memory: prepare for multiple bits in the dirty log mask
[qemu/ar7.git] / kvm-all.c
blobc713b22f8c346d7e051e51372f5c70a456e73389
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 typedef struct kvm_dirty_log KVMDirtyLog;
74 struct KVMState
76 AccelState parent_obj;
78 KVMSlot *slots;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
86 int migration_log;
87 int vcpu_events;
88 int robust_singlestep;
89 int debugregs;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92 #endif
93 int pit_state2;
94 int xsave, xcrs;
95 int many_ioeventfds;
96 int intx_set_mask;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
106 unsigned int gsi_count;
107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
108 bool direct_msi;
109 #endif
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
117 KVMState *kvm_state;
118 bool kvm_kernel_irqchip;
119 bool kvm_async_interrupts_allowed;
120 bool kvm_halt_in_kernel_allowed;
121 bool kvm_eventfds_allowed;
122 bool kvm_irqfds_allowed;
123 bool kvm_resamplefds_allowed;
124 bool kvm_msi_via_irqfd_allowed;
125 bool kvm_gsi_routing_allowed;
126 bool kvm_gsi_direct_mapping;
127 bool kvm_allowed;
128 bool kvm_readonly_mem_allowed;
129 bool kvm_vm_attributes_allowed;
131 static const KVMCapabilityInfo kvm_required_capabilites[] = {
132 KVM_CAP_INFO(USER_MEMORY),
133 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
134 KVM_CAP_LAST_INFO
137 static KVMSlot *kvm_get_free_slot(KVMState *s)
139 int i;
141 for (i = 0; i < s->nr_slots; i++) {
142 if (s->slots[i].memory_size == 0) {
143 return &s->slots[i];
147 return NULL;
150 bool kvm_has_free_slot(MachineState *ms)
152 return kvm_get_free_slot(KVM_STATE(ms->accelerator));
155 static KVMSlot *kvm_alloc_slot(KVMState *s)
157 KVMSlot *slot = kvm_get_free_slot(s);
159 if (slot) {
160 return slot;
163 fprintf(stderr, "%s: no free slot available\n", __func__);
164 abort();
167 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
168 hwaddr start_addr,
169 hwaddr end_addr)
171 int i;
173 for (i = 0; i < s->nr_slots; i++) {
174 KVMSlot *mem = &s->slots[i];
176 if (start_addr == mem->start_addr &&
177 end_addr == mem->start_addr + mem->memory_size) {
178 return mem;
182 return NULL;
186 * Find overlapping slot with lowest start address
188 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
189 hwaddr start_addr,
190 hwaddr end_addr)
192 KVMSlot *found = NULL;
193 int i;
195 for (i = 0; i < s->nr_slots; i++) {
196 KVMSlot *mem = &s->slots[i];
198 if (mem->memory_size == 0 ||
199 (found && found->start_addr < mem->start_addr)) {
200 continue;
203 if (end_addr > mem->start_addr &&
204 start_addr < mem->start_addr + mem->memory_size) {
205 found = mem;
209 return found;
212 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
213 hwaddr *phys_addr)
215 int i;
217 for (i = 0; i < s->nr_slots; i++) {
218 KVMSlot *mem = &s->slots[i];
220 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
221 *phys_addr = mem->start_addr + (ram - mem->ram);
222 return 1;
226 return 0;
229 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
231 struct kvm_userspace_memory_region mem;
233 mem.slot = slot->slot;
234 mem.guest_phys_addr = slot->start_addr;
235 mem.userspace_addr = (unsigned long)slot->ram;
236 mem.flags = slot->flags;
237 if (s->migration_log) {
238 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
241 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
242 /* Set the slot size to 0 before setting the slot to the desired
243 * value. This is needed based on KVM commit 75d61fbc. */
244 mem.memory_size = 0;
245 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
247 mem.memory_size = slot->memory_size;
248 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
251 int kvm_init_vcpu(CPUState *cpu)
253 KVMState *s = kvm_state;
254 long mmap_size;
255 int ret;
257 DPRINTF("kvm_init_vcpu\n");
259 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
260 if (ret < 0) {
261 DPRINTF("kvm_create_vcpu failed\n");
262 goto err;
265 cpu->kvm_fd = ret;
266 cpu->kvm_state = s;
267 cpu->kvm_vcpu_dirty = true;
269 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
270 if (mmap_size < 0) {
271 ret = mmap_size;
272 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
273 goto err;
276 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
277 cpu->kvm_fd, 0);
278 if (cpu->kvm_run == MAP_FAILED) {
279 ret = -errno;
280 DPRINTF("mmap'ing vcpu state failed\n");
281 goto err;
284 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
285 s->coalesced_mmio_ring =
286 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
289 ret = kvm_arch_init_vcpu(cpu);
290 err:
291 return ret;
295 * dirty pages logging control
298 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
300 int flags = 0;
301 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
302 if (readonly && kvm_readonly_mem_allowed) {
303 flags |= KVM_MEM_READONLY;
305 return flags;
308 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
310 KVMState *s = kvm_state;
311 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
312 int old_flags;
314 old_flags = mem->flags;
316 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
317 mem->flags = flags;
319 /* If nothing changed effectively, no need to issue ioctl */
320 if (s->migration_log) {
321 flags |= KVM_MEM_LOG_DIRTY_PAGES;
324 if (flags == old_flags) {
325 return 0;
328 return kvm_set_user_memory_region(s, mem);
331 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
332 ram_addr_t size, bool log_dirty)
334 KVMState *s = kvm_state;
335 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
337 if (mem == NULL) {
338 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
339 TARGET_FMT_plx "\n", __func__, phys_addr,
340 (hwaddr)(phys_addr + size - 1));
341 return -EINVAL;
343 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
346 static void kvm_log_start(MemoryListener *listener,
347 MemoryRegionSection *section,
348 int old, int new)
350 int r;
352 if (old != 0) {
353 return;
356 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
357 int128_get64(section->size), true);
358 if (r < 0) {
359 abort();
363 static void kvm_log_stop(MemoryListener *listener,
364 MemoryRegionSection *section,
365 int old, int new)
367 int r;
369 if (new != 0) {
370 return;
373 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
374 int128_get64(section->size), false);
375 if (r < 0) {
376 abort();
380 static int kvm_set_migration_log(bool enable)
382 KVMState *s = kvm_state;
383 KVMSlot *mem;
384 int i, err;
386 s->migration_log = enable;
388 for (i = 0; i < s->nr_slots; i++) {
389 mem = &s->slots[i];
391 if (!mem->memory_size) {
392 continue;
394 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
395 continue;
397 err = kvm_set_user_memory_region(s, mem);
398 if (err) {
399 return err;
402 return 0;
405 /* get kvm's dirty pages bitmap and update qemu's */
406 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
407 unsigned long *bitmap)
409 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
410 ram_addr_t pages = int128_get64(section->size) / getpagesize();
412 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
413 return 0;
416 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
419 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
420 * This function updates qemu's dirty bitmap using
421 * memory_region_set_dirty(). This means all bits are set
422 * to dirty.
