target/arm/kvm: pmu: improve error handling
[qemu/ar7.git] / target / arm / kvm64.c
blob6554c30007a4e4fd611f0dbd46ca2385a4e02f91
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "exec/gdbstub.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm.h"
27 #include "kvm_arm.h"
28 #include "internals.h"
29 #include "hw/arm/arm.h"
31 static bool have_guest_debug;
34 * Although the ARM implementation of hardware assisted debugging
35 * allows for different breakpoints per-core, the current GDB
36 * interface treats them as a global pool of registers (which seems to
37 * be the case for x86, ppc and s390). As a result we store one copy
38 * of registers which is used for all active cores.
40 * Write access is serialised by virtue of the GDB protocol which
41 * updates things. Read access (i.e. when the values are copied to the
42 * vCPU) is also gated by GDB's run control.
44 * This is not unreasonable as most of the time debugging kernels you
45 * never know which core will eventually execute your function.
48 typedef struct {
49 uint64_t bcr;
50 uint64_t bvr;
51 } HWBreakpoint;
53 /* The watchpoint registers can cover more area than the requested
54 * watchpoint so we need to store the additional information
55 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
56 * when the watchpoint is hit.
58 typedef struct {
59 uint64_t wcr;
60 uint64_t wvr;
61 CPUWatchpoint details;
62 } HWWatchpoint;
64 /* Maximum and current break/watch point counts */
65 int max_hw_bps, max_hw_wps;
66 GArray *hw_breakpoints, *hw_watchpoints;
68 #define cur_hw_wps (hw_watchpoints->len)
69 #define cur_hw_bps (hw_breakpoints->len)
70 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
71 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
73 /**
74 * kvm_arm_init_debug() - check for guest debug capabilities
75 * @cs: CPUState
77 * kvm_check_extension returns the number of debug registers we have
78 * or 0 if we have none.
81 static void kvm_arm_init_debug(CPUState *cs)
83 have_guest_debug = kvm_check_extension(cs->kvm_state,
84 KVM_CAP_SET_GUEST_DEBUG);
86 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
87 hw_watchpoints = g_array_sized_new(true, true,
88 sizeof(HWWatchpoint), max_hw_wps);
90 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
91 hw_breakpoints = g_array_sized_new(true, true,
92 sizeof(HWBreakpoint), max_hw_bps);
93 return;
96 /**
97 * insert_hw_breakpoint()
98 * @addr: address of breakpoint
100 * See ARM ARM D2.9.1 for details but here we are only going to create
101 * simple un-linked breakpoints (i.e. we don't chain breakpoints
102 * together to match address and context or vmid). The hardware is
103 * capable of fancier matching but that will require exposing that
104 * fanciness to GDB's interface
106 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
108 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
109 * +------+------+-------+-----+----+------+-----+------+-----+---+
110 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
111 * +------+------+-------+-----+----+------+-----+------+-----+---+
113 * BT: Breakpoint type (0 = unlinked address match)
114 * LBN: Linked BP number (0 = unused)
115 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
116 * BAS: Byte Address Select (RES1 for AArch64)
117 * E: Enable bit
119 static int insert_hw_breakpoint(target_ulong addr)
121 HWBreakpoint brk = {
122 .bcr = 0x1, /* BCR E=1, enable */
123 .bvr = addr
126 if (cur_hw_bps >= max_hw_bps) {
127 return -ENOBUFS;
130 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
131 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
133 g_array_append_val(hw_breakpoints, brk);
135 return 0;
139 * delete_hw_breakpoint()
140 * @pc: address of breakpoint
142 * Delete a breakpoint and shuffle any above down
145 static int delete_hw_breakpoint(target_ulong pc)
147 int i;
148 for (i = 0; i < hw_breakpoints->len; i++) {
149 HWBreakpoint *brk = get_hw_bp(i);
150 if (brk->bvr == pc) {
151 g_array_remove_index(hw_breakpoints, i);
152 return 0;
155 return -ENOENT;
159 * insert_hw_watchpoint()
160 * @addr: address of watch point
161 * @len: size of area
162 * @type: type of watch point
164 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
165 * stuff if we want to. The watch points can be linked with the break
166 * points above to make them context aware. However for simplicity
167 * currently we only deal with simple read/write watch points.
