCMGT */
11597 if (!fp_access_check(s
)) {
11600 handle_3same_float(s
, size
, elements
, fpopcode
, rd
, rn
, rm
);
11603 case 0x1d: /* FMLAL */
11604 case 0x3d: /* FMLSL */
11605 case 0x59: /* FMLAL2 */
11606 case 0x79: /* FMLSL2 */
11607 if (size
& 1 || !dc_isar_feature(aa64_fhm
, s
)) {
11608 unallocated_encoding(s
);
11611 if (fp_access_check(s
)) {
11612 int is_s
= extract32(insn
, 23, 1);
11613 int is_2
= extract32(insn
, 29, 1);
11614 int data
= (is_2
<< 1) | is_s
;
11615 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, rd
),
11616 vec_full_reg_offset(s
, rn
),
11617 vec_full_reg_offset(s
, rm
), cpu_env
,
11618 is_q
? 16 : 8, vec_full_reg_size(s
),
11619 data
, gen_helper_gvec_fmlal_a64
);
11624 unallocated_encoding(s
);
11629 /* Integer op subgroup of C3.6.16. */
11630 static void disas_simd_3same_int(DisasContext
*s
, uint32_t insn
)
11632 int is_q
= extract32(insn
, 30, 1);
11633 int u
= extract32(insn
, 29, 1);
11634 int size
= extract32(insn
, 22, 2);
11635 int opcode
= extract32(insn
, 11, 5);
11636 int rm
= extract32(insn
, 16, 5);
11637 int rn
= extract32(insn
, 5, 5);
11638 int rd
= extract32(insn
, 0, 5);
11643 case 0x13: /* MUL, PMUL */
11644 if (u
&& size
!= 0) {
11645 unallocated_encoding(s
);
11649 case 0x0: /* SHADD, UHADD */
11650 case 0x2: /* SRHADD, URHADD */
11651 case 0x4: /* SHSUB, UHSUB */
11652 case 0xc: /* SMAX, UMAX */
11653 case 0xd: /* SMIN, UMIN */
11654 case 0xe: /* SABD, UABD */
11655 case 0xf: /* SABA, UABA */
11656 case 0x12: /* MLA, MLS */
11658 unallocated_encoding(s
);
11662 case 0x16: /* SQDMULH, SQRDMULH */
11663 if (size
== 0 || size
== 3) {
11664 unallocated_encoding(s
);
11669 if (size
== 3 && !is_q
) {
11670 unallocated_encoding(s
);
11676 if (!fp_access_check(s
)) {
11681 case 0x01: /* SQADD, UQADD */
11683 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_uqadd_qc
, size
);
11685 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sqadd_qc
, size
);
11688 case 0x05: /* SQSUB, UQSUB */
11690 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_uqsub_qc
, size
);
11692 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sqsub_qc
, size
);
11695 case 0x08: /* SSHL, USHL */
11697 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_ushl
, size
);
11699 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sshl
, size
);
11702 case 0x0c: /* SMAX, UMAX */
11704 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_umax
, size
);
11706 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_smax
, size
);
11709 case 0x0d: /* SMIN, UMIN */
11711 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_umin
, size
);
11713 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_smin
, size
);
11716 case 0xe: /* SABD, UABD */
11718 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_uabd
, size
);
11720 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sabd
, size
);
11723 case 0xf: /* SABA, UABA */
11725 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_uaba
, size
);
11727 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_saba
, size
);
11730 case 0x10: /* ADD, SUB */
11732 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_sub
, size
);
11734 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_add
, size
);
11737 case 0x13: /* MUL, PMUL */
11738 if (!u
) { /* MUL */
11739 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_mul
, size
);
11740 } else { /* PMUL */
11741 gen_gvec_op3_ool(s
, is_q
, rd
, rn
, rm
, 0, gen_helper_gvec_pmul_b
);
11744 case 0x12: /* MLA, MLS */
11746 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_mls
, size
);
11748 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_mla
, size
);
11751 case 0x16: /* SQDMULH, SQRDMULH */
11753 static gen_helper_gvec_3_ptr
* const fns
[2][2] = {
11754 { gen_helper_neon_sqdmulh_h
, gen_helper_neon_sqrdmulh_h
},
11755 { gen_helper_neon_sqdmulh_s
, gen_helper_neon_sqrdmulh_s
},
11757 gen_gvec_op3_qc(s
, is_q
, rd
, rn
, rm
, fns
[size
- 1][u
]);
11761 if (!u
) { /* CMTST */
11762 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_cmtst
, size
);
11766 cond
= TCG_COND_EQ
;
11768 case 0x06: /* CMGT, CMHI */
11769 cond
= u
? TCG_COND_GTU
: TCG_COND_GT
;
11771 case 0x07: /* CMGE, CMHS */
11772 cond
= u
? TCG_COND_GEU
: TCG_COND_GE
;
11774 tcg_gen_gvec_cmp(cond
, size
, vec_full_reg_offset(s
, rd
),
11775 vec_full_reg_offset(s
, rn
),
11776 vec_full_reg_offset(s
, rm
),
11777 is_q
? 16 : 8, vec_full_reg_size(s
));
11783 for (pass
= 0; pass
< 2; pass
++) {
11784 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
11785 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
11786 TCGv_i64 tcg_res
= tcg_temp_new_i64();
11788 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
11789 read_vec_element(s
, tcg_op2
, rm
, pass
, MO_64
);
11791 handle_3same_64(s
, opcode
, u
, tcg_res
, tcg_op1
, tcg_op2
);
11793 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
11795 tcg_temp_free_i64(tcg_res
);
11796 tcg_temp_free_i64(tcg_op1
);
11797 tcg_temp_free_i64(tcg_op2
);
11800 for (pass
= 0; pass
< (is_q
? 4 : 2); pass
++) {
11801 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
11802 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
11803 TCGv_i32 tcg_res
= tcg_temp_new_i32();
11804 NeonGenTwoOpFn
*genfn
= NULL
;
11805 NeonGenTwoOpEnvFn
*genenvfn
= NULL
;
11807 read_vec_element_i32(s
, tcg_op1
, rn
, pass
, MO_32
);
11808 read_vec_element_i32(s
, tcg_op2
, rm
, pass
, MO_32
);
11811 case 0x0: /* SHADD, UHADD */
11813 static NeonGenTwoOpFn
* const fns
[3][2] = {
11814 { gen_helper_neon_hadd_s8
, gen_helper_neon_hadd_u8
},
11815 { gen_helper_neon_hadd_s16
, gen_helper_neon_hadd_u16
},
11816 { gen_helper_neon_hadd_s32
, gen_helper_neon_hadd_u32
},
11818 genfn
= fns
[size
][u
];
11821 case 0x2: /* SRHADD, URHADD */
11823 static NeonGenTwoOpFn
* const fns
[3][2] = {
11824 { gen_helper_neon_rhadd_s8
, gen_helper_neon_rhadd_u8
},
11825 { gen_helper_neon_rhadd_s16
, gen_helper_neon_rhadd_u16
},
11826 { gen_helper_neon_rhadd_s32
, gen_helper_neon_rhadd_u32
},
11828 genfn
= fns
[size
][u
];
11831 case 0x4: /* SHSUB, UHSUB */
11833 static NeonGenTwoOpFn
* const fns
[3][2] = {
11834 { gen_helper_neon_hsub_s8
, gen_helper_neon_hsub_u8
},
11835 { gen_helper_neon_hsub_s16
, gen_helper_neon_hsub_u16
},
11836 { gen_helper_neon_hsub_s32
, gen_helper_neon_hsub_u32
},
11838 genfn
= fns
[size
][u
];
11841 case 0x9: /* SQSHL, UQSHL */
11843 static NeonGenTwoOpEnvFn
* const fns
[3][2] = {
11844 { gen_helper_neon_qshl_s8
, gen_helper_neon_qshl_u8
},
11845 { gen_helper_neon_qshl_s16
, gen_helper_neon_qshl_u16
},
11846 { gen_helper_neon_qshl_s32
, gen_helper_neon_qshl_u32
},
11848 genenvfn
= fns
[size
][u
];
11851 case 0xa: /* SRSHL, URSHL */
11853 static NeonGenTwoOpFn
* const fns
[3][2] = {
11854 { gen_helper_neon_rshl_s8
, gen_helper_neon_rshl_u8
},
11855 { gen_helper_neon_rshl_s16
, gen_helper_neon_rshl_u16
},
11856 { gen_helper_neon_rshl_s32
, gen_helper_neon_rshl_u32
},
11858 genfn
= fns
[size
][u
];
11861 case 0xb: /* SQRSHL, UQRSHL */
11863 static NeonGenTwoOpEnvFn
* const fns
[3][2] = {
11864 { gen_helper_neon_qrshl_s8
, gen_helper_neon_qrshl_u8
},
11865 { gen_helper_neon_qrshl_s16
, gen_helper_neon_qrshl_u16
},
11866 { gen_helper_neon_qrshl_s32
, gen_helper_neon_qrshl_u32
},
11868 genenvfn
= fns
[size
][u
];
11872 g_assert_not_reached();
11876 genenvfn(tcg_res
, cpu_env
, tcg_op1
, tcg_op2
);
11878 genfn(tcg_res
, tcg_op1
, tcg_op2
);
11881 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
11883 tcg_temp_free_i32(tcg_res
);
11884 tcg_temp_free_i32(tcg_op1
);
11885 tcg_temp_free_i32(tcg_op2
);
11888 clear_vec_high(s
, is_q
, rd
);
11891 /* AdvSIMD three same
11892 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11893 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11894 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11895 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11897 static void disas_simd_three_reg_same(DisasContext
*s
, uint32_t insn
)
11899 int opcode
= extract32(insn
, 11, 5);
11902 case 0x3: /* logic ops */
11903 disas_simd_3same_logic(s
, insn
);
11905 case 0x17: /* ADDP */
11906 case 0x14: /* SMAXP, UMAXP */
11907 case 0x15: /* SMINP, UMINP */
11909 /* Pairwise operations */
11910 int is_q
= extract32(insn
, 30, 1);
11911 int u
= extract32(insn
, 29, 1);
11912 int size
= extract32(insn
, 22, 2);
11913 int rm
= extract32(insn
, 16, 5);
11914 int rn
= extract32(insn
, 5, 5);
11915 int rd
= extract32(insn
, 0, 5);
11916 if (opcode
== 0x17) {
11917 if (u
|| (size
== 3 && !is_q
)) {
11918 unallocated_encoding(s
);
11923 unallocated_encoding(s
);
11927 handle_simd_3same_pair(s
, is_q
, u
, opcode
, size
, rn
, rm
, rd
);
11930 case 0x18 ... 0x31:
11931 /* floating point ops, sz[1] and U are part of opcode */
11932 disas_simd_3same_float(s
, insn
);
11935 disas_simd_3same_int(s
, insn
);
11941 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11943 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11944 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11945 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11946 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11948 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11949 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11952 static void disas_simd_three_reg_same_fp16(DisasContext
*s
, uint32_t insn
)
11954 int opcode
, fpopcode
;
11955 int is_q
, u
, a
, rm
, rn
, rd
;
11956 int datasize
, elements
;
11959 bool pairwise
= false;
11961 if (!dc_isar_feature(aa64_fp16
, s
)) {
11962 unallocated_encoding(s
);
11966 if (!fp_access_check(s
)) {
11970 /* For these floating point ops, the U, a and opcode bits
11971 * together indicate the operation.