424 * @start_add: start of logged region.
425 * @end_addr: end of logged region.
427 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
429 KVMState *s = kvm_state;
430 unsigned long size, allocated_size = 0;
431 KVMDirtyLog d = {};
432 KVMSlot *mem;
433 int ret = 0;
434 hwaddr start_addr = section->offset_within_address_space;
435 hwaddr end_addr = start_addr + int128_get64(section->size);
437 d.dirty_bitmap = NULL;
438 while (start_addr < end_addr) {
439 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
440 if (mem == NULL) {
441 break;
444 /* XXX bad kernel interface alert
445 * For dirty bitmap, kernel allocates array of size aligned to
446 * bits-per-long. But for case when the kernel is 64bits and
447 * the userspace is 32bits, userspace can't align to the same
448 * bits-per-long, since sizeof(long) is different between kernel
449 * and user space. This way, userspace will provide buffer which
450 * may be 4 bytes less than the kernel will use, resulting in
451 * userspace memory corruption (which is not detectable by valgrind
452 * too, in most cases).
453 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
454 * a hope that sizeof(long) wont become >8 any time soon.
456 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
457 /*HOST_LONG_BITS*/ 64) / 8;
458 if (!d.dirty_bitmap) {
459 d.dirty_bitmap = g_malloc(size);
460 } else if (size > allocated_size) {
461 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
463 allocated_size = size;
464 memset(d.dirty_bitmap, 0, allocated_size);
466 d.slot = mem->slot;
468 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
469 DPRINTF("ioctl failed %d\n", errno);
470 ret = -1;
471 break;
474 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
475 start_addr = mem->start_addr + mem->memory_size;
477 g_free(d.dirty_bitmap);
479 return ret;
482 static void kvm_coalesce_mmio_region(MemoryListener *listener,
483 MemoryRegionSection *secion,
484 hwaddr start, hwaddr size)
486 KVMState *s = kvm_state;
488 if (s->coalesced_mmio) {
489 struct kvm_coalesced_mmio_zone zone;
491 zone.addr = start;
492 zone.size = size;
493 zone.pad = 0;
495 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
499 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
500 MemoryRegionSection *secion,
501 hwaddr start, hwaddr size)
503 KVMState *s = kvm_state;
505 if (s->coalesced_mmio) {
506 struct kvm_coalesced_mmio_zone zone;
508 zone.addr = start;
509 zone.size = size;
510 zone.pad = 0;
512 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
516 int kvm_check_extension(KVMState *s, unsigned int extension)
518 int ret;
520 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
521 if (ret < 0) {
522 ret = 0;
525 return ret;
528 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
530 int ret;
532 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
533 if (ret < 0) {
534 /* VM wide version not implemented, use global one instead */
535 ret = kvm_check_extension(s, extension);
538 return ret;
541 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
543 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
544 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
545 * endianness, but the memory core hands them in target endianness.
546 * For example, PPC is always treated as big-endian even if running
547 * on KVM and on PPC64LE. Correct here.
549 switch (size) {
550 case 2:
551 val = bswap16(val);
552 break;
553 case 4:
554 val = bswap32(val);
555 break;
557 #endif
558 return val;
561 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
562 bool assign, uint32_t size, bool datamatch)
564 int ret;
565 struct kvm_ioeventfd iofd = {
566 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
567 .addr = addr,
568 .len = size,
569 .flags = 0,
570 .fd = fd,
573 if (!kvm_enabled()) {
574 return -ENOSYS;
577 if (datamatch) {
578 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
580 if (!assign) {
581 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
584 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
586 if (ret < 0) {
587 return -errno;
590 return 0;
593 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
594 bool assign, uint32_t size, bool datamatch)
596 struct kvm_ioeventfd kick = {
597 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
598 .addr = addr,
599 .flags = KVM_IOEVENTFD_FLAG_PIO,
600 .len = size,
601 .fd = fd,
603 int r;
604 if (!kvm_enabled()) {
605 return -ENOSYS;
607 if (datamatch) {
608 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
610 if (!assign) {
611 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
613 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
614 if (r < 0) {
615 return r;
617 return 0;
621 static int kvm_check_many_ioeventfds(void)
623 /* Userspace can use ioeventfd for io notification. This requires a host
624 * that supports eventfd(2) and an I/O thread; since eventfd does not
625 * support SIGIO it cannot interrupt the vcpu.
627 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
628 * can avoid creating too many ioeventfds.
630 #if defined(CONFIG_EVENTFD)
631 int ioeventfds[7];
632 int i, ret = 0;
633 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
634 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
635 if (ioeventfds[i] < 0) {
636 break;
638 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
639 if (ret < 0) {
640 close(ioeventfds[i]);
641 break;
645 /* Decide whether many devices are supported or not */
646 ret = i == ARRAY_SIZE(ioeventfds);
648 while (i-- > 0) {
649 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
650 close(ioeventfds[i]);
652 return ret;
653 #else
654 return 0;
655 #endif
658 static const KVMCapabilityInfo *
659 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
661 while (list->name) {
662 if (!kvm_check_extension(s, list->value)) {
663 return list;
665 list++;
667 return NULL;
670 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
672 KVMState *s = kvm_state;
673 KVMSlot *mem, old;
674 int err;
675 MemoryRegion *mr = section->mr;
676 bool log_dirty =
677 memory_region_get_dirty_log_mask(mr) & ~(1 << DIRTY_MEMORY_MIGRATION);
678 bool writeable = !mr->readonly && !mr->rom_device;
679 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
680 hwaddr start_addr = section->offset_within_address_space;
681 ram_addr_t size = int128_get64(section->size);
682 void *ram = NULL;
683 unsigned delta;
685 /* kvm works in page size chunks, but the function may be called
686 with sub-page size and unaligned start address. Pad the start
687 address to next and truncate size to previous page boundary. */
688 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
689 delta &= ~TARGET_PAGE_MASK;
690 if (delta > size) {
691 return;
693 start_addr += delta;
694 size -= delta;
695 size &= TARGET_PAGE_MASK;
696 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
697 return;
700 if (!memory_region_is_ram(mr)) {
701 if (writeable || !kvm_readonly_mem_allowed) {
702 return;
703 } else if (!mr->romd_mode) {
704 /* If the memory device is not in romd_mode, then we actually want
705 * to remove the kvm memory slot so all accesses will trap. */
706 add = false;
710 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
712 while (1) {
713 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
714 if (!mem) {
715 break;
718 if (add && start_addr >= mem->start_addr &&
719 (start_addr + size <= mem->start_addr + mem->memory_size) &&
720 (ram - start_addr == mem->ram - mem->start_addr)) {
721 /* The new slot fits into the existing one and comes with
722 * identical parameters - update flags and done. */
723 kvm_slot_dirty_pages_log_change(mem, log_dirty);
724 return;
727 old = *mem;
729 if ((mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || s->migration_log) {
730 kvm_physical_sync_dirty_bitmap(section);
733 /* unregister the overlapping slot */
734 mem->memory_size = 0;
735 err = kvm_set_user_memory_region(s, mem);
736 if (err) {
737 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
738 __func__, strerror(-err));
739 abort();
742 /* Workaround for older KVM versions: we can't join slots, even not by
743 * unregistering the previous ones and then registering the larger
744 * slot. We have to maintain the existing fragmentation. Sigh.
