arm: Fix APSR writes via M profile MSR
[qemu/ar7.git] / target / arm / helper.c
blob8cb7a9451c22b7ac970da4c0c1e30780e87da88f
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
42 int nregs;
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
64 return 0;
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
69 int nregs;
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
89 return 0;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
157 return (char *)env + ri->fieldoffset;
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
211 return true;
214 bool write_cpustate_to_list(ARMCPU *cpu)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
234 return ok;
237 bool write_list_to_cpustate(ARMCPU *cpu)
239 int i;
240 bool ok = true;
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
264 return ok;
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
283 static void count_cpreg(gpointer key, gpointer opaque)
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
302 if (aidx > bidx) {
303 return 1;
305 if (aidx < bidx) {
306 return -1;
308 return 0;
311 void init_cpreg_list(ARMCPU *cpu)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
316 GList *keys;
317 int arraylen;
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
322 cpu->cpreg_array_len = 0;
324 g_list_foreach(keys, count_cpreg, cpu);
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
336 assert(cpu->cpreg_array_len == arraylen);
338 g_list_free(keys);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
352 bool secure = arm_is_secure_below_el3(env);
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
358 return CP_ACCESS_OK;
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
368 return CP_ACCESS_OK;
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
396 int el = arm_current_el(env);
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
405 return CP_ACCESS_OK;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
414 int el = arm_current_el(env);
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
423 return CP_ACCESS_OK;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
432 int el = arm_current_el(env);
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
441 return CP_ACCESS_OK;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
450 int el = arm_current_el(env);
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
464 ARMCPU *cpu = arm_env_get_cpu(env);
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
472 ARMCPU *cpu = arm_env_get_cpu(env);
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
478 tlb_flush(CPU(cpu));
479 raw_write(env, ri, value);
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
486 ARMCPU *cpu = arm_env_get_cpu(env);
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
494 tlb_flush(CPU(cpu));
496 raw_write(env, ri, value);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
505 tlb_flush(CPU(cpu));
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
523 tlb_flush(CPU(cpu));
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 CPUState *cs = ENV_GET_CPU(env);
541 tlb_flush_all_cpus_synced(cs);
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 CPUState *cs = ENV_GET_CPU(env);
549 tlb_flush_all_cpus_synced(cs);
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
555 CPUState *cs = ENV_GET_CPU(env);
557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
563 CPUState *cs = ENV_GET_CPU(env);
565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
571 CPUState *cs = ENV_GET_CPU(env);
573 tlb_flush_by_mmuidx(cs,
574 (1 << ARMMMUIdx_S12NSE1) |
575 (1 << ARMMMUIdx_S12NSE0) |
576 (1 << ARMMMUIdx_S2NS));
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
582 CPUState *cs = ENV_GET_CPU(env);
584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
585 (1 << ARMMMUIdx_S12NSE1) |
586 (1 << ARMMMUIdx_S12NSE0) |
587 (1 << ARMMMUIdx_S2NS));
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
606 pageaddr = sextract64(value << 12, 0, 40);
608 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
614 CPUState *cs = ENV_GET_CPU(env);
615 uint64_t pageaddr;
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
621 pageaddr = sextract64(value << 12, 0, 40);
623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624 (1 << ARMMMUIdx_S2NS));
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
630 CPUState *cs = ENV_GET_CPU(env);
632 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
649 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659 (1 << ARMMMUIdx_S1E2));
662 static const ARMCPRegInfo cp_reginfo[] = {
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694 REGINFO_SENTINEL
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
701 /* MMU Domain access control / MPU write buffer control */
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723 REGINFO_SENTINEL
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754 .resetvalue = 0 },
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767 .type = ARM_CP_NO_RAW },
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770 .type = ARM_CP_NO_RAW },
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773 .type = ARM_CP_NO_RAW },
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776 .type = ARM_CP_NO_RAW },
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781 REGINFO_SENTINEL
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
787 uint32_t mask = 0;
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
813 value &= mask;
815 env->cp15.cpacr_el1 = value;
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
833 return CP_ACCESS_OK;
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
844 return CP_ACCESS_OK;
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861 .access = PL0_W, .type = ARM_CP_NOP },
862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863 .access = PL1_RW,
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetvalue = 0, .writefn = cpacr_write },
876 REGINFO_SENTINEL
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
882 /* Performance monitor registers user accessibility is controlled
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
886 int el = arm_current_el(env);
888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889 return CP_ACCESS_TRAP;
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
899 return CP_ACCESS_OK;
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
914 return pmreg_access(env, ri, isread);
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
929 return pmreg_access(env, ri, isread);
932 #ifndef CONFIG_USER_ONLY
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
936 bool isread)
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942 return CP_ACCESS_OK;
945 return pmreg_access(env, ri, isread);
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
950 bool isread)
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956 && isread) {
957 return CP_ACCESS_OK;
960 return pmreg_access(env, ri, isread);
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
965 /* This does not support checking PMCCFILTR_EL0 register */
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
968 return false;
971 return true;
974 void pmccntr_sync(CPUARMState *env)
976 uint64_t temp_ticks;
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
983 temp_ticks /= 64;
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992 uint64_t value)
994 pmccntr_sync(env);
996 if (value & PMCRC) {
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
1005 pmccntr_sync(env);
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1010 uint64_t total_ticks;
1012 if (!arm_ccnt_enabled(env)) {
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1022 total_ticks /= 64;
1024 return total_ticks - env->cp15.c15_ccnt;
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033 * accessed.
1035 env->cp15.c9_pmselr = value & 0x1f;
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1041 uint64_t total_ticks;
1043 if (!arm_ccnt_enabled(env)) {
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1046 return;
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1054 total_ticks /= 64;
1056 env->cp15.c15_ccnt = total_ticks - value;
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060 uint64_t value)
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1067 #else /* CONFIG_USER_ONLY */
1069 void pmccntr_sync(CPUARMState *env)
1073 #endif
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076 uint64_t value)
1078 pmccntr_sync(env);
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080 pmccntr_sync(env);
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084 uint64_t value)
1086 value &= (1 << 31);
1087 env->cp15.c9_pmcnten |= value;
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
1093 value &= (1 << 31);
1094 env->cp15.c9_pmcnten &= ~value;
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
1100 env->cp15.c9_pmovsr &= ~value;
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1122 } else {
1123 return 0;
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128 uint64_t value)
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1132 } else {
1133 env->cp15.c9_pmuserenr = value & 1;
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
1140 /* We have no event counters so only the C bit can be changed */
1141 value &= (1 << 31);
1142 env->cp15.c9_pminten |= value;
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146 uint64_t value)
1148 value &= (1 << 31);
1149 env->cp15.c9_pminten &= ~value;
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1161 raw_write(env, ri, value & ~0x1FULL);
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
1179 * On ARMv8, this bit is always available.
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
1183 valid_mask &= ~SCR_SMD;
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1194 ARMCPU *cpu = arm_env_get_cpu(env);
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197 * bank
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1202 return cpu->ccsidr[index];
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
1208 raw_write(env, ri, value & 0xf);
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 CPUState *cs = ENV_GET_CPU(env);
1214 uint64_t ret = 0;
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217 ret |= CPSR_I;
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220 ret |= CPSR_F;
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1223 return ret;
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253 .access = PL0_RW,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
1257 .type = ARM_CP_ALIAS },
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
1261 .type = ARM_CP_ALIAS,
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
1276 /* Unimplemented so WI. */
1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293 .accessfn = pmreg_access_ccntr },
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297 .type = ARM_CP_IO,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299 #endif
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302 .writefn = pmccfiltr_write,
1303 .access = PL0_RW, .accessfn = pmreg_access,
1304 .type = ARM_CP_IO,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306 .resetvalue = 0, },
1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314 /* Unimplemented, RAZ/WI. */
1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317 .accessfn = pmreg_access_xevcntr },
1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321 .resetvalue = 0,
1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327 .resetvalue = 0,
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330 .access = PL1_RW, .accessfn = access_tpm,
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333 .resetvalue = 0,
1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1338 .type = ARM_CP_IO,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345 .writefn = pmintenclr_write, },
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380 .resetvalue = 0 },
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384 .resetvalue = 0 },
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
1396 .resetfn = arm_cp_reset_ignore },
1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
1401 .resetfn = arm_cp_reset_ignore },
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428 REGINFO_SENTINEL
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
1439 .writefn = tlbiasid_is_write },
1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
1442 .writefn = tlbimvaa_is_write },
1443 REGINFO_SENTINEL
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
1449 value &= 1;
1450 env->teecr = value;
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454 bool isread)
1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457 return CP_ACCESS_TRAP;
1459 return CP_ACCESS_OK;
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465 .resetvalue = 0,
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469 .accessfn = teehbr_access, .resetvalue = 0 },
1470 REGINFO_SENTINEL
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476 .access = PL0_RW,
1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479 .access = PL0_RW,
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487 .resetvalue = 0},
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492 .resetfn = arm_cp_reset_ignore },
1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495 .access = PL1_RW,
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498 .access = PL1_RW,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501 .resetvalue = 0 },
1502 REGINFO_SENTINEL
1505 #ifndef CONFIG_USER_ONLY
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508 bool isread)
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1513 int el = arm_current_el(env);
1515 switch (el) {
1516 case 0:
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1520 break;
1521 case 1:
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1527 break;
1528 case 2:
1529 case 3:
1530 break;
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1537 return CP_ACCESS_OK;
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541 bool isread)
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1547 if (cur_el == 0 &&
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1557 return CP_ACCESS_OK;
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561 bool isread)
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1569 if (cur_el == 0 &&
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1579 return CP_ACCESS_OK;
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583 const ARMCPRegInfo *ri,
1584 bool isread)
1586 return gt_counter_access(env, GTIMER_PHYS, isread);
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590 const ARMCPRegInfo *ri,
1591 bool isread)
1593 return gt_counter_access(env, GTIMER_VIRT, isread);
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597 bool isread)
1599 return gt_timer_access(env, GTIMER_PHYS, isread);
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603 bool isread)
1605 return gt_timer_access(env, GTIMER_VIRT, isread);
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609 const ARMCPRegInfo *ri,
1610 bool isread)
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1614 * Secure EL1.
1616 switch (arm_current_el(env)) {
1617 case 1:
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1624 return CP_ACCESS_OK;
1625 case 0:
1626 case 2:
1627 return CP_ACCESS_TRAP;
1628 case 3:
1629 return CP_ACCESS_OK;
1630 default:
1631 g_assert_not_reached();
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1644 if (gt->ctl & 1) {
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
1652 int istatus = count - offset >= gt->cval;
1653 uint64_t nexttick;
1654 int irqstate;
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1661 if (istatus) {
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1664 } else {
1665 /* Next transition is when we hit cval */
1666 nexttick = gt->cval + offset;
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678 } else {
1679 /* Timer disabled: ISTATUS and timer output always clear */
1680 gt->ctl &= ~4;
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682 timer_del(cpu->gt_timer[timeridx]);
1683 trace_arm_gt_recalc_disabled(timeridx);
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688 int timeridx)
1690 ARMCPU *cpu = arm_env_get_cpu(env);
1692 timer_del(cpu->gt_timer[timeridx]);
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1697 return gt_get_countervalue(env);
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706 int timeridx,
1707 uint64_t value)
1709 trace_arm_gt_cval_write(timeridx, value);
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715 int timeridx)
1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720 (gt_get_countervalue(env) - offset));
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724 int timeridx,
1725 uint64_t value)
1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1729 trace_arm_gt_tval_write(timeridx, value);
1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731 sextract64(value, 0, 32);
1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736 int timeridx,
1737 uint64_t value)
1739 ARMCPU *cpu = arm_env_get_cpu(env);
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1742 trace_arm_gt_ctl_write(timeridx, value);
1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
1747 } else if ((oldval ^ value) & 2) {
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1751 int irqstate = (oldval & 4) && !(value & 2);
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1819 trace_arm_gt_cntvoff_write(value);
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1880 void arm_gt_ptimer_cb(void *opaque)
1882 ARMCPU *cpu = opaque;
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1887 void arm_gt_vtimer_cb(void *opaque)
1889 ARMCPU *cpu = opaque;
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1894 void arm_gt_htimer_cb(void *opaque)
1896 ARMCPU *cpu = opaque;
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1901 void arm_gt_stimer_cb(void *opaque)
1903 ARMCPU *cpu = opaque;
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914 .type = ARM_CP_ALIAS,
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1924 /* overall control: mostly access permissions */
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927 .access = PL1_RW,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929 .resetvalue = 0,
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933 .secure = ARM_CP_SECSTATE_NS,
1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952 .accessfn = gt_ptimer_access,
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954 .resetvalue = 0,
1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967 .accessfn = gt_vtimer_access,
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969 .resetvalue = 0,
1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974 .secure = ARM_CP_SECSTATE_NS,
1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976 .accessfn = gt_ptimer_access,
1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994 .accessfn = gt_vtimer_access,
1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006 .accessfn = gt_pct_access,
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016 .accessfn = gt_vct_access,
2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026 .secure = ARM_CP_SECSTATE_NS,
2027 .access = PL1_RW | PL0_R,
2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030 .accessfn = gt_ptimer_access,
2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2044 .type = ARM_CP_IO,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053 .accessfn = gt_vtimer_access,
2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2059 .type = ARM_CP_IO,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080 .resetvalue = 0,
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2090 REGINFO_SENTINEL
2093 #else
2094 /* In user-mode none of the generic timer registers are accessible,
2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096 * so instead just don't register any of them.
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2099 REGINFO_SENTINEL
2102 #endif
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107 raw_write(env, ri, value);
2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109 raw_write(env, ri, value & 0xfffff6ff);
2110 } else {
2111 raw_write(env, ri, value & 0xfffff1ff);
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119 bool isread)
2121 if (ri->opc2 & 4) {
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2134 return CP_ACCESS_OK;
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138 int access_type, ARMMMUIdx mmu_idx)
2140 hwaddr phys_addr;
2141 target_ulong page_size;
2142 int prot;
2143 uint32_t fsr;
2144 bool ret;
2145 uint64_t par64;
2146 MemTxAttrs attrs = {};
2147 ARMMMUFaultInfo fi = {};
2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151 if (extended_addresses_enabled(env)) {
2152 /* fsr is a DFSR/IFSR value for the long descriptor
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2156 par64 = (1 << 11); /* LPAE bit always set */
2157 if (!ret) {
2158 par64 |= phys_addr & ~0xfffULL;
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2162 /* We don't set the ATTR or SH fields in the PAR. */
2163 } else {
2164 par64 |= 1; /* F */
2165 par64 |= (fsr & 0x3f) << 1; /* FS */
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2168 * fault.