169 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
171 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
172 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
173 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
174 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
176 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
177 * WT: 0 - unlinked, 1 - linked (not currently used)
178 * LBN: Linked BP number (not currently used)
179 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
180 * BAS: Byte Address Select
181 * LSC: Load/Store control (01: load, 10: store, 11: both)
182 * E: Enable
184 * The bottom 2 bits of the value register are masked. Therefore to
185 * break on any sizes smaller than an unaligned word you need to set
186 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
187 * need to ensure you mask the address as required and set BAS=0xff
190 static int insert_hw_watchpoint(target_ulong addr,
191 target_ulong len, int type)
193 HWWatchpoint wp = {
194 .wcr = 1, /* E=1, enable */
195 .wvr = addr & (~0x7ULL),
196 .details = { .vaddr = addr, .len = len }
199 if (cur_hw_wps >= max_hw_wps) {
200 return -ENOBUFS;
204 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
205 * valid whether EL3 is implemented or not
207 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
209 switch (type) {
210 case GDB_WATCHPOINT_READ:
211 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
212 wp.details.flags = BP_MEM_READ;
213 break;
214 case GDB_WATCHPOINT_WRITE:
215 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
216 wp.details.flags = BP_MEM_WRITE;
217 break;
218 case GDB_WATCHPOINT_ACCESS:
219 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
220 wp.details.flags = BP_MEM_ACCESS;
221 break;
222 default:
223 g_assert_not_reached();
224 break;
226 if (len <= 8) {
227 /* we align the address and set the bits in BAS */
228 int off = addr & 0x7;
229 int bas = (1 << len) - 1;
231 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
232 } else {
233 /* For ranges above 8 bytes we need to be a power of 2 */
234 if (is_power_of_2(len)) {
235 int bits = ctz64(len);
237 wp.wvr &= ~((1 << bits) - 1);
238 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
239 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
240 } else {
241 return -ENOBUFS;
245 g_array_append_val(hw_watchpoints, wp);
246 return 0;
250 static bool check_watchpoint_in_range(int i, target_ulong addr)
252 HWWatchpoint *wp = get_hw_wp(i);
253 uint64_t addr_top, addr_bottom = wp->wvr;
254 int bas = extract32(wp->wcr, 5, 8);
255 int mask = extract32(wp->wcr, 24, 4);
257 if (mask) {
258 addr_top = addr_bottom + (1 << mask);
259 } else {
260 /* BAS must be contiguous but can offset against the base
261 * address in DBGWVR */
262 addr_bottom = addr_bottom + ctz32(bas);
263 addr_top = addr_bottom + clo32(bas);
266 if (addr >= addr_bottom && addr <= addr_top) {
267 return true;
270 return false;
274 * delete_hw_watchpoint()
275 * @addr: address of breakpoint
277 * Delete a breakpoint and shuffle any above down
280 static int delete_hw_watchpoint(target_ulong addr,
281 target_ulong len, int type)
283 int i;
284 for (i = 0; i < cur_hw_wps; i++) {
285 if (check_watchpoint_in_range(i, addr)) {
286 g_array_remove_index(hw_watchpoints, i);
287 return 0;
290 return -ENOENT;
294 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
295 target_ulong len, int type)
297 switch (type) {
298 case GDB_BREAKPOINT_HW:
299 return insert_hw_breakpoint(addr);
300 break;
301 case GDB_WATCHPOINT_READ:
302 case GDB_WATCHPOINT_WRITE:
303 case GDB_WATCHPOINT_ACCESS:
304 return insert_hw_watchpoint(addr, len, type);
305 default:
306 return -ENOSYS;
310 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
311 target_ulong len, int type)
313 switch (type) {
314 case GDB_BREAKPOINT_HW:
315 return delete_hw_breakpoint(addr);
316 break;
317 case GDB_WATCHPOINT_READ:
318 case GDB_WATCHPOINT_WRITE:
319 case GDB_WATCHPOINT_ACCESS:
320 return delete_hw_watchpoint(addr, len, type);
321 default:
322 return -ENOSYS;
327 void kvm_arch_remove_all_hw_breakpoints(void)
329 if (cur_hw_wps > 0) {
330 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
332 if (cur_hw_bps > 0) {
333 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
337 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
339 int i;
340 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
342 for (i = 0; i < max_hw_wps; i++) {
343 HWWatchpoint *wp = get_hw_wp(i);
344 ptr->dbg_wcr[i] = wp->wcr;
345 ptr->dbg_wvr[i] = wp->wvr;
347 for (i = 0; i < max_hw_bps; i++) {
348 HWBreakpoint *bp = get_hw_bp(i);
349 ptr->dbg_bcr[i] = bp->bcr;
350 ptr->dbg_bvr[i] = bp->bvr;
354 bool kvm_arm_hw_debug_active(CPUState *cs)
356 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
359 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
361 int i;
363 for (i = 0; i < cur_hw_bps; i++) {
364 HWBreakpoint *bp = get_hw_bp(i);
365 if (bp->bvr == pc) {
366 return true;
369 return false;
372 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
374 int i;
376 for (i = 0; i < cur_hw_wps; i++) {
377 if (check_watchpoint_in_range(i, addr)) {
378 return &get_hw_wp(i)->details;
381 return NULL;
384 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
386 int err;
388 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
389 if (err != 0) {
390 error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
391 return false;
394 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
395 if (err != 0) {
396 error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
397 return false;
400 return true;
403 void kvm_arm_pmu_init(CPUState *cs)
405 struct kvm_device_attr attr = {
406 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
407 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
410 if (!ARM_CPU(cs)->has_pmu) {
411 return;
413 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
414 error_report("failed to init PMU");
415 abort();
419 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
421 struct kvm_device_attr attr = {
422 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
423 .addr = (intptr_t)&irq,
424 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
427 if (!ARM_CPU(cs)->has_pmu) {
428 return;
430 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
431 error_report("failed to set irq for PMU");
432 abort();
436 static inline void set_feature(uint64_t *features, int feature)
438 *features |= 1ULL << feature;
441 static inline void unset_feature(uint64_t *features, int feature)
443 *features &= ~(1ULL << feature);
446 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
448 /* Identify the feature bits corresponding to the host CPU, and
449 * fill out the ARMHostCPUClass fields accordingly. To do this
450 * we have to create a scratch VM, create a single CPU inside it,
451 * and then query that CPU for the relevant ID registers.
452 * For AArch64 we currently don't care about ID registers at
453 * all; we just want to know the CPU type.
455 int fdarray[3];
456 uint64_t features = 0;
457 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
458 * we know these will only support creating one kind of guest CPU,
459 * which is its preferred CPU type. Fortunately these old kernels
460 * support only a very limited number of CPUs.
462 static const uint32_t cpus_to_try[] = {
463 KVM_ARM_TARGET_AEM_V8,
464 KVM_ARM_TARGET_FOUNDATION_V8,
465 KVM_ARM_TARGET_CORTEX_A57,
466 QEMU_KVM_ARM_TARGET_NONE
468 struct kvm_vcpu_init init;
470 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
471 return false;
474 ahcc->target = init.target;
475 ahcc->dtb_compatible = "arm,arm-v8";
477 kvm_arm_destroy_scratch_host_vcpu(fdarray);
479 /* We can assume any KVM supporting CPU is at least a v8
480 * with VFPv4+Neon; this in turn implies most of the other
481 * feature bits.