746 * This workaround assumes that the new slot starts at the same
747 * address as the first existing one. If not or if some overlapping
748 * slot comes around later, we will fail (not seen in practice so far)
749 * - and actually require a recent KVM version. */
750 if (s->broken_set_mem_region &&
751 old.start_addr == start_addr && old.memory_size < size && add) {
752 mem = kvm_alloc_slot(s);
753 mem->memory_size = old.memory_size;
754 mem->start_addr = old.start_addr;
755 mem->ram = old.ram;
756 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
758 err = kvm_set_user_memory_region(s, mem);
759 if (err) {
760 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
761 strerror(-err));
762 abort();
765 start_addr += old.memory_size;
766 ram += old.memory_size;
767 size -= old.memory_size;
768 continue;
771 /* register prefix slot */
772 if (old.start_addr < start_addr) {
773 mem = kvm_alloc_slot(s);
774 mem->memory_size = start_addr - old.start_addr;
775 mem->start_addr = old.start_addr;
776 mem->ram = old.ram;
777 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
779 err = kvm_set_user_memory_region(s, mem);
780 if (err) {
781 fprintf(stderr, "%s: error registering prefix slot: %s\n",
782 __func__, strerror(-err));
783 #ifdef TARGET_PPC
784 fprintf(stderr, "%s: This is probably because your kernel's " \
785 "PAGE_SIZE is too big. Please try to use 4k " \
786 "PAGE_SIZE!\n", __func__);
787 #endif
788 abort();
792 /* register suffix slot */
793 if (old.start_addr + old.memory_size > start_addr + size) {
794 ram_addr_t size_delta;
796 mem = kvm_alloc_slot(s);
797 mem->start_addr = start_addr + size;
798 size_delta = mem->start_addr - old.start_addr;
799 mem->memory_size = old.memory_size - size_delta;
800 mem->ram = old.ram + size_delta;
801 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
803 err = kvm_set_user_memory_region(s, mem);
804 if (err) {
805 fprintf(stderr, "%s: error registering suffix slot: %s\n",
806 __func__, strerror(-err));
807 abort();
812 /* in case the KVM bug workaround already "consumed" the new slot */
813 if (!size) {
814 return;
816 if (!add) {
817 return;
819 mem = kvm_alloc_slot(s);
820 mem->memory_size = size;
821 mem->start_addr = start_addr;
822 mem->ram = ram;
823 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
825 err = kvm_set_user_memory_region(s, mem);
826 if (err) {
827 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
828 strerror(-err));
829 abort();
833 static void kvm_region_add(MemoryListener *listener,
834 MemoryRegionSection *section)
836 memory_region_ref(section->mr);
837 kvm_set_phys_mem(section, true);
840 static void kvm_region_del(MemoryListener *listener,
841 MemoryRegionSection *section)
843 kvm_set_phys_mem(section, false);
844 memory_region_unref(section->mr);
847 static void kvm_log_sync(MemoryListener *listener,
848 MemoryRegionSection *section)
850 int r;
852 r = kvm_physical_sync_dirty_bitmap(section);
853 if (r < 0) {
854 abort();
858 static void kvm_log_global_start(struct MemoryListener *listener)
860 int r;
862 r = kvm_set_migration_log(1);
863 assert(r >= 0);
866 static void kvm_log_global_stop(struct MemoryListener *listener)
868 int r;
870 r = kvm_set_migration_log(0);
871 assert(r >= 0);
874 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
875 MemoryRegionSection *section,
876 bool match_data, uint64_t data,
877 EventNotifier *e)
879 int fd = event_notifier_get_fd(e);
880 int r;
882 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
883 data, true, int128_get64(section->size),
884 match_data);
885 if (r < 0) {
886 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
887 __func__, strerror(-r));
888 abort();
892 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
893 MemoryRegionSection *section,
894 bool match_data, uint64_t data,
895 EventNotifier *e)
897 int fd = event_notifier_get_fd(e);
898 int r;
900 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
901 data, false, int128_get64(section->size),
902 match_data);
903 if (r < 0) {
904 abort();
908 static void kvm_io_ioeventfd_add(MemoryListener *listener,
909 MemoryRegionSection *section,
910 bool match_data, uint64_t data,
911 EventNotifier *e)
913 int fd = event_notifier_get_fd(e);
914 int r;
916 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
917 data, true, int128_get64(section->size),
918 match_data);
919 if (r < 0) {
920 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
921 __func__, strerror(-r));
922 abort();
926 static void kvm_io_ioeventfd_del(MemoryListener *listener,
927 MemoryRegionSection *section,
928 bool match_data, uint64_t data,
929 EventNotifier *e)
932 int fd = event_notifier_get_fd(e);
933 int r;
935 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
936 data, false, int128_get64(section->size),
937 match_data);
938 if (r < 0) {
939 abort();
943 static MemoryListener kvm_memory_listener = {
944 .region_add = kvm_region_add,
945 .region_del = kvm_region_del,
946 .log_start = kvm_log_start,
947 .log_stop = kvm_log_stop,
948 .log_sync = kvm_log_sync,
949 .log_global_start = kvm_log_global_start,
950 .log_global_stop = kvm_log_global_stop,
951 .eventfd_add = kvm_mem_ioeventfd_add,
952 .eventfd_del = kvm_mem_ioeventfd_del,
953 .coalesced_mmio_add = kvm_coalesce_mmio_region,
954 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
955 .priority = 10,
958 static MemoryListener kvm_io_listener = {
959 .eventfd_add = kvm_io_ioeventfd_add,
960 .eventfd_del = kvm_io_ioeventfd_del,
961 .priority = 10,
964 static void kvm_handle_interrupt(CPUState *cpu, int mask)
966 cpu->interrupt_request |= mask;
968 if (!qemu_cpu_is_self(cpu)) {
969 qemu_cpu_kick(cpu);
973 int kvm_set_irq(KVMState *s, int irq, int level)
975 struct kvm_irq_level event;
976 int ret;
978 assert(kvm_async_interrupts_enabled());