2171 } else {
2172 /* fsr is a DFSR/IFSR value for the short descriptor
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2176 if (!ret) {
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
2181 } else {
2182 par64 = phys_addr & 0xfffff000;
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2187 } else {
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
2192 return par64;
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2197 int access_type = ri->opc2 & 1;
2198 uint64_t par64;
2199 ARMMMUIdx mmu_idx;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
2203 switch (ri->opc2 & 6) {
2204 case 0:
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206 switch (el) {
2207 case 3:
2208 mmu_idx = ARMMMUIdx_S1E3;
2209 break;
2210 case 2:
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2212 break;
2213 case 1:
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215 break;
2216 default:
2217 g_assert_not_reached();
2219 break;
2220 case 2:
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222 switch (el) {
2223 case 3:
2224 mmu_idx = ARMMMUIdx_S1SE0;
2225 break;
2226 case 2:
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2228 break;
2229 case 1:
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231 break;
2232 default:
2233 g_assert_not_reached();
2235 break;
2236 case 4:
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2239 break;
2240 case 6:
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2243 break;
2244 default:
2245 g_assert_not_reached();
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2256 int access_type = ri->opc2 & 1;
2257 uint64_t par64;
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2270 return CP_ACCESS_OK;
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2276 int access_type = ri->opc2 & 1;
2277 ARMMMUIdx mmu_idx;
2278 int secure = arm_is_secure_below_el3(env);
2280 switch (ri->opc2 & 6) {
2281 case 0:
2282 switch (ri->opc1) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285 break;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2288 break;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2291 break;
2292 default:
2293 g_assert_not_reached();
2295 break;
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298 break;
2299 case 4: /* AT S12E1R, AT S12E1W */
2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301 break;
2302 case 6: /* AT S12E0R, AT S12E0W */
2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304 break;
2305 default:
2306 g_assert_not_reached();
2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2311 #endif
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
2318 .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322 .access = PL1_W, .accessfn = ats_access,
2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 #endif
2325 REGINFO_SENTINEL
2328 /* Return basic MPU access permission bits. */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2331 uint32_t ret;
2332 uint32_t mask;
2333 int i;
2334 ret = 0;
2335 mask = 3;
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2338 mask <<= 2;
2340 return ret;
2343 /* Pad basic MPU access permission bits to extended format. */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2346 uint32_t ret;
2347 uint32_t mask;
2348 int i;
2349 ret = 0;
2350 mask = 3;
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2353 mask <<= 2;
2355 return ret;
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370 uint64_t value)
2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2384 if (!u32p) {
2385 return 0;
2388 u32p += env->cp15.c6_rgnr;
2389 return *u32p;
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2398 if (!u32p) {
2399 return;
2402 u32p += env->cp15.c6_rgnr;
2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404 *u32p = value;
2407 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2409 ARMCPU *cpu = arm_env_get_cpu(env);
2410 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2412 if (!u32p) {
2413 return;
2416 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2419 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420 uint64_t value)
2422 ARMCPU *cpu = arm_env_get_cpu(env);
2423 uint32_t nrgs = cpu->pmsav7_dregion;
2425 if (value >= nrgs) {
2426 qemu_log_mask(LOG_GUEST_ERROR,
2427 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2428 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2429 return;
2432 raw_write(env, ri, value);
2435 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2436 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2437 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2438 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2439 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2440 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2441 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2442 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2443 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2444 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2445 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2446 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2447 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2448 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2449 .access = PL1_RW,
2450 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2451 .writefn = pmsav7_rgnr_write },
2452 REGINFO_SENTINEL
2455 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2456 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2459 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2460 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2461 .access = PL1_RW, .type = ARM_CP_ALIAS,
2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2463 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2464 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2465 .access = PL1_RW,
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2467 .resetvalue = 0, },
2468 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2469 .access = PL1_RW,
2470 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2471 .resetvalue = 0, },
2472 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2473 .access = PL1_RW,
2474 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2475 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2476 .access = PL1_RW,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2478 /* Protection region base and size registers */
2479 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2480 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2481 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2482 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2483 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2484 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2485 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2486 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2487 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2488 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2489 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2490 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2491 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2492 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2493 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2494 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2495 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2496 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2497 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2500 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2503 REGINFO_SENTINEL
2506 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2507 uint64_t value)
2509 TCR *tcr = raw_ptr(env, ri);
2510 int maskshift = extract32(value, 0, 3);
2512 if (!arm_feature(env, ARM_FEATURE_V8)) {
2513 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2514 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2515 * using Long-desciptor translation table format */
2516 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2517 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2518 /* In an implementation that includes the Security Extensions
2519 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2520 * Short-descriptor translation table format.
2522 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2523 } else {
2524 value &= TTBCR_N;
2528 /* Update the masks corresponding to the TCR bank being written
2529 * Note that we always calculate mask and base_mask, but
2530 * they are only used for short-descriptor tables (ie if EAE is 0);
2531 * for long-descriptor tables the TCR fields are used differently
2532 * and the mask and base_mask values are meaningless.
2534 tcr->raw_tcr = value;
2535 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2536 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2539 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540 uint64_t value)
2542 ARMCPU *cpu = arm_env_get_cpu(env);
2544 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2545 /* With LPAE the TTBCR could result in a change of ASID
2546 * via the TTBCR.A1 bit, so do a TLB flush.
2548 tlb_flush(CPU(cpu));
2550 vmsa_ttbcr_raw_write(env, ri, value);
2553 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2555 TCR *tcr = raw_ptr(env, ri);
2557 /* Reset both the TCR as well as the masks corresponding to the bank of
2558 * the TCR being reset.
2560 tcr->raw_tcr = 0;
2561 tcr->mask = 0;
2562 tcr->base_mask = 0xffffc000u;
2565 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 uint64_t value)
2568 ARMCPU *cpu = arm_env_get_cpu(env);
2569 TCR *tcr = raw_ptr(env, ri);
2571 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2572 tlb_flush(CPU(cpu));
2573 tcr->raw_tcr = value;
2576 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2577 uint64_t value)
2579 /* 64 bit accesses to the TTBRs can change the ASID and so we
2580 * must flush the TLB.
2582 if (cpreg_field_is_64bit(ri)) {
2583 ARMCPU *cpu = arm_env_get_cpu(env);
2585 tlb_flush(CPU(cpu));
2587 raw_write(env, ri, value);
2590 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591 uint64_t value)
2593 ARMCPU *cpu = arm_env_get_cpu(env);
2594 CPUState *cs = CPU(cpu);
2596 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2597 if (raw_read(env, ri) != value) {
2598 tlb_flush_by_mmuidx(cs,
2599 (1 << ARMMMUIdx_S12NSE1) |
2600 (1 << ARMMMUIdx_S12NSE0) |
2601 (1 << ARMMMUIdx_S2NS));
2602 raw_write(env, ri, value);
2606 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2607 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2608 .access = PL1_RW, .type = ARM_CP_ALIAS,
2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2610 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2611 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2614 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2615 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2616 .access = PL1_RW, .resetvalue = 0,
2617 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2618 offsetof(CPUARMState, cp15.dfar_ns) } },
2619 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2620 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2621 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2622 .resetvalue = 0, },
2623 REGINFO_SENTINEL
2626 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2627 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2628 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2629 .access = PL1_RW,
2630 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2631 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2632 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2633 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2634 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2635 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2636 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2637 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2638 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2639 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2640 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2641 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2642 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2644 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2645 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2646 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2647 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2648 .raw_writefn = vmsa_ttbcr_raw_write,
2649 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2650 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2651 REGINFO_SENTINEL
2654 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2655 uint64_t value)
2657 env->cp15.c15_ticonfig = value & 0xe7;
2658 /* The OS_TYPE bit in this register changes the reported CPUID! */
2659 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2660 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2663 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664 uint64_t value)
2666 env->cp15.c15_threadid = value & 0xffff;
2669 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670 uint64_t value)
2672 /* Wait-for-interrupt (deprecated) */
2673 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2676 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2677 uint64_t value)
2679 /* On OMAP there are registers indicating the max/min index of dcache lines
2680 * containing a dirty line; cache flush operations have to reset these.
2682 env->cp15.c15_i_max = 0x000;
2683 env->cp15.c15_i_min = 0xff0;
2686 static const ARMCPRegInfo omap_cp_reginfo[] = {
2687 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2689 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2690 .resetvalue = 0, },
2691 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2692 .access = PL1_RW, .type = ARM_CP_NOP },
2693 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2694 .access = PL1_RW,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2696 .writefn = omap_ticonfig_write },
2697 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2698 .access = PL1_RW,
2699 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2700 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2701 .access = PL1_RW, .resetvalue = 0xff0,
2702 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2703 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2704 .access = PL1_RW,
2705 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2706 .writefn = omap_threadid_write },
2707 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2708 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2709 .type = ARM_CP_NO_RAW,
2710 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2711 /* TODO: Peripheral port remap register:
2712 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2713 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2714 * when MMU is off.
2716 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2717 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2718 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2719 .writefn = omap_cachemaint_write },
2720 { .name = "C9", .cp = 15, .crn = 9,
2721 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2723 REGINFO_SENTINEL
2726 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727 uint64_t value)
2729 env->cp15.c15_cpar = value & 0x3fff;
2732 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2733 { .name = "XSCALE_CPAR",
2734 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2736 .writefn = xscale_cpar_write, },
2737 { .name = "XSCALE_AUXCR",
2738 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2739 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2740 .resetvalue = 0, },
2741 /* XScale specific cache-lockdown: since we have no cache we NOP these
2742 * and hope the guest does not really rely on cache behaviour.
2744 { .name = "XSCALE_LOCK_ICACHE_LINE",
2745 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2746 .access = PL1_W, .type = ARM_CP_NOP },
2747 { .name = "XSCALE_UNLOCK_ICACHE",
2748 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2749 .access = PL1_W, .type = ARM_CP_NOP },
2750 { .name = "XSCALE_DCACHE_LOCK",
2751 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2752 .access = PL1_RW, .type = ARM_CP_NOP },
2753 { .name = "XSCALE_UNLOCK_DCACHE",
2754 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2755 .access = PL1_W, .type = ARM_CP_NOP },
2756 REGINFO_SENTINEL
2759 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2760 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2761 * implementation of this implementation-defined space.
2762 * Ideally this should eventually disappear in favour of actually
2763 * implementing the correct behaviour for all cores.
2765 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2766 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2767 .access = PL1_RW,
2768 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2769 .resetvalue = 0 },
2770 REGINFO_SENTINEL
2773 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2774 /* Cache status: RAZ because we have no cache so it's always clean */
2775 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2776 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2777 .resetvalue = 0 },
2778 REGINFO_SENTINEL
2781 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2782 /* We never have a a block transfer operation in progress */
2783 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2784 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2785 .resetvalue = 0 },
2786 /* The cache ops themselves: these all NOP for QEMU */
2787 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2788 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2790 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2794 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2796 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2797 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2798 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2799 REGINFO_SENTINEL
2802 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2803 /* The cache test-and-clean instructions always return (1 << 30)
2804 * to indicate that there are no dirty cache lines.
2806 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2807 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2808 .resetvalue = (1 << 30) },
2809 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2810 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2811 .resetvalue = (1 << 30) },
2812 REGINFO_SENTINEL
2815 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2816 /* Ignore ReadBuffer accesses */
2817 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2818 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2819 .access = PL1_RW, .resetvalue = 0,
2820 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2821 REGINFO_SENTINEL
2824 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2826 ARMCPU *cpu = arm_env_get_cpu(env);
2827 unsigned int cur_el = arm_current_el(env);
2828 bool secure = arm_is_secure(env);
2830 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2831 return env->cp15.vpidr_el2;
2833 return raw_read(env, ri);
2836 static uint64_t mpidr_read_val(CPUARMState *env)
2838 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2839 uint64_t mpidr = cpu->mp_affinity;
2841 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2842 mpidr |= (1U << 31);
2843 /* Cores which are uniprocessor (non-coherent)
2844 * but still implement the MP extensions set
2845 * bit 30. (For instance, Cortex-R5).
2847 if (cpu->mp_is_up) {
2848 mpidr |= (1u << 30);
2851 return mpidr;
2854 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2856 unsigned int cur_el = arm_current_el(env);
2857 bool secure = arm_is_secure(env);
2859 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2860 return env->cp15.vmpidr_el2;
2862 return mpidr_read_val(env);
2865 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2866 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2867 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2868 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2869 REGINFO_SENTINEL
2872 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2873 /* NOP AMAIR0/1 */
2874 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2875 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2876 .access = PL1_RW, .type = ARM_CP_CONST,
2877 .resetvalue = 0 },
2878 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2879 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2880 .access = PL1_RW, .type = ARM_CP_CONST,
2881 .resetvalue = 0 },
2882 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2883 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2885 offsetof(CPUARMState, cp15.par_ns)} },
2886 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2887 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2888 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2889 offsetof(CPUARMState, cp15.ttbr0_ns) },
2890 .writefn = vmsa_ttbr_write, },
2891 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2892 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2893 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2894 offsetof(CPUARMState, cp15.ttbr1_ns) },
2895 .writefn = vmsa_ttbr_write, },
2896 REGINFO_SENTINEL
2899 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2901 return vfp_get_fpcr(env);
2904 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905 uint64_t value)
2907 vfp_set_fpcr(env, value);
2910 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2912 return vfp_get_fpsr(env);
2915 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2918 vfp_set_fpsr(env, value);
2921 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2922 bool isread)
2924 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2925 return CP_ACCESS_TRAP;
2927 return CP_ACCESS_OK;
2930 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2933 env->daif = value & PSTATE_DAIF;
2936 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2937 const ARMCPRegInfo *ri,
2938 bool isread)
2940 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2941 * SCTLR_EL1.UCI is set.
