target/arm/kvm: pmu: improve error handling
[qemu/ar7.git] / target / arm / internals.h
blobbb0694660795acd3890f1b1a7a074e5741d441ac
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
40 static inline bool excp_is_internal(int excp)
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
57 #define GTIMER_SCALE 16
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 * For AArch64, map a given EL to an index in the banked_spsr array.
66 * Note that this mapping and the AArch32 mapping defined in bank_number()
67 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
68 * mandated mapping between each other.
70 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
72 static const unsigned int map[4] = {
73 [1] = BANK_SVC, /* EL1. */
74 [2] = BANK_HYP, /* EL2. */
75 [3] = BANK_MON, /* EL3. */
77 assert(el >= 1 && el <= 3);
78 return map[el];
81 /* Map CPU modes onto saved register banks. */
82 static inline int bank_number(int mode)
84 switch (mode) {
85 case ARM_CPU_MODE_USR:
86 case ARM_CPU_MODE_SYS:
87 return BANK_USRSYS;
88 case ARM_CPU_MODE_SVC:
89 return BANK_SVC;
90 case ARM_CPU_MODE_ABT:
91 return BANK_ABT;
92 case ARM_CPU_MODE_UND:
93 return BANK_UND;
94 case ARM_CPU_MODE_IRQ:
95 return BANK_IRQ;
96 case ARM_CPU_MODE_FIQ:
97 return BANK_FIQ;
98 case ARM_CPU_MODE_HYP:
99 return BANK_HYP;
100 case ARM_CPU_MODE_MON:
101 return BANK_MON;
103 g_assert_not_reached();
106 void switch_mode(CPUARMState *, int);
107 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
108 void arm_translate_init(void);
110 enum arm_fprounding {
111 FPROUNDING_TIEEVEN,
112 FPROUNDING_POSINF,
113 FPROUNDING_NEGINF,
114 FPROUNDING_ZERO,
115 FPROUNDING_TIEAWAY,
116 FPROUNDING_ODD
119 int arm_rmode_to_sf(int rmode);
121 static inline void aarch64_save_sp(CPUARMState *env, int el)
123 if (env->pstate & PSTATE_SP) {
124 env->sp_el[el] = env->xregs[31];
125 } else {
126 env->sp_el[0] = env->xregs[31];
130 static inline void aarch64_restore_sp(CPUARMState *env, int el)
132 if (env->pstate & PSTATE_SP) {
133 env->xregs[31] = env->sp_el[el];
134 } else {
135 env->xregs[31] = env->sp_el[0];
139 static inline void update_spsel(CPUARMState *env, uint32_t imm)
141 unsigned int cur_el = arm_current_el(env);
142 /* Update PSTATE SPSel bit; this requires us to update the
143 * working stack pointer in xregs[31].
145 if (!((imm ^ env->pstate) & PSTATE_SP)) {
146 return;
148 aarch64_save_sp(env, cur_el);
149 env->pstate = deposit32(env->pstate, 0, 1, imm);
151 /* We rely on illegal updates to SPsel from EL0 to get trapped
152 * at translation time.
154 assert(cur_el >= 1 && cur_el <= 3);
155 aarch64_restore_sp(env, cur_el);
159 * arm_pamax
160 * @cpu: ARMCPU
162 * Returns the implementation defined bit-width of physical addresses.
163 * The ARMv8 reference manuals refer to this as PAMax().
165 static inline unsigned int arm_pamax(ARMCPU *cpu)
167 static const unsigned int pamax_map[] = {
168 [0] = 32,
169 [1] = 36,
170 [2] = 40,
171 [3] = 42,
172 [4] = 44,
173 [5] = 48,
175 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
177 /* id_aa64mmfr0 is a read-only register so values outside of the
178 * supported mappings can be considered an implementation error. */
179 assert(parange < ARRAY_SIZE(pamax_map));
180 return pamax_map[parange];
183 /* Return true if extended addresses are enabled.
