target/arm: Convert Neon 2-reg-scalar VQDMULH, VQRDMULH to decodetree
[qemu/ar7.git] / target / i386 / gdbstub.c
blobb98a99500ae15682323c9e2f1915da64cfad04c5
1 /*
2 * x86 gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
24 #ifdef TARGET_X86_64
25 static const int gpr_map[16] = {
26 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
27 8, 9, 10, 11, 12, 13, 14, 15
29 #else
30 #define gpr_map gpr_map32
31 #endif
32 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
35 * Keep these in sync with assignment to
36 * gdb_num_core_regs in target/i386/cpu.c
37 * and with the machine description
41 * SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base
45 * general regs -----> 8 or 16
47 #define IDX_NB_IP 1
48 #define IDX_NB_FLAGS 1
49 #define IDX_NB_SEG (6 + 3)
50 #define IDX_NB_CTL 6
51 #define IDX_NB_FP 16
53 * fpu regs ----------> 8 or 16
55 #define IDX_NB_MXCSR 1
57 * total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66
60 #define IDX_IP_REG CPU_NB_REGS
61 #define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP)
62 #define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS)
63 #define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG)
64 #define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL)
65 #define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP)
66 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
68 #define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0)
69 #define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1)
70 #define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2)
71 #define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3)
72 #define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4)
73 #define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5)
75 #ifdef TARGET_X86_64
76 #define GDB_FORCE_64 1
77 #else
78 #define GDB_FORCE_64 0
79 #endif
82 int x86_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
84 X86CPU *cpu = X86_CPU(cs);
85 CPUX86State *env = &cpu->env;
87 uint64_t tpr;
89 /* N.B. GDB can't deal with changes in registers or sizes in the middle
90 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
91 as if we're on a 64-bit cpu. */
93 if (n < CPU_NB_REGS) {
94 if (TARGET_LONG_BITS == 64) {
95 if (env->hflags & HF_CS64_MASK) {
96 return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
97 } else if (n < CPU_NB_REGS32) {
98 return gdb_get_reg64(mem_buf,
99 env->regs[gpr_map[n]] & 0xffffffffUL);
100 } else {
101 return gdb_get_regl(mem_buf, 0);
103 } else {
104 return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
106 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
107 floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS];
108 int len = gdb_get_reg64(mem_buf, cpu_to_le64(fp->low));
109 len += gdb_get_reg16(mem_buf, cpu_to_le16(fp->high));
110 return len;
111 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
112 n -= IDX_XMM_REGS;
113 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
114 return gdb_get_reg128(mem_buf,
115 env->xmm_regs[n].ZMM_Q(0),
116 env->xmm_regs[n].ZMM_Q(1));
118 } else {
119 switch (n) {
120 case IDX_IP_REG:
121 if (TARGET_LONG_BITS == 64) {
122 if (env->hflags & HF_CS64_MASK) {
123 return gdb_get_reg64(mem_buf, env->eip);
124 } else {
125 return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
127 } else {
128 return gdb_get_reg32(mem_buf, env->eip);
130 case IDX_FLAGS_REG:
131 return gdb_get_reg32(mem_buf, env->eflags);
133 case IDX_SEG_REGS:
134 return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
135 case IDX_SEG_REGS + 1:
136 return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
137 case IDX_SEG_REGS + 2:
138 return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
139 case IDX_SEG_REGS + 3:
140 return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
141 case IDX_SEG_REGS + 4:
142 return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
143 case IDX_SEG_REGS + 5:
144 return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