2943 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2944 return CP_ACCESS_TRAP;
2946 return CP_ACCESS_OK;
2949 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2950 * Page D4-1736 (DDI0487A.b)
2953 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2956 CPUState *cs = ENV_GET_CPU(env);
2958 if (arm_is_secure_below_el3(env)) {
2959 tlb_flush_by_mmuidx(cs,
2960 (1 << ARMMMUIdx_S1SE1) |
2961 (1 << ARMMMUIdx_S1SE0));
2962 } else {
2963 tlb_flush_by_mmuidx(cs,
2964 (1 << ARMMMUIdx_S12NSE1) |
2965 (1 << ARMMMUIdx_S12NSE0));
2969 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 CPUState *cs = ENV_GET_CPU(env);
2973 bool sec = arm_is_secure_below_el3(env);
2975 if (sec) {
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977 (1 << ARMMMUIdx_S1SE1) |
2978 (1 << ARMMMUIdx_S1SE0));
2979 } else {
2980 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2981 (1 << ARMMMUIdx_S12NSE1) |
2982 (1 << ARMMMUIdx_S12NSE0));
2986 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987 uint64_t value)
2989 /* Note that the 'ALL' scope must invalidate both stage 1 and
2990 * stage 2 translations, whereas most other scopes only invalidate
2991 * stage 1 translations.
2993 ARMCPU *cpu = arm_env_get_cpu(env);
2994 CPUState *cs = CPU(cpu);
2996 if (arm_is_secure_below_el3(env)) {
2997 tlb_flush_by_mmuidx(cs,
2998 (1 << ARMMMUIdx_S1SE1) |
2999 (1 << ARMMMUIdx_S1SE0));
3000 } else {
3001 if (arm_feature(env, ARM_FEATURE_EL2)) {
3002 tlb_flush_by_mmuidx(cs,
3003 (1 << ARMMMUIdx_S12NSE1) |
3004 (1 << ARMMMUIdx_S12NSE0) |
3005 (1 << ARMMMUIdx_S2NS));
3006 } else {
3007 tlb_flush_by_mmuidx(cs,
3008 (1 << ARMMMUIdx_S12NSE1) |
3009 (1 << ARMMMUIdx_S12NSE0));
3014 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3015 uint64_t value)
3017 ARMCPU *cpu = arm_env_get_cpu(env);
3018 CPUState *cs = CPU(cpu);
3020 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
3023 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 ARMCPU *cpu = arm_env_get_cpu(env);
3027 CPUState *cs = CPU(cpu);
3029 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E3));
3032 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3035 /* Note that the 'ALL' scope must invalidate both stage 1 and
3036 * stage 2 translations, whereas most other scopes only invalidate
3037 * stage 1 translations.
3039 CPUState *cs = ENV_GET_CPU(env);
3040 bool sec = arm_is_secure_below_el3(env);
3041 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3043 if (sec) {
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045 (1 << ARMMMUIdx_S1SE1) |
3046 (1 << ARMMMUIdx_S1SE0));
3047 } else if (has_el2) {
3048 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3049 (1 << ARMMMUIdx_S12NSE1) |
3050 (1 << ARMMMUIdx_S12NSE0) |
3051 (1 << ARMMMUIdx_S2NS));
3052 } else {
3053 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3054 (1 << ARMMMUIdx_S12NSE1) |
3055 (1 << ARMMMUIdx_S12NSE0));
3059 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3060 uint64_t value)
3062 CPUState *cs = ENV_GET_CPU(env);
3064 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
3067 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068 uint64_t value)
3070 CPUState *cs = ENV_GET_CPU(env);
3072 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E3));
3075 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076 uint64_t value)
3078 /* Invalidate by VA, EL1&0 (AArch64 version).
3079 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3080 * since we don't support flush-for-specific-ASID-only or
3081 * flush-last-level-only.
3083 ARMCPU *cpu = arm_env_get_cpu(env);
3084 CPUState *cs = CPU(cpu);
3085 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3087 if (arm_is_secure_below_el3(env)) {
3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
3089 (1 << ARMMMUIdx_S1SE1) |
3090 (1 << ARMMMUIdx_S1SE0));
3091 } else {
3092 tlb_flush_page_by_mmuidx(cs, pageaddr,
3093 (1 << ARMMMUIdx_S12NSE1) |
3094 (1 << ARMMMUIdx_S12NSE0));
3098 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3099 uint64_t value)
3101 /* Invalidate by VA, EL2
3102 * Currently handles both VAE2 and VALE2, since we don't support
3103 * flush-last-level-only.
3105 ARMCPU *cpu = arm_env_get_cpu(env);
3106 CPUState *cs = CPU(cpu);
3107 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3109 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
3112 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113 uint64_t value)
3115 /* Invalidate by VA, EL3
3116 * Currently handles both VAE3 and VALE3, since we don't support
3117 * flush-last-level-only.
3119 ARMCPU *cpu = arm_env_get_cpu(env);
3120 CPUState *cs = CPU(cpu);
3121 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3123 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E3));
3126 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3127 uint64_t value)
3129 ARMCPU *cpu = arm_env_get_cpu(env);
3130 CPUState *cs = CPU(cpu);
3131 bool sec = arm_is_secure_below_el3(env);
3132 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3134 if (sec) {
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136 (1 << ARMMMUIdx_S1SE1) |
3137 (1 << ARMMMUIdx_S1SE0));
3138 } else {
3139 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3140 (1 << ARMMMUIdx_S12NSE1) |
3141 (1 << ARMMMUIdx_S12NSE0));
3145 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3146 uint64_t value)
3148 CPUState *cs = ENV_GET_CPU(env);
3149 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3151 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3152 (1 << ARMMMUIdx_S1E2));
3155 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156 uint64_t value)
3158 CPUState *cs = ENV_GET_CPU(env);
3159 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3161 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3162 (1 << ARMMMUIdx_S1E3));
3165 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3166 uint64_t value)
3168 /* Invalidate by IPA. This has to invalidate any structures that
3169 * contain only stage 2 translation information, but does not need
3170 * to apply to structures that contain combined stage 1 and stage 2
3171 * translation information.
3172 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3174 ARMCPU *cpu = arm_env_get_cpu(env);
3175 CPUState *cs = CPU(cpu);
3176 uint64_t pageaddr;
3178 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3179 return;
3182 pageaddr = sextract64(value << 12, 0, 48);
3184 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
3187 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3188 uint64_t value)
3190 CPUState *cs = ENV_GET_CPU(env);
3191 uint64_t pageaddr;
3193 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3194 return;
3197 pageaddr = sextract64(value << 12, 0, 48);
3199 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3200 (1 << ARMMMUIdx_S2NS));
3203 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3204 bool isread)
3206 /* We don't implement EL2, so the only control on DC ZVA is the
3207 * bit in the SCTLR which can prohibit access for EL0.
3209 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3210 return CP_ACCESS_TRAP;
3212 return CP_ACCESS_OK;
3215 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3217 ARMCPU *cpu = arm_env_get_cpu(env);
3218 int dzp_bit = 1 << 4;
3220 /* DZP indicates whether DC ZVA access is allowed */
3221 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3222 dzp_bit = 0;
3224 return cpu->dcz_blocksize | dzp_bit;
3227 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3228 bool isread)
3230 if (!(env->pstate & PSTATE_SP)) {
3231 /* Access to SP_EL0 is undefined if it's being used as
3232 * the stack pointer.
3234 return CP_ACCESS_TRAP_UNCATEGORIZED;
3236 return CP_ACCESS_OK;
3239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3241 return env->pstate & PSTATE_SP;
3244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3246 update_spsel(env, val);
3249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3250 uint64_t value)
3252 ARMCPU *cpu = arm_env_get_cpu(env);
3254 if (raw_read(env, ri) == value) {
3255 /* Skip the TLB flush if nothing actually changed; Linux likes
3256 * to do a lot of pointless SCTLR writes.
3258 return;
3261 raw_write(env, ri, value);
3262 /* ??? Lots of these bits are not implemented. */
3263 /* This may enable/disable the MMU, so do a TLB flush. */
3264 tlb_flush(CPU(cpu));
3267 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3268 bool isread)
3270 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3271 return CP_ACCESS_TRAP_FP_EL2;
3273 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3274 return CP_ACCESS_TRAP_FP_EL3;
3276 return CP_ACCESS_OK;
3279 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3280 uint64_t value)
3282 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3285 static const ARMCPRegInfo v8_cp_reginfo[] = {
3286 /* Minimal set of EL0-visible registers. This will need to be expanded
3287 * significantly for system emulation of AArch64 CPUs.
3289 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3290 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3291 .access = PL0_RW, .type = ARM_CP_NZCV },
3292 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3294 .type = ARM_CP_NO_RAW,
3295 .access = PL0_RW, .accessfn = aa64_daif_access,
3296 .fieldoffset = offsetof(CPUARMState, daif),
3297 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3298 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3300 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3301 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3302 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3303 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3304 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3305 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3306 .access = PL0_R, .type = ARM_CP_NO_RAW,
3307 .readfn = aa64_dczid_read },
3308 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3309 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3310 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3311 #ifndef CONFIG_USER_ONLY
3312 /* Avoid overhead of an access check that always passes in user-mode */
3313 .accessfn = aa64_zva_access,
3314 #endif
3316 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3317 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3318 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3319 /* Cache ops: all NOPs since we don't emulate caches */
3320 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3322 .access = PL1_W, .type = ARM_CP_NOP },
3323 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3325 .access = PL1_W, .type = ARM_CP_NOP },
3326 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3328 .access = PL0_W, .type = ARM_CP_NOP,
3329 .accessfn = aa64_cacheop_access },
3330 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3332 .access = PL1_W, .type = ARM_CP_NOP },
3333 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3335 .access = PL1_W, .type = ARM_CP_NOP },
3336 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3338 .access = PL0_W, .type = ARM_CP_NOP,
3339 .accessfn = aa64_cacheop_access },
3340 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3342 .access = PL1_W, .type = ARM_CP_NOP },
3343 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3345 .access = PL0_W, .type = ARM_CP_NOP,
3346 .accessfn = aa64_cacheop_access },
3347 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3348 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3349 .access = PL0_W, .type = ARM_CP_NOP,
3350 .accessfn = aa64_cacheop_access },
3351 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3353 .access = PL1_W, .type = ARM_CP_NOP },
3354 /* TLBI operations */
3355 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3357 .access = PL1_W, .type = ARM_CP_NO_RAW,
3358 .writefn = tlbi_aa64_vmalle1is_write },
3359 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3361 .access = PL1_W, .type = ARM_CP_NO_RAW,
3362 .writefn = tlbi_aa64_vae1is_write },
3363 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3365 .access = PL1_W, .type = ARM_CP_NO_RAW,
3366 .writefn = tlbi_aa64_vmalle1is_write },
3367 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3368 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3369 .access = PL1_W, .type = ARM_CP_NO_RAW,
3370 .writefn = tlbi_aa64_vae1is_write },
3371 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3373 .access = PL1_W, .type = ARM_CP_NO_RAW,
3374 .writefn = tlbi_aa64_vae1is_write },
3375 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3377 .access = PL1_W, .type = ARM_CP_NO_RAW,
3378 .writefn = tlbi_aa64_vae1is_write },
3379 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3380 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3381 .access = PL1_W, .type = ARM_CP_NO_RAW,
3382 .writefn = tlbi_aa64_vmalle1_write },
3383 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3385 .access = PL1_W, .type = ARM_CP_NO_RAW,
3386 .writefn = tlbi_aa64_vae1_write },
3387 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3388 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3389 .access = PL1_W, .type = ARM_CP_NO_RAW,
3390 .writefn = tlbi_aa64_vmalle1_write },
3391 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3392 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3393 .access = PL1_W, .type = ARM_CP_NO_RAW,
3394 .writefn = tlbi_aa64_vae1_write },
3395 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3397 .access = PL1_W, .type = ARM_CP_NO_RAW,
3398 .writefn = tlbi_aa64_vae1_write },
3399 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3400 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3401 .access = PL1_W, .type = ARM_CP_NO_RAW,
3402 .writefn = tlbi_aa64_vae1_write },
3403 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3405 .access = PL2_W, .type = ARM_CP_NO_RAW,
3406 .writefn = tlbi_aa64_ipas2e1is_write },
3407 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3409 .access = PL2_W, .type = ARM_CP_NO_RAW,
3410 .writefn = tlbi_aa64_ipas2e1is_write },
3411 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3412 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3413 .access = PL2_W, .type = ARM_CP_NO_RAW,
3414 .writefn = tlbi_aa64_alle1is_write },
3415 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3416 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3417 .access = PL2_W, .type = ARM_CP_NO_RAW,
3418 .writefn = tlbi_aa64_alle1is_write },
3419 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3420 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3421 .access = PL2_W, .type = ARM_CP_NO_RAW,
3422 .writefn = tlbi_aa64_ipas2e1_write },
3423 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3424 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3425 .access = PL2_W, .type = ARM_CP_NO_RAW,
3426 .writefn = tlbi_aa64_ipas2e1_write },
3427 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3429 .access = PL2_W, .type = ARM_CP_NO_RAW,
3430 .writefn = tlbi_aa64_alle1_write },
3431 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3432 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3433 .access = PL2_W, .type = ARM_CP_NO_RAW,
3434 .writefn = tlbi_aa64_alle1is_write },
3435 #ifndef CONFIG_USER_ONLY
3436 /* 64 bit address translation operations */
3437 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3438 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3439 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3440 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3442 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3443 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3444 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3445 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3446 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3448 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3449 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3450 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3451 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3452 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3453 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3454 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3455 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3456 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3457 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3458 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3460 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3461 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3462 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3463 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3464 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3465 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3466 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3467 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3468 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3469 .type = ARM_CP_ALIAS,
3470 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3471 .access = PL1_RW, .resetvalue = 0,
3472 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3473 .writefn = par_write },
3474 #endif
3475 /* TLB invalidate last level of translation table walk */
3476 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3477 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3478 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3479 .type = ARM_CP_NO_RAW, .access = PL1_W,
3480 .writefn = tlbimvaa_is_write },
3481 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3482 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3483 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3484 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3485 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3486 .type = ARM_CP_NO_RAW, .access = PL2_W,
3487 .writefn = tlbimva_hyp_write },
3488 { .name = "TLBIMVALHIS",
3489 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3490 .type = ARM_CP_NO_RAW, .access = PL2_W,
3491 .writefn = tlbimva_hyp_is_write },
3492 { .name = "TLBIIPAS2",
3493 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3494 .type = ARM_CP_NO_RAW, .access = PL2_W,
3495 .writefn = tlbiipas2_write },
3496 { .name = "TLBIIPAS2IS",
3497 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3498 .type = ARM_CP_NO_RAW, .access = PL2_W,
3499 .writefn = tlbiipas2_is_write },
3500 { .name = "TLBIIPAS2L",
3501 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3502 .type = ARM_CP_NO_RAW, .access = PL2_W,
3503 .writefn = tlbiipas2_write },
3504 { .name = "TLBIIPAS2LIS",
3505 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3506 .type = ARM_CP_NO_RAW, .access = PL2_W,
3507 .writefn = tlbiipas2_is_write },
3508 /* 32 bit cache operations */
3509 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3510 .type = ARM_CP_NOP, .access = PL1_W },
3511 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3512 .type = ARM_CP_NOP, .access = PL1_W },
3513 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3514 .type = ARM_CP_NOP, .access = PL1_W },
3515 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3516 .type = ARM_CP_NOP, .access = PL1_W },
3517 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3518 .type = ARM_CP_NOP, .access = PL1_W },
3519 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3520 .type = ARM_CP_NOP, .access = PL1_W },
3521 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3522 .type = ARM_CP_NOP, .access = PL1_W },
3523 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3524 .type = ARM_CP_NOP, .access = PL1_W },
3525 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3526 .type = ARM_CP_NOP, .access = PL1_W },
3527 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3528 .type = ARM_CP_NOP, .access = PL1_W },
3529 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3530 .type = ARM_CP_NOP, .access = PL1_W },
3531 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3532 .type = ARM_CP_NOP, .access = PL1_W },
3533 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3534 .type = ARM_CP_NOP, .access = PL1_W },
3535 /* MMU Domain access control / MPU write buffer control */
3536 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3537 .access = PL1_RW, .resetvalue = 0,
3538 .writefn = dacr_write, .raw_writefn = raw_write,
3539 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3540 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3541 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3542 .type = ARM_CP_ALIAS,
3543 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3544 .access = PL1_RW,
3545 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3546 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3547 .type = ARM_CP_ALIAS,
3548 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3549 .access = PL1_RW,
3550 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3551 /* We rely on the access checks not allowing the guest to write to the
3552 * state field when SPSel indicates that it's being used as the stack
3553 * pointer.