11973 opcode
= extract32(insn
, 11, 3);
11974 u
= extract32(insn
, 29, 1);
11975 a
= extract32(insn
, 23, 1);
11976 is_q
= extract32(insn
, 30, 1);
11977 rm
= extract32(insn
, 16, 5);
11978 rn
= extract32(insn
, 5, 5);
11979 rd
= extract32(insn
, 0, 5);
11981 fpopcode
= opcode
| (a
<< 3) | (u
<< 4);
11982 datasize
= is_q
? 128 : 64;
11983 elements
= datasize
/ 16;
11985 switch (fpopcode
) {
11986 case 0x10: /* FMAXNMP */
11987 case 0x12: /* FADDP */
11988 case 0x16: /* FMAXP */
11989 case 0x18: /* FMINNMP */
11990 case 0x1e: /* FMINP */
11995 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
11998 int maxpass
= is_q
? 8 : 4;
11999 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
12000 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
12001 TCGv_i32 tcg_res
[8];
12003 for (pass
= 0; pass
< maxpass
; pass
++) {
12004 int passreg
= pass
< (maxpass
/ 2) ? rn
: rm
;
12005 int passelt
= (pass
<< 1) & (maxpass
- 1);
12007 read_vec_element_i32(s
, tcg_op1
, passreg
, passelt
, MO_16
);
12008 read_vec_element_i32(s
, tcg_op2
, passreg
, passelt
+ 1, MO_16
);
12009 tcg_res
[pass
] = tcg_temp_new_i32();
12011 switch (fpopcode
) {
12012 case 0x10: /* FMAXNMP */
12013 gen_helper_advsimd_maxnumh(tcg_res
[pass
], tcg_op1
, tcg_op2
,
12016 case 0x12: /* FADDP */
12017 gen_helper_advsimd_addh(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
12019 case 0x16: /* FMAXP */
12020 gen_helper_advsimd_maxh(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
12022 case 0x18: /* FMINNMP */
12023 gen_helper_advsimd_minnumh(tcg_res
[pass
], tcg_op1
, tcg_op2
,
12026 case 0x1e: /* FMINP */
12027 gen_helper_advsimd_minh(tcg_res
[pass
], tcg_op1
, tcg_op2
, fpst
);
12030 g_assert_not_reached();
12034 for (pass
= 0; pass
< maxpass
; pass
++) {
12035 write_vec_element_i32(s
, tcg_res
[pass
], rd
, pass
, MO_16
);
12036 tcg_temp_free_i32(tcg_res
[pass
]);
12039 tcg_temp_free_i32(tcg_op1
);
12040 tcg_temp_free_i32(tcg_op2
);
12043 for (pass
= 0; pass
< elements
; pass
++) {
12044 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
12045 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
12046 TCGv_i32 tcg_res
= tcg_temp_new_i32();
12048 read_vec_element_i32(s
, tcg_op1
, rn
, pass
, MO_16
);
12049 read_vec_element_i32(s
, tcg_op2
, rm
, pass
, MO_16
);
12051 switch (fpopcode
) {
12052 case 0x0: /* FMAXNM */
12053 gen_helper_advsimd_maxnumh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12055 case 0x1: /* FMLA */
12056 read_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_16
);
12057 gen_helper_advsimd_muladdh(tcg_res
, tcg_op1
, tcg_op2
, tcg_res
,
12060 case 0x2: /* FADD */
12061 gen_helper_advsimd_addh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12063 case 0x3: /* FMULX */
12064 gen_helper_advsimd_mulxh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12066 case 0x4: /* FCMEQ */
12067 gen_helper_advsimd_ceq_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12069 case 0x6: /* FMAX */
12070 gen_helper_advsimd_maxh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12072 case 0x7: /* FRECPS */
12073 gen_helper_recpsf_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12075 case 0x8: /* FMINNM */
12076 gen_helper_advsimd_minnumh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12078 case 0x9: /* FMLS */
12079 /* As usual for ARM, separate negation for fused multiply-add */
12080 tcg_gen_xori_i32(tcg_op1
, tcg_op1
, 0x8000);
12081 read_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_16
);
12082 gen_helper_advsimd_muladdh(tcg_res
, tcg_op1
, tcg_op2
, tcg_res
,
12085 case 0xa: /* FSUB */
12086 gen_helper_advsimd_subh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12088 case 0xe: /* FMIN */
12089 gen_helper_advsimd_minh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12091 case 0xf: /* FRSQRTS */
12092 gen_helper_rsqrtsf_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12094 case 0x13: /* FMUL */
12095 gen_helper_advsimd_mulh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12097 case 0x14: /* FCMGE */
12098 gen_helper_advsimd_cge_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12100 case 0x15: /* FACGE */
12101 gen_helper_advsimd_acge_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12103 case 0x17: /* FDIV */
12104 gen_helper_advsimd_divh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12106 case 0x1a: /* FABD */
12107 gen_helper_advsimd_subh(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12108 tcg_gen_andi_i32(tcg_res
, tcg_res
, 0x7fff);
12110 case 0x1c: /* FCMGT */
12111 gen_helper_advsimd_cgt_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12113 case 0x1d: /* FACGT */
12114 gen_helper_advsimd_acgt_f16(tcg_res
, tcg_op1
, tcg_op2
, fpst
);
12117 fprintf(stderr
, "%s: insn %#04x, fpop %#2x @ %#" PRIx64
"\n",
12118 __func__
, insn
, fpopcode
, s
->pc_curr
);
12119 g_assert_not_reached();
12122 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_16
);
12123 tcg_temp_free_i32(tcg_res
);
12124 tcg_temp_free_i32(tcg_op1
);
12125 tcg_temp_free_i32(tcg_op2
);
12129 tcg_temp_free_ptr(fpst
);
12131 clear_vec_high(s
, is_q
, rd
);
12134 /* AdvSIMD three same extra
12135 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12136 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12137 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12138 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12140 static void disas_simd_three_reg_same_extra(DisasContext
*s
, uint32_t insn
)
12142 int rd
= extract32(insn
, 0, 5);
12143 int rn
= extract32(insn
, 5, 5);
12144 int opcode
= extract32(insn
, 11, 4);
12145 int rm
= extract32(insn
, 16, 5);
12146 int size
= extract32(insn
, 22, 2);
12147 bool u
= extract32(insn
, 29, 1);
12148 bool is_q
= extract32(insn
, 30, 1);
12152 switch (u
* 16 + opcode
) {
12153 case 0x10: /* SQRDMLAH (vector) */
12154 case 0x11: /* SQRDMLSH (vector) */
12155 if (size
!= 1 && size
!= 2) {
12156 unallocated_encoding(s
);
12159 feature
= dc_isar_feature(aa64_rdm
, s
);
12161 case 0x02: /* SDOT (vector) */
12162 case 0x12: /* UDOT (vector) */
12163 if (size
!= MO_32
) {
12164 unallocated_encoding(s
);
12167 feature
= dc_isar_feature(aa64_dp
, s
);
12169 case 0x18: /* FCMLA, #0 */
12170 case 0x19: /* FCMLA, #90 */
12171 case 0x1a: /* FCMLA, #180 */
12172 case 0x1b: /* FCMLA, #270 */
12173 case 0x1c: /* FCADD, #90 */
12174 case 0x1e: /* FCADD, #270 */
12176 || (size
== 1 && !dc_isar_feature(aa64_fp16
, s
))
12177 || (size
== 3 && !is_q
)) {
12178 unallocated_encoding(s
);
12181 feature
= dc_isar_feature(aa64_fcma
, s
);
12184 unallocated_encoding(s
);
12188 unallocated_encoding(s
);
12191 if (!fp_access_check(s
)) {
12196 case 0x0: /* SQRDMLAH (vector) */
12197 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sqrdmlah_qc
, size
);
12200 case 0x1: /* SQRDMLSH (vector) */
12201 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sqrdmlsh_qc
, size
);
12204 case 0x2: /* SDOT / UDOT */
12205 gen_gvec_op3_ool(s
, is_q
, rd
, rn
, rm
, 0,
12206 u
? gen_helper_gvec_udot_b
: gen_helper_gvec_sdot_b
);
12209 case 0x8: /* FCMLA, #0 */
12210 case 0x9: /* FCMLA, #90 */
12211 case 0xa: /* FCMLA, #180 */
12212 case 0xb: /* FCMLA, #270 */
12213 rot
= extract32(opcode
, 0, 2);
12216 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, true, rot
,
12217 gen_helper_gvec_fcmlah
);
12220 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, false, rot
,
12221 gen_helper_gvec_fcmlas
);
12224 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, false, rot
,
12225 gen_helper_gvec_fcmlad
);
12228 g_assert_not_reached();
12232 case 0xc: /* FCADD, #90 */
12233 case 0xe: /* FCADD, #270 */
12234 rot
= extract32(opcode
, 1, 1);
12237 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, size
== 1, rot
,
12238 gen_helper_gvec_fcaddh
);
12241 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, size
== 1, rot
,
12242 gen_helper_gvec_fcadds
);
12245 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, size
== 1, rot
,
12246 gen_helper_gvec_fcaddd
);
12249 g_assert_not_reached();
12254 g_assert_not_reached();
12258 static void handle_2misc_widening(DisasContext
*s
, int opcode
, bool is_q
,
12259 int size
, int rn
, int rd
)
12261 /* Handle 2-reg-misc ops which are widening (so each size element
12262 * in the source becomes a 2*size element in the destination.
12263 * The only instruction like this is FCVTL.
12268 /* 32 -> 64 bit fp conversion */
12269 TCGv_i64 tcg_res
[2];
12270 int srcelt
= is_q
? 2 : 0;
12272 for (pass
= 0; pass
< 2; pass
++) {
12273 TCGv_i32 tcg_op
= tcg_temp_new_i32();
12274 tcg_res
[pass
] = tcg_temp_new_i64();
12276 read_vec_element_i32(s
, tcg_op
, rn
, srcelt
+ pass
, MO_32
);
12277 gen_helper_vfp_fcvtds(tcg_res
[pass
], tcg_op
, cpu_env
);
12278 tcg_temp_free_i32(tcg_op
);
12280 for (pass
= 0; pass
< 2; pass
++) {
12281 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
12282 tcg_temp_free_i64(tcg_res
[pass
]);
12285 /* 16 -> 32 bit fp conversion */
12286 int srcelt
= is_q
? 4 : 0;
12287 TCGv_i32 tcg_res
[4];
12288 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
12289 TCGv_i32 ahp
= get_ahp_flag();
12291 for (pass
= 0; pass
< 4; pass
++) {
12292 tcg_res
[pass
] = tcg_temp_new_i32();
12294 read_vec_element_i32(s
, tcg_res
[pass
], rn
, srcelt
+ pass
, MO_16
);
12295 gen_helper_vfp_fcvt_f16_to_f32(tcg_res
[pass
], tcg_res
[pass
],
12298 for (pass
= 0; pass
< 4; pass
++) {
12299 write_vec_element_i32(s
, tcg_res
[pass
], rd
, pass
, MO_32
);
12300 tcg_temp_free_i32(tcg_res
[pass
]);
12303 tcg_temp_free_ptr(fpst
);
12304 tcg_temp_free_i32(ahp
);
12308 static void handle_rev(DisasContext
*s
, int opcode
, bool u
,
12309 bool is_q
, int size
, int rn
, int rd
)
12311 int op
= (opcode
<< 1) | u
;
12312 int opsz
= op
+ size
;
12313 int grp_size
= 3 - opsz
;
12314 int dsize
= is_q
? 128 : 64;
12318 unallocated_encoding(s
);
12322 if (!fp_access_check(s
)) {
12327 /* Special case bytes, use bswap op on each group of elements */
12328 int groups
= dsize
/ (8 << grp_size
);
12330 for (i
= 0; i
< groups
; i
++) {
12331 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
12333 read_vec_element(s
, tcg_tmp
, rn
, i
, grp_size
);
12334 switch (grp_size
) {
12336 tcg_gen_bswap16_i64(tcg_tmp
, tcg_tmp
);
12339 tcg_gen_bswap32_i64(tcg_tmp
, tcg_tmp
);
12342 tcg_gen_bswap64_i64(tcg_tmp
, tcg_tmp
);
12345 g_assert_not_reached();
12347 write_vec_element(s
, tcg_tmp
, rd
, i
, grp_size
);
12348 tcg_temp_free_i64(tcg_tmp
);
12350 clear_vec_high(s
, is_q
, rd
);
12352 int revmask
= (1 << grp_size
) - 1;
12353 int esize
= 8 << size
;
12354 int elements
= dsize
/ esize
;
12355 TCGv_i64 tcg_rn
= tcg_temp_new_i64();
12356 TCGv_i64 tcg_rd
= tcg_const_i64(0);
12357 TCGv_i64 tcg_rd_hi
= tcg_const_i64(0);
12359 for (i
= 0; i
< elements
; i
++) {
12360 int e_rev
= (i
& 0xf) ^ revmask
;
12361 int off
= e_rev
* esize
;
12362 read_vec_element(s
, tcg_rn
, rn
, i
, size
);
12364 tcg_gen_deposit_i64(tcg_rd_hi
, tcg_rd_hi
,
12365 tcg_rn
, off
- 64, esize
);
12367 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_rn
, off
, esize
);
12370 write_vec_element(s
, tcg_rd
, rd
, 0, MO_64
);
12371 write_vec_element(s
, tcg_rd_hi
, rd
, 1, MO_64
);
12373 tcg_temp_free_i64(tcg_rd_hi
);
12374 tcg_temp_free_i64(tcg_rd
);
12375 tcg_temp_free_i64(tcg_rn
);
12379 static void handle_2misc_pairwise(DisasContext
*s
, int opcode
, bool u
,
12380 bool is_q
, int size
, int rn
, int rd
)
12382 /* Implement the pairwise operations from 2-misc:
12383 * SADDLP, UADDLP, SADALP, UADALP.
12384 * These all add pairs of elements in the input to produce a
12385 * double-width result element in the output (possibly accumulating).