146 case IDX_SEG_REGS + 6:
147 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
148 return gdb_get_reg64(mem_buf, env->segs[R_FS].base);
150 return gdb_get_reg32(mem_buf, env->segs[R_FS].base);
152 case IDX_SEG_REGS + 7:
153 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
154 return gdb_get_reg64(mem_buf, env->segs[R_GS].base);
156 return gdb_get_reg32(mem_buf, env->segs[R_GS].base);
158 case IDX_SEG_REGS + 8:
159 #ifdef TARGET_X86_64
160 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
161 return gdb_get_reg64(mem_buf, env->kernelgsbase);
163 return gdb_get_reg32(mem_buf, env->kernelgsbase);
164 #else
165 return gdb_get_reg32(mem_buf, 0);
166 #endif
168 case IDX_FP_REGS + 8:
169 return gdb_get_reg32(mem_buf, env->fpuc);
170 case IDX_FP_REGS + 9:
171 return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
172 (env->fpstt & 0x7) << 11);
173 case IDX_FP_REGS + 10:
174 return gdb_get_reg32(mem_buf, 0); /* ftag */
175 case IDX_FP_REGS + 11:
176 return gdb_get_reg32(mem_buf, 0); /* fiseg */
177 case IDX_FP_REGS + 12:
178 return gdb_get_reg32(mem_buf, 0); /* fioff */
179 case IDX_FP_REGS + 13:
180 return gdb_get_reg32(mem_buf, 0); /* foseg */
181 case IDX_FP_REGS + 14:
182 return gdb_get_reg32(mem_buf, 0); /* fooff */
183 case IDX_FP_REGS + 15:
184 return gdb_get_reg32(mem_buf, 0); /* fop */
186 case IDX_MXCSR_REG:
187 return gdb_get_reg32(mem_buf, env->mxcsr);
189 case IDX_CTL_CR0_REG:
190 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
191 return gdb_get_reg64(mem_buf, env->cr[0]);
193 return gdb_get_reg32(mem_buf, env->cr[0]);
195 case IDX_CTL_CR2_REG:
196 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
197 return gdb_get_reg64(mem_buf, env->cr[2]);
199 return gdb_get_reg32(mem_buf, env->cr[2]);
201 case IDX_CTL_CR3_REG:
202 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
203 return gdb_get_reg64(mem_buf, env->cr[3]);
205 return gdb_get_reg32(mem_buf, env->cr[3]);
207 case IDX_CTL_CR4_REG:
208 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
209 return gdb_get_reg64(mem_buf, env->cr[4]);
211 return gdb_get_reg32(mem_buf, env->cr[4]);
213 case IDX_CTL_CR8_REG:
214 #ifdef CONFIG_SOFTMMU
215 tpr = cpu_get_apic_tpr(cpu->apic_state);
216 #else
217 tpr = 0;
218 #endif
219 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
220 return gdb_get_reg64(mem_buf, tpr);
222 return gdb_get_reg32(mem_buf, tpr);
224 case IDX_CTL_EFER_REG:
225 if ((env->hflags & HF_CS64_MASK) || GDB_FORCE_64) {
226 return gdb_get_reg64(mem_buf, env->efer);
228 return gdb_get_reg32(mem_buf, env->efer);
231 return 0;
234 static int x86_cpu_gdb_load_seg(X86CPU *cpu, int sreg, uint8_t *mem_buf)
236 CPUX86State *env = &cpu->env;
237 uint16_t selector = ldl_p(mem_buf);
239 if (selector != env->segs[sreg].selector) {
240 #if defined(CONFIG_USER_ONLY)
241 cpu_x86_load_seg(env, sreg, selector);
242 #else
243 unsigned int limit, flags;
244 target_ulong base;
246 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
247 int dpl = (env->eflags & VM_MASK) ? 3 : 0;
248 base = selector << 4;
249 limit = 0xffff;
250 flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
251 DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
252 } else {
253 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
254 &flags)) {
255 return 4;
258 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
259 #endif
261 return 4;
264 int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
266 X86CPU *cpu = X86_CPU(cs);
267 CPUX86State *env = &cpu->env;
268 uint32_t tmp;
270 /* N.B. GDB can't deal with changes in registers or sizes in the middle
271 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
272 as if we're on a 64-bit cpu. */
274 if (n < CPU_NB_REGS) {
275 if (TARGET_LONG_BITS == 64) {
276 if (env->hflags & HF_CS64_MASK) {
277 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
278 } else if (n < CPU_NB_REGS32) {
279 env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
281 return sizeof(target_ulong);