483 set_feature(&features, ARM_FEATURE_V8);
484 set_feature(&features, ARM_FEATURE_VFP4);
485 set_feature(&features, ARM_FEATURE_NEON);
486 set_feature(&features, ARM_FEATURE_AARCH64);
487 set_feature(&features, ARM_FEATURE_PMU);
489 ahcc->features = features;
491 return true;
494 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
496 int kvm_arch_init_vcpu(CPUState *cs)
498 int ret;
499 uint64_t mpidr;
500 ARMCPU *cpu = ARM_CPU(cs);
501 CPUARMState *env = &cpu->env;
503 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
504 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
505 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
506 return -EINVAL;
509 /* Determine init features for this CPU */
510 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
511 if (cpu->start_powered_off) {
512 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
514 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
515 cpu->psci_version = 2;
516 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
518 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
519 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
521 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
522 cpu->has_pmu = false;
524 if (cpu->has_pmu) {
525 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
526 } else {
527 unset_feature(&env->features, ARM_FEATURE_PMU);
530 /* Do KVM_ARM_VCPU_INIT ioctl */
531 ret = kvm_arm_vcpu_init(cs);
532 if (ret) {
533 return ret;
537 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
538 * Currently KVM has its own idea about MPIDR assignment, so we
539 * override our defaults with what we get from KVM.
541 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
542 if (ret) {
543 return ret;
545 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
547 kvm_arm_init_debug(cs);
549 return kvm_arm_init_cpreg_list(cpu);
552 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
554 /* Return true if the regidx is a register we should synchronize
555 * via the cpreg_tuples array (ie is not a core reg we sync by
556 * hand in kvm_arch_get/put_registers())
558 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
559 case KVM_REG_ARM_CORE:
560 return false;
561 default:
562 return true;
566 typedef struct CPRegStateLevel {
567 uint64_t regidx;
568 int level;
569 } CPRegStateLevel;
571 /* All system registers not listed in the following table are assumed to be
572 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
573 * often, you must add it to this table with a state of either
574 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
576 static const CPRegStateLevel non_runtime_cpregs[] = {
577 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
580 int kvm_arm_cpreg_level(uint64_t regidx)
582 int i;
584 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
585 const CPRegStateLevel *l = &non_runtime_cpregs[i];
586 if (l->regidx == regidx) {
587 return l->level;
591 return KVM_PUT_RUNTIME_STATE;
594 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
595 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
597 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
598 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
600 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
601 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
603 int kvm_arch_put_registers(CPUState *cs, int level)
605 struct kvm_one_reg reg;
606 uint32_t fpr;
607 uint64_t val;
608 int i;
609 int ret;
610 unsigned int el;
612 ARMCPU *cpu = ARM_CPU(cs);
613 CPUARMState *env = &cpu->env;
615 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
616 * AArch64 registers before pushing them out to 64-bit KVM.
618 if (!is_a64(env)) {
619 aarch64_sync_32_to_64(env);
622 for (i = 0; i < 31; i++) {
623 reg.id = AARCH64_CORE_REG(regs.regs[i]);
624 reg.addr = (uintptr_t) &env->xregs[i];
625 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
626 if (ret) {
627 return ret;
631 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
632 * QEMU side we keep the current SP in xregs[31] as well.
634 aarch64_save_sp(env, 1);
636 reg.id = AARCH64_CORE_REG(regs.sp);
637 reg.addr = (uintptr_t) &env->sp_el[0];
638 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639 if (ret) {
640 return ret;
643 reg.id = AARCH64_CORE_REG(sp_el1);
644 reg.addr = (uintptr_t) &env->sp_el[1];
645 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
646 if (ret) {
647 return ret;
650 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
651 if (is_a64(env)) {
652 val = pstate_read(env);
653 } else {
654 val = cpsr_read(env);
656 reg.id = AARCH64_CORE_REG(regs.pstate);
657 reg.addr = (uintptr_t) &val;
658 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
659 if (ret) {
660 return ret;
663 reg.id = AARCH64_CORE_REG(regs.pc);
664 reg.addr = (uintptr_t) &env->pc;
665 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
666 if (ret) {
667 return ret;
670 reg.id = AARCH64_CORE_REG(elr_el1);
671 reg.addr = (uintptr_t) &env->elr_el[1];
672 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
673 if (ret) {
674 return ret;
677 /* Saved Program State Registers
679 * Before we restore from the banked_spsr[] array we need to
680 * ensure that any modifications to env->spsr are correctly
681 * reflected in the banks.