12387 bool accum
= (opcode
== 0x6);
12388 int maxpass
= is_q
? 2 : 1;
12390 TCGv_i64 tcg_res
[2];
12393 /* 32 + 32 -> 64 op */
12394 MemOp memop
= size
+ (u
? 0 : MO_SIGN
);
12396 for (pass
= 0; pass
< maxpass
; pass
++) {
12397 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
12398 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
12400 tcg_res
[pass
] = tcg_temp_new_i64();
12402 read_vec_element(s
, tcg_op1
, rn
, pass
* 2, memop
);
12403 read_vec_element(s
, tcg_op2
, rn
, pass
* 2 + 1, memop
);
12404 tcg_gen_add_i64(tcg_res
[pass
], tcg_op1
, tcg_op2
);
12406 read_vec_element(s
, tcg_op1
, rd
, pass
, MO_64
);
12407 tcg_gen_add_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_op1
);
12410 tcg_temp_free_i64(tcg_op1
);
12411 tcg_temp_free_i64(tcg_op2
);
12414 for (pass
= 0; pass
< maxpass
; pass
++) {
12415 TCGv_i64 tcg_op
= tcg_temp_new_i64();
12416 NeonGenOne64OpFn
*genfn
;
12417 static NeonGenOne64OpFn
* const fns
[2][2] = {
12418 { gen_helper_neon_addlp_s8
, gen_helper_neon_addlp_u8
},
12419 { gen_helper_neon_addlp_s16
, gen_helper_neon_addlp_u16
},
12422 genfn
= fns
[size
][u
];
12424 tcg_res
[pass
] = tcg_temp_new_i64();
12426 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
12427 genfn(tcg_res
[pass
], tcg_op
);
12430 read_vec_element(s
, tcg_op
, rd
, pass
, MO_64
);
12432 gen_helper_neon_addl_u16(tcg_res
[pass
],
12433 tcg_res
[pass
], tcg_op
);
12435 gen_helper_neon_addl_u32(tcg_res
[pass
],
12436 tcg_res
[pass
], tcg_op
);
12439 tcg_temp_free_i64(tcg_op
);
12443 tcg_res
[1] = tcg_const_i64(0);
12445 for (pass
= 0; pass
< 2; pass
++) {
12446 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
12447 tcg_temp_free_i64(tcg_res
[pass
]);
12451 static void handle_shll(DisasContext
*s
, bool is_q
, int size
, int rn
, int rd
)
12453 /* Implement SHLL and SHLL2 */
12455 int part
= is_q
? 2 : 0;
12456 TCGv_i64 tcg_res
[2];
12458 for (pass
= 0; pass
< 2; pass
++) {
12459 static NeonGenWidenFn
* const widenfns
[3] = {
12460 gen_helper_neon_widen_u8
,
12461 gen_helper_neon_widen_u16
,
12462 tcg_gen_extu_i32_i64
,
12464 NeonGenWidenFn
*widenfn
= widenfns
[size
];
12465 TCGv_i32 tcg_op
= tcg_temp_new_i32();
12467 read_vec_element_i32(s
, tcg_op
, rn
, part
+ pass
, MO_32
);
12468 tcg_res
[pass
] = tcg_temp_new_i64();
12469 widenfn(tcg_res
[pass
], tcg_op
);
12470 tcg_gen_shli_i64(tcg_res
[pass
], tcg_res
[pass
], 8 << size
);
12472 tcg_temp_free_i32(tcg_op
);
12475 for (pass
= 0; pass
< 2; pass
++) {
12476 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
12477 tcg_temp_free_i64(tcg_res
[pass
]);
12481 /* AdvSIMD two reg misc
12482 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12483 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12484 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12485 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12487 static void disas_simd_two_reg_misc(DisasContext
*s
, uint32_t insn
)
12489 int size
= extract32(insn
, 22, 2);
12490 int opcode
= extract32(insn
, 12, 5);
12491 bool u
= extract32(insn
, 29, 1);
12492 bool is_q
= extract32(insn
, 30, 1);
12493 int rn
= extract32(insn
, 5, 5);
12494 int rd
= extract32(insn
, 0, 5);
12495 bool need_fpstatus
= false;
12496 bool need_rmode
= false;
12498 TCGv_i32 tcg_rmode
;
12499 TCGv_ptr tcg_fpstatus
;
12502 case 0x0: /* REV64, REV32 */
12503 case 0x1: /* REV16 */
12504 handle_rev(s
, opcode
, u
, is_q
, size
, rn
, rd
);
12506 case 0x5: /* CNT, NOT, RBIT */
12507 if (u
&& size
== 0) {
12510 } else if (u
&& size
== 1) {
12513 } else if (!u
&& size
== 0) {
12517 unallocated_encoding(s
);
12519 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12520 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12522 unallocated_encoding(s
);
12525 if (!fp_access_check(s
)) {
12529 handle_2misc_narrow(s
, false, opcode
, u
, is_q
, size
, rn
, rd
);
12531 case 0x4: /* CLS, CLZ */
12533 unallocated_encoding(s
);
12537 case 0x2: /* SADDLP, UADDLP */
12538 case 0x6: /* SADALP, UADALP */
12540 unallocated_encoding(s
);
12543 if (!fp_access_check(s
)) {
12546 handle_2misc_pairwise(s
, opcode
, u
, is_q
, size
, rn
, rd
);
12548 case 0x13: /* SHLL, SHLL2 */
12549 if (u
== 0 || size
== 3) {
12550 unallocated_encoding(s
);
12553 if (!fp_access_check(s
)) {
12556 handle_shll(s
, is_q
, size
, rn
, rd
);
12558 case 0xa: /* CMLT */
12560 unallocated_encoding(s
);
12564 case 0x8: /* CMGT, CMGE */
12565 case 0x9: /* CMEQ, CMLE */
12566 case 0xb: /* ABS, NEG */
12567 if (size
== 3 && !is_q
) {
12568 unallocated_encoding(s
);
12572 case 0x3: /* SUQADD, USQADD */
12573 if (size
== 3 && !is_q
) {
12574 unallocated_encoding(s
);
12577 if (!fp_access_check(s
)) {
12580 handle_2misc_satacc(s
, false, u
, is_q
, size
, rn
, rd
);
12582 case 0x7: /* SQABS, SQNEG */
12583 if (size
== 3 && !is_q
) {
12584 unallocated_encoding(s
);
12589 case 0x16 ... 0x1f:
12591 /* Floating point: U, size[1] and opcode indicate operation;
12592 * size[0] indicates single or double precision.
12594 int is_double
= extract32(size
, 0, 1);
12595 opcode
|= (extract32(size
, 1, 1) << 5) | (u
<< 6);
12596 size
= is_double
? 3 : 2;
12598 case 0x2f: /* FABS */
12599 case 0x6f: /* FNEG */
12600 if (size
== 3 && !is_q
) {
12601 unallocated_encoding(s
);
12605 case 0x1d: /* SCVTF */
12606 case 0x5d: /* UCVTF */
12608 bool is_signed
= (opcode
== 0x1d) ? true : false;
12609 int elements
= is_double
? 2 : is_q
? 4 : 2;
12610 if (is_double
&& !is_q
) {
12611 unallocated_encoding(s
);
12614 if (!fp_access_check(s
)) {
12617 handle_simd_intfp_conv(s
, rd
, rn
, elements
, is_signed
, 0, size
);
12620 case 0x2c: /* FCMGT (zero) */
12621 case 0x2d: /* FCMEQ (zero) */
12622 case 0x2e: /* FCMLT (zero) */
12623 case 0x6c: /* FCMGE (zero) */
12624 case 0x6d: /* FCMLE (zero) */
12625 if (size
== 3 && !is_q
) {
12626 unallocated_encoding(s
);
12629 handle_2misc_fcmp_zero(s
, opcode
, false, u
, is_q
, size
, rn
, rd
);
12631 case 0x7f: /* FSQRT */
12632 if (size
== 3 && !is_q
) {
12633 unallocated_encoding(s
);
12637 case 0x1a: /* FCVTNS */
12638 case 0x1b: /* FCVTMS */
12639 case 0x3a: /* FCVTPS */
12640 case 0x3b: /* FCVTZS */
12641 case 0x5a: /* FCVTNU */
12642 case 0x5b: /* FCVTMU */
12643 case 0x7a: /* FCVTPU */
12644 case 0x7b: /* FCVTZU */
12645 need_fpstatus
= true;
12647 rmode
= extract32(opcode
, 5, 1) | (extract32(opcode
, 0, 1) << 1);
12648 if (size
== 3 && !is_q
) {
12649 unallocated_encoding(s
);
12653 case 0x5c: /* FCVTAU */
12654 case 0x1c: /* FCVTAS */
12655 need_fpstatus
= true;
12657 rmode
= FPROUNDING_TIEAWAY
;
12658 if (size
== 3 && !is_q
) {
12659 unallocated_encoding(s
);
12663 case 0x3c: /* URECPE */
12665 unallocated_encoding(s
);
12669 case 0x3d: /* FRECPE */
12670 case 0x7d: /* FRSQRTE */
12671 if (size
== 3 && !is_q
) {
12672 unallocated_encoding(s
);
12675 if (!fp_access_check(s
)) {
12678 handle_2misc_reciprocal(s
, opcode
, false, u
, is_q
, size
, rn
, rd
);
12680 case 0x56: /* FCVTXN, FCVTXN2 */
12682 unallocated_encoding(s
);
12686 case 0x16: /* FCVTN, FCVTN2 */
12687 /* handle_2misc_narrow does a 2*size -> size operation, but these
12688 * instructions encode the source size rather than dest size.
12690 if (!fp_access_check(s
)) {
12693 handle_2misc_narrow(s
, false, opcode
, 0, is_q
, size
- 1, rn
, rd
);
12695 case 0x17: /* FCVTL, FCVTL2 */
12696 if (!fp_access_check(s
)) {
12699 handle_2misc_widening(s
, opcode
, is_q
, size
, rn
, rd
);
12701 case 0x18: /* FRINTN */
12702 case 0x19: /* FRINTM */
12703 case 0x38: /* FRINTP */
12704 case 0x39: /* FRINTZ */
12706 rmode
= extract32(opcode
, 5, 1) | (extract32(opcode
, 0, 1) << 1);
12708 case 0x59: /* FRINTX */
12709 case 0x79: /* FRINTI */
12710 need_fpstatus
= true;
12711 if (size
== 3 && !is_q
) {
12712 unallocated_encoding(s
);
12716 case 0x58: /* FRINTA */
12718 rmode
= FPROUNDING_TIEAWAY
;
12719 need_fpstatus
= true;
12720 if (size
== 3 && !is_q
) {
12721 unallocated_encoding(s
);
12725 case 0x7c: /* URSQRTE */
12727 unallocated_encoding(s
);
12731 case 0x1e: /* FRINT32Z */
12732 case 0x1f: /* FRINT64Z */
12734 rmode
= FPROUNDING_ZERO
;
12736 case 0x5e: /* FRINT32X */
12737 case 0x5f: /* FRINT64X */
12738 need_fpstatus
= true;
12739 if ((size
== 3 && !is_q
) || !dc_isar_feature(aa64_frint
, s
)) {
12740 unallocated_encoding(s
);
12745 unallocated_encoding(s
);
12751 unallocated_encoding(s
);
12755 if (!fp_access_check(s
)) {
12759 if (need_fpstatus
|| need_rmode
) {
12760 tcg_fpstatus
= fpstatus_ptr(FPST_FPCR
);
12762 tcg_fpstatus
= NULL
;
12765 tcg_rmode
= tcg_const_i32(arm_rmode_to_sf(rmode
));
12766 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
12773 if (u
&& size
== 0) { /* NOT */
12774 gen_gvec_fn2(s
, is_q
, rd
, rn
, tcg_gen_gvec_not
, 0);
12778 case 0x8: /* CMGT, CMGE */
12780 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_cge0
, size
);
12782 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_cgt0
, size
);
12785 case 0x9: /* CMEQ, CMLE */
12787 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_cle0
, size
);
12789 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_ceq0
, size
);
12792 case 0xa: /* CMLT */
12793 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_clt0
, size
);
12796 if (u
) { /* ABS, NEG */
12797 gen_gvec_fn2(s
, is_q
, rd
, rn
, tcg_gen_gvec_neg
, size
);
12799 gen_gvec_fn2(s
, is_q
, rd
, rn
, tcg_gen_gvec_abs
, size
);
12805 /* All 64-bit element operations can be shared with scalar 2misc */
12808 /* Coverity claims (size == 3 && !is_q) has been eliminated
12809 * from all paths leading to here.
12811 tcg_debug_assert(is_q
);
12812 for (pass
= 0; pass
< 2; pass
++) {
12813 TCGv_i64 tcg_op
= tcg_temp_new_i64();
12814 TCGv_i64 tcg_res
= tcg_temp_new_i64();
12816 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
12818 handle_2misc_64(s
, opcode
, u
, tcg_res
, tcg_op
,
12819 tcg_rmode
, tcg_fpstatus
);
12821 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
12823 tcg_temp_free_i64(tcg_res
);
12824 tcg_temp_free_i64(tcg_op
);
12829 for (pass
= 0; pass
< (is_q
? 4 : 2); pass
++) {
12830 TCGv_i32 tcg_op
= tcg_temp_new_i32();
12831 TCGv_i32 tcg_res
= tcg_temp_new_i32();
12833 read_vec_element_i32(s
, tcg_op
, rn
, pass
, MO_32
);
12836 /* Special cases for 32 bit elements */
12838 case 0x4: /* CLS */
12840 tcg_gen_clzi_i32(tcg_res
, tcg_op
, 32);
12842 tcg_gen_clrsb_i32(tcg_res
, tcg_op
);
12845 case 0x7: /* SQABS, SQNEG */
12847 gen_helper_neon_qneg_s32(tcg_res
, cpu_env
, tcg_op
);
12849 gen_helper_neon_qabs_s32(tcg_res
, cpu_env
, tcg_op
);
12852 case 0x2f: /* FABS */
12853 gen_helper_vfp_abss(tcg_res
, tcg_op
);
12855 case 0x6f: /* FNEG */
12856 gen_helper_vfp_negs(tcg_res
, tcg_op
);
12858 case 0x7f: /* FSQRT */
12859 gen_helper_vfp_sqrts(tcg_res
, tcg_op
, cpu_env
);
12861 case 0x1a: /* FCVTNS */
12862 case 0x1b: /* FCVTMS */
12863 case 0x1c: /* FCVTAS */
12864 case 0x3a: /* FCVTPS */
12865 case 0x3b: /* FCVTZS */
12867 TCGv_i32 tcg_shift
= tcg_const_i32(0);
12868 gen_helper_vfp_tosls(tcg_res
, tcg_op
,
12869 tcg_shift
, tcg_fpstatus
);
12870 tcg_temp_free_i32(tcg_shift
);
12873 case 0x5a: /* FCVTNU */
12874 case 0x5b: /* FCVTMU */
12875 case 0x5c: /* FCVTAU */
12876 case 0x7a: /* FCVTPU */
12877 case 0x7b: /* FCVTZU */
12879 TCGv_i32 tcg_shift
= tcg_const_i32(0);
12880 gen_helper_vfp_touls(tcg_res
, tcg_op
,
12881 tcg_shift
, tcg_fpstatus
);
12882 tcg_temp_free_i32(tcg_shift
);
12885 case 0x18: /* FRINTN */
12886 case 0x19: /* FRINTM */
12887 case 0x38: /* FRINTP */
12888 case 0x39: /* FRINTZ */
12889 case 0x58: /* FRINTA */
12890 case 0x79: /* FRINTI */
12891 gen_helper_rints(tcg_res
, tcg_op
, tcg_fpstatus
);
12893 case 0x59: /* FRINTX */
12894 gen_helper_rints_exact(tcg_res
, tcg_op
, tcg_fpstatus
);
12896 case 0x7c: /* URSQRTE */
12897 gen_helper_rsqrte_u32(tcg_res
, tcg_op
);
12899 case 0x1e: /* FRINT32Z */
12900 case 0x5e: /* FRINT32X */
12901 gen_helper_frint32_s(tcg_res
, tcg_op
, tcg_fpstatus
);
12903 case 0x1f: /* FRINT64Z */
12904 case 0x5f: /* FRINT64X */
12905 gen_helper_frint64_s(tcg_res
, tcg_op
, tcg_fpstatus
);
12908 g_assert_not_reached();
12911 /* Use helpers for 8 and 16 bit elements */
12913 case 0x5: /* CNT, RBIT */
12914 /* For these two insns size is part of the opcode specifier
12915 * (handled earlier); they always operate on byte elements.