3555 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3556 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3557 .access = PL1_RW, .accessfn = sp_el0_access,
3558 .type = ARM_CP_ALIAS,
3559 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3560 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3562 .access = PL2_RW, .type = ARM_CP_ALIAS,
3563 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3564 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3566 .type = ARM_CP_NO_RAW,
3567 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3568 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3570 .type = ARM_CP_ALIAS,
3571 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3572 .access = PL2_RW, .accessfn = fpexc32_access },
3573 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3575 .access = PL2_RW, .resetvalue = 0,
3576 .writefn = dacr_write, .raw_writefn = raw_write,
3577 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3578 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3579 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3580 .access = PL2_RW, .resetvalue = 0,
3581 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3582 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3583 .type = ARM_CP_ALIAS,
3584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3585 .access = PL2_RW,
3586 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3587 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3588 .type = ARM_CP_ALIAS,
3589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3590 .access = PL2_RW,
3591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3592 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3593 .type = ARM_CP_ALIAS,
3594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3595 .access = PL2_RW,
3596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3597 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3598 .type = ARM_CP_ALIAS,
3599 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3600 .access = PL2_RW,
3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3602 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3603 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3604 .resetvalue = 0,
3605 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3606 { .name = "SDCR", .type = ARM_CP_ALIAS,
3607 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3608 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3609 .writefn = sdcr_write,
3610 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3611 REGINFO_SENTINEL
3614 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3615 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3616 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3617 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3618 .access = PL2_RW,
3619 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3620 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3621 .type = ARM_CP_NO_RAW,
3622 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3623 .access = PL2_RW,
3624 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3625 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3626 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3627 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3628 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3629 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3630 .access = PL2_RW, .type = ARM_CP_CONST,
3631 .resetvalue = 0 },
3632 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3633 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3634 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3635 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3636 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3637 .access = PL2_RW, .type = ARM_CP_CONST,
3638 .resetvalue = 0 },
3639 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3640 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3641 .access = PL2_RW, .type = ARM_CP_CONST,
3642 .resetvalue = 0 },
3643 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3644 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3645 .access = PL2_RW, .type = ARM_CP_CONST,
3646 .resetvalue = 0 },
3647 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3648 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3649 .access = PL2_RW, .type = ARM_CP_CONST,
3650 .resetvalue = 0 },
3651 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3652 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3653 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3654 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3655 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3656 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3657 .type = ARM_CP_CONST, .resetvalue = 0 },
3658 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3659 .cp = 15, .opc1 = 6, .crm = 2,
3660 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3661 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3662 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3663 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3664 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3665 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3666 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3667 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3668 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3669 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3670 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3671 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3672 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3673 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3674 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3675 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3676 .resetvalue = 0 },
3677 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3678 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3679 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3680 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3681 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3682 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3683 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3684 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3685 .resetvalue = 0 },
3686 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3687 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3688 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3689 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3690 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3691 .resetvalue = 0 },
3692 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3693 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3694 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3695 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3696 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3697 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3698 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3699 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3700 .access = PL2_RW, .accessfn = access_tda,
3701 .type = ARM_CP_CONST, .resetvalue = 0 },
3702 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3703 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3704 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3705 .type = ARM_CP_CONST, .resetvalue = 0 },
3706 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3707 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3708 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3709 REGINFO_SENTINEL
3712 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714 ARMCPU *cpu = arm_env_get_cpu(env);
3715 uint64_t valid_mask = HCR_MASK;
3717 if (arm_feature(env, ARM_FEATURE_EL3)) {
3718 valid_mask &= ~HCR_HCD;
3719 } else {
3720 valid_mask &= ~HCR_TSC;
3723 /* Clear RES0 bits. */
3724 value &= valid_mask;
3726 /* These bits change the MMU setup:
3727 * HCR_VM enables stage 2 translation
3728 * HCR_PTW forbids certain page-table setups
3729 * HCR_DC Disables stage1 and enables stage2 translation
3731 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3732 tlb_flush(CPU(cpu));
3734 raw_write(env, ri, value);
3737 static const ARMCPRegInfo el2_cp_reginfo[] = {
3738 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3739 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3740 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3741 .writefn = hcr_write },
3742 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3743 .type = ARM_CP_ALIAS,
3744 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3745 .access = PL2_RW,
3746 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3747 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3749 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3750 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3751 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3752 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3753 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3754 .type = ARM_CP_ALIAS,
3755 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3756 .access = PL2_RW,
3757 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3758 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3759 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3760 .access = PL2_RW, .writefn = vbar_write,
3761 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3762 .resetvalue = 0 },
3763 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3765 .access = PL3_RW, .type = ARM_CP_ALIAS,
3766 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3767 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3768 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3769 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3770 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3771 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3772 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3773 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3774 .resetvalue = 0 },
3775 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3776 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3777 .access = PL2_RW, .type = ARM_CP_ALIAS,
3778 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3779 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3780 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3781 .access = PL2_RW, .type = ARM_CP_CONST,
3782 .resetvalue = 0 },
3783 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3784 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3785 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3786 .access = PL2_RW, .type = ARM_CP_CONST,
3787 .resetvalue = 0 },
3788 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3789 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3790 .access = PL2_RW, .type = ARM_CP_CONST,
3791 .resetvalue = 0 },
3792 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3793 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3794 .access = PL2_RW, .type = ARM_CP_CONST,
3795 .resetvalue = 0 },
3796 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3798 .access = PL2_RW,
3799 /* no .writefn needed as this can't cause an ASID change;
3800 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3802 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3803 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3804 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3805 .type = ARM_CP_ALIAS,
3806 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3807 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3808 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3810 .access = PL2_RW,
3811 /* no .writefn needed as this can't cause an ASID change;
3812 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3814 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3815 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3816 .cp = 15, .opc1 = 6, .crm = 2,
3817 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3818 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3819 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3820 .writefn = vttbr_write },
3821 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3822 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3823 .access = PL2_RW, .writefn = vttbr_write,
3824 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3825 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3826 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3827 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3828 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3829 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3830 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3831 .access = PL2_RW, .resetvalue = 0,
3832 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3833 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3834 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3835 .access = PL2_RW, .resetvalue = 0,
3836 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3837 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3838 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3839 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3840 { .name = "TLBIALLNSNH",
3841 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3842 .type = ARM_CP_NO_RAW, .access = PL2_W,
3843 .writefn = tlbiall_nsnh_write },
3844 { .name = "TLBIALLNSNHIS",
3845 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3846 .type = ARM_CP_NO_RAW, .access = PL2_W,
3847 .writefn = tlbiall_nsnh_is_write },
3848 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3849 .type = ARM_CP_NO_RAW, .access = PL2_W,
3850 .writefn = tlbiall_hyp_write },
3851 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3852 .type = ARM_CP_NO_RAW, .access = PL2_W,
3853 .writefn = tlbiall_hyp_is_write },
3854 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3855 .type = ARM_CP_NO_RAW, .access = PL2_W,
3856 .writefn = tlbimva_hyp_write },
3857 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3858 .type = ARM_CP_NO_RAW, .access = PL2_W,
3859 .writefn = tlbimva_hyp_is_write },
3860 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3861 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3862 .type = ARM_CP_NO_RAW, .access = PL2_W,
3863 .writefn = tlbi_aa64_alle2_write },
3864 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3866 .type = ARM_CP_NO_RAW, .access = PL2_W,
3867 .writefn = tlbi_aa64_vae2_write },
3868 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3870 .access = PL2_W, .type = ARM_CP_NO_RAW,
3871 .writefn = tlbi_aa64_vae2_write },
3872 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3874 .access = PL2_W, .type = ARM_CP_NO_RAW,
3875 .writefn = tlbi_aa64_alle2is_write },
3876 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3878 .type = ARM_CP_NO_RAW, .access = PL2_W,
3879 .writefn = tlbi_aa64_vae2is_write },
3880 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3882 .access = PL2_W, .type = ARM_CP_NO_RAW,
3883 .writefn = tlbi_aa64_vae2is_write },
3884 #ifndef CONFIG_USER_ONLY
3885 /* Unlike the other EL2-related AT operations, these must
3886 * UNDEF from EL3 if EL2 is not implemented, which is why we
3887 * define them here rather than with the rest of the AT ops.
3889 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3890 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3891 .access = PL2_W, .accessfn = at_s1e2_access,
3892 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3893 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3894 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3895 .access = PL2_W, .accessfn = at_s1e2_access,
3896 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3897 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3898 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3899 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3900 * to behave as if SCR.NS was 1.
3902 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3903 .access = PL2_W,
3904 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3905 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3906 .access = PL2_W,
3907 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3908 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3909 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3910 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3911 * reset values as IMPDEF. We choose to reset to 3 to comply with
3912 * both ARMv7 and ARMv8.
3914 .access = PL2_RW, .resetvalue = 3,
3915 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3916 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3917 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3918 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3919 .writefn = gt_cntvoff_write,
3920 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3921 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3922 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3923 .writefn = gt_cntvoff_write,
3924 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3925 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3926 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3927 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3928 .type = ARM_CP_IO, .access = PL2_RW,
3929 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3930 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3931 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3932 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3933 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3934 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3935 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3936 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3937 .resetfn = gt_hyp_timer_reset,
3938 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3939 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3940 .type = ARM_CP_IO,
3941 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3942 .access = PL2_RW,
3943 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3944 .resetvalue = 0,
3945 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3946 #endif
3947 /* The only field of MDCR_EL2 that has a defined architectural reset value
3948 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3949 * don't impelment any PMU event counters, so using zero as a reset
3950 * value for MDCR_EL2 is okay
3952 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3953 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3954 .access = PL2_RW, .resetvalue = 0,
3955 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3956 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3957 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3958 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3959 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3960 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3961 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3962 .access = PL2_RW,
3963 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3964 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3965 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3966 .access = PL2_RW,
3967 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3968 REGINFO_SENTINEL
3971 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3972 bool isread)
3974 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3975 * At Secure EL1 it traps to EL3.
3977 if (arm_current_el(env) == 3) {
3978 return CP_ACCESS_OK;
3980 if (arm_is_secure_below_el3(env)) {
3981 return CP_ACCESS_TRAP_EL3;
3983 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3984 if (isread) {
3985 return CP_ACCESS_OK;
3987 return CP_ACCESS_TRAP_UNCATEGORIZED;
3990 static const ARMCPRegInfo el3_cp_reginfo[] = {
3991 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3992 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3993 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3994 .resetvalue = 0, .writefn = scr_write },
3995 { .name = "SCR", .type = ARM_CP_ALIAS,
3996 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3997 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3998 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3999 .writefn = scr_write },
4000 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4001 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4002 .access = PL3_RW, .resetvalue = 0,
4003 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4004 { .name = "SDER",
4005 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4006 .access = PL3_RW, .resetvalue = 0,
4007 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4008 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4009 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4010 .writefn = vbar_write, .resetvalue = 0,
4011 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4012 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4013 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4014 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4015 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4016 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4017 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4018 .access = PL3_RW,
4019 /* no .writefn needed as this can't cause an ASID change;
4020 * we must provide a .raw_writefn and .resetfn because we handle
4021 * reset and migration for the AArch32 TTBCR(S), which might be
4022 * using mask and base_mask.
4024 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4025 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4026 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4027 .type = ARM_CP_ALIAS,
4028 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4029 .access = PL3_RW,
4030 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4031 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4032 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4033 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4034 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4035 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4036 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4037 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4038 .type = ARM_CP_ALIAS,
4039 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4040 .access = PL3_RW,
4041 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4042 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4043 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4044 .access = PL3_RW, .writefn = vbar_write,
4045 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4046 .resetvalue = 0 },
4047 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4048 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4049 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4050 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4051 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4052 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4053 .access = PL3_RW, .resetvalue = 0,
4054 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4055 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4056 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4057 .access = PL3_RW, .type = ARM_CP_CONST,
4058 .resetvalue = 0 },
4059 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4060 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4061 .access = PL3_RW, .type = ARM_CP_CONST,
4062 .resetvalue = 0 },
4063 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4064 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4065 .access = PL3_RW, .type = ARM_CP_CONST,
4066 .resetvalue = 0 },
4067 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4068 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4069 .access = PL3_W, .type = ARM_CP_NO_RAW,
4070 .writefn = tlbi_aa64_alle3is_write },
4071 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4072 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4073 .access = PL3_W, .type = ARM_CP_NO_RAW,
4074 .writefn = tlbi_aa64_vae3is_write },
4075 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4076 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4077 .access = PL3_W, .type = ARM_CP_NO_RAW,
4078 .writefn = tlbi_aa64_vae3is_write },
4079 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4080 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4081 .access = PL3_W, .type = ARM_CP_NO_RAW,
4082 .writefn = tlbi_aa64_alle3_write },
4083 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4085 .access = PL3_W, .type = ARM_CP_NO_RAW,
4086 .writefn = tlbi_aa64_vae3_write },
4087 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4088 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4089 .access = PL3_W, .type = ARM_CP_NO_RAW,
4090 .writefn = tlbi_aa64_vae3_write },
4091 REGINFO_SENTINEL
4094 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4095 bool isread)
4097 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4098 * but the AArch32 CTR has its own reginfo struct)
4100 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4101 return CP_ACCESS_TRAP;
4103 return CP_ACCESS_OK;
4106 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4107 uint64_t value)
4109 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4110 * read via a bit in OSLSR_EL1.