683 el = arm_current_el(env);
684 if (el > 0 && !is_a64(env)) {
685 i = bank_number(env->uncached_cpsr & CPSR_M);
686 env->banked_spsr[i] = env->spsr;
689 /* KVM 0-4 map to QEMU banks 1-5 */
690 for (i = 0; i < KVM_NR_SPSR; i++) {
691 reg.id = AARCH64_CORE_REG(spsr[i]);
692 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
693 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
694 if (ret) {
695 return ret;
699 /* Advanced SIMD and FP registers
700 * We map Qn = regs[2n+1]:regs[2n]
702 for (i = 0; i < 32; i++) {
703 int rd = i << 1;
704 uint64_t fp_val[2];
705 #ifdef HOST_WORDS_BIGENDIAN
706 fp_val[0] = env->vfp.regs[rd + 1];
707 fp_val[1] = env->vfp.regs[rd];
708 #else
709 fp_val[1] = env->vfp.regs[rd + 1];
710 fp_val[0] = env->vfp.regs[rd];
711 #endif
712 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
713 reg.addr = (uintptr_t)(&fp_val);
714 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
715 if (ret) {
716 return ret;
720 reg.addr = (uintptr_t)(&fpr);
721 fpr = vfp_get_fpsr(env);
722 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
723 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
724 if (ret) {
725 return ret;
728 fpr = vfp_get_fpcr(env);
729 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
730 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
731 if (ret) {
732 return ret;
735 if (!write_list_to_kvmstate(cpu, level)) {
736 return EINVAL;
739 kvm_arm_sync_mpstate_to_kvm(cpu);
741 return ret;
744 int kvm_arch_get_registers(CPUState *cs)
746 struct kvm_one_reg reg;
747 uint64_t val;
748 uint32_t fpr;
749 unsigned int el;
750 int i;
751 int ret;
753 ARMCPU *cpu = ARM_CPU(cs);
754 CPUARMState *env = &cpu->env;
756 for (i = 0; i < 31; i++) {
757 reg.id = AARCH64_CORE_REG(regs.regs[i]);
758 reg.addr = (uintptr_t) &env->xregs[i];
759 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
760 if (ret) {
761 return ret;
765 reg.id = AARCH64_CORE_REG(regs.sp);
766 reg.addr = (uintptr_t) &env->sp_el[0];
767 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
768 if (ret) {
769 return ret;
772 reg.id = AARCH64_CORE_REG(sp_el1);
773 reg.addr = (uintptr_t) &env->sp_el[1];
774 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
775 if (ret) {
776 return ret;
779 reg.id = AARCH64_CORE_REG(regs.pstate);
780 reg.addr = (uintptr_t) &val;
781 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
782 if (ret) {
783 return ret;
786 env->aarch64 = ((val & PSTATE_nRW) == 0);
787 if (is_a64(env)) {
788 pstate_write(env, val);
789 } else {
790 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
793 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
794 * QEMU side we keep the current SP in xregs[31] as well.
796 aarch64_restore_sp(env, 1);
798 reg.id = AARCH64_CORE_REG(regs.pc);
799 reg.addr = (uintptr_t) &env->pc;
800 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
801 if (ret) {
802 return ret;
805 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
806 * incoming AArch64 regs received from 64-bit KVM.
807 * We must perform this after all of the registers have been acquired from
808 * the kernel.