12918 gen_helper_neon_rbit_u8(tcg_res
, tcg_op
);
12920 gen_helper_neon_cnt_u8(tcg_res
, tcg_op
);
12923 case 0x7: /* SQABS, SQNEG */
12925 NeonGenOneOpEnvFn
*genfn
;
12926 static NeonGenOneOpEnvFn
* const fns
[2][2] = {
12927 { gen_helper_neon_qabs_s8
, gen_helper_neon_qneg_s8
},
12928 { gen_helper_neon_qabs_s16
, gen_helper_neon_qneg_s16
},
12930 genfn
= fns
[size
][u
];
12931 genfn(tcg_res
, cpu_env
, tcg_op
);
12934 case 0x4: /* CLS, CLZ */
12937 gen_helper_neon_clz_u8(tcg_res
, tcg_op
);
12939 gen_helper_neon_clz_u16(tcg_res
, tcg_op
);
12943 gen_helper_neon_cls_s8(tcg_res
, tcg_op
);
12945 gen_helper_neon_cls_s16(tcg_res
, tcg_op
);
12950 g_assert_not_reached();
12954 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
12956 tcg_temp_free_i32(tcg_res
);
12957 tcg_temp_free_i32(tcg_op
);
12960 clear_vec_high(s
, is_q
, rd
);
12963 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
12964 tcg_temp_free_i32(tcg_rmode
);
12966 if (need_fpstatus
) {
12967 tcg_temp_free_ptr(tcg_fpstatus
);
12971 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12973 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12974 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12975 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12976 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12977 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12978 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12980 * This actually covers two groups where scalar access is governed by
12981 * bit 28. A bunch of the instructions (float to integral) only exist
12982 * in the vector form and are un-allocated for the scalar decode. Also
12983 * in the scalar decode Q is always 1.
12985 static void disas_simd_two_reg_misc_fp16(DisasContext
*s
, uint32_t insn
)
12987 int fpop
, opcode
, a
, u
;
12991 bool only_in_vector
= false;
12994 TCGv_i32 tcg_rmode
= NULL
;
12995 TCGv_ptr tcg_fpstatus
= NULL
;
12996 bool need_rmode
= false;
12997 bool need_fpst
= true;
13000 if (!dc_isar_feature(aa64_fp16
, s
)) {
13001 unallocated_encoding(s
);
13005 rd
= extract32(insn
, 0, 5);
13006 rn
= extract32(insn
, 5, 5);
13008 a
= extract32(insn
, 23, 1);
13009 u
= extract32(insn
, 29, 1);
13010 is_scalar
= extract32(insn
, 28, 1);
13011 is_q
= extract32(insn
, 30, 1);
13013 opcode
= extract32(insn
, 12, 5);
13014 fpop
= deposit32(opcode
, 5, 1, a
);
13015 fpop
= deposit32(fpop
, 6, 1, u
);
13018 case 0x1d: /* SCVTF */
13019 case 0x5d: /* UCVTF */
13026 elements
= (is_q
? 8 : 4);
13029 if (!fp_access_check(s
)) {
13032 handle_simd_intfp_conv(s
, rd
, rn
, elements
, !u
, 0, MO_16
);
13036 case 0x2c: /* FCMGT (zero) */
13037 case 0x2d: /* FCMEQ (zero) */
13038 case 0x2e: /* FCMLT (zero) */
13039 case 0x6c: /* FCMGE (zero) */
13040 case 0x6d: /* FCMLE (zero) */
13041 handle_2misc_fcmp_zero(s
, fpop
, is_scalar
, 0, is_q
, MO_16
, rn
, rd
);
13043 case 0x3d: /* FRECPE */
13044 case 0x3f: /* FRECPX */
13046 case 0x18: /* FRINTN */
13048 only_in_vector
= true;
13049 rmode
= FPROUNDING_TIEEVEN
;
13051 case 0x19: /* FRINTM */
13053 only_in_vector
= true;
13054 rmode
= FPROUNDING_NEGINF
;
13056 case 0x38: /* FRINTP */
13058 only_in_vector
= true;
13059 rmode
= FPROUNDING_POSINF
;
13061 case 0x39: /* FRINTZ */
13063 only_in_vector
= true;
13064 rmode
= FPROUNDING_ZERO
;
13066 case 0x58: /* FRINTA */
13068 only_in_vector
= true;
13069 rmode
= FPROUNDING_TIEAWAY
;
13071 case 0x59: /* FRINTX */
13072 case 0x79: /* FRINTI */
13073 only_in_vector
= true;
13074 /* current rounding mode */
13076 case 0x1a: /* FCVTNS */
13078 rmode
= FPROUNDING_TIEEVEN
;
13080 case 0x1b: /* FCVTMS */
13082 rmode
= FPROUNDING_NEGINF
;
13084 case 0x1c: /* FCVTAS */
13086 rmode
= FPROUNDING_TIEAWAY
;
13088 case 0x3a: /* FCVTPS */
13090 rmode
= FPROUNDING_POSINF
;
13092 case 0x3b: /* FCVTZS */
13094 rmode
= FPROUNDING_ZERO
;
13096 case 0x5a: /* FCVTNU */
13098 rmode
= FPROUNDING_TIEEVEN
;
13100 case 0x5b: /* FCVTMU */
13102 rmode
= FPROUNDING_NEGINF
;
13104 case 0x5c: /* FCVTAU */
13106 rmode
= FPROUNDING_TIEAWAY
;
13108 case 0x7a: /* FCVTPU */
13110 rmode
= FPROUNDING_POSINF
;
13112 case 0x7b: /* FCVTZU */
13114 rmode
= FPROUNDING_ZERO
;
13116 case 0x2f: /* FABS */
13117 case 0x6f: /* FNEG */
13120 case 0x7d: /* FRSQRTE */
13121 case 0x7f: /* FSQRT (vector) */
13124 fprintf(stderr
, "%s: insn %#04x fpop %#2x\n", __func__
, insn
, fpop
);
13125 g_assert_not_reached();
13129 /* Check additional constraints for the scalar encoding */
13132 unallocated_encoding(s
);
13135 /* FRINTxx is only in the vector form */
13136 if (only_in_vector
) {
13137 unallocated_encoding(s
);
13142 if (!fp_access_check(s
)) {
13146 if (need_rmode
|| need_fpst
) {
13147 tcg_fpstatus
= fpstatus_ptr(FPST_FPCR_F16
);
13151 tcg_rmode
= tcg_const_i32(arm_rmode_to_sf(rmode
));
13152 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
13156 TCGv_i32 tcg_op
= read_fp_hreg(s
, rn
);
13157 TCGv_i32 tcg_res
= tcg_temp_new_i32();
13160 case 0x1a: /* FCVTNS */
13161 case 0x1b: /* FCVTMS */
13162 case 0x1c: /* FCVTAS */
13163 case 0x3a: /* FCVTPS */
13164 case 0x3b: /* FCVTZS */
13165 gen_helper_advsimd_f16tosinth(tcg_res
, tcg_op
, tcg_fpstatus
);
13167 case 0x3d: /* FRECPE */
13168 gen_helper_recpe_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
13170 case 0x3f: /* FRECPX */
13171 gen_helper_frecpx_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
13173 case 0x5a: /* FCVTNU */
13174 case 0x5b: /* FCVTMU */
13175 case 0x5c: /* FCVTAU */
13176 case 0x7a: /* FCVTPU */
13177 case 0x7b: /* FCVTZU */
13178 gen_helper_advsimd_f16touinth(tcg_res
, tcg_op
, tcg_fpstatus
);
13180 case 0x6f: /* FNEG */
13181 tcg_gen_xori_i32(tcg_res
, tcg_op
, 0x8000);
13183 case 0x7d: /* FRSQRTE */
13184 gen_helper_rsqrte_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
13187 g_assert_not_reached();
13190 /* limit any sign extension going on */
13191 tcg_gen_andi_i32(tcg_res
, tcg_res
, 0xffff);
13192 write_fp_sreg(s
, rd
, tcg_res
);
13194 tcg_temp_free_i32(tcg_res
);
13195 tcg_temp_free_i32(tcg_op
);
13197 for (pass
= 0; pass
< (is_q
? 8 : 4); pass
++) {
13198 TCGv_i32 tcg_op
= tcg_temp_new_i32();
13199 TCGv_i32 tcg_res
= tcg_temp_new_i32();
13201 read_vec_element_i32(s
, tcg_op
, rn
, pass
, MO_16
);
13204 case 0x1a: /* FCVTNS */
13205 case 0x1b: /* FCVTMS */
13206 case 0x1c: /* FCVTAS */
13207 case 0x3a: /* FCVTPS */
13208 case 0x3b: /* FCVTZS */
13209 gen_helper_advsimd_f16tosinth(tcg_res
, tcg_op
, tcg_fpstatus
);
13211 case 0x3d: /* FRECPE */
13212 gen_helper_recpe_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
13214 case 0x5a: /* FCVTNU */
13215 case 0x5b: /* FCVTMU */
13216 case 0x5c: /* FCVTAU */
13217 case 0x7a: /* FCVTPU */
13218 case 0x7b: /* FCVTZU */
13219 gen_helper_advsimd_f16touinth(tcg_res
, tcg_op
, tcg_fpstatus
);
13221 case 0x18: /* FRINTN */
13222 case 0x19: /* FRINTM */
13223 case 0x38: /* FRINTP */
13224 case 0x39: /* FRINTZ */
13225 case 0x58: /* FRINTA */
13226 case 0x79: /* FRINTI */
13227 gen_helper_advsimd_rinth(tcg_res
, tcg_op
, tcg_fpstatus
);
13229 case 0x59: /* FRINTX */
13230 gen_helper_advsimd_rinth_exact(tcg_res
, tcg_op
, tcg_fpstatus
);
13232 case 0x2f: /* FABS */
13233 tcg_gen_andi_i32(tcg_res
, tcg_op
, 0x7fff);
13235 case 0x6f: /* FNEG */
13236 tcg_gen_xori_i32(tcg_res
, tcg_op
, 0x8000);
13238 case 0x7d: /* FRSQRTE */
13239 gen_helper_rsqrte_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
13241 case 0x7f: /* FSQRT */
13242 gen_helper_sqrt_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
13245 g_assert_not_reached();
13248 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_16
);
13250 tcg_temp_free_i32(tcg_res
);
13251 tcg_temp_free_i32(tcg_op
);
13254 clear_vec_high(s
, is_q
, rd
);
13258 gen_helper_set_rmode(tcg_rmode
, tcg_rmode
, tcg_fpstatus
);
13259 tcg_temp_free_i32(tcg_rmode
);
13262 if (tcg_fpstatus
) {
13263 tcg_temp_free_ptr(tcg_fpstatus
);
13267 /* AdvSIMD scalar x indexed element
13268 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13269 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13270 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13271 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13272 * AdvSIMD vector x indexed element
13273 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13274 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13275 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13276 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13278 static void disas_simd_indexed(DisasContext
*s
, uint32_t insn
)
13280 /* This encoding has two kinds of instruction:
13281 * normal, where we perform elt x idxelt => elt for each
13282 * element in the vector
13283 * long, where we perform elt x idxelt and generate a result of
13284 * double the width of the input element
13285 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13287 bool is_scalar
= extract32(insn
, 28, 1);
13288 bool is_q
= extract32(insn
, 30, 1);
13289 bool u
= extract32(insn
, 29, 1);
13290 int size
= extract32(insn
, 22, 2);
13291 int l
= extract32(insn
, 21, 1);
13292 int m
= extract32(insn
, 20, 1);
13293 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13294 int rm
= extract32(insn
, 16, 4);
13295 int opcode
= extract32(insn
, 12, 4);
13296 int h
= extract32(insn
, 11, 1);
13297 int rn
= extract32(insn
, 5, 5);
13298 int rd
= extract32(insn
, 0, 5);
13299 bool is_long
= false;
13301 bool is_fp16
= false;
13305 switch (16 * u
+ opcode
) {
13306 case 0x08: /* MUL */
13307 case 0x10: /* MLA */
13308 case 0x14: /* MLS */
13310 unallocated_encoding(s
);
13314 case 0x02: /* SMLAL, SMLAL2 */
13315 case 0x12: /* UMLAL, UMLAL2 */
13316 case 0x06: /* SMLSL, SMLSL2 */
13317 case 0x16: /* UMLSL, UMLSL2 */
13318 case 0x0a: /* SMULL, SMULL2 */
13319 case 0x1a: /* UMULL, UMULL2 */
13321 unallocated_encoding(s
);
13326 case 0x03: /* SQDMLAL, SQDMLAL2 */
13327 case 0x07: /* SQDMLSL, SQDMLSL2 */
13328 case 0x0b: /* SQDMULL, SQDMULL2 */
13331 case 0x0c: /* SQDMULH */
13332 case 0x0d: /* SQRDMULH */
13334 case 0x01: /* FMLA */
13335 case 0x05: /* FMLS */
13336 case 0x09: /* FMUL */
13337 case 0x19: /* FMULX */
13340 case 0x1d: /* SQRDMLAH */
13341 case 0x1f: /* SQRDMLSH */
13342 if (!dc_isar_feature(aa64_rdm
, s
)) {
13343 unallocated_encoding(s
);
13347 case 0x0e: /* SDOT */
13348 case 0x1e: /* UDOT */
13349 if (is_scalar
|| size
!= MO_32
|| !dc_isar_feature(aa64_dp
, s
)) {
13350 unallocated_encoding(s
);
13354 case 0x11: /* FCMLA #0 */
13355 case 0x13: /* FCMLA #90 */
13356 case 0x15: /* FCMLA #180 */
13357 case 0x17: /* FCMLA #270 */
13358 if (is_scalar