282 } else if (n < CPU_NB_REGS32) {
283 n = gpr_map32[n];
284 env->regs[n] &= ~0xffffffffUL;
285 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
286 return 4;
288 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
289 floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS];
290 fp->low = le64_to_cpu(* (uint64_t *) mem_buf);
291 fp->high = le16_to_cpu(* (uint16_t *) (mem_buf + 8));
292 return 10;
293 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
294 n -= IDX_XMM_REGS;
295 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
296 env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
297 env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
298 return 16;
300 } else {
301 switch (n) {
302 case IDX_IP_REG:
303 if (TARGET_LONG_BITS == 64) {
304 if (env->hflags & HF_CS64_MASK) {
305 env->eip = ldq_p(mem_buf);
306 } else {
307 env->eip = ldq_p(mem_buf) & 0xffffffffUL;
309 return 8;
310 } else {
311 env->eip &= ~0xffffffffUL;
312 env->eip |= (uint32_t)ldl_p(mem_buf);
313 return 4;
315 case IDX_FLAGS_REG:
316 env->eflags = ldl_p(mem_buf);
317 return 4;
319 case IDX_SEG_REGS:
320 return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
321 case IDX_SEG_REGS + 1:
322 return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
323 case IDX_SEG_REGS + 2:
324 return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
325 case IDX_SEG_REGS + 3:
326 return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
327 case IDX_SEG_REGS + 4:
328 return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
329 case IDX_SEG_REGS + 5:
330 return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
332 case IDX_SEG_REGS + 6:
333 if (env->hflags & HF_CS64_MASK) {
334 env->segs[R_FS].base = ldq_p(mem_buf);
335 return 8;
337 env->segs[R_FS].base = ldl_p(mem_buf);
338 return 4;
340 case IDX_SEG_REGS + 7:
341 if (env->hflags & HF_CS64_MASK) {
342 env->segs[R_GS].base = ldq_p(mem_buf);
343 return 8;
345 env->segs[R_GS].base = ldl_p(mem_buf);
346 return 4;
348 case IDX_SEG_REGS + 8:
349 #ifdef TARGET_X86_64
350 if (env->hflags & HF_CS64_MASK) {
351 env->kernelgsbase = ldq_p(mem_buf);
352 return 8;
354 env->kernelgsbase = ldl_p(mem_buf);
355 #endif
356 return 4;
358 case IDX_FP_REGS + 8:
359 cpu_set_fpuc(env, ldl_p(mem_buf));
360 return 4;
361 case IDX_FP_REGS + 9:
362 tmp = ldl_p(mem_buf);
363 env->fpstt = (tmp >> 11) & 7;
364 env->fpus = tmp & ~0x3800;
365 return 4;
366 case IDX_FP_REGS + 10: /* ftag */
367 return 4;
368 case IDX_FP_REGS + 11: /* fiseg */
369 return 4;
370 case IDX_FP_REGS + 12: /* fioff */
371 return 4;
372 case IDX_FP_REGS + 13: /* foseg */
373 return 4;
374 case IDX_FP_REGS + 14: /* fooff */
375 return 4;
376 case IDX_FP_REGS + 15: /* fop */
377 return 4;
379 case IDX_MXCSR_REG:
380 cpu_set_mxcsr(env, ldl_p(mem_buf));
381 return 4;
383 case IDX_CTL_CR0_REG:
384 if (env->hflags & HF_CS64_MASK) {
385 cpu_x86_update_cr0(env, ldq_p(mem_buf));
386 return 8;
388 cpu_x86_update_cr0(env, ldl_p(mem_buf));
389 return 4;
391 case IDX_CTL_CR2_REG:
392 if (env->hflags & HF_CS64_MASK) {
393 env->cr[2] = ldq_p(mem_buf);
394 return 8;
396 env->cr[2] = ldl_p(mem_buf);
397 return 4;
399 case IDX_CTL_CR3_REG:
400 if (env->hflags & HF_CS64_MASK) {
401 cpu_x86_update_cr3(env, ldq_p(mem_buf));
402 return 8;
404 cpu_x86_update_cr3(env, ldl_p(mem_buf));
405 return 4;
407 case IDX_CTL_CR4_REG:
408 if (env->hflags & HF_CS64_MASK) {
409 cpu_x86_update_cr4(env, ldq_p(mem_buf));
410 return 8;
412 cpu_x86_update_cr4(env, ldl_p(mem_buf));
413 return 4;
415 case IDX_CTL_CR8_REG:
416 if (env->hflags & HF_CS64_MASK) {
417 #ifdef CONFIG_SOFTMMU
418 cpu_set_apic_tpr(cpu->apic_state, ldq_p(mem_buf));
419 #endif
420 return 8;
422 #ifdef CONFIG_SOFTMMU
423 cpu_set_apic_tpr(cpu->apic_state, ldl_p(mem_buf));
424 #endif
425 return 4;
427 case IDX_CTL_EFER_REG:
428 if (env->hflags & HF_CS64_MASK) {
429 cpu_load_efer(env, ldq_p(mem_buf));
430 return 8;
432 cpu_load_efer(env, ldl_p(mem_buf));
433 return 4;
437 /* Unrecognised register. */
438 return 0;