980 event.level = level;
981 event.irq = irq;
982 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
983 if (ret < 0) {
984 perror("kvm_set_irq");
985 abort();
988 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
991 #ifdef KVM_CAP_IRQ_ROUTING
992 typedef struct KVMMSIRoute {
993 struct kvm_irq_routing_entry kroute;
994 QTAILQ_ENTRY(KVMMSIRoute) entry;
995 } KVMMSIRoute;
997 static void set_gsi(KVMState *s, unsigned int gsi)
999 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
1002 static void clear_gsi(KVMState *s, unsigned int gsi)
1004 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
1007 void kvm_init_irq_routing(KVMState *s)
1009 int gsi_count, i;
1011 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1012 if (gsi_count > 0) {
1013 unsigned int gsi_bits, i;
1015 /* Round up so we can search ints using ffs */
1016 gsi_bits = ALIGN(gsi_count, 32);
1017 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
1018 s->gsi_count = gsi_count;
1020 /* Mark any over-allocated bits as already in use */
1021 for (i = gsi_count; i < gsi_bits; i++) {
1022 set_gsi(s, i);
1026 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1027 s->nr_allocated_irq_routes = 0;
1029 if (!s->direct_msi) {
1030 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1031 QTAILQ_INIT(&s->msi_hashtab[i]);
1035 kvm_arch_init_irq_routing(s);
1038 void kvm_irqchip_commit_routes(KVMState *s)
1040 int ret;
1042 s->irq_routes->flags = 0;
1043 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1044 assert(ret == 0);
1047 static void kvm_add_routing_entry(KVMState *s,
1048 struct kvm_irq_routing_entry *entry)
1050 struct kvm_irq_routing_entry *new;
1051 int n, size;
1053 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1054 n = s->nr_allocated_irq_routes * 2;
1055 if (n < 64) {
1056 n = 64;
1058 size = sizeof(struct kvm_irq_routing);
1059 size += n * sizeof(*new);
1060 s->irq_routes = g_realloc(s->irq_routes, size);
1061 s->nr_allocated_irq_routes = n;
1063 n = s->irq_routes->nr++;
1064 new = &s->irq_routes->entries[n];
1066 *new = *entry;
1068 set_gsi(s, entry->gsi);
1071 static int kvm_update_routing_entry(KVMState *s,
1072 struct kvm_irq_routing_entry *new_entry)
1074 struct kvm_irq_routing_entry *entry;
1075 int n;
1077 for (n = 0; n < s->irq_routes->nr; n++) {
1078 entry = &s->irq_routes->entries[n];
1079 if (entry->gsi != new_entry->gsi) {
1080 continue;
1083 if(!memcmp(entry, new_entry, sizeof *entry)) {
1084 return 0;
1087 *entry = *new_entry;
1089 kvm_irqchip_commit_routes(s);
1091 return 0;
1094 return -ESRCH;
1097 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1099 struct kvm_irq_routing_entry e = {};
1101 assert(pin < s->gsi_count);
1103 e.gsi = irq;
1104 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1105 e.flags = 0;
1106 e.u.irqchip.irqchip = irqchip;
1107 e.u.irqchip.pin = pin;
1108 kvm_add_routing_entry(s, &e);
1111 void kvm_irqchip_release_virq(KVMState *s, int virq)
1113 struct kvm_irq_routing_entry *e;
1114 int i;
1116 if (kvm_gsi_direct_mapping()) {
1117 return;
1120 for (i = 0; i < s->irq_routes->nr; i++) {
1121 e = &s->irq_routes->entries[i];
1122 if (e->gsi == virq) {
1123 s->irq_routes->nr--;
1124 *e = s->irq_routes->entries[s->irq_routes->nr];
1127 clear_gsi(s, virq);
1130 static unsigned int kvm_hash_msi(uint32_t data)
1132 /* This is optimized for IA32 MSI layout. However, no other arch shall
1133 * repeat the mistake of not providing a direct MSI injection API. */
1134 return data & 0xff;
1137 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1139 KVMMSIRoute *route, *next;
1140 unsigned int hash;
1142 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1143 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1144 kvm_irqchip_release_virq(s, route->kroute.gsi);
1145 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1146 g_free(route);
1151 static int kvm_irqchip_get_virq(KVMState *s)
1153 uint32_t *word = s->used_gsi_bitmap;
1154 int max_words = ALIGN(s->gsi_count, 32) / 32;
1155 int i, zeroes;
1156 bool retry = true;
1158 again:
1159 /* Return the lowest unused GSI in the bitmap */
1160 for (i = 0; i < max_words; i++) {
1161 zeroes = ctz32(~word[i]);
1162 if (zeroes == 32) {
1163 continue;
1166 return zeroes + i * 32;
1168 if (!s->direct_msi && retry) {
1169 retry = false;
1170 kvm_flush_dynamic_msi_routes(s);
1171 goto again;
1173 return -ENOSPC;
1177 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1179 unsigned int hash = kvm_hash_msi(msg.data);
1180 KVMMSIRoute *route;
1182 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1183 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1184 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1185 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1186 return route;
1189 return NULL;
1192 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1194 struct kvm_msi msi;
1195 KVMMSIRoute *route;
1197 if (s->direct_msi) {
1198 msi.address_lo = (uint32_t)msg.address;
1199 msi.address_hi = msg.address >> 32;
1200 msi.data = le32_to_cpu(msg.data);
1201 msi.flags = 0;
1202 memset(msi.pad, 0, sizeof(msi.pad));
1204 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1207 route = kvm_lookup_msi_route(s, msg);
1208 if (!route) {
1209 int virq;
1211 virq = kvm_irqchip_get_virq(s);
1212 if (virq < 0) {
1213 return virq;
1216 route = g_malloc0(sizeof(KVMMSIRoute));
1217 route->kroute.gsi = virq;
1218 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1219 route->kroute.flags = 0;
1220 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1221 route->kroute.u.msi.address_hi = msg.address >> 32;
1222 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1224 kvm_add_routing_entry(s, &route->kroute);
1225 kvm_irqchip_commit_routes(s);
1227 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1228 entry);