|| !dc_isar_feature(aa64_fcma
, s
)) {
13359 unallocated_encoding(s
);
13364 case 0x00: /* FMLAL */
13365 case 0x04: /* FMLSL */
13366 case 0x18: /* FMLAL2 */
13367 case 0x1c: /* FMLSL2 */
13368 if (is_scalar
|| size
!= MO_32
|| !dc_isar_feature(aa64_fhm
, s
)) {
13369 unallocated_encoding(s
);
13373 /* is_fp, but we pass cpu_env not fp_status. */
13376 unallocated_encoding(s
);
13381 case 1: /* normal fp */
13382 /* convert insn encoded size to MemOp size */
13384 case 0: /* half-precision */
13388 case MO_32
: /* single precision */
13389 case MO_64
: /* double precision */
13392 unallocated_encoding(s
);
13397 case 2: /* complex fp */
13398 /* Each indexable element is a complex pair. */
13403 unallocated_encoding(s
);
13411 unallocated_encoding(s
);
13416 default: /* integer */
13420 unallocated_encoding(s
);
13425 if (is_fp16
&& !dc_isar_feature(aa64_fp16
, s
)) {
13426 unallocated_encoding(s
);
13430 /* Given MemOp size, adjust register and indexing. */
13433 index
= h
<< 2 | l
<< 1 | m
;
13436 index
= h
<< 1 | l
;
13441 unallocated_encoding(s
);
13448 g_assert_not_reached();
13451 if (!fp_access_check(s
)) {
13456 fpst
= fpstatus_ptr(is_fp16
? FPST_FPCR_F16
: FPST_FPCR
);
13461 switch (16 * u
+ opcode
) {
13462 case 0x0e: /* SDOT */
13463 case 0x1e: /* UDOT */
13464 gen_gvec_op3_ool(s
, is_q
, rd
, rn
, rm
, index
,
13465 u
? gen_helper_gvec_udot_idx_b
13466 : gen_helper_gvec_sdot_idx_b
);
13468 case 0x11: /* FCMLA #0 */
13469 case 0x13: /* FCMLA #90 */
13470 case 0x15: /* FCMLA #180 */
13471 case 0x17: /* FCMLA #270 */
13473 int rot
= extract32(insn
, 13, 2);
13474 int data
= (index
<< 2) | rot
;
13475 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, rd
),
13476 vec_full_reg_offset(s
, rn
),
13477 vec_full_reg_offset(s
, rm
), fpst
,
13478 is_q
? 16 : 8, vec_full_reg_size(s
), data
,
13480 ? gen_helper_gvec_fcmlas_idx
13481 : gen_helper_gvec_fcmlah_idx
);
13482 tcg_temp_free_ptr(fpst
);
13486 case 0x00: /* FMLAL */
13487 case 0x04: /* FMLSL */
13488 case 0x18: /* FMLAL2 */
13489 case 0x1c: /* FMLSL2 */
13491 int is_s
= extract32(opcode
, 2, 1);
13493 int data
= (index
<< 2) | (is_2
<< 1) | is_s
;
13494 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, rd
),
13495 vec_full_reg_offset(s
, rn
),
13496 vec_full_reg_offset(s
, rm
), cpu_env
,
13497 is_q
? 16 : 8, vec_full_reg_size(s
),
13498 data
, gen_helper_gvec_fmlal_idx_a64
);
13502 case 0x08: /* MUL */
13503 if (!is_long
&& !is_scalar
) {
13504 static gen_helper_gvec_3
* const fns
[3] = {
13505 gen_helper_gvec_mul_idx_h
,
13506 gen_helper_gvec_mul_idx_s
,
13507 gen_helper_gvec_mul_idx_d
,
13509 tcg_gen_gvec_3_ool(vec_full_reg_offset(s
, rd
),
13510 vec_full_reg_offset(s
, rn
),
13511 vec_full_reg_offset(s
, rm
),
13512 is_q
? 16 : 8, vec_full_reg_size(s
),
13513 index
, fns
[size
- 1]);
13518 case 0x10: /* MLA */
13519 if (!is_long
&& !is_scalar
) {
13520 static gen_helper_gvec_4
* const fns
[3] = {
13521 gen_helper_gvec_mla_idx_h
,
13522 gen_helper_gvec_mla_idx_s
,
13523 gen_helper_gvec_mla_idx_d
,
13525 tcg_gen_gvec_4_ool(vec_full_reg_offset(s
, rd
),
13526 vec_full_reg_offset(s
, rn
),
13527 vec_full_reg_offset(s
, rm
),
13528 vec_full_reg_offset(s
, rd
),
13529 is_q
? 16 : 8, vec_full_reg_size(s
),
13530 index
, fns
[size
- 1]);
13535 case 0x14: /* MLS */
13536 if (!is_long
&& !is_scalar
) {
13537 static gen_helper_gvec_4
* const fns
[3] = {
13538 gen_helper_gvec_mls_idx_h
,
13539 gen_helper_gvec_mls_idx_s
,
13540 gen_helper_gvec_mls_idx_d
,
13542 tcg_gen_gvec_4_ool(vec_full_reg_offset(s
, rd
),
13543 vec_full_reg_offset(s
, rn
),
13544 vec_full_reg_offset(s
, rm
),
13545 vec_full_reg_offset(s
, rd
),
13546 is_q
? 16 : 8, vec_full_reg_size(s
),
13547 index
, fns
[size
- 1]);
13554 TCGv_i64 tcg_idx
= tcg_temp_new_i64();
13557 assert(is_fp
&& is_q
&& !is_long
);
13559 read_vec_element(s
, tcg_idx
, rm
, index
, MO_64
);
13561 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
13562 TCGv_i64 tcg_op
= tcg_temp_new_i64();
13563 TCGv_i64 tcg_res
= tcg_temp_new_i64();
13565 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
13567 switch (16 * u
+ opcode
) {
13568 case 0x05: /* FMLS */
13569 /* As usual for ARM, separate negation for fused multiply-add */
13570 gen_helper_vfp_negd(tcg_op
, tcg_op
);
13572 case 0x01: /* FMLA */
13573 read_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
13574 gen_helper_vfp_muladdd(tcg_res
, tcg_op
, tcg_idx
, tcg_res
, fpst
);
13576 case 0x09: /* FMUL */
13577 gen_helper_vfp_muld(tcg_res
, tcg_op
, tcg_idx
, fpst
);
13579 case 0x19: /* FMULX */
13580 gen_helper_vfp_mulxd(tcg_res
, tcg_op
, tcg_idx
, fpst
);
13583 g_assert_not_reached();
13586 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
13587 tcg_temp_free_i64(tcg_op
);
13588 tcg_temp_free_i64(tcg_res
);
13591 tcg_temp_free_i64(tcg_idx
);
13592 clear_vec_high(s
, !is_scalar
, rd
);
13593 } else if (!is_long
) {
13594 /* 32 bit floating point, or 16 or 32 bit integer.
13595 * For the 16 bit scalar case we use the usual Neon helpers and
13596 * rely on the fact that 0 op 0 == 0 with no side effects.
13598 TCGv_i32 tcg_idx
= tcg_temp_new_i32();
13599 int pass
, maxpasses
;
13604 maxpasses
= is_q
? 4 : 2;
13607 read_vec_element_i32(s
, tcg_idx
, rm
, index
, size
);
13609 if (size
== 1 && !is_scalar
) {
13610 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13611 * the index into both halves of the 32 bit tcg_idx and then use
13612 * the usual Neon helpers.
13614 tcg_gen_deposit_i32(tcg_idx
, tcg_idx
, tcg_idx
, 16, 16);
13617 for (pass
= 0; pass
< maxpasses
; pass
++) {
13618 TCGv_i32 tcg_op
= tcg_temp_new_i32();
13619 TCGv_i32 tcg_res
= tcg_temp_new_i32();
13621 read_vec_element_i32(s
, tcg_op
, rn
, pass
, is_scalar
? size
: MO_32
);
13623 switch (16 * u
+ opcode
) {
13624 case 0x08: /* MUL */
13625 case 0x10: /* MLA */
13626 case 0x14: /* MLS */
13628 static NeonGenTwoOpFn
* const fns
[2][2] = {
13629 { gen_helper_neon_add_u16
, gen_helper_neon_sub_u16
},
13630 { tcg_gen_add_i32
, tcg_gen_sub_i32
},
13632 NeonGenTwoOpFn
*genfn
;
13633 bool is_sub
= opcode
== 0x4;
13636 gen_helper_neon_mul_u16(tcg_res
, tcg_op
, tcg_idx
);
13638 tcg_gen_mul_i32(tcg_res
, tcg_op
, tcg_idx
);
13640 if (opcode
== 0x8) {
13643 read_vec_element_i32(s
, tcg_op
, rd
, pass
, MO_32
);
13644 genfn
= fns
[size
- 1][is_sub
];
13645 genfn(tcg_res
, tcg_op
, tcg_res
);
13648 case 0x05: /* FMLS */
13649 case 0x01: /* FMLA */
13650 read_vec_element_i32(s
, tcg_res
, rd
, pass
,
13651 is_scalar
? size
: MO_32
);
13654 if (opcode
== 0x5) {
13655 /* As usual for ARM, separate negation for fused
13657 tcg_gen_xori_i32(tcg_op
, tcg_op
, 0x80008000);
13660 gen_helper_advsimd_muladdh(tcg_res
, tcg_op
, tcg_idx
,
13663 gen_helper_advsimd_muladd2h(tcg_res
, tcg_op
, tcg_idx
,
13668 if (opcode
== 0x5) {
13669 /* As usual for ARM, separate negation for
13670 * fused multiply-add */
13671 tcg_gen_xori_i32(tcg_op
, tcg_op
, 0x80000000);
13673 gen_helper_vfp_muladds(tcg_res
, tcg_op
, tcg_idx
,
13677 g_assert_not_reached();
13680 case 0x09: /* FMUL */
13684 gen_helper_advsimd_mulh(tcg_res
, tcg_op
,
13687 gen_helper_advsimd_mul2h(tcg_res
, tcg_op
,
13692 gen_helper_vfp_muls(tcg_res
, tcg_op
, tcg_idx
, fpst
);
13695 g_assert_not_reached();
13698 case 0x19: /* FMULX */
13702 gen_helper_advsimd_mulxh(tcg_res
, tcg_op
,
13705 gen_helper_advsimd_mulx2h(tcg_res
, tcg_op
,
13710 gen_helper_vfp_mulxs(tcg_res
, tcg_op
, tcg_idx
, fpst
);
13713 g_assert_not_reached();
13716 case 0x0c: /* SQDMULH */
13718 gen_helper_neon_qdmulh_s16(tcg_res
, cpu_env
,
13721 gen_helper_neon_qdmulh_s32(tcg_res
, cpu_env
,
13725 case 0x0d: /* SQRDMULH */
13727 gen_helper_neon_qrdmulh_s16(tcg_res
, cpu_env
,
13730 gen_helper_neon_qrdmulh_s32(tcg_res
, cpu_env
,
13734 case 0x1d: /* SQRDMLAH */
13735 read_vec_element_i32(s
, tcg_res
, rd
, pass
,
13736 is_scalar
? size
: MO_32
);
13738 gen_helper_neon_qrdmlah_s16(tcg_res
, cpu_env
,
13739 tcg_op
, tcg_idx
, tcg_res
);
13741 gen_helper_neon_qrdmlah_s32(tcg_res
, cpu_env
,
13742 tcg_op
, tcg_idx
, tcg_res
);
13745 case 0x1f: /* SQRDMLSH */
13746 read_vec_element_i32(s
, tcg_res
, rd
, pass
,
13747 is_scalar
? size
: MO_32
);
13749 gen_helper_neon_qrdmlsh_s16(tcg_res
, cpu_env
,
13750 tcg_op
, tcg_idx
, tcg_res
);
13752 gen_helper_neon_qrdmlsh_s32(tcg_res
, cpu_env
,
13753 tcg_op
, tcg_idx
, tcg_res
);
13757 g_assert_not_reached();
13761 write_fp_sreg(s
, rd
, tcg_res
);
13763 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
13766 tcg_temp_free_i32(tcg_op
);
13767 tcg_temp_free_i32(tcg_res
);
13770 tcg_temp_free_i32(tcg_idx
);
13771 clear_vec_high(s
, is_q
, rd
);
13773 /* long ops: 16x16->32 or 32x32->64 */
13774 TCGv_i64 tcg_res
[2];
13776 bool satop
= extract32(opcode
, 0, 1);
13777 MemOp memop
= MO_32
;
13784 TCGv_i64 tcg_idx
= tcg_temp_new_i64();
13786 read_vec_element(s
, tcg_idx
, rm
, index
, memop
);
13788 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
13789 TCGv_i64 tcg_op
= tcg_temp_new_i64();
13790 TCGv_i64 tcg_passres
;
13796 passelt
= pass
+ (is_q
* 2);
13799 read_vec_element(s
, tcg_op
, rn
, passelt
, memop
);
13801 tcg_res
[pass
] = tcg_temp_new_i64();
13803 if (opcode
== 0xa || opcode
== 0xb) {
13804 /* Non-accumulating ops */
13805 tcg_passres
= tcg_res
[pass
];
13807 tcg_passres
= tcg_temp_new_i64();
13810 tcg_gen_mul_i64(tcg_passres
, tcg_op
, tcg_idx
);
13811 tcg_temp_free_i64(tcg_op
);
13814 /* saturating, doubling */
13815 gen_helper_neon_addl_saturate_s64(tcg_passres
, cpu_env
,
13816 tcg_passres
, tcg_passres
);
13819 if (opcode
== 0xa || opcode
== 0xb) {
13823 /* Accumulating op: handle accumulate step */
13824 read_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
13827 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13828 tcg_gen_add_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
13830 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13831 tcg_gen_sub_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
13833 case 0x7: /* SQDMLSL, SQDMLSL2 */
13834 tcg_gen_neg_i64(tcg_passres
, tcg_passres
);
13836 case 0x3: /* SQDMLAL, SQDMLAL2 */
13837 gen_helper_neon_addl_saturate_s64(tcg_res
[pass
], cpu_env
,
13842 g_assert_not_reached();
13844 tcg_temp_free_i64(tcg_passres
);
13846 tcg_temp_free_i64(tcg_idx
);
13848 clear_vec_high(s
, !is_scalar
, rd
);
13850 TCGv_i32 tcg_idx
= tcg_temp_new_i32();
13853 read_vec_element_i32(s
, tcg_idx
, rm
, index
, size
);
13856 /* The simplest way to handle the 16x16 indexed ops is to
13857 * duplicate the index into both halves of the 32 bit tcg_idx
13858 * and then use the usual Neon helpers.