810 if (!is_a64(env)) {
811 aarch64_sync_64_to_32(env);
814 reg.id = AARCH64_CORE_REG(elr_el1);
815 reg.addr = (uintptr_t) &env->elr_el[1];
816 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
817 if (ret) {
818 return ret;
821 /* Fetch the SPSR registers
823 * KVM SPSRs 0-4 map to QEMU banks 1-5
825 for (i = 0; i < KVM_NR_SPSR; i++) {
826 reg.id = AARCH64_CORE_REG(spsr[i]);
827 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
828 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
829 if (ret) {
830 return ret;
834 el = arm_current_el(env);
835 if (el > 0 && !is_a64(env)) {
836 i = bank_number(env->uncached_cpsr & CPSR_M);
837 env->spsr = env->banked_spsr[i];
840 /* Advanced SIMD and FP registers
841 * We map Qn = regs[2n+1]:regs[2n]
843 for (i = 0; i < 32; i++) {
844 uint64_t fp_val[2];
845 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
846 reg.addr = (uintptr_t)(&fp_val);
847 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
848 if (ret) {
849 return ret;
850 } else {
851 int rd = i << 1;
852 #ifdef HOST_WORDS_BIGENDIAN
853 env->vfp.regs[rd + 1] = fp_val[0];
854 env->vfp.regs[rd] = fp_val[1];
855 #else
856 env->vfp.regs[rd + 1] = fp_val[1];
857 env->vfp.regs[rd] = fp_val[0];
858 #endif
862 reg.addr = (uintptr_t)(&fpr);
863 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
864 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
865 if (ret) {
866 return ret;
868 vfp_set_fpsr(env, fpr);
870 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
871 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
872 if (ret) {
873 return ret;
875 vfp_set_fpcr(env, fpr);
877 if (!write_kvmstate_to_list(cpu)) {
878 return EINVAL;
880 /* Note that it's OK to have registers which aren't in CPUState,
881 * so we can ignore a failure return here.
883 write_list_to_cpustate(cpu);
885 kvm_arm_sync_mpstate_to_qemu(cpu);
887 /* TODO: other registers */
888 return ret;
891 /* C6.6.29 BRK instruction */
892 static const uint32_t brk_insn = 0xd4200000;
894 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
896 if (have_guest_debug) {
897 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
898 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
899 return -EINVAL;
901 return 0;
902 } else {
903 error_report("guest debug not supported on this kernel");
904 return -EINVAL;
908 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
910 static uint32_t brk;
912 if (have_guest_debug) {
913 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
914 brk != brk_insn ||
915 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
916 return -EINVAL;
918 return 0;
919 } else {
920 error_report("guest debug not supported on this kernel");
921 return -EINVAL;
925 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
927 * To minimise translating between kernel and user-space the kernel
928 * ABI just provides user-space with the full exception syndrome
929 * register value to be decoded in QEMU.
932 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
934 int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
935 ARMCPU *cpu = ARM_CPU(cs);
936 CPUClass *cc = CPU_GET_CLASS(cs);
937 CPUARMState *env = &cpu->env;
939 /* Ensure PC is synchronised */
940 kvm_cpu_synchronize_state(cs);
942 switch (hsr_ec) {
943 case EC_SOFTWARESTEP:
944 if (cs->singlestep_enabled) {
945 return true;
946 } else {
948 * The kernel should have suppressed the guest's ability to
949 * single step at this point so something has gone wrong.
951 error_report("%s: guest single-step while debugging unsupported"
952 " (%"PRIx64", %"PRIx32")",
953 __func__, env->pc, debug_exit->hsr);
954 return false;
956 break;
957 case EC_AA64_BKPT:
958 if (kvm_find_sw_breakpoint(cs, env->pc)) {
959 return true;
961 break;
962 case EC_BREAKPOINT:
963 if (find_hw_breakpoint(cs, env->pc)) {
964 return true;
966 break;
967 case EC_WATCHPOINT:
969 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
970 if (wp) {
971 cs->watchpoint_hit = wp;
972 return true;
974 break;
976 default:
977 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
978 __func__, debug_exit->hsr, env->pc);
981 /* If we are not handling the debug exception it must belong to
982 * the guest. Let's re-use the existing TCG interrupt code to set
983 * everything up properly.
985 cs->exception_index = EXCP_BKPT;
986 env->exception.syndrome = debug_exit->hsr;
987 env->exception.vaddress = debug_exit->far;
988 cc->do_interrupt(cs);
990 return false;