1231 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1233 return kvm_set_irq(s, route->kroute.gsi, 1);
1236 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1238 struct kvm_irq_routing_entry kroute = {};
1239 int virq;
1241 if (kvm_gsi_direct_mapping()) {
1242 return kvm_arch_msi_data_to_gsi(msg.data);
1245 if (!kvm_gsi_routing_enabled()) {
1246 return -ENOSYS;
1249 virq = kvm_irqchip_get_virq(s);
1250 if (virq < 0) {
1251 return virq;
1254 kroute.gsi = virq;
1255 kroute.type = KVM_IRQ_ROUTING_MSI;
1256 kroute.flags = 0;
1257 kroute.u.msi.address_lo = (uint32_t)msg.address;
1258 kroute.u.msi.address_hi = msg.address >> 32;
1259 kroute.u.msi.data = le32_to_cpu(msg.data);
1260 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1261 kvm_irqchip_release_virq(s, virq);
1262 return -EINVAL;
1265 kvm_add_routing_entry(s, &kroute);
1266 kvm_irqchip_commit_routes(s);
1268 return virq;
1271 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1273 struct kvm_irq_routing_entry kroute = {};
1275 if (kvm_gsi_direct_mapping()) {
1276 return 0;
1279 if (!kvm_irqchip_in_kernel()) {
1280 return -ENOSYS;
1283 kroute.gsi = virq;
1284 kroute.type = KVM_IRQ_ROUTING_MSI;
1285 kroute.flags = 0;
1286 kroute.u.msi.address_lo = (uint32_t)msg.address;
1287 kroute.u.msi.address_hi = msg.address >> 32;
1288 kroute.u.msi.data = le32_to_cpu(msg.data);
1289 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1290 return -EINVAL;
1293 return kvm_update_routing_entry(s, &kroute);
1296 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1297 bool assign)
1299 struct kvm_irqfd irqfd = {
1300 .fd = fd,
1301 .gsi = virq,
1302 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1305 if (rfd != -1) {
1306 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1307 irqfd.resamplefd = rfd;
1310 if (!kvm_irqfds_enabled()) {
1311 return -ENOSYS;
1314 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1317 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1319 struct kvm_irq_routing_entry kroute = {};
1320 int virq;
1322 if (!kvm_gsi_routing_enabled()) {
1323 return -ENOSYS;
1326 virq = kvm_irqchip_get_virq(s);
1327 if (virq < 0) {
1328 return virq;
1331 kroute.gsi = virq;
1332 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1333 kroute.flags = 0;
1334 kroute.u.adapter.summary_addr = adapter->summary_addr;
1335 kroute.u.adapter.ind_addr = adapter->ind_addr;
1336 kroute.u.adapter.summary_offset = adapter->summary_offset;
1337 kroute.u.adapter.ind_offset = adapter->ind_offset;
1338 kroute.u.adapter.adapter_id = adapter->adapter_id;
1340 kvm_add_routing_entry(s, &kroute);
1341 kvm_irqchip_commit_routes(s);
1343 return virq;
1346 #else /* !KVM_CAP_IRQ_ROUTING */
1348 void kvm_init_irq_routing(KVMState *s)
1352 void kvm_irqchip_release_virq(KVMState *s, int virq)
1356 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1358 abort();
1361 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1363 return -ENOSYS;
1366 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1368 return -ENOSYS;
1371 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1373 abort();
1376 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1378 return -ENOSYS;
1380 #endif /* !KVM_CAP_IRQ_ROUTING */
1382 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1383 EventNotifier *rn, int virq)
1385 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1386 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1389 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1391 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1392 false);
1395 static int kvm_irqchip_create(MachineState *machine, KVMState *s)
1397 int ret;
1399 if (!machine_kernel_irqchip_allowed(machine) ||
1400 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1401 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1402 return 0;
1405 /* First probe and see if there's a arch-specific hook to create the
1406 * in-kernel irqchip for us */
1407 ret = kvm_arch_irqchip_create(s);
1408 if (ret < 0) {
1409 return ret;
1410 } else if (ret == 0) {
1411 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1412 if (ret < 0) {
1413 fprintf(stderr, "Create kernel irqchip failed\n");
1414 return ret;
1418 kvm_kernel_irqchip = true;
1419 /* If we have an in-kernel IRQ chip then we must have asynchronous
1420 * interrupt delivery (though the reverse is not necessarily true)
1422 kvm_async_interrupts_allowed = true;
1423 kvm_halt_in_kernel_allowed = true;
1425 kvm_init_irq_routing(s);
1427 return 0;
1430 /* Find number of supported CPUs using the recommended
1431 * procedure from the kernel API documentation to cope with
1432 * older kernels that may be missing capabilities.
1434 static int kvm_recommended_vcpus(KVMState *s)
1436 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1437 return (ret) ? ret : 4;
1440 static int kvm_max_vcpus(KVMState *s)
1442 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1443 return (ret) ? ret : kvm_recommended_vcpus(s);
1446 static int kvm_init(MachineState *ms)
1448 MachineClass *mc = MACHINE_GET_CLASS(ms);
1449 static const char upgrade_note[] =
1450 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1451 "(see http://sourceforge.net/projects/kvm).\n";
1452 struct {
1453 const char *name;
1454 int num;
1455 } num_cpus[] = {
1456 { "SMP", smp_cpus },
1457 { "hotpluggable", max_cpus },
1458 { NULL, }
1459 }, *nc = num_cpus;
1460 int soft_vcpus_limit, hard_vcpus_limit;
1461 KVMState *s;
1462 const KVMCapabilityInfo *missing_cap;
1463 int ret;
1464 int i, type = 0;
1465 const char *kvm_type;
1467 s = KVM_STATE(ms->accelerator);
1470 * On systems where the kernel can support different base page
1471 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1472 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1473 * page size for the system though.