13860 tcg_gen_deposit_i32(tcg_idx
, tcg_idx
, tcg_idx
, 16, 16);
13863 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
13864 TCGv_i32 tcg_op
= tcg_temp_new_i32();
13865 TCGv_i64 tcg_passres
;
13868 read_vec_element_i32(s
, tcg_op
, rn
, pass
, size
);
13870 read_vec_element_i32(s
, tcg_op
, rn
,
13871 pass
+ (is_q
* 2), MO_32
);
13874 tcg_res
[pass
] = tcg_temp_new_i64();
13876 if (opcode
== 0xa || opcode
== 0xb) {
13877 /* Non-accumulating ops */
13878 tcg_passres
= tcg_res
[pass
];
13880 tcg_passres
= tcg_temp_new_i64();
13883 if (memop
& MO_SIGN
) {
13884 gen_helper_neon_mull_s16(tcg_passres
, tcg_op
, tcg_idx
);
13886 gen_helper_neon_mull_u16(tcg_passres
, tcg_op
, tcg_idx
);
13889 gen_helper_neon_addl_saturate_s32(tcg_passres
, cpu_env
,
13890 tcg_passres
, tcg_passres
);
13892 tcg_temp_free_i32(tcg_op
);
13894 if (opcode
== 0xa || opcode
== 0xb) {
13898 /* Accumulating op: handle accumulate step */
13899 read_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
13902 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13903 gen_helper_neon_addl_u32(tcg_res
[pass
], tcg_res
[pass
],
13906 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13907 gen_helper_neon_subl_u32(tcg_res
[pass
], tcg_res
[pass
],
13910 case 0x7: /* SQDMLSL, SQDMLSL2 */
13911 gen_helper_neon_negl_u32(tcg_passres
, tcg_passres
);
13913 case 0x3: /* SQDMLAL, SQDMLAL2 */
13914 gen_helper_neon_addl_saturate_s32(tcg_res
[pass
], cpu_env
,
13919 g_assert_not_reached();
13921 tcg_temp_free_i64(tcg_passres
);
13923 tcg_temp_free_i32(tcg_idx
);
13926 tcg_gen_ext32u_i64(tcg_res
[0], tcg_res
[0]);
13931 tcg_res
[1] = tcg_const_i64(0);
13934 for (pass
= 0; pass
< 2; pass
++) {
13935 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
13936 tcg_temp_free_i64(tcg_res
[pass
]);
13941 tcg_temp_free_ptr(fpst
);
13946 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13947 * +-----------------+------+-----------+--------+-----+------+------+
13948 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13949 * +-----------------+------+-----------+--------+-----+------+------+
13951 static void disas_crypto_aes(DisasContext
*s
, uint32_t insn
)
13953 int size
= extract32(insn
, 22, 2);
13954 int opcode
= extract32(insn
, 12, 5);
13955 int rn
= extract32(insn
, 5, 5);
13956 int rd
= extract32(insn
, 0, 5);
13958 gen_helper_gvec_2
*genfn2
= NULL
;
13959 gen_helper_gvec_3
*genfn3
= NULL
;
13961 if (!dc_isar_feature(aa64_aes
, s
) || size
!= 0) {
13962 unallocated_encoding(s
);
13967 case 0x4: /* AESE */
13969 genfn3
= gen_helper_crypto_aese
;
13971 case 0x6: /* AESMC */
13973 genfn2
= gen_helper_crypto_aesmc
;
13975 case 0x5: /* AESD */
13977 genfn3
= gen_helper_crypto_aese
;
13979 case 0x7: /* AESIMC */
13981 genfn2
= gen_helper_crypto_aesmc
;
13984 unallocated_encoding(s
);
13988 if (!fp_access_check(s
)) {
13992 gen_gvec_op2_ool(s
, true, rd
, rn
, decrypt
, genfn2
);
13994 gen_gvec_op3_ool(s
, true, rd
, rd
, rn
, decrypt
, genfn3
);
13998 /* Crypto three-reg SHA
13999 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
14000 * +-----------------+------+---+------+---+--------+-----+------+------+
14001 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
14002 * +-----------------+------+---+------+---+--------+-----+------+------+
14004 static void disas_crypto_three_reg_sha(DisasContext
*s
, uint32_t insn
)
14006 int size
= extract32(insn
, 22, 2);
14007 int opcode
= extract32(insn
, 12, 3);
14008 int rm
= extract32(insn
, 16, 5);
14009 int rn
= extract32(insn
, 5, 5);
14010 int rd
= extract32(insn
, 0, 5);
14011 gen_helper_gvec_3
*genfn
;
14015 unallocated_encoding(s
);
14020 case 0: /* SHA1C */
14021 genfn
= gen_helper_crypto_sha1c
;
14022 feature
= dc_isar_feature(aa64_sha1
, s
);
14024 case 1: /* SHA1P */
14025 genfn
= gen_helper_crypto_sha1p
;
14026 feature
= dc_isar_feature(aa64_sha1
, s
);
14028 case 2: /* SHA1M */
14029 genfn
= gen_helper_crypto_sha1m
;
14030 feature
= dc_isar_feature(aa64_sha1
, s
);
14032 case 3: /* SHA1SU0 */
14033 genfn
= gen_helper_crypto_sha1su0
;
14034 feature
= dc_isar_feature(aa64_sha1
, s
);
14036 case 4: /* SHA256H */
14037 genfn
= gen_helper_crypto_sha256h
;
14038 feature
= dc_isar_feature(aa64_sha256
, s
);
14040 case 5: /* SHA256H2 */
14041 genfn
= gen_helper_crypto_sha256h2
;
14042 feature
= dc_isar_feature(aa64_sha256
, s
);
14044 case 6: /* SHA256SU1 */
14045 genfn
= gen_helper_crypto_sha256su1
;
14046 feature
= dc_isar_feature(aa64_sha256
, s
);
14049 unallocated_encoding(s
);
14054 unallocated_encoding(s
);
14058 if (!fp_access_check(s
)) {
14061 gen_gvec_op3_ool(s
, true, rd
, rn
, rm
, 0, genfn
);
14064 /* Crypto two-reg SHA
14065 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14066 * +-----------------+------+-----------+--------+-----+------+------+
14067 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14068 * +-----------------+------+-----------+--------+-----+------+------+
14070 static void disas_crypto_two_reg_sha(DisasContext
*s
, uint32_t insn
)
14072 int size
= extract32(insn
, 22, 2);
14073 int opcode
= extract32(insn
, 12, 5);
14074 int rn
= extract32(insn
, 5, 5);
14075 int rd
= extract32(insn
, 0, 5);
14076 gen_helper_gvec_2
*genfn
;
14080 unallocated_encoding(s
);
14085 case 0: /* SHA1H */
14086 feature
= dc_isar_feature(aa64_sha1
, s
);
14087 genfn
= gen_helper_crypto_sha1h
;
14089 case 1: /* SHA1SU1 */
14090 feature
= dc_isar_feature(aa64_sha1
, s
);
14091 genfn
= gen_helper_crypto_sha1su1
;
14093 case 2: /* SHA256SU0 */
14094 feature
= dc_isar_feature(aa64_sha256
, s
);
14095 genfn
= gen_helper_crypto_sha256su0
;
14098 unallocated_encoding(s
);
14103 unallocated_encoding(s
);
14107 if (!fp_access_check(s
)) {
14110 gen_gvec_op2_ool(s
, true, rd
, rn
, 0, genfn
);
14113 static void gen_rax1_i64(TCGv_i64 d
, TCGv_i64 n
, TCGv_i64 m
)
14115 tcg_gen_rotli_i64(d
, m
, 1);
14116 tcg_gen_xor_i64(d
, d
, n
);
14119 static void gen_rax1_vec(unsigned vece
, TCGv_vec d
, TCGv_vec n
, TCGv_vec m
)
14121 tcg_gen_rotli_vec(vece
, d
, m
, 1);
14122 tcg_gen_xor_vec(vece
, d
, d
, n
);
14125 void gen_gvec_rax1(unsigned vece
, uint32_t rd_ofs
, uint32_t rn_ofs
,
14126 uint32_t rm_ofs
, uint32_t opr_sz
, uint32_t max_sz
)
14128 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
14129 static const GVecGen3 op
= {
14130 .fni8
= gen_rax1_i64
,
14131 .fniv
= gen_rax1_vec
,
14132 .opt_opc
= vecop_list
,
14133 .fno
= gen_helper_crypto_rax1
,
14136 tcg_gen_gvec_3(rd_ofs
, rn_ofs
, rm_ofs
, opr_sz
, max_sz
, &op
);
14139 /* Crypto three-reg SHA512
14140 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14141 * +-----------------------+------+---+---+-----+--------+------+------+
14142 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14143 * +-----------------------+------+---+---+-----+--------+------+------+
14145 static void disas_crypto_three_reg_sha512(DisasContext
*s
, uint32_t insn
)
14147 int opcode
= extract32(insn
, 10, 2);
14148 int o
= extract32(insn
, 14, 1);
14149 int rm
= extract32(insn
, 16, 5);
14150 int rn
= extract32(insn
, 5, 5);
14151 int rd
= extract32(insn
, 0, 5);
14153 gen_helper_gvec_3
*oolfn
= NULL
;
14154 GVecGen3Fn
*gvecfn
= NULL
;
14158 case 0: /* SHA512H */
14159 feature
= dc_isar_feature(aa64_sha512
, s
);
14160 oolfn
= gen_helper_crypto_sha512h
;
14162 case 1: /* SHA512H2 */
14163 feature
= dc_isar_feature(aa64_sha512
, s
);
14164 oolfn
= gen_helper_crypto_sha512h2
;
14166 case 2: /* SHA512SU1 */
14167 feature
= dc_isar_feature(aa64_sha512
, s
);
14168 oolfn
= gen_helper_crypto_sha512su1
;
14171 feature
= dc_isar_feature(aa64_sha3
, s
);
14172 gvecfn
= gen_gvec_rax1
;
14175 g_assert_not_reached();
14179 case 0: /* SM3PARTW1 */
14180 feature
= dc_isar_feature(aa64_sm3
, s
);
14181 oolfn
= gen_helper_crypto_sm3partw1
;
14183 case 1: /* SM3PARTW2 */
14184 feature
= dc_isar_feature(aa64_sm3
, s
);
14185 oolfn
= gen_helper_crypto_sm3partw2
;
14187 case 2: /* SM4EKEY */
14188 feature
= dc_isar_feature(aa64_sm4
, s
);
14189 oolfn
= gen_helper_crypto_sm4ekey
;
14192 unallocated_encoding(s
);
14198 unallocated_encoding(s
);
14202 if (!fp_access_check(s
)) {
14207 gen_gvec_op3_ool(s
, true, rd
, rn
, rm
, 0, oolfn
);
14209 gen_gvec_fn3(s
, true, rd
, rn
, rm
, gvecfn
, MO_64
);
14213 /* Crypto two-reg SHA512
14214 * 31 12 11 10 9 5 4 0
14215 * +-----------------------------------------+--------+------+------+
14216 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14217 * +-----------------------------------------+--------+------+------+
14219 static void disas_crypto_two_reg_sha512(DisasContext
*s
, uint32_t insn
)
14221 int opcode
= extract32(insn
, 10, 2);
14222 int rn
= extract32(insn
, 5, 5);
14223 int rd
= extract32(insn
, 0, 5);
14227 case 0: /* SHA512SU0 */
14228 feature
= dc_isar_feature(aa64_sha512
, s
);
14231 feature
= dc_isar_feature(aa64_sm4
, s
);
14234 unallocated_encoding(s
);
14239 unallocated_encoding(s
);
14243 if (!fp_access_check(s
)) {
14248 case 0: /* SHA512SU0 */
14249 gen_gvec_op2_ool(s
, true, rd
, rn
, 0, gen_helper_crypto_sha512su0
);
14252 gen_gvec_op3_ool(s
, true, rd
, rd
, rn
, 0, gen_helper_crypto_sm4e
);
14255 g_assert_not_reached();
14259 /* Crypto four-register
14260 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14261 * +-------------------+-----+------+---+------+------+------+
14262 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14263 * +-------------------+-----+------+---+------+------+------+
14265 static void disas_crypto_four_reg(DisasContext
*s
, uint32_t insn