184 * This is always the case if our translation regime is 64 bit,
185 * but depends on TTBCR.EAE for 32 bit.
187 static inline bool extended_addresses_enabled(CPUARMState *env)
189 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
190 return arm_el_is_aa64(env, 1) ||
191 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
194 /* Valid Syndrome Register EC field values */
195 enum arm_exception_class {
196 EC_UNCATEGORIZED = 0x00,
197 EC_WFX_TRAP = 0x01,
198 EC_CP15RTTRAP = 0x03,
199 EC_CP15RRTTRAP = 0x04,
200 EC_CP14RTTRAP = 0x05,
201 EC_CP14DTTRAP = 0x06,
202 EC_ADVSIMDFPACCESSTRAP = 0x07,
203 EC_FPIDTRAP = 0x08,
204 EC_CP14RRTTRAP = 0x0c,
205 EC_ILLEGALSTATE = 0x0e,
206 EC_AA32_SVC = 0x11,
207 EC_AA32_HVC = 0x12,
208 EC_AA32_SMC = 0x13,
209 EC_AA64_SVC = 0x15,
210 EC_AA64_HVC = 0x16,
211 EC_AA64_SMC = 0x17,
212 EC_SYSTEMREGISTERTRAP = 0x18,
213 EC_INSNABORT = 0x20,
214 EC_INSNABORT_SAME_EL = 0x21,
215 EC_PCALIGNMENT = 0x22,
216 EC_DATAABORT = 0x24,
217 EC_DATAABORT_SAME_EL = 0x25,
218 EC_SPALIGNMENT = 0x26,
219 EC_AA32_FPTRAP = 0x28,
220 EC_AA64_FPTRAP = 0x2c,
221 EC_SERROR = 0x2f,
222 EC_BREAKPOINT = 0x30,
223 EC_BREAKPOINT_SAME_EL = 0x31,
224 EC_SOFTWARESTEP = 0x32,
225 EC_SOFTWARESTEP_SAME_EL = 0x33,
226 EC_WATCHPOINT = 0x34,
227 EC_WATCHPOINT_SAME_EL = 0x35,
228 EC_AA32_BKPT = 0x38,
229 EC_VECTORCATCH = 0x3a,
230 EC_AA64_BKPT = 0x3c,
233 #define ARM_EL_EC_SHIFT 26
234 #define ARM_EL_IL_SHIFT 25
235 #define ARM_EL_ISV_SHIFT 24
236 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
237 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
239 /* Utility functions for constructing various kinds of syndrome value.
240 * Note that in general we follow the AArch64 syndrome values; in a
241 * few cases the value in HSR for exceptions taken to AArch32 Hyp
242 * mode differs slightly, so if we ever implemented Hyp mode then the
243 * syndrome value would need some massaging on exception entry.