1475 assert(TARGET_PAGE_SIZE <= getpagesize());
1476 page_size_init();
1478 s->sigmask_len = 8;
1480 #ifdef KVM_CAP_SET_GUEST_DEBUG
1481 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1482 #endif
1483 s->vmfd = -1;
1484 s->fd = qemu_open("/dev/kvm", O_RDWR);
1485 if (s->fd == -1) {
1486 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1487 ret = -errno;
1488 goto err;
1491 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1492 if (ret < KVM_API_VERSION) {
1493 if (ret >= 0) {
1494 ret = -EINVAL;
1496 fprintf(stderr, "kvm version too old\n");
1497 goto err;
1500 if (ret > KVM_API_VERSION) {
1501 ret = -EINVAL;
1502 fprintf(stderr, "kvm version not supported\n");
1503 goto err;
1506 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1508 /* If unspecified, use the default value */
1509 if (!s->nr_slots) {
1510 s->nr_slots = 32;
1513 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1515 for (i = 0; i < s->nr_slots; i++) {
1516 s->slots[i].slot = i;
1519 /* check the vcpu limits */
1520 soft_vcpus_limit = kvm_recommended_vcpus(s);
1521 hard_vcpus_limit = kvm_max_vcpus(s);
1523 while (nc->name) {
1524 if (nc->num > soft_vcpus_limit) {
1525 fprintf(stderr,
1526 "Warning: Number of %s cpus requested (%d) exceeds "
1527 "the recommended cpus supported by KVM (%d)\n",
1528 nc->name, nc->num, soft_vcpus_limit);
1530 if (nc->num > hard_vcpus_limit) {
1531 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1532 "the maximum cpus supported by KVM (%d)\n",
1533 nc->name, nc->num, hard_vcpus_limit);
1534 exit(1);
1537 nc++;
1540 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1541 if (mc->kvm_type) {
1542 type = mc->kvm_type(kvm_type);
1543 } else if (kvm_type) {
1544 ret = -EINVAL;
1545 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1546 goto err;
1549 do {
1550 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1551 } while (ret == -EINTR);
1553 if (ret < 0) {
1554 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1555 strerror(-ret));
1557 #ifdef TARGET_S390X
1558 if (ret == -EINVAL) {
1559 fprintf(stderr,
1560 "Host kernel setup problem detected. Please verify:\n");
1561 fprintf(stderr, "- for kernels supporting the switch_amode or"
1562 " user_mode parameters, whether\n");
1563 fprintf(stderr,
1564 " user space is running in primary address space\n");
1565 fprintf(stderr,
1566 "- for kernels supporting the vm.allocate_pgste sysctl, "
1567 "whether it is enabled\n");
1569 #endif
1570 goto err;
1573 s->vmfd = ret;
1574 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1575 if (!missing_cap) {
1576 missing_cap =
1577 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1579 if (missing_cap) {
1580 ret = -EINVAL;
1581 fprintf(stderr, "kvm does not support %s\n%s",
1582 missing_cap->name, upgrade_note);
1583 goto err;
1586 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1588 s->broken_set_mem_region = 1;
1589 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1590 if (ret > 0) {
1591 s->broken_set_mem_region = 0;
1594 #ifdef KVM_CAP_VCPU_EVENTS
1595 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1596 #endif
1598 s->robust_singlestep =
1599 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1601 #ifdef KVM_CAP_DEBUGREGS
1602 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1603 #endif
1605 #ifdef KVM_CAP_XSAVE
1606 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1607 #endif
1609 #ifdef KVM_CAP_XCRS
1610 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1611 #endif
1613 #ifdef KVM_CAP_PIT_STATE2
1614 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1615 #endif
1617 #ifdef KVM_CAP_IRQ_ROUTING
1618 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1619 #endif
1621 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1623 s->irq_set_ioctl = KVM_IRQ_LINE;
1624 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1625 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1628 #ifdef KVM_CAP_READONLY_MEM
1629 kvm_readonly_mem_allowed =
1630 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1631 #endif
1633 kvm_eventfds_allowed =
1634 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1636 kvm_irqfds_allowed =
1637 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1639 kvm_resamplefds_allowed =
1640 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1642 kvm_vm_attributes_allowed =
1643 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1645 ret = kvm_arch_init(ms, s);
1646 if (ret < 0) {
1647 goto err;
1650 ret = kvm_irqchip_create(ms, s);
1651 if (ret < 0) {
1652 goto err;
1655 kvm_state = s;
1656 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1657 memory_listener_register(&kvm_io_listener, &address_space_io);
1659 s->many_ioeventfds = kvm_check_many_ioeventfds();
1661 cpu_interrupt_handler = kvm_handle_interrupt;
1663 return 0;
1665 err:
1666 assert(ret < 0);
1667 if (s->vmfd >= 0) {
1668 close(s->vmfd);
1670 if (s->fd != -1) {
1671 close(s->fd);
1673 g_free(s->slots);
1675 return ret;
1678 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1680 s->sigmask_len = sigmask_len;
1683 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1684 int size, uint32_t count)
1686 int i;
1687 uint8_t *ptr = data;
1689 for (i = 0; i < count; i++) {
1690 address_space_rw(&address_space_io, port, attrs,
1691 ptr, size,
1692 direction == KVM_EXIT_IO_OUT);
1693 ptr += size;
1697 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1699 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1700 run->internal.suberror);
1702 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1703 int i;
1705 for (i = 0; i < run->internal.ndata; ++i) {
1706 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1707 i, (uint64_t)run->internal.data[i]);
1710 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1711 fprintf(stderr, "emulation failure\n");
1712 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1713 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1714 return EXCP_INTERRUPT;
1717 /* FIXME: Should trigger a qmp message to let management know
1718 * something went wrong.