)
14267 int op0
= extract32(insn
, 21, 2);
14268 int rm
= extract32(insn
, 16, 5);
14269 int ra
= extract32(insn
, 10, 5);
14270 int rn
= extract32(insn
, 5, 5);
14271 int rd
= extract32(insn
, 0, 5);
14277 feature
= dc_isar_feature(aa64_sha3
, s
);
14279 case 2: /* SM3SS1 */
14280 feature
= dc_isar_feature(aa64_sm3
, s
);
14283 unallocated_encoding(s
);
14288 unallocated_encoding(s
);
14292 if (!fp_access_check(s
)) {
14297 TCGv_i64 tcg_op1
, tcg_op2
, tcg_op3
, tcg_res
[2];
14300 tcg_op1
= tcg_temp_new_i64();
14301 tcg_op2
= tcg_temp_new_i64();
14302 tcg_op3
= tcg_temp_new_i64();
14303 tcg_res
[0] = tcg_temp_new_i64();
14304 tcg_res
[1] = tcg_temp_new_i64();
14306 for (pass
= 0; pass
< 2; pass
++) {
14307 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
14308 read_vec_element(s
, tcg_op2
, rm
, pass
, MO_64
);
14309 read_vec_element(s
, tcg_op3
, ra
, pass
, MO_64
);
14313 tcg_gen_xor_i64(tcg_res
[pass
], tcg_op2
, tcg_op3
);
14316 tcg_gen_andc_i64(tcg_res
[pass
], tcg_op2
, tcg_op3
);
14318 tcg_gen_xor_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_op1
);
14320 write_vec_element(s
, tcg_res
[0], rd
, 0, MO_64
);
14321 write_vec_element(s
, tcg_res
[1], rd
, 1, MO_64
);
14323 tcg_temp_free_i64(tcg_op1
);
14324 tcg_temp_free_i64(tcg_op2
);
14325 tcg_temp_free_i64(tcg_op3
);
14326 tcg_temp_free_i64(tcg_res
[0]);
14327 tcg_temp_free_i64(tcg_res
[1]);
14329 TCGv_i32 tcg_op1
, tcg_op2
, tcg_op3
, tcg_res
, tcg_zero
;
14331 tcg_op1
= tcg_temp_new_i32();
14332 tcg_op2
= tcg_temp_new_i32();
14333 tcg_op3
= tcg_temp_new_i32();
14334 tcg_res
= tcg_temp_new_i32();
14335 tcg_zero
= tcg_const_i32(0);
14337 read_vec_element_i32(s
, tcg_op1
, rn
, 3, MO_32
);
14338 read_vec_element_i32(s
, tcg_op2
, rm
, 3, MO_32
);
14339 read_vec_element_i32(s
, tcg_op3
, ra
, 3, MO_32
);
14341 tcg_gen_rotri_i32(tcg_res
, tcg_op1
, 20);
14342 tcg_gen_add_i32(tcg_res
, tcg_res
, tcg_op2
);
14343 tcg_gen_add_i32(tcg_res
, tcg_res
, tcg_op3
);
14344 tcg_gen_rotri_i32(tcg_res
, tcg_res
, 25);
14346 write_vec_element_i32(s
, tcg_zero
, rd
, 0, MO_32
);
14347 write_vec_element_i32(s
, tcg_zero
, rd
, 1, MO_32
);
14348 write_vec_element_i32(s
, tcg_zero
, rd
, 2, MO_32
);
14349 write_vec_element_i32(s
, tcg_res
, rd
, 3, MO_32
);
14351 tcg_temp_free_i32(tcg_op1
);
14352 tcg_temp_free_i32(tcg_op2
);
14353 tcg_temp_free_i32(tcg_op3
);
14354 tcg_temp_free_i32(tcg_res
);
14355 tcg_temp_free_i32(tcg_zero
);
14360 * 31 21 20 16 15 10 9 5 4 0
14361 * +-----------------------+------+--------+------+------+
14362 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14363 * +-----------------------+------+--------+------+------+
14365 static void disas_crypto_xar(DisasContext
*s
, uint32_t insn
)
14367 int rm
= extract32(insn
, 16, 5);
14368 int imm6
= extract32(insn
, 10, 6);
14369 int rn
= extract32(insn
, 5, 5);
14370 int rd
= extract32(insn
, 0, 5);
14371 TCGv_i64 tcg_op1
, tcg_op2
, tcg_res
[2];
14374 if (!dc_isar_feature(aa64_sha3
, s
)) {
14375 unallocated_encoding(s
);
14379 if (!fp_access_check(s
)) {
14383 tcg_op1
= tcg_temp_new_i64();
14384 tcg_op2
= tcg_temp_new_i64();
14385 tcg_res
[0] = tcg_temp_new_i64();
14386 tcg_res
[1] = tcg_temp_new_i64();
14388 for (pass
= 0; pass
< 2; pass
++) {
14389 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
14390 read_vec_element(s
, tcg_op2
, rm
, pass
, MO_64
);
14392 tcg_gen_xor_i64(tcg_res
[pass
], tcg_op1
, tcg_op2
);
14393 tcg_gen_rotri_i64(tcg_res
[pass
], tcg_res
[pass
], imm6
);
14395 write_vec_element(s
, tcg_res
[0], rd
, 0, MO_64
);
14396 write_vec_element(s
, tcg_res
[1], rd
, 1, MO_64
);
14398 tcg_temp_free_i64(tcg_op1
);
14399 tcg_temp_free_i64(tcg_op2
);
14400 tcg_temp_free_i64(tcg_res
[0]);
14401 tcg_temp_free_i64(tcg_res
[1]);
14404 /* Crypto three-reg imm2
14405 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14406 * +-----------------------+------+-----+------+--------+------+------+
14407 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14408 * +-----------------------+------+-----+------+--------+------+------+
14410 static void disas_crypto_three_reg_imm2(DisasContext
*s
, uint32_t insn
)
14412 static gen_helper_gvec_3
* const fns
[4] = {
14413 gen_helper_crypto_sm3tt1a
, gen_helper_crypto_sm3tt1b
,
14414 gen_helper_crypto_sm3tt2a
, gen_helper_crypto_sm3tt2b
,
14416 int opcode
= extract32(insn
, 10, 2);
14417 int imm2
= extract32(insn
, 12, 2);
14418 int rm
= extract32(insn
, 16, 5);
14419 int rn
= extract32(insn
, 5, 5);
14420 int rd
= extract32(insn
, 0, 5);
14422 if (!dc_isar_feature(aa64_sm3
, s
)) {
14423 unallocated_encoding(s
);
14427 if (!fp_access_check(s
)) {
14431 gen_gvec_op3_ool(s
, true, rd
, rn
, rm
, imm2
, fns
[opcode
]);
14434 /* C3.6 Data processing - SIMD, inc Crypto
14436 * As the decode gets a little complex we are using a table based
14437 * approach for this part of the decode.
14439 static const AArch64DecodeTable data_proc_simd
[] = {
14440 /* pattern , mask , fn */
14441 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same
},
14442 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra
},
14443 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff
},
14444 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc
},
14445 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes
},
14446 { 0x0e000400, 0x9fe08400, disas_simd_copy
},
14447 { 0x0f000000, 0x9f000400, disas_simd_indexed
}, /* vector indexed */
14448 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14449 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm
},
14450 { 0x0f000400, 0x9f800400, disas_simd_shift_imm
},
14451 { 0x0e000000, 0xbf208c00, disas_simd_tb
},
14452 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn
},
14453 { 0x2e000000, 0xbf208400, disas_simd_ext
},
14454 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same
},
14455 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra
},
14456 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff
},
14457 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc
},
14458 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise
},
14459 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy
},
14460 { 0x5f000000, 0xdf000400, disas_simd_indexed
}, /* scalar indexed */
14461 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm
},
14462 { 0x4e280800, 0xff3e0c00, disas_crypto_aes
},
14463 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha
},
14464 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha
},
14465 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512
},
14466 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512
},
14467 { 0xce000000, 0xff808000, disas_crypto_four_reg
},
14468 { 0xce800000, 0xffe00000, disas_crypto_xar
},
14469 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2
},
14470 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16
},
14471 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16
},
14472 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16
},
14473 { 0x00000000, 0x00000000, NULL
}
14476 static void disas_data_proc_simd(DisasContext
*s
, uint32_t insn
)
14478 /* Note that this is called with all non-FP cases from
14479 * table C3-6 so it must UNDEF for entries not specifically
14480 * allocated to instructions in that table.
14482 AArch64DecodeFn
*fn
= lookup_disas_fn(&data_proc_simd
[0], insn
);
14486 unallocated_encoding(s
);
14490 /* C3.6 Data processing - SIMD and floating point */
14491 static void disas_data_proc_simd_fp(DisasContext
*s
, uint32_t insn
)
14493 if (extract32(insn
, 28, 1) == 1 && extract32(insn
, 30, 1) == 0) {
14494 disas_data_proc_fp(s
, insn
);
14496 /* SIMD, including crypto */
14497 disas_data_proc_simd(s
, insn
);
14503 * @env: The cpu environment
14504 * @s: The DisasContext
14506 * Return true if the page is guarded.
14508 static bool is_guarded_page(CPUARMState
*env
, DisasContext
*s
)
14510 #ifdef CONFIG_USER_ONLY
14511 return false; /* FIXME */
14513 uint64_t addr
= s
->base
.pc_first
;
14514 int mmu_idx
= arm_to_core_mmu_idx(s
->mmu_idx
);
14515 unsigned int index
= tlb_index(env
, mmu_idx
, addr
);
14516 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
14519 * We test this immediately after reading an insn, which means
14520 * that any normal page must be in the TLB. The only exception
14521 * would be for executing from flash or device memory, which
14522 * does not retain the TLB entry.
14524 * FIXME: Assume false for those, for now. We could use
14525 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14526 * table entry even for that case.
14528 return (tlb_hit(entry
->addr_code
, addr
) &&
14529 arm_tlb_bti_gp(&env_tlb(env
)->d
[mmu_idx
].iotlb
[index
].attrs
));
14534 * btype_destination_ok:
14535 * @insn: The instruction at the branch destination
14536 * @bt: SCTLR_ELx.BT
14537 * @btype: PSTATE.BTYPE, and is non-zero
14539 * On a guarded page, there are a limited number of insns
14540 * that may be present at the branch target:
14541 * - branch target identifiers,
14542 * - paciasp, pacibsp,
14545 * Anything else causes a Branch Target Exception.
14547 * Return true if the branch is compatible, false to raise BTITRAP.
14549 static bool btype_destination_ok(uint32_t insn
, bool bt
, int btype
)
14551 if ((insn
& 0xfffff01fu
) == 0xd503201fu
) {
14553 switch (extract32(insn
, 5, 7)) {
14554 case 0b011001: /* PACIASP */
14555 case 0b011011: /* PACIBSP */
14557 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14558 * with btype == 3. Otherwise all btype are ok.