4112 int oslock;
4114 if (ri->state == ARM_CP_STATE_AA32) {
4115 oslock = (value == 0xC5ACCE55);
4116 } else {
4117 oslock = value & 1;
4120 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4123 static const ARMCPRegInfo debug_cp_reginfo[] = {
4124 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4125 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4126 * unlike DBGDRAR it is never accessible from EL0.
4127 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4128 * accessor.
4130 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4131 .access = PL0_R, .accessfn = access_tdra,
4132 .type = ARM_CP_CONST, .resetvalue = 0 },
4133 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4135 .access = PL1_R, .accessfn = access_tdra,
4136 .type = ARM_CP_CONST, .resetvalue = 0 },
4137 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4138 .access = PL0_R, .accessfn = access_tdra,
4139 .type = ARM_CP_CONST, .resetvalue = 0 },
4140 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4141 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4142 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4143 .access = PL1_RW, .accessfn = access_tda,
4144 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4145 .resetvalue = 0 },
4146 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4147 * We don't implement the configurable EL0 access.
4149 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4150 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4151 .type = ARM_CP_ALIAS,
4152 .access = PL1_R, .accessfn = access_tda,
4153 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4154 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4155 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4156 .access = PL1_W, .type = ARM_CP_NO_RAW,
4157 .accessfn = access_tdosa,
4158 .writefn = oslar_write },
4159 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4160 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4161 .access = PL1_R, .resetvalue = 10,
4162 .accessfn = access_tdosa,
4163 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4164 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4165 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4166 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4167 .access = PL1_RW, .accessfn = access_tdosa,
4168 .type = ARM_CP_NOP },
4169 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4170 * implement vector catch debug events yet.
4172 { .name = "DBGVCR",
4173 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4174 .access = PL1_RW, .accessfn = access_tda,
4175 .type = ARM_CP_NOP },
4176 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4177 * to save and restore a 32-bit guest's DBGVCR)
4179 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4180 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4181 .access = PL2_RW, .accessfn = access_tda,
4182 .type = ARM_CP_NOP },
4183 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4184 * Channel but Linux may try to access this register. The 32-bit
4185 * alias is DBGDCCINT.
4187 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4188 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4189 .access = PL1_RW, .accessfn = access_tda,
4190 .type = ARM_CP_NOP },
4191 REGINFO_SENTINEL
4194 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4195 /* 64 bit access versions of the (dummy) debug registers */
4196 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4197 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4198 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4199 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4200 REGINFO_SENTINEL
4203 void hw_watchpoint_update(ARMCPU *cpu, int n)
4205 CPUARMState *env = &cpu->env;
4206 vaddr len = 0;
4207 vaddr wvr = env->cp15.dbgwvr[n];
4208 uint64_t wcr = env->cp15.dbgwcr[n];
4209 int mask;
4210 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4212 if (env->cpu_watchpoint[n]) {
4213 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4214 env->cpu_watchpoint[n] = NULL;
4217 if (!extract64(wcr, 0, 1)) {
4218 /* E bit clear : watchpoint disabled */
4219 return;
4222 switch (extract64(wcr, 3, 2)) {
4223 case 0:
4224 /* LSC 00 is reserved and must behave as if the wp is disabled */
4225 return;
4226 case 1:
4227 flags |= BP_MEM_READ;
4228 break;
4229 case 2:
4230 flags |= BP_MEM_WRITE;
4231 break;
4232 case 3:
4233 flags |= BP_MEM_ACCESS;
4234 break;
4237 /* Attempts to use both MASK and BAS fields simultaneously are
4238 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4239 * thus generating a watchpoint for every byte in the masked region.
4241 mask = extract64(wcr, 24, 4);
4242 if (mask == 1 || mask == 2) {
4243 /* Reserved values of MASK; we must act as if the mask value was
4244 * some non-reserved value, or as if the watchpoint were disabled.
4245 * We choose the latter.
4247 return;
4248 } else if (mask) {
4249 /* Watchpoint covers an aligned area up to 2GB in size */
4250 len = 1ULL << mask;
4251 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4252 * whether the watchpoint fires when the unmasked bits match; we opt
4253 * to generate the exceptions.
4255 wvr &= ~(len - 1);
4256 } else {
4257 /* Watchpoint covers bytes defined by the byte address select bits */
4258 int bas = extract64(wcr, 5, 8);
4259 int basstart;
4261 if (bas == 0) {
4262 /* This must act as if the watchpoint is disabled */
4263 return;
4266 if (extract64(wvr, 2, 1)) {
4267 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4268 * ignored, and BAS[3:0] define which bytes to watch.
4270 bas &= 0xf;
4272 /* The BAS bits are supposed to be programmed to indicate a contiguous
4273 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4274 * we fire for each byte in the word/doubleword addressed by the WVR.
4275 * We choose to ignore any non-zero bits after the first range of 1s.
4277 basstart = ctz32(bas);
4278 len = cto32(bas >> basstart);
4279 wvr += basstart;
4282 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4283 &env->cpu_watchpoint[n]);
4286 void hw_watchpoint_update_all(ARMCPU *cpu)
4288 int i;
4289 CPUARMState *env = &cpu->env;
4291 /* Completely clear out existing QEMU watchpoints and our array, to
4292 * avoid possible stale entries following migration load.
4294 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4295 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4297 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4298 hw_watchpoint_update(cpu, i);
4302 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4303 uint64_t value)
4305 ARMCPU *cpu = arm_env_get_cpu(env);
4306 int i = ri->crm;
4308 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4309 * register reads and behaves as if values written are sign extended.
4310 * Bits [1:0] are RES0.
4312 value = sextract64(value, 0, 49) & ~3ULL;
4314 raw_write(env, ri, value);
4315 hw_watchpoint_update(cpu, i);
4318 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4319 uint64_t value)
4321 ARMCPU *cpu = arm_env_get_cpu(env);
4322 int i = ri->crm;
4324 raw_write(env, ri, value);
4325 hw_watchpoint_update(cpu, i);
4328 void hw_breakpoint_update(ARMCPU *cpu, int n)
4330 CPUARMState *env = &cpu->env;
4331 uint64_t bvr = env->cp15.dbgbvr[n];
4332 uint64_t bcr = env->cp15.dbgbcr[n];
4333 vaddr addr;
4334 int bt;
4335 int flags = BP_CPU;
4337 if (env->cpu_breakpoint[n]) {
4338 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4339 env->cpu_breakpoint[n] = NULL;
4342 if (!extract64(bcr, 0, 1)) {
4343 /* E bit clear : watchpoint disabled */
4344 return;
4347 bt = extract64(bcr, 20, 4);
4349 switch (bt) {
4350 case 4: /* unlinked address mismatch (reserved if AArch64) */
4351 case 5: /* linked address mismatch (reserved if AArch64) */
4352 qemu_log_mask(LOG_UNIMP,
4353 "arm: address mismatch breakpoint types not implemented");
4354 return;
4355 case 0: /* unlinked address match */
4356 case 1: /* linked address match */
4358 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4359 * we behave as if the register was sign extended. Bits [1:0] are
4360 * RES0. The BAS field is used to allow setting breakpoints on 16
4361 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4362 * a bp will fire if the addresses covered by the bp and the addresses
4363 * covered by the insn overlap but the insn doesn't start at the
4364 * start of the bp address range. We choose to require the insn and
4365 * the bp to have the same address. The constraints on writing to
4366 * BAS enforced in dbgbcr_write mean we have only four cases:
4367 * 0b0000 => no breakpoint
4368 * 0b0011 => breakpoint on addr
4369 * 0b1100 => breakpoint on addr + 2
4370 * 0b1111 => breakpoint on addr
4371 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4373 int bas = extract64(bcr, 5, 4);
4374 addr = sextract64(bvr, 0, 49) & ~3ULL;
4375 if (bas == 0) {
4376 return;
4378 if (bas == 0xc) {
4379 addr += 2;
4381 break;
4383 case 2: /* unlinked context ID match */
4384 case 8: /* unlinked VMID match (reserved if no EL2) */
4385 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4386 qemu_log_mask(LOG_UNIMP,
4387 "arm: unlinked context breakpoint types not implemented");
4388 return;
4389 case 9: /* linked VMID match (reserved if no EL2) */
4390 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4391 case 3: /* linked context ID match */
4392 default:
4393 /* We must generate no events for Linked context matches (unless
4394 * they are linked to by some other bp/wp, which is handled in
4395 * updates for the linking bp/wp). We choose to also generate no events
4396 * for reserved values.
4398 return;
4401 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4404 void hw_breakpoint_update_all(ARMCPU *cpu)
4406 int i;
4407 CPUARMState *env = &cpu->env;
4409 /* Completely clear out existing QEMU breakpoints and our array, to
4410 * avoid possible stale entries following migration load.
4412 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4413 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4415 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4416 hw_breakpoint_update(cpu, i);
4420 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4421 uint64_t value)
4423 ARMCPU *cpu = arm_env_get_cpu(env);
4424 int i = ri->crm;
4426 raw_write(env, ri, value);
4427 hw_breakpoint_update(cpu, i);
4430 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4431 uint64_t value)
4433 ARMCPU *cpu = arm_env_get_cpu(env);
4434 int i = ri->crm;
4436 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4437 * copy of BAS[0].
4439 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4440 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4442 raw_write(env, ri, value);
4443 hw_breakpoint_update(cpu, i);
4446 static void define_debug_regs(ARMCPU *cpu)
4448 /* Define v7 and v8 architectural debug registers.
4449 * These are just dummy implementations for now.
4451 int i;
4452 int wrps, brps, ctx_cmps;
4453 ARMCPRegInfo dbgdidr = {
4454 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4455 .access = PL0_R, .accessfn = access_tda,
4456 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4459 /* Note that all these register fields hold "number of Xs minus 1". */
4460 brps = extract32(cpu->dbgdidr, 24, 4);
4461 wrps = extract32(cpu->dbgdidr, 28, 4);
4462 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4464 assert(ctx_cmps <= brps);
4466 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4467 * of the debug registers such as number of breakpoints;
4468 * check that if they both exist then they agree.
4470 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4471 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4472 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4473 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4476 define_one_arm_cp_reg(cpu, &dbgdidr);
4477 define_arm_cp_regs(cpu, debug_cp_reginfo);
4479 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4480 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4483 for (i = 0; i < brps + 1; i++) {
4484 ARMCPRegInfo dbgregs[] = {
4485 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4486 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4487 .access = PL1_RW, .accessfn = access_tda,
4488 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4489 .writefn = dbgbvr_write, .raw_writefn = raw_write
4491 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4492 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4493 .access = PL1_RW, .accessfn = access_tda,
4494 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4495 .writefn = dbgbcr_write, .raw_writefn = raw_write
4497 REGINFO_SENTINEL
4499 define_arm_cp_regs(cpu, dbgregs);
4502 for (i = 0; i < wrps + 1; i++) {
4503 ARMCPRegInfo dbgregs[] = {
4504 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4505 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4506 .access = PL1_RW, .accessfn = access_tda,
4507 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4508 .writefn = dbgwvr_write, .raw_writefn = raw_write
4510 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4511 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4512 .access = PL1_RW, .accessfn = access_tda,
4513 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4514 .writefn = dbgwcr_write, .raw_writefn = raw_write
4516 REGINFO_SENTINEL
4518 define_arm_cp_regs(cpu, dbgregs);
4522 void register_cp_regs_for_features(ARMCPU *cpu)
4524 /* Register all the coprocessor registers based on feature bits */
4525 CPUARMState *env = &cpu->env;
4526 if (arm_feature(env, ARM_FEATURE_M)) {
4527 /* M profile has no coprocessor registers */
4528 return;
4531 define_arm_cp_regs(cpu, cp_reginfo);
4532 if (!arm_feature(env, ARM_FEATURE_V8)) {
4533 /* Must go early as it is full of wildcards that may be
4534 * overridden by later definitions.
4536 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4539 if (arm_feature(env, ARM_FEATURE_V6)) {
4540 /* The ID registers all have impdef reset values */
4541 ARMCPRegInfo v6_idregs[] = {
4542 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4544 .access = PL1_R, .type = ARM_CP_CONST,
4545 .resetvalue = cpu->id_pfr0 },
4546 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4548 .access = PL1_R, .type = ARM_CP_CONST,
4549 .resetvalue = cpu->id_pfr1 },
4550 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4552 .access = PL1_R, .type = ARM_CP_CONST,
4553 .resetvalue = cpu->id_dfr0 },
4554 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4556 .access = PL1_R, .type = ARM_CP_CONST,
4557 .resetvalue = cpu->id_afr0 },
4558 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4560 .access = PL1_R, .type = ARM_CP_CONST,
4561 .resetvalue = cpu->id_mmfr0 },
4562 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4564 .access = PL1_R, .type = ARM_CP_CONST,
4565 .resetvalue = cpu->id_mmfr1 },
4566 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4568 .access = PL1_R, .type = ARM_CP_CONST,
4569 .resetvalue = cpu->id_mmfr2 },
4570 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4572 .access = PL1_R, .type = ARM_CP_CONST,
4573 .resetvalue = cpu->id_mmfr3 },
4574 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4576 .access = PL1_R, .type = ARM_CP_CONST,
4577 .resetvalue = cpu->id_isar0 },
4578 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4580 .access = PL1_R, .type = ARM_CP_CONST,
4581 .resetvalue = cpu->id_isar1 },
4582 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4584 .access = PL1_R, .type = ARM_CP_CONST,
4585 .resetvalue = cpu->id_isar2 },
4586 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4588 .access = PL1_R, .type = ARM_CP_CONST,
4589 .resetvalue = cpu->id_isar3 },
4590 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4592 .access = PL1_R, .type = ARM_CP_CONST,
4593 .resetvalue = cpu->id_isar4 },
4594 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4596 .access = PL1_R, .type = ARM_CP_CONST,
4597 .resetvalue = cpu->id_isar5 },
4598 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4600 .access = PL1_R, .type = ARM_CP_CONST,
4601 .resetvalue = cpu->id_mmfr4 },
4602 /* 7 is as yet unallocated and must RAZ */
4603 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4605 .access = PL1_R, .type = ARM_CP_CONST,
4606 .resetvalue = 0 },
4607 REGINFO_SENTINEL
4609 define_arm_cp_regs(cpu, v6_idregs);
4610 define_arm_cp_regs(cpu, v6_cp_reginfo);
4611 } else {
4612 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4614 if (arm_feature(env, ARM_FEATURE_V6K)) {
4615 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4617 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4618 !arm_feature(env, ARM_FEATURE_MPU)) {
4619 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4621 if (arm_feature(env, ARM_FEATURE_V7)) {
4622 /* v7 performance monitor control register: same implementor
4623 * field as main ID register, and we implement only the cycle
4624 * count register.