1720 return -1;
1723 void kvm_flush_coalesced_mmio_buffer(void)
1725 KVMState *s = kvm_state;
1727 if (s->coalesced_flush_in_progress) {
1728 return;
1731 s->coalesced_flush_in_progress = true;
1733 if (s->coalesced_mmio_ring) {
1734 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1735 while (ring->first != ring->last) {
1736 struct kvm_coalesced_mmio *ent;
1738 ent = &ring->coalesced_mmio[ring->first];
1740 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1741 smp_wmb();
1742 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1746 s->coalesced_flush_in_progress = false;
1749 static void do_kvm_cpu_synchronize_state(void *arg)
1751 CPUState *cpu = arg;
1753 if (!cpu->kvm_vcpu_dirty) {
1754 kvm_arch_get_registers(cpu);
1755 cpu->kvm_vcpu_dirty = true;
1759 void kvm_cpu_synchronize_state(CPUState *cpu)
1761 if (!cpu->kvm_vcpu_dirty) {
1762 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1766 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1768 CPUState *cpu = arg;
1770 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1771 cpu->kvm_vcpu_dirty = false;
1774 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1776 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1779 static void do_kvm_cpu_synchronize_post_init(void *arg)
1781 CPUState *cpu = arg;
1783 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1784 cpu->kvm_vcpu_dirty = false;
1787 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1789 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1792 void kvm_cpu_clean_state(CPUState *cpu)
1794 cpu->kvm_vcpu_dirty = false;
1797 int kvm_cpu_exec(CPUState *cpu)
1799 struct kvm_run *run = cpu->kvm_run;
1800 int ret, run_ret;
1802 DPRINTF("kvm_cpu_exec()\n");
1804 if (kvm_arch_process_async_events(cpu)) {
1805 cpu->exit_request = 0;
1806 return EXCP_HLT;
1809 do {
1810 MemTxAttrs attrs;
1812 if (cpu->kvm_vcpu_dirty) {
1813 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1814 cpu->kvm_vcpu_dirty = false;
1817 kvm_arch_pre_run(cpu, run);
1818 if (cpu->exit_request) {
1819 DPRINTF("interrupt exit requested\n");
1821 * KVM requires us to reenter the kernel after IO exits to complete
1822 * instruction emulation. This self-signal will ensure that we
1823 * leave ASAP again.
1825 qemu_cpu_kick_self();
1827 qemu_mutex_unlock_iothread();
1829 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1831 qemu_mutex_lock_iothread();
1832 attrs = kvm_arch_post_run(cpu, run);
1834 if (run_ret < 0) {
1835 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1836 DPRINTF("io window exit\n");
1837 ret = EXCP_INTERRUPT;
1838 break;
1840 fprintf(stderr, "error: kvm run failed %s\n",
1841 strerror(-run_ret));
1842 #ifdef TARGET_PPC
1843 if (run_ret == -EBUSY) {
1844 fprintf(stderr,
1845 "This is probably because your SMT is enabled.\n"
1846 "VCPU can only run on primary threads with all "
1847 "secondary threads offline.\n");
1849 #endif
1850 ret = -1;
1851 break;
1854 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1855 switch (run->exit_reason) {
1856 case KVM_EXIT_IO:
1857 DPRINTF("handle_io\n");
1858 kvm_handle_io(run->io.port, attrs,
1859 (uint8_t *)run + run->io.data_offset,
1860 run->io.direction,
1861 run->io.size,
1862 run->io.count);
1863 ret = 0;
1864 break;
1865 case KVM_EXIT_MMIO:
1866 DPRINTF("handle_mmio\n");
1867 address_space_rw(&address_space_memory,
1868 run->mmio.phys_addr, attrs,
1869 run->mmio.data,
1870 run->mmio.len,
1871 run->mmio.is_write);
1872 ret = 0;
1873 break;
1874 case KVM_EXIT_IRQ_WINDOW_OPEN:
1875 DPRINTF("irq_window_open\n");
1876 ret = EXCP_INTERRUPT;
1877 break;
1878 case KVM_EXIT_SHUTDOWN:
1879 DPRINTF("shutdown\n");
1880 qemu_system_reset_request();
1881 ret = EXCP_INTERRUPT;
1882 break;
1883 case KVM_EXIT_UNKNOWN:
1884 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1885 (uint64_t)run->hw.hardware_exit_reason);
1886 ret = -1;
1887 break;
1888 case KVM_EXIT_INTERNAL_ERROR:
1889 ret = kvm_handle_internal_error(cpu, run);
1890 break;
1891 case KVM_EXIT_SYSTEM_EVENT:
1892 switch (run->system_event.type) {
1893 case KVM_SYSTEM_EVENT_SHUTDOWN:
1894 qemu_system_shutdown_request();
1895 ret = EXCP_INTERRUPT;
1896 break;
1897 case KVM_SYSTEM_EVENT_RESET:
1898 qemu_system_reset_request();
1899 ret = EXCP_INTERRUPT;
1900 break;
1901 default:
1902 DPRINTF("kvm_arch_handle_exit\n");
1903 ret = kvm_arch_handle_exit(cpu, run);
1904 break;
1906 break;
1907 default:
1908 DPRINTF("kvm_arch_handle_exit\n");
1909 ret = kvm_arch_handle_exit(cpu, run);
1910 break;
1912 } while (ret == 0);
1914 if (ret < 0) {
1915 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1916 vm_stop(RUN_STATE_INTERNAL_ERROR);
1919 cpu->exit_request = 0;
1920 return ret;
1923 int kvm_ioctl(KVMState *s, int type, ...)
1925 int ret;
1926 void *arg;
1927 va_list ap;
1929 va_start(ap, type);
1930 arg = va_arg(ap, void *);
1931 va_end(ap);
1933 trace_kvm_ioctl(type, arg);
1934 ret = ioctl(s->fd, type, arg);
1935 if (ret == -1) {
1936 ret = -errno;
1938 return ret;
1941 int kvm_vm_ioctl(KVMState *s, int type, ...)
1943 int ret;
1944 void *arg;
1945 va_list ap;
1947 va_start(ap, type);
1948 arg = va_arg(ap, void *);
1949 va_end(ap);
1951 trace_kvm_vm_ioctl(type, arg);
1952 ret = ioctl(s->vmfd, type, arg);
1953 if (ret == -1) {
1954 ret = -errno;
1956 return ret;
1959 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1961 int ret;
1962 void *arg;
1963 va_list ap;
1965 va_start(ap, type);
1966 arg = va_arg(ap, void *);
1967 va_end(ap);
1969 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1970 ret = ioctl(cpu->kvm_fd, type, arg);
1971 if (ret == -1) {
1972 ret = -errno;
1974 return ret;
1977 int kvm_device_ioctl(int fd, int type, ...)