244 * (One example of this is that AArch64 defaults to IL bit set for
245 * exceptions which don't specifically indicate information about the
246 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
248 static inline uint32_t syn_uncategorized(void)
250 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
253 static inline uint32_t syn_aa64_svc(uint32_t imm16)
255 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
258 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
260 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
263 static inline uint32_t syn_aa64_smc(uint32_t imm16)
265 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
268 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
270 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
271 | (is_16bit ? 0 : ARM_EL_IL);
274 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
276 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
279 static inline uint32_t syn_aa32_smc(void)
281 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
284 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
286 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
289 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
291 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
292 | (is_16bit ? 0 : ARM_EL_IL);
295 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
296 int crn, int crm, int rt,
297 int isread)
299 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
300 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
301 | (crm << 1) | isread;
304 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
305 int crn, int crm, int rt, int isread,
306 bool is_16bit)
308 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
309 | (is_16bit ? 0 : ARM_EL_IL)
310 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
311 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
314 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
315 int crn, int crm, int rt, int isread,
316 bool is_16bit)
318 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
319 | (is_16bit ? 0 : ARM_EL_IL)
320 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
321 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
324 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
325 int rt, int rt2, int isread,
326 bool is_16bit)
328 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
329 | (is_16bit ? 0 : ARM_EL_IL)
330 | (cv << 24) | (cond << 20) | (opc1 << 16)
331 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
334 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
335 int rt, int rt2, int isread,
336 bool is_16bit)
338 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
339 | (is_16bit ? 0 : ARM_EL_IL)
340 | (cv << 24) | (cond << 20) | (opc1 << 16)
341 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
344 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
346 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
347 | (is_16bit ? 0 : ARM_EL_IL)
348 | (cv << 24) | (cond << 20);
351 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
353 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
354 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
357 static inline uint32_t syn_data_abort_no_iss(int same_el,
358 int ea, int cm, int s1ptw,
359 int wnr, int fsc)
361 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
362 | ARM_EL_IL
363 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
366 static inline uint32_t syn_data_abort_with_iss(int same_el,
367 int sas, int sse, int srt,
368 int sf, int ar,
369 int ea, int cm, int s1ptw,
370 int wnr, int fsc,
371 bool is_16bit)
373 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
374 | (is_16bit ? 0 : ARM_EL_IL)
375 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
376 | (sf << 15) | (ar << 14)
377 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
380 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
382 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
383 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
386 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
388 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
389 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
392 static inline uint32_t syn_breakpoint(int same_el)
394 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
395 | ARM_EL_IL | 0x22;
398 static inline uint32_t syn_wfx(int cv, int cond, int ti)
400 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
401 (cv << 24) | (cond << 20) | ti;
404 /* Update a QEMU watchpoint based on the information the guest has set in the
405 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
407 void hw_watchpoint_update(ARMCPU *cpu, int n);
408 /* Update the QEMU watchpoints for every guest watchpoint. This does a
409 * complete delete-and-reinstate of the QEMU watchpoint list and so is
410 * suitable for use after migration or on reset.
412 void hw_watchpoint_update_all(ARMCPU *cpu);
413 /* Update a QEMU breakpoint based on the information the guest has set in the
414 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
416 void hw_breakpoint_update(ARMCPU *cpu, int n);
417 /* Update the QEMU breakpoints for every guest breakpoint. This does a
418 * complete delete-and-reinstate of the QEMU breakpoint list and so is
419 * suitable for use after migration or on reset.
421 void hw_breakpoint_update_all(ARMCPU *cpu);
423 /* Callback function for checking if a watchpoint should trigger. */
424 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
426 /* Adjust addresses (in BE32 mode) before testing against watchpoint
427 * addresses.
429 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
431 /* Callback function for when a watchpoint or breakpoint triggers. */
432 void arm_debug_excp_handler(CPUState *cs);
434 #ifdef CONFIG_USER_ONLY
435 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
437 return false;
439 #else
440 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
441 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
442 /* Actually handle a PSCI call */
443 void arm_handle_psci_call(ARMCPU *cpu);
444 #endif
447 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
448 * @s2addr: Address that caused a fault at stage 2
449 * @stage2: True if we faulted at stage 2
450 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
452 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
453 struct ARMMMUFaultInfo {
454 target_ulong s2addr;
455 bool stage2;
456 bool s1ptw;
459 /* Do a page table walk and add page to TLB if possible */
460 bool arm_tlb_fill(CPUState *cpu, vaddr address,
461 MMUAccessType access_type, int mmu_idx,
462 uint32_t *fsr, ARMMMUFaultInfo *fi);
464 /* Return true if the stage 1 translation regime is using LPAE format page
465 * tables */
466 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
468 /* Raise a data fault alignment exception for the specified virtual address */
469 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
470 MMUAccessType access_type,
471 int mmu_idx, uintptr_t retaddr);
473 /* Call the EL change hook if one has been registered */
474 static inline void arm_call_el_change_hook(ARMCPU *cpu)
476 if (cpu->el_change_hook) {
477 cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
481 #endif