4626 #ifndef CONFIG_USER_ONLY
4627 ARMCPRegInfo pmcr = {
4628 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4629 .access = PL0_RW,
4630 .type = ARM_CP_IO | ARM_CP_ALIAS,
4631 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4632 .accessfn = pmreg_access, .writefn = pmcr_write,
4633 .raw_writefn = raw_write,
4635 ARMCPRegInfo pmcr64 = {
4636 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4637 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4638 .access = PL0_RW, .accessfn = pmreg_access,
4639 .type = ARM_CP_IO,
4640 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4641 .resetvalue = cpu->midr & 0xff000000,
4642 .writefn = pmcr_write, .raw_writefn = raw_write,
4644 define_one_arm_cp_reg(cpu, &pmcr);
4645 define_one_arm_cp_reg(cpu, &pmcr64);
4646 #endif
4647 ARMCPRegInfo clidr = {
4648 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4649 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4650 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4652 define_one_arm_cp_reg(cpu, &clidr);
4653 define_arm_cp_regs(cpu, v7_cp_reginfo);
4654 define_debug_regs(cpu);
4655 } else {
4656 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4658 if (arm_feature(env, ARM_FEATURE_V8)) {
4659 /* AArch64 ID registers, which all have impdef reset values.
4660 * Note that within the ID register ranges the unused slots
4661 * must all RAZ, not UNDEF; future architecture versions may
4662 * define new registers here.
4664 ARMCPRegInfo v8_idregs[] = {
4665 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4667 .access = PL1_R, .type = ARM_CP_CONST,
4668 .resetvalue = cpu->id_aa64pfr0 },
4669 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4671 .access = PL1_R, .type = ARM_CP_CONST,
4672 .resetvalue = cpu->id_aa64pfr1},
4673 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4675 .access = PL1_R, .type = ARM_CP_CONST,
4676 .resetvalue = 0 },
4677 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4679 .access = PL1_R, .type = ARM_CP_CONST,
4680 .resetvalue = 0 },
4681 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4683 .access = PL1_R, .type = ARM_CP_CONST,
4684 .resetvalue = 0 },
4685 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4687 .access = PL1_R, .type = ARM_CP_CONST,
4688 .resetvalue = 0 },
4689 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4691 .access = PL1_R, .type = ARM_CP_CONST,
4692 .resetvalue = 0 },
4693 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4695 .access = PL1_R, .type = ARM_CP_CONST,
4696 .resetvalue = 0 },
4697 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4699 .access = PL1_R, .type = ARM_CP_CONST,
4700 .resetvalue = cpu->id_aa64dfr0 },
4701 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4703 .access = PL1_R, .type = ARM_CP_CONST,
4704 .resetvalue = cpu->id_aa64dfr1 },
4705 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4707 .access = PL1_R, .type = ARM_CP_CONST,
4708 .resetvalue = 0 },
4709 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4711 .access = PL1_R, .type = ARM_CP_CONST,
4712 .resetvalue = 0 },
4713 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4715 .access = PL1_R, .type = ARM_CP_CONST,
4716 .resetvalue = cpu->id_aa64afr0 },
4717 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4719 .access = PL1_R, .type = ARM_CP_CONST,
4720 .resetvalue = cpu->id_aa64afr1 },
4721 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4723 .access = PL1_R, .type = ARM_CP_CONST,
4724 .resetvalue = 0 },
4725 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4727 .access = PL1_R, .type = ARM_CP_CONST,
4728 .resetvalue = 0 },
4729 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4731 .access = PL1_R, .type = ARM_CP_CONST,
4732 .resetvalue = cpu->id_aa64isar0 },
4733 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4735 .access = PL1_R, .type = ARM_CP_CONST,
4736 .resetvalue = cpu->id_aa64isar1 },
4737 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4739 .access = PL1_R, .type = ARM_CP_CONST,
4740 .resetvalue = 0 },
4741 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4743 .access = PL1_R, .type = ARM_CP_CONST,
4744 .resetvalue = 0 },
4745 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4747 .access = PL1_R, .type = ARM_CP_CONST,
4748 .resetvalue = 0 },
4749 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4751 .access = PL1_R, .type = ARM_CP_CONST,
4752 .resetvalue = 0 },
4753 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4755 .access = PL1_R, .type = ARM_CP_CONST,
4756 .resetvalue = 0 },
4757 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4759 .access = PL1_R, .type = ARM_CP_CONST,
4760 .resetvalue = 0 },
4761 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4763 .access = PL1_R, .type = ARM_CP_CONST,
4764 .resetvalue = cpu->id_aa64mmfr0 },
4765 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4767 .access = PL1_R, .type = ARM_CP_CONST,
4768 .resetvalue = cpu->id_aa64mmfr1 },
4769 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4771 .access = PL1_R, .type = ARM_CP_CONST,
4772 .resetvalue = 0 },
4773 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4775 .access = PL1_R, .type = ARM_CP_CONST,
4776 .resetvalue = 0 },
4777 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4779 .access = PL1_R, .type = ARM_CP_CONST,
4780 .resetvalue = 0 },
4781 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4783 .access = PL1_R, .type = ARM_CP_CONST,
4784 .resetvalue = 0 },
4785 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4787 .access = PL1_R, .type = ARM_CP_CONST,
4788 .resetvalue = 0 },
4789 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4791 .access = PL1_R, .type = ARM_CP_CONST,
4792 .resetvalue = 0 },
4793 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4795 .access = PL1_R, .type = ARM_CP_CONST,
4796 .resetvalue = cpu->mvfr0 },
4797 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4799 .access = PL1_R, .type = ARM_CP_CONST,
4800 .resetvalue = cpu->mvfr1 },
4801 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4803 .access = PL1_R, .type = ARM_CP_CONST,
4804 .resetvalue = cpu->mvfr2 },
4805 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4807 .access = PL1_R, .type = ARM_CP_CONST,
4808 .resetvalue = 0 },
4809 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4811 .access = PL1_R, .type = ARM_CP_CONST,
4812 .resetvalue = 0 },
4813 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4815 .access = PL1_R, .type = ARM_CP_CONST,
4816 .resetvalue = 0 },
4817 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4819 .access = PL1_R, .type = ARM_CP_CONST,
4820 .resetvalue = 0 },
4821 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4823 .access = PL1_R, .type = ARM_CP_CONST,
4824 .resetvalue = 0 },
4825 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4826 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4827 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4828 .resetvalue = cpu->pmceid0 },
4829 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4830 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4831 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4832 .resetvalue = cpu->pmceid0 },
4833 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4834 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4835 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4836 .resetvalue = cpu->pmceid1 },
4837 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4839 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4840 .resetvalue = cpu->pmceid1 },
4841 REGINFO_SENTINEL
4843 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4844 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4845 !arm_feature(env, ARM_FEATURE_EL2)) {
4846 ARMCPRegInfo rvbar = {
4847 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4849 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4851 define_one_arm_cp_reg(cpu, &rvbar);
4853 define_arm_cp_regs(cpu, v8_idregs);
4854 define_arm_cp_regs(cpu, v8_cp_reginfo);
4856 if (arm_feature(env, ARM_FEATURE_EL2)) {
4857 uint64_t vmpidr_def = mpidr_read_val(env);
4858 ARMCPRegInfo vpidr_regs[] = {
4859 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4860 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4861 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4862 .resetvalue = cpu->midr,
4863 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4864 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4865 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4866 .access = PL2_RW, .resetvalue = cpu->midr,
4867 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4868 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4869 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4870 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4871 .resetvalue = vmpidr_def,
4872 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4873 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4874 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4875 .access = PL2_RW,
4876 .resetvalue = vmpidr_def,
4877 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4878 REGINFO_SENTINEL
4880 define_arm_cp_regs(cpu, vpidr_regs);
4881 define_arm_cp_regs(cpu, el2_cp_reginfo);
4882 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4883 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4884 ARMCPRegInfo rvbar = {
4885 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4886 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4887 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4889 define_one_arm_cp_reg(cpu, &rvbar);
4891 } else {
4892 /* If EL2 is missing but higher ELs are enabled, we need to
4893 * register the no_el2 reginfos.
4895 if (arm_feature(env, ARM_FEATURE_EL3)) {
4896 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4897 * of MIDR_EL1 and MPIDR_EL1.
4899 ARMCPRegInfo vpidr_regs[] = {
4900 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4901 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4902 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4903 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4904 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4905 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4906 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4907 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4908 .type = ARM_CP_NO_RAW,
4909 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4910 REGINFO_SENTINEL
4912 define_arm_cp_regs(cpu, vpidr_regs);
4913 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4916 if (arm_feature(env, ARM_FEATURE_EL3)) {
4917 define_arm_cp_regs(cpu, el3_cp_reginfo);
4918 ARMCPRegInfo el3_regs[] = {
4919 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4920 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4921 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4922 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4923 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4924 .access = PL3_RW,
4925 .raw_writefn = raw_write, .writefn = sctlr_write,
4926 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4927 .resetvalue = cpu->reset_sctlr },
4928 REGINFO_SENTINEL
4931 define_arm_cp_regs(cpu, el3_regs);
4933 /* The behaviour of NSACR is sufficiently various that we don't
4934 * try to describe it in a single reginfo:
4935 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4936 * reads as constant 0xc00 from NS EL1 and NS EL2
4937 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4938 * if v7 without EL3, register doesn't exist
4939 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4941 if (arm_feature(env, ARM_FEATURE_EL3)) {
4942 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4943 ARMCPRegInfo nsacr = {
4944 .name = "NSACR", .type = ARM_CP_CONST,
4945 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4946 .access = PL1_RW, .accessfn = nsacr_access,
4947 .resetvalue = 0xc00
4949 define_one_arm_cp_reg(cpu, &nsacr);
4950 } else {
4951 ARMCPRegInfo nsacr = {
4952 .name = "NSACR",
4953 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4954 .access = PL3_RW | PL1_R,
4955 .resetvalue = 0,
4956 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4958 define_one_arm_cp_reg(cpu, &nsacr);
4960 } else {
4961 if (arm_feature(env, ARM_FEATURE_V8)) {
4962 ARMCPRegInfo nsacr = {
4963 .name = "NSACR", .type = ARM_CP_CONST,
4964 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4965 .access = PL1_R,
4966 .resetvalue = 0xc00
4968 define_one_arm_cp_reg(cpu, &nsacr);
4972 if (arm_feature(env, ARM_FEATURE_MPU)) {
4973 if (arm_feature(env, ARM_FEATURE_V6)) {
4974 /* PMSAv6 not implemented */
4975 assert(arm_feature(env, ARM_FEATURE_V7));
4976 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4977 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4978 } else {
4979 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4981 } else {
4982 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4983 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4985 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4986 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4988 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4989 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4991 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4992 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4994 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4995 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4997 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4998 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5000 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5001 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5003 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5004 define_arm_cp_regs(cpu, omap_cp_reginfo);
5006 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5007 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5009 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5010 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5012 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5013 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5015 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5016 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5018 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5019 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5020 * be read-only (ie write causes UNDEF exception).
5023 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5024 /* Pre-v8 MIDR space.
5025 * Note that the MIDR isn't a simple constant register because
5026 * of the TI925 behaviour where writes to another register can
5027 * cause the MIDR value to change.
5029 * Unimplemented registers in the c15 0 0 0 space default to
5030 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5031 * and friends override accordingly.
5033 { .name = "MIDR",
5034 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5035 .access = PL1_R, .resetvalue = cpu->midr,
5036 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5037 .readfn = midr_read,
5038 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5039 .type = ARM_CP_OVERRIDE },
5040 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5041 { .name = "DUMMY",
5042 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5043 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5044 { .name = "DUMMY",
5045 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5046 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5047 { .name = "DUMMY",
5048 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5049 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5050 { .name = "DUMMY",
5051 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5052 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5053 { .name = "DUMMY",
5054 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5055 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5056 REGINFO_SENTINEL
5058 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5059 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5061 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5062 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5063 .readfn = midr_read },
5064 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5065 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5066 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5067 .access = PL1_R, .resetvalue = cpu->midr },
5068 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5069 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5070 .access = PL1_R, .resetvalue = cpu->midr },
5071 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5072 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5073 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5074 REGINFO_SENTINEL
5076 ARMCPRegInfo id_cp_reginfo[] = {
5077 /* These are common to v8 and pre-v8 */
5078 { .name = "CTR",
5079 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5080 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5081 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5082 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5083 .access = PL0_R, .accessfn = ctr_el0_access,
5084 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5085 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5086 { .name = "TCMTR",
5087 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5088 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5089 REGINFO_SENTINEL
5091 /* TLBTR is specific to VMSA */
5092 ARMCPRegInfo id_tlbtr_reginfo = {
5093 .name = "TLBTR",
5094 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5097 /* MPUIR is specific to PMSA V6+ */
5098 ARMCPRegInfo id_mpuir_reginfo = {
5099 .name = "MPUIR",
5100 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5101 .access = PL1_R, .type = ARM_CP_CONST,
5102 .resetvalue = cpu->pmsav7_dregion << 8
5104 ARMCPRegInfo crn0_wi_reginfo = {
5105 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5106 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5107 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5109 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5110 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5111 ARMCPRegInfo *r;
5112 /* Register the blanket "writes ignored" value first to cover the
5113 * whole space. Then update the specific ID registers to allow write
5114 * access, so that they ignore writes rather than causing them to
5115 * UNDEF.