1979 int ret;
1980 void *arg;
1981 va_list ap;
1983 va_start(ap, type);
1984 arg = va_arg(ap, void *);
1985 va_end(ap);
1987 trace_kvm_device_ioctl(fd, type, arg);
1988 ret = ioctl(fd, type, arg);
1989 if (ret == -1) {
1990 ret = -errno;
1992 return ret;
1995 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1997 int ret;
1998 struct kvm_device_attr attribute = {
1999 .group = group,
2000 .attr = attr,
2003 if (!kvm_vm_attributes_allowed) {
2004 return 0;
2007 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2008 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2009 return ret ? 0 : 1;
2012 int kvm_has_sync_mmu(void)
2014 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2017 int kvm_has_vcpu_events(void)
2019 return kvm_state->vcpu_events;
2022 int kvm_has_robust_singlestep(void)
2024 return kvm_state->robust_singlestep;
2027 int kvm_has_debugregs(void)
2029 return kvm_state->debugregs;
2032 int kvm_has_xsave(void)
2034 return kvm_state->xsave;
2037 int kvm_has_xcrs(void)
2039 return kvm_state->xcrs;
2042 int kvm_has_pit_state2(void)
2044 return kvm_state->pit_state2;
2047 int kvm_has_many_ioeventfds(void)
2049 if (!kvm_enabled()) {
2050 return 0;
2052 return kvm_state->many_ioeventfds;
2055 int kvm_has_gsi_routing(void)
2057 #ifdef KVM_CAP_IRQ_ROUTING
2058 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2059 #else
2060 return false;
2061 #endif
2064 int kvm_has_intx_set_mask(void)
2066 return kvm_state->intx_set_mask;
2069 void kvm_setup_guest_memory(void *start, size_t size)
2071 if (!kvm_has_sync_mmu()) {
2072 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2074 if (ret) {
2075 perror("qemu_madvise");
2076 fprintf(stderr,
2077 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2078 exit(1);
2083 #ifdef KVM_CAP_SET_GUEST_DEBUG
2084 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2085 target_ulong pc)
2087 struct kvm_sw_breakpoint *bp;
2089 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2090 if (bp->pc == pc) {
2091 return bp;
2094 return NULL;
2097 int kvm_sw_breakpoints_active(CPUState *cpu)
2099 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2102 struct kvm_set_guest_debug_data {
2103 struct kvm_guest_debug dbg;
2104 CPUState *cpu;
2105 int err;
2108 static void kvm_invoke_set_guest_debug(void *data)
2110 struct kvm_set_guest_debug_data *dbg_data = data;
2112 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2113 &dbg_data->dbg);
2116 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2118 struct kvm_set_guest_debug_data data;
2120 data.dbg.control = reinject_trap;
2122 if (cpu->singlestep_enabled) {
2123 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2125 kvm_arch_update_guest_debug(cpu, &data.dbg);
2126 data.cpu = cpu;
2128 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2129 return data.err;
2132 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2133 target_ulong len, int type)
2135 struct kvm_sw_breakpoint *bp;
2136 int err;
2138 if (type == GDB_BREAKPOINT_SW) {
2139 bp = kvm_find_sw_breakpoint(cpu, addr);
2140 if (bp) {
2141 bp->use_count++;
2142 return 0;
2145 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2146 bp->pc = addr;
2147 bp->use_count = 1;
2148 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2149 if (err) {
2150 g_free(bp);
2151 return err;
2154 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2155 } else {
2156 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2157 if (err) {
2158 return err;
2162 CPU_FOREACH(cpu) {
2163 err = kvm_update_guest_debug(cpu, 0);
2164 if (err) {
2165 return err;
2168 return 0;
2171 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2172 target_ulong len, int type)
2174 struct kvm_sw_breakpoint *bp;
2175 int err;
2177 if (type == GDB_BREAKPOINT_SW) {
2178 bp = kvm_find_sw_breakpoint(cpu, addr);
2179 if (!bp) {
2180 return -ENOENT;
2183 if (bp->use_count > 1) {
2184 bp->use_count--;
2185 return 0;
2188 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2189 if (err) {
2190 return err;
2193 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2194 g_free(bp);
2195 } else {
2196 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2197 if (err) {
2198 return err;
2202 CPU_FOREACH(cpu) {
2203 err = kvm_update_guest_debug(cpu, 0);
2204 if (err) {
2205 return err;
2208 return 0;
2211 void kvm_remove_all_breakpoints(CPUState *cpu)
2213 struct kvm_sw_breakpoint *bp, *next;
2214 KVMState *s = cpu->kvm_state;
2215 CPUState *tmpcpu;
2217 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2218 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2219 /* Try harder to find a CPU that currently sees the breakpoint. */
2220 CPU_FOREACH(tmpcpu) {
2221 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2222 break;
2226 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2227 g_free(bp);
2229 kvm_arch_remove_all_hw_breakpoints();
2231 CPU_FOREACH(cpu) {
2232 kvm_update_guest_debug(cpu, 0);
2236 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2238 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2240 return -EINVAL;
2243 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2244 target_ulong len, int type)
2246 return -EINVAL;
2249 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2250 target_ulong len, int type)
2252 return -EINVAL;
2255 void kvm_remove_all_breakpoints(CPUState *cpu)
2258 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2260 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2262 KVMState *s = kvm_state;
2263 struct kvm_signal_mask *sigmask;
2264 int r;
2266 if (!sigset) {
2267 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2270 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2272 sigmask->len = s->sigmask_len;
2273 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2274 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2275 g_free(sigmask);
2277 return r;
2279 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2281 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2284 int kvm_on_sigbus(int code, void *addr)
2286 return kvm_arch_on_sigbus(code, addr);
2289 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2291 int ret;
2292 struct kvm_create_device create_dev;
2294 create_dev.type = type;
2295 create_dev.fd = -1;
2296 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2298 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2299 return -ENOTSUP;
2302 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2303 if (ret) {
2304 return ret;
2307 return test ? 0 : create_dev.fd;
2310 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2312 struct kvm_one_reg reg;
2313 int r;
2315 reg.id = id;
2316 reg.addr = (uintptr_t) source;
2317 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2318 if (r) {
2319 trace_kvm_failed_reg_set(id, strerror(r));
2321 return r;
2324 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2326 struct kvm_one_reg reg;
2327 int r;
2329 reg.id = id;
2330 reg.addr = (uintptr_t) target;
2331 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2332 if (r) {
2333 trace_kvm_failed_reg_get(id, strerror(r));
2335 return r;
2338 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2340 AccelClass *ac = ACCEL_CLASS(oc);
2341 ac->name = "KVM";
2342 ac->init_machine = kvm_init;
2343 ac->allowed = &kvm_allowed;
2346 static const TypeInfo kvm_accel_type = {
2347 .name = TYPE_KVM_ACCEL,
2348 .parent = TYPE_ACCEL,
2349 .class_init = kvm_accel_class_init,
2350 .instance_size = sizeof(KVMState),
2353 static void kvm_type_init(void)
2355 type_register_static(&kvm_accel_type);
2358 type_init(kvm_type_init);