14560 return !bt
|| btype
!= 3;
14561 case 0b100000: /* BTI */
14562 /* Not compatible with any btype. */
14564 case 0b100010: /* BTI c */
14565 /* Not compatible with btype == 3 */
14567 case 0b100100: /* BTI j */
14568 /* Not compatible with btype == 2 */
14570 case 0b100110: /* BTI jc */
14571 /* Compatible with any btype. */
14575 switch (insn
& 0xffe0001fu
) {
14576 case 0xd4200000u
: /* BRK */
14577 case 0xd4400000u
: /* HLT */
14578 /* Give priority to the breakpoint exception. */
14585 /* C3.1 A64 instruction index by encoding */
14586 static void disas_a64_insn(CPUARMState
*env
, DisasContext
*s
)
14590 s
->pc_curr
= s
->base
.pc_next
;
14591 insn
= arm_ldl_code(env
, s
->base
.pc_next
, s
->sctlr_b
);
14593 s
->base
.pc_next
+= 4;
14595 s
->fp_access_checked
= false;
14596 s
->sve_access_checked
= false;
14598 if (dc_isar_feature(aa64_bti
, s
)) {
14599 if (s
->base
.num_insns
== 1) {
14601 * At the first insn of the TB, compute s->guarded_page.
14602 * We delayed computing this until successfully reading
14603 * the first insn of the TB, above. This (mostly) ensures
14604 * that the softmmu tlb entry has been populated, and the
14605 * page table GP bit is available.
14607 * Note that we need to compute this even if btype == 0,
14608 * because this value is used for BR instructions later
14609 * where ENV is not available.
14611 s
->guarded_page
= is_guarded_page(env
, s
);
14613 /* First insn can have btype set to non-zero. */
14614 tcg_debug_assert(s
->btype
>= 0);
14617 * Note that the Branch Target Exception has fairly high
14618 * priority -- below debugging exceptions but above most
14619 * everything else. This allows us to handle this now
14620 * instead of waiting until the insn is otherwise decoded.
14624 && !btype_destination_ok(insn
, s
->bt
, s
->btype
)) {
14625 gen_exception_insn(s
, s
->pc_curr
, EXCP_UDEF
,
14626 syn_btitrap(s
->btype
),
14627 default_exception_el(s
));
14631 /* Not the first insn: btype must be 0. */
14632 tcg_debug_assert(s
->btype
== 0);
14636 switch (extract32(insn
, 25, 4)) {
14637 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14638 unallocated_encoding(s
);
14641 if (!dc_isar_feature(aa64_sve
, s
) || !disas_sve(s
, insn
)) {
14642 unallocated_encoding(s
);
14645 case 0x8: case 0x9: /* Data processing - immediate */
14646 disas_data_proc_imm(s
, insn
);
14648 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14649 disas_b_exc_sys(s
, insn
);
14654 case 0xe: /* Loads and stores */
14655 disas_ldst(s
, insn
);
14658 case 0xd: /* Data processing - register */
14659 disas_data_proc_reg(s
, insn
);
14662 case 0xf: /* Data processing - SIMD and floating point */
14663 disas_data_proc_simd_fp(s
, insn
);
14666 assert(FALSE
); /* all 15 cases should be handled above */
14670 /* if we allocated any temporaries, free them here */
14674 * After execution of most insns, btype is reset to 0.
14675 * Note that we set btype == -1 when the insn sets btype.
14677 if (s
->btype
> 0 && s
->base
.is_jmp
!= DISAS_NORETURN
) {
14682 static void aarch64_tr_init_disas_context(DisasContextBase
*dcbase
,
14685 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
14686 CPUARMState
*env
= cpu
->env_ptr
;
14687 ARMCPU
*arm_cpu
= env_archcpu(env
);
14688 uint32_t tb_flags
= dc
->base
.tb
->flags
;
14689 int bound
, core_mmu_idx
;
14691 dc
->isar
= &arm_cpu
->isar
;
14695 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14696 * there is no secure EL1, so we route exceptions to EL3.
14698 dc
->secure_routed_to_el3
= arm_feature(env
, ARM_FEATURE_EL3
) &&
14699 !arm_el_is_aa64(env
, 3);
14702 dc
->be_data
= FIELD_EX32(tb_flags
, TBFLAG_ANY
, BE_DATA
) ? MO_BE
: MO_LE
;
14703 dc
->condexec_mask
= 0;
14704 dc
->condexec_cond
= 0;
14705 core_mmu_idx
= FIELD_EX32(tb_flags
, TBFLAG_ANY
, MMUIDX
);
14706 dc
->mmu_idx
= core_to_aa64_mmu_idx(core_mmu_idx
);
14707 dc
->tbii
= FIELD_EX32(tb_flags
, TBFLAG_A64
, TBII
);
14708 dc
->tbid
= FIELD_EX32(tb_flags
, TBFLAG_A64
, TBID
);
14709 dc
->tcma
= FIELD_EX32(tb_flags
, TBFLAG_A64
, TCMA
);
14710 dc
->current_el
= arm_mmu_idx_to_el(dc
->mmu_idx
);
14711 #if !defined(CONFIG_USER_ONLY)
14712 dc
->user
= (dc
->current_el
== 0);
14714 dc
->fp_excp_el
= FIELD_EX32(tb_flags
, TBFLAG_ANY
, FPEXC_EL
);
14715 dc
->sve_excp_el
= FIELD_EX32(tb_flags
, TBFLAG_A64
, SVEEXC_EL
);
14716 dc
->sve_len
= (FIELD_EX32(tb_flags
, TBFLAG_A64
, ZCR_LEN
) + 1) * 16;
14717 dc
->pauth_active
= FIELD_EX32(tb_flags
, TBFLAG_A64
, PAUTH_ACTIVE
);
14718 dc
->bt
= FIELD_EX32(tb_flags
, TBFLAG_A64
, BT
);
14719 dc
->btype
= FIELD_EX32(tb_flags
, TBFLAG_A64
, BTYPE
);
14720 dc
->unpriv
= FIELD_EX32(tb_flags
, TBFLAG_A64
, UNPRIV
);
14721 dc
->ata
= FIELD_EX32(tb_flags
, TBFLAG_A64
, ATA
);
14722 dc
->mte_active
[0] = FIELD_EX32(tb_flags
, TBFLAG_A64
, MTE_ACTIVE
);
14723 dc
->mte_active
[1] = FIELD_EX32(tb_flags
, TBFLAG_A64
, MTE0_ACTIVE
);
14725 dc
->vec_stride
= 0;
14726 dc
->cp_regs
= arm_cpu
->cp_regs
;
14727 dc
->features
= env
->features
;
14728 dc
->dcz_blocksize
= arm_cpu
->dcz_blocksize
;
14730 #ifdef CONFIG_USER_ONLY
14731 /* In sve_probe_page, we assume TBI is enabled. */
14732 tcg_debug_assert(dc
->tbid
& 1);
14735 /* Single step state. The code-generation logic here is:
14737 * generate code with no special handling for single-stepping (except
14738 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14739 * this happens anyway because those changes are all system register or
14741 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14742 * emit code for one insn
14743 * emit code to clear PSTATE.SS
14744 * emit code to generate software step exception for completed step
14745 * end TB (as usual for having generated an exception)
14746 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14747 * emit code to generate a software step exception
14750 dc
->ss_active
= FIELD_EX32(tb_flags
, TBFLAG_ANY
, SS_ACTIVE
);
14751 dc
->pstate_ss
= FIELD_EX32(tb_flags
, TBFLAG_ANY
, PSTATE_SS
);
14752 dc
->is_ldex
= false;
14753 dc
->debug_target_el
= FIELD_EX32(tb_flags
, TBFLAG_ANY
, DEBUG_TARGET_EL
);
14755 /* Bound the number of insns to execute to those left on the page. */
14756 bound
= -(dc
->base
.pc_first
| TARGET_PAGE_MASK
) / 4;
14758 /* If architectural single step active, limit to 1. */
14759 if (dc
->ss_active
) {
14762 dc
->base
.max_insns
= MIN(dc
->base
.max_insns
, bound
);
14764 init_tmp_a64_array(dc
);
14767 static void aarch64_tr_tb_start(DisasContextBase
*db
, CPUState
*cpu
)
14771 static void aarch64_tr_insn_start(DisasContextBase
*dcbase
, CPUState
*cpu
)
14773 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
14775 tcg_gen_insn_start(dc
->base
.pc_next
, 0, 0);
14776 dc
->insn_start
= tcg_last_op();
14779 static bool aarch64_tr_breakpoint_check(DisasContextBase
*dcbase
, CPUState
*cpu
,
14780 const CPUBreakpoint
*bp
)
14782 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
14784 if (bp
->flags
& BP_CPU
) {
14785 gen_a64_set_pc_im(dc
->base
.pc_next
);
14786 gen_helper_check_breakpoints(cpu_env
);
14787 /* End the TB early; it likely won't be executed */
14788 dc
->base
.is_jmp
= DISAS_TOO_MANY
;
14790 gen_exception_internal_insn(dc
, dc
->base
.pc_next
, EXCP_DEBUG
);
14791 /* The address covered by the breakpoint must be
14792 included in [tb->pc, tb->pc + tb->size) in order
14793 to for it to be properly cleared -- thus we
14794 increment the PC here so that the logic setting
14795 tb->size below does the right thing. */
14796 dc
->base
.pc_next
+= 4;
14797 dc
->base
.is_jmp
= DISAS_NORETURN
;
14803 static void aarch64_tr_translate_insn(DisasContextBase
*dcbase
, CPUState
*cpu
)
14805 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
14806 CPUARMState
*env
= cpu
->env_ptr
;
14808 if (dc
->ss_active
&& !dc
->pstate_ss
) {
14809 /* Singlestep state is Active-pending.
14810 * If we're in this state at the start of a TB then either
14811 * a) we just took an exception to an EL which is being debugged
14812 * and this is the first insn in the exception handler
14813 * b) debug exceptions were masked and we just unmasked them
14814 * without changing EL (eg by clearing PSTATE.D)
14815 * In either case we're going to take a swstep exception in the
14816 * "did not step an insn" case, and so the syndrome ISV and EX
14817 * bits should be zero.
14819 assert(dc
->base
.num_insns
== 1);
14820 gen_swstep_exception(dc
, 0, 0);
14821 dc
->base
.is_jmp
= DISAS_NORETURN
;
14823 disas_a64_insn(env
, dc
);
14826 translator_loop_temp_check(&dc
->base
);
14829 static void aarch64_tr_tb_stop(DisasContextBase
*dcbase
, CPUState
*cpu
)
14831 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
14833 if (unlikely(dc
->base
.singlestep_enabled
|| dc
->ss_active
)) {
14834 /* Note that this means single stepping WFI doesn't halt the CPU.
14835 * For conditional branch insns this is harmless unreachable code as
14836 * gen_goto_tb() has already handled emitting the debug exception
14837 * (and thus a tb-jump is not possible when singlestepping).
14839 switch (dc
->base
.is_jmp
) {
14841 gen_a64_set_pc_im(dc
->base
.pc_next
);
14845 if (dc
->base
.singlestep_enabled
) {
14846 gen_exception_internal(EXCP_DEBUG
);
14848 gen_step_complete_exception(dc
);
14851 case DISAS_NORETURN
:
14855 switch (dc
->base
.is_jmp
) {
14857 case DISAS_TOO_MANY
:
14858 gen_goto_tb(dc
, 1, dc
->base
.pc_next
);
14861 case DISAS_UPDATE_EXIT
:
14862 gen_a64_set_pc_im(dc
->base
.pc_next
);
14865 tcg_gen_exit_tb(NULL
, 0);
14867 case DISAS_UPDATE_NOCHAIN
:
14868 gen_a64_set_pc_im(dc
->base
.pc_next
);
14871 tcg_gen_lookup_and_goto_ptr();
14873 case DISAS_NORETURN
:
14877 gen_a64_set_pc_im(dc
->base
.pc_next
);
14878 gen_helper_wfe(cpu_env
);
14881 gen_a64_set_pc_im(dc
->base
.pc_next
);
14882 gen_helper_yield(cpu_env
);
14886 /* This is a special case because we don't want to just halt the CPU
14887 * if trying to debug across a WFI.
14889 TCGv_i32 tmp
= tcg_const_i32(4);
14891 gen_a64_set_pc_im(dc
->base
.pc_next
);
14892 gen_helper_wfi(cpu_env
, tmp
);
14893 tcg_temp_free_i32(tmp
);
14894 /* The helper doesn't necessarily throw an exception, but we
14895 * must go back to the main loop to check for interrupts anyway.
14897 tcg_gen_exit_tb(NULL
, 0);
14904 static void aarch64_tr_disas_log(const DisasContextBase
*dcbase
,
14907 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
14909 qemu_log("IN: %s\n", lookup_symbol(dc
->base
.pc_first
));
14910 log_target_disas(cpu
, dc
->base
.pc_first
, dc
->base
.tb
->size
);
14913 const TranslatorOps aarch64_translator_ops
= {
14914 .init_disas_context
= aarch64_tr_init_disas_context
,
14915 .tb_start
= aarch64_tr_tb_start
,
14916 .insn_start
= aarch64_tr_insn_start
,
14917 .breakpoint_check
= aarch64_tr_breakpoint_check
,
14918 .translate_insn
= aarch64_tr_translate_insn
,
14919 .tb_stop
= aarch64_tr_tb_stop
,
14920 .disas_log
= aarch64_tr_disas_log
,