5117 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5118 for (r = id_pre_v8_midr_cp_reginfo;
5119 r->type != ARM_CP_SENTINEL; r++) {
5120 r->access = PL1_RW;
5122 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5123 r->access = PL1_RW;
5125 id_tlbtr_reginfo.access = PL1_RW;
5126 id_tlbtr_reginfo.access = PL1_RW;
5128 if (arm_feature(env, ARM_FEATURE_V8)) {
5129 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5130 } else {
5131 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5133 define_arm_cp_regs(cpu, id_cp_reginfo);
5134 if (!arm_feature(env, ARM_FEATURE_MPU)) {
5135 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5136 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5137 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5141 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5142 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5145 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5146 ARMCPRegInfo auxcr_reginfo[] = {
5147 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5148 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5149 .access = PL1_RW, .type = ARM_CP_CONST,
5150 .resetvalue = cpu->reset_auxcr },
5151 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5153 .access = PL2_RW, .type = ARM_CP_CONST,
5154 .resetvalue = 0 },
5155 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5156 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5157 .access = PL3_RW, .type = ARM_CP_CONST,
5158 .resetvalue = 0 },
5159 REGINFO_SENTINEL
5161 define_arm_cp_regs(cpu, auxcr_reginfo);
5164 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5165 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5166 /* 32 bit view is [31:18] 0...0 [43:32]. */
5167 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5168 | extract64(cpu->reset_cbar, 32, 12);
5169 ARMCPRegInfo cbar_reginfo[] = {
5170 { .name = "CBAR",
5171 .type = ARM_CP_CONST,
5172 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5173 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5174 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5175 .type = ARM_CP_CONST,
5176 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5177 .access = PL1_R, .resetvalue = cbar32 },
5178 REGINFO_SENTINEL
5180 /* We don't implement a r/w 64 bit CBAR currently */
5181 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5182 define_arm_cp_regs(cpu, cbar_reginfo);
5183 } else {
5184 ARMCPRegInfo cbar = {
5185 .name = "CBAR",
5186 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5187 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5188 .fieldoffset = offsetof(CPUARMState,
5189 cp15.c15_config_base_address)
5191 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5192 cbar.access = PL1_R;
5193 cbar.fieldoffset = 0;
5194 cbar.type = ARM_CP_CONST;
5196 define_one_arm_cp_reg(cpu, &cbar);
5200 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5201 ARMCPRegInfo vbar_cp_reginfo[] = {
5202 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5203 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5204 .access = PL1_RW, .writefn = vbar_write,
5205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5206 offsetof(CPUARMState, cp15.vbar_ns) },
5207 .resetvalue = 0 },
5208 REGINFO_SENTINEL
5210 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5213 /* Generic registers whose values depend on the implementation */
5215 ARMCPRegInfo sctlr = {
5216 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5217 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5218 .access = PL1_RW,
5219 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5220 offsetof(CPUARMState, cp15.sctlr_ns) },
5221 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5222 .raw_writefn = raw_write,
5224 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5225 /* Normally we would always end the TB on an SCTLR write, but Linux
5226 * arch/arm/mach-pxa/sleep.S expects two instructions following
5227 * an MMU enable to execute from cache. Imitate this behaviour.
5229 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5231 define_one_arm_cp_reg(cpu, &sctlr);
5235 ARMCPU *cpu_arm_init(const char *cpu_model)
5237 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5240 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5242 CPUState *cs = CPU(cpu);
5243 CPUARMState *env = &cpu->env;
5245 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5246 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5247 aarch64_fpu_gdb_set_reg,
5248 34, "aarch64-fpu.xml", 0);
5249 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5250 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5251 51, "arm-neon.xml", 0);
5252 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5253 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5254 35, "arm-vfp3.xml", 0);
5255 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5256 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5257 19, "arm-vfp.xml", 0);
5261 /* Sort alphabetically by type name, except for "any". */
5262 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5264 ObjectClass *class_a = (ObjectClass *)a;
5265 ObjectClass *class_b = (ObjectClass *)b;
5266 const char *name_a, *name_b;
5268 name_a = object_class_get_name(class_a);
5269 name_b = object_class_get_name(class_b);
5270 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5271 return 1;
5272 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5273 return -1;
5274 } else {
5275 return strcmp(name_a, name_b);
5279 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5281 ObjectClass *oc = data;
5282 CPUListState *s = user_data;
5283 const char *typename;
5284 char *name;
5286 typename = object_class_get_name(oc);
5287 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5288 (*s->cpu_fprintf)(s->file, " %s\n",
5289 name);
5290 g_free(name);
5293 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5295 CPUListState s = {
5296 .file = f,
5297 .cpu_fprintf = cpu_fprintf,
5299 GSList *list;
5301 list = object_class_get_list(TYPE_ARM_CPU, false);
5302 list = g_slist_sort(list, arm_cpu_list_compare);
5303 (*cpu_fprintf)(f, "Available CPUs:\n");
5304 g_slist_foreach(list, arm_cpu_list_entry, &s);
5305 g_slist_free(list);
5306 #ifdef CONFIG_KVM
5307 /* The 'host' CPU type is dynamically registered only if KVM is
5308 * enabled, so we have to special-case it here:
5310 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5311 #endif
5314 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5316 ObjectClass *oc = data;
5317 CpuDefinitionInfoList **cpu_list = user_data;
5318 CpuDefinitionInfoList *entry;
5319 CpuDefinitionInfo *info;
5320 const char *typename;
5322 typename = object_class_get_name(oc);
5323 info = g_malloc0(sizeof(*info));
5324 info->name = g_strndup(typename,
5325 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5326 info->q_typename = g_strdup(typename);
5328 entry = g_malloc0(sizeof(*entry));
5329 entry->value = info;
5330 entry->next = *cpu_list;
5331 *cpu_list = entry;
5334 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5336 CpuDefinitionInfoList *cpu_list = NULL;
5337 GSList *list;
5339 list = object_class_get_list(TYPE_ARM_CPU, false);
5340 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5341 g_slist_free(list);
5343 return cpu_list;
5346 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5347 void *opaque, int state, int secstate,
5348 int crm, int opc1, int opc2)
5350 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5351 * add a single reginfo struct to the hash table.
5353 uint32_t *key = g_new(uint32_t, 1);
5354 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5355 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5356 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5358 /* Reset the secure state to the specific incoming state. This is
5359 * necessary as the register may have been defined with both states.
5361 r2->secure = secstate;
5363 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5364 /* Register is banked (using both entries in array).
5365 * Overwriting fieldoffset as the array is only used to define
5366 * banked registers but later only fieldoffset is used.
5368 r2->fieldoffset = r->bank_fieldoffsets[ns];
5371 if (state == ARM_CP_STATE_AA32) {
5372 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5373 /* If the register is banked then we don't need to migrate or
5374 * reset the 32-bit instance in certain cases:
5376 * 1) If the register has both 32-bit and 64-bit instances then we
5377 * can count on the 64-bit instance taking care of the
5378 * non-secure bank.
5379 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5380 * taking care of the secure bank. This requires that separate
5381 * 32 and 64-bit definitions are provided.
5383 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5384 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5385 r2->type |= ARM_CP_ALIAS;
5387 } else if ((secstate != r->secure) && !ns) {
5388 /* The register is not banked so we only want to allow migration of
5389 * the non-secure instance.
5391 r2->type |= ARM_CP_ALIAS;
5394 if (r->state == ARM_CP_STATE_BOTH) {
5395 /* We assume it is a cp15 register if the .cp field is left unset.
5397 if (r2->cp == 0) {
5398 r2->cp = 15;
5401 #ifdef HOST_WORDS_BIGENDIAN
5402 if (r2->fieldoffset) {
5403 r2->fieldoffset += sizeof(uint32_t);
5405 #endif
5408 if (state == ARM_CP_STATE_AA64) {
5409 /* To allow abbreviation of ARMCPRegInfo
5410 * definitions, we treat cp == 0 as equivalent to
5411 * the value for "standard guest-visible sysreg".
5412 * STATE_BOTH definitions are also always "standard
5413 * sysreg" in their AArch64 view (the .cp value may
5414 * be non-zero for the benefit of the AArch32 view).
5416 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5417 r2->cp = CP_REG_ARM64_SYSREG_CP;
5419 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5420 r2->opc0, opc1, opc2);
5421 } else {
5422 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5424 if (opaque) {
5425 r2->opaque = opaque;
5427 /* reginfo passed to helpers is correct for the actual access,
5428 * and is never ARM_CP_STATE_BOTH:
5430 r2->state = state;
5431 /* Make sure reginfo passed to helpers for wildcarded regs
5432 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5434 r2->crm = crm;
5435 r2->opc1 = opc1;
5436 r2->opc2 = opc2;
5437 /* By convention, for wildcarded registers only the first
5438 * entry is used for migration; the others are marked as
5439 * ALIAS so we don't try to transfer the register
5440 * multiple times. Special registers (ie NOP/WFI) are
5441 * never migratable and not even raw-accessible.
5443 if ((r->type & ARM_CP_SPECIAL)) {
5444 r2->type |= ARM_CP_NO_RAW;
5446 if (((r->crm == CP_ANY) && crm != 0) ||
5447 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5448 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5449 r2->type |= ARM_CP_ALIAS;
5452 /* Check that raw accesses are either forbidden or handled. Note that
5453 * we can't assert this earlier because the setup of fieldoffset for
5454 * banked registers has to be done first.
5456 if (!(r2->type & ARM_CP_NO_RAW)) {
5457 assert(!raw_accessors_invalid(r2));
5460 /* Overriding of an existing definition must be explicitly
5461 * requested.
5463 if (!(r->type & ARM_CP_OVERRIDE)) {
5464 ARMCPRegInfo *oldreg;
5465 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5466 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5467 fprintf(stderr, "Register redefined: cp=%d %d bit "
5468 "crn=%d crm=%d opc1=%d opc2=%d, "
5469 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5470 r2->crn, r2->crm, r2->opc1, r2->opc2,
5471 oldreg->name, r2->name);
5472 g_assert_not_reached();
5475 g_hash_table_insert(cpu->cp_regs, key, r2);
5479 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5480 const ARMCPRegInfo *r, void *opaque)
5482 /* Define implementations of coprocessor registers.
5483 * We store these in a hashtable because typically
5484 * there are less than 150 registers in a space which
5485 * is 16*16*16*8*8 = 262144 in size.
5486 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5487 * If a register is defined twice then the second definition is
5488 * used, so this can be used to define some generic registers and
5489 * then override them with implementation specific variations.
5490 * At least one of the original and the second definition should
5491 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5492 * against accidental use.
5494 * The state field defines whether the register is to be
5495 * visible in the AArch32 or AArch64 execution state. If the
5496 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5497 * reginfo structure for the AArch32 view, which sees the lower
5498 * 32 bits of the 64 bit register.
5500 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5501 * be wildcarded. AArch64 registers are always considered to be 64
5502 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5503 * the register, if any.
5505 int crm, opc1, opc2, state;
5506 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5507 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5508 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5509 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5510 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5511 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5512 /* 64 bit registers have only CRm and Opc1 fields */
5513 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5514 /* op0 only exists in the AArch64 encodings */
5515 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5516 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5517 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5518 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5519 * encodes a minimum access level for the register. We roll this
5520 * runtime check into our general permission check code, so check
5521 * here that the reginfo's specified permissions are strict enough
5522 * to encompass the generic architectural permission check.
5524 if (r->state != ARM_CP_STATE_AA32) {
5525 int mask = 0;
5526 switch (r->opc1) {
5527 case 0: case 1: case 2:
5528 /* min_EL EL1 */
5529 mask = PL1_RW;
5530 break;
5531 case 3:
5532 /* min_EL EL0 */
5533 mask = PL0_RW;
5534 break;
5535 case 4:
5536 /* min_EL EL2 */
5537 mask = PL2_RW;
5538 break;
5539 case 5:
5540 /* unallocated encoding, so not possible */
5541 assert(false);
5542 break;
5543 case 6:
5544 /* min_EL EL3 */
5545 mask = PL3_RW;
5546 break;
5547 case 7:
5548 /* min_EL EL1, secure mode only (we don't check the latter) */
5549 mask = PL1_RW;
5550 break;
5551 default:
5552 /* broken reginfo with out-of-range opc1 */
5553 assert(false);
5554 break;
5556 /* assert our permissions are not too lax (stricter is fine) */
5557 assert((r->access & ~mask) == 0);
5560 /* Check that the register definition has enough info to handle
5561 * reads and writes if they are permitted.
5563 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5564 if (r->access & PL3_R) {
5565 assert((r->fieldoffset ||
5566 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5567 r->readfn);
5569 if (r->access & PL3_W) {
5570 assert((r->fieldoffset ||
5571 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5572 r->writefn);
5575 /* Bad type field probably means missing sentinel at end of reg list */
5576 assert(cptype_valid(r->type));
5577 for (crm = crmmin; crm <= crmmax; crm++) {
5578 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5579 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5580 for (state = ARM_CP_STATE_AA32;
5581 state <= ARM_CP_STATE_AA64; state++) {
5582 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5583 continue;
5585 if (state == ARM_CP_STATE_AA32) {
5586 /* Under AArch32 CP registers can be common
5587 * (same for secure and non-secure world) or banked.
5589 switch (r->secure) {
5590 case ARM_CP_SECSTATE_S:
5591 case ARM_CP_SECSTATE_NS:
5592 add_cpreg_to_hashtable(cpu, r, opaque, state,
5593 r->secure, crm, opc1, opc2);
5594 break;
5595 default:
5596 add_cpreg_to_hashtable(cpu, r, opaque, state,
5597 ARM_CP_SECSTATE_S,
5598 crm, opc1, opc2);
5599 add_cpreg_to_hashtable(cpu, r, opaque, state,
5600 ARM_CP_SECSTATE_NS,
5601 crm, opc1, opc2);
5602 break;
5604 } else {
5605 /* AArch64 registers get mapped to non-secure instance
5606 * of AArch32 */
5607 add_cpreg_to_hashtable(cpu, r, opaque, state,
5608 ARM_CP_SECSTATE_NS,
5609 crm, opc1, opc2);
5617 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5618 const ARMCPRegInfo *regs, void *opaque)
5620 /* Define a whole list of registers */
5621 const ARMCPRegInfo *r;
5622 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5623 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5627 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5629 return g_hash_table_lookup(cpregs, &encoded_cp);
5632 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5633 uint64_t value)
5635 /* Helper coprocessor write function for write-ignore registers */
5638 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5640 /* Helper coprocessor write function for read-as-zero registers */
5641 return 0;
5644 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5646 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5649 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5651 /* Return true if it is not valid for us to switch to
5652 * this CPU mode (ie all the UNPREDICTABLE cases in
5653 * the ARM ARM CPSRWriteByInstr pseudocode).
5656 /* Changes to or from Hyp via MSR and CPS are illegal. */
5657 if (write_type == CPSRWriteByInstr &&
5658 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5659 mode == ARM_CPU_MODE_HYP)) {
5660 return 1;
5663 switch (mode) {
5664 case ARM_CPU_MODE_USR:
5665 return 0;
5666 case ARM_CPU_MODE_SYS:
5667 case ARM_CPU_MODE_SVC:
5668 case ARM_CPU_MODE_ABT:
5669 case ARM_CPU_MODE_UND:
5670 case ARM_CPU_MODE_IRQ:
5671 case ARM_CPU_MODE_FIQ:
5672 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5673 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5675 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5676 * and CPS are treated as illegal mode changes.
5678 if (write_type == CPSRWriteByInstr &&
5679 (env->cp15.hcr_el2 & HCR_TGE) &&
5680 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5681 !arm_is_secure_below_el3(env)) {
5682 return 1;
5684 return 0;
5685 case ARM_CPU_MODE_HYP:
5686 return !arm_feature(env, ARM_FEATURE_EL2)
5687 || arm_current_el(env) < 2 || arm_is_secure(env);
5688 case ARM_CPU_MODE_MON:
5689 return arm_current_el(env) < 3;
5690 default:
5691 return 1;
5695 uint32_t cpsr_read(CPUARMState *env)
5697 int ZF;
5698 ZF = (env->ZF == 0);
5699 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5700 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5701 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5702 | ((env->condexec_bits & 0xfc) << 8)
5703 | (env->GE << 16) | (env->daif & CPSR_AIF);
5706 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5707 CPSRWriteType write_type)
5709 uint32_t changed_daif;
5711 if (mask & CPSR_NZCV) {
5712 env->ZF = (~val) & CPSR_Z;
5713 env->NF = val;
5714 env->CF = (val >> 29) & 1;
5715 env->VF = (val << 3) & 0x80000000;
5717 if (mask & CPSR_Q)
5718 env->QF = ((val & CPSR_Q) != 0);
5719 if (mask & CPSR_T)
5720 env->thumb = ((val & CPSR_T) != 0);
5721 if (mask & CPSR_IT_0_1) {
5722 env->condexec_bits &= ~3;
5723 env->condexec_bits |= (val >> 25) & 3;
5725 if (mask & CPSR_IT_2_7) {
5726 env->condexec_bits &= 3;
5727 env->condexec_bits |= (val >> 8) & 0xfc;
5729 if (mask & CPSR_GE) {
5730 env->GE = (val >> 16) & 0xf;
5733 /* In a V7 implementation that includes the security extensions but does
5734 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5735 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5736 * bits respectively.
5738 * In a V8 implementation, it is permitted for privileged software to
5739 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5741 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5742 arm_feature(env, ARM_FEATURE_EL3) &&
5743 !arm_feature(env, ARM_FEATURE_EL2) &&
5744 !arm_is_secure(env)) {
5746 changed_daif = (env->daif ^ val) & mask;
5748 if (changed_daif & CPSR_A) {
5749 /* Check to see if we are allowed to change the masking of async
5750 * abort exceptions from a non-secure state.
5752 if (!(env->cp15.scr_el3 & SCR_AW)) {
5753 qemu_log_mask(LOG_GUEST_ERROR,
5754 "Ignoring attempt to switch CPSR_A flag from "
5755 "non-secure world with SCR.AW bit clear\n");
5756 mask &= ~CPSR_A;
5760 if (changed_daif & CPSR_F) {
5761 /* Check to see if we are allowed to change the masking of FIQ
5762 * exceptions from a non-secure state.
5764 if (!(env->cp15.scr_el3 & SCR_FW)) {
5765 qemu_log_mask(LOG_GUEST_ERROR,
5766 "Ignoring attempt to switch CPSR_F flag from "
5767 "non-secure world with SCR.FW bit clear\n");
5768 mask &= ~CPSR_F;
5771 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5772 * If this bit is set software is not allowed to mask
5773 * FIQs, but is allowed to set CPSR_F to 0.
5775 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5776 (val & CPSR_F)) {
5777 qemu_log_mask(LOG_GUEST_ERROR,
5778 "Ignoring attempt to enable CPSR_F flag "
5779 "(non-maskable FIQ [NMFI] support enabled)\n");
5780 mask &= ~CPSR_F;
5785 env->daif &= ~(CPSR_AIF & mask);
5786 env->daif |= val & CPSR_AIF & mask;
5788 if (write_type != CPSRWriteRaw &&
5789 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5790 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5791 /* Note that we can only get here in USR mode if this is a
5792 * gdb stub write; for this case we follow the architectural
5793 * behaviour for guest writes in USR mode of ignoring an attempt
5794 * to switch mode. (Those are caught by translate.c for writes
5795 * triggered by guest instructions.)
5797 mask &= ~CPSR_M;
5798 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5799 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5800 * v7, and has defined behaviour in v8:
5801 * + leave CPSR.M untouched
5802 * + allow changes to the other CPSR fields
5803 * + set PSTATE.IL
5804 * For user changes via the GDB stub, we don't set PSTATE.IL,
5805 * as this would be unnecessarily harsh for a user error.
5807 mask &= ~CPSR_M;
5808 if (write_type != CPSRWriteByGDBStub &&
5809 arm_feature(env, ARM_FEATURE_V8)) {
5810 mask |= CPSR_IL;
5811 val |= CPSR_IL;
5813 } else {
5814 switch_mode(env, val & CPSR_M);
5817 mask &= ~CACHED_CPSR_BITS;
5818 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5821 /* Sign/zero extend */
5822 uint32_t HELPER(sxtb16)(uint32_t x)
5824 uint32_t res;
5825 res = (uint16_t)(int8_t)x;
5826 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5827 return res;
5830 uint32_t HELPER(uxtb16)(uint32_t x)
5832 uint32_t res;
5833 res = (uint16_t)(uint8_t)x;
5834 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5835 return res;
5838 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5840 if (den == 0)
5841 return 0;
5842 if (num == INT_MIN && den == -1)
5843 return INT_MIN;
5844 return num / den;
5847 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5849 if (den == 0)
5850 return 0;
5851 return num / den;
5854 uint32_t HELPER(rbit)(uint32_t x)
5856 return revbit32(x);
5859 #if defined(CONFIG_USER_ONLY)
5861 /* These should probably raise undefined insn exceptions. */
5862 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5864 ARMCPU *cpu = arm_env_get_cpu(env);
5866 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5869 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5871 ARMCPU *cpu = arm_env_get_cpu(env);
5873 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5874 return 0;
5877 void switch_mode(CPUARMState *env, int mode)
5879 ARMCPU *cpu = arm_env_get_cpu(env);
5881 if (mode != ARM_CPU_MODE_USR) {
5882 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5886 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5887 uint32_t cur_el, bool secure)
5889 return 1;
5892 void aarch64_sync_64_to_32(CPUARMState *env)
5894 g_assert_not_reached();
5897 #else
5899 void switch_mode(CPUARMState *env, int mode)
5901 int old_mode;
5902 int i;
5904 old_mode = env->uncached_cpsr & CPSR_M;
5905 if (mode == old_mode)
5906 return;
5908 if (old_mode == ARM_CPU_MODE_FIQ) {
5909 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5910 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5911 } else if (mode == ARM_CPU_MODE_FIQ) {
5912 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5913 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5916 i = bank_number(old_mode);
5917 env->banked_r13[i] = env->regs[13];
5918 env->banked_r14[i] = env->regs[14];
5919 env->banked_spsr[i] = env->spsr;
5921 i = bank_number(mode);
5922 env->regs[13] = env->banked_r13[i];
5923 env->regs[14] = env->banked_r14[i];
5924 env->spsr = env->banked_spsr[i];
5927 /* Physical Interrupt Target EL Lookup Table
5929 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5931 * The below multi-dimensional table is used for looking up the target
5932 * exception level given numerous condition criteria. Specifically, the
5933 * target EL is based on SCR and HCR routing controls as well as the
5934 * currently executing EL and secure state.
5936 * Dimensions:
5937 * target_el_table[2][2][2][2][2][4]
5938 * | | | | | +--- Current EL
5939 * | | | | +------ Non-secure(0)/Secure(1)
5940 * | | | +--------- HCR mask override
5941 * | | +------------ SCR exec state control
5942 * | +--------------- SCR mask override
5943 * +------------------ 32-bit(0)/64-bit(1) EL3
5945 * The table values are as such:
5946 * 0-3 = EL0-EL3
5947 * -1 = Cannot occur
5949 * The ARM ARM target EL table includes entries indicating that an "exception
5950 * is not taken". The two cases where this is applicable are:
5951 * 1) An exception is taken from EL3 but the SCR does not have the exception
5952 * routed to EL3.
5953 * 2) An exception is taken from EL2 but the HCR does not have the exception
5954 * routed to EL2.
5955 * In these two cases, the below table contain a target of EL1. This value is
5956 * returned as it is expected that the consumer of the table data will check
5957 * for "target EL >= current EL" to ensure the exception is not taken.
5959 * SCR HCR
5960 * 64 EA AMO From
5961 * BIT IRQ IMO Non-secure Secure
5962 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5964 static const int8_t target_el_table[2][2][2][2][2][4] = {
5965 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5966 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5967 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5968 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5969 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5970 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5971 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5972 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5973 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5974 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5975 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5976 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5977 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5978 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5979 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5980 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5984 * Determine the target EL for physical exceptions
5986 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5987 uint32_t cur_el, bool secure)
5989 CPUARMState *env = cs->env_ptr;
5990 int rw;
5991 int scr;
5992 int hcr;
5993 int target_el;
5994 /* Is the highest EL AArch64? */
5995 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5997 if (arm_feature(env, ARM_FEATURE_EL3)) {
5998 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5999 } else {
6000 /* Either EL2 is the highest EL (and so the EL2 register width
6001 * is given by is64); or there is no EL2 or EL3, in which case
6002 * the value of 'rw' does not affect the table lookup anyway.
6004 rw = is64;
6007 switch (excp_idx) {
6008 case EXCP_IRQ:
6009 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6010 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6011 break;
6012 case EXCP_FIQ:
6013 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6014 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6015 break;
6016 default:
6017 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6018 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6019 break;
6022 /* If HCR.TGE is set then HCR is treated as being 1 */
6023 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6025 /* Perform a table-lookup for the target EL given the current state */
6026 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6028 assert(target_el > 0);
6030 return target_el;
6033 static void v7m_push(CPUARMState *env, uint32_t val)
6035 CPUState *cs = CPU(arm_env_get_cpu(env));
6037 env->regs[13] -= 4;
6038 stl_phys(cs->as, env->regs[13], val);
6041 static uint32_t v7m_pop(CPUARMState *env)
6043 CPUState *cs = CPU(arm_env_get_cpu(env));
6044 uint32_t val;
6046 val = ldl_phys(cs->as, env->regs[13]);
6047 env->regs[13] += 4;
6048 return val;
6051 /* Switch to V7M main or process stack pointer. */
6052 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
6054 uint32_t tmp;
6055 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
6057 if (old_spsel != new_spsel) {
6058 tmp = env->v7m.other_sp;
6059 env->v7m.other_sp = env->regs[13];
6060 env->regs[13] = tmp;
6062 env->v7m.control = deposit32(env->v7m.control,
6063 R_V7M_CONTROL_SPSEL_SHIFT,
6064 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6068 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6070 CPUState *cs = CPU(cpu);
6071 CPUARMState *env = &cpu->env;
6072 MemTxResult result;
6073 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6074 uint32_t addr;
6076 addr = address_space_ldl(cs->as, vec,
6077 MEMTXATTRS_UNSPECIFIED, &result);
6078 if (result != MEMTX_OK) {
6079 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6080 * which would then be immediately followed by our failing to load
6081 * the entry vector for that HardFault, which is a Lockup case.
6082 * Since we don't model Lockup, we just report this guest error
6083 * via cpu_abort().
6085 cpu_abort(cs, "Failed to read from exception vector table "
6086 "entry %08x\n", (unsigned)vec);
6088 return addr;
6091 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6093 /* Do the "take the exception" parts of exception entry,
6094 * but not the pushing of state to the stack. This is
6095 * similar to the pseudocode ExceptionTaken() function.
6097 CPUARMState *env = &cpu->env;
6098 uint32_t addr;
6100 armv7m_nvic_acknowledge_irq(env->nvic);
6101 switch_v7m_sp(env, 0);
6102 /* Clear IT bits */
6103 env->condexec_bits = 0;
6104 env->regs[14] = lr;
6105 addr = arm_v7m_load_vector(cpu);
6106 env->regs[15] = addr & 0xfffffffe;
6107 env->thumb = addr & 1;
6110 static void v7m_push_stack(ARMCPU *cpu)
6112 /* Do the "set up stack frame" part of exception entry,
6113 * similar to pseudocode PushStack().
6115 CPUARMState *env = &cpu->env;
6116 uint32_t xpsr = xpsr_read(env);
6118 /* Align stack pointer if the guest wants that */
6119 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6120 env->regs[13] -= 4;
6121 xpsr |= 0x200;
6123 /* Switch to the handler mode. */
6124 v7m_push(env, xpsr);
6125 v7m_push(env, env->regs[15]);
6126 v7m_push(env, env->regs[14]);
6127 v7m_push(env, env->regs[12]);
6128 v7m_push(env, env->regs[3]);
6129 v7m_push(env, env->regs[2]);
6130 v7m_push(env, env->regs[1]);
6131 v7m_push(env, env->regs[0]);
6134 static void do_v7m_exception_exit(ARMCPU *cpu)
6136 CPUARMState *env = &cpu->env;
6137 uint32_t type;
6138 uint32_t xpsr;
6139 bool ufault = false;
6140 bool return_to_sp_process = false;
6141 bool return_to_handler = false;
6142 bool rettobase = false;
6144 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6145 * arm_v7m_do_unassigned_access() enforces the architectural rule
6146 * that jumps to magic addresses don't have magic behaviour unless
6147 * we're in Handler mode (compare pseudocode BXWritePC()).
6149 assert(env->v7m.exception != 0);
6151 /* In the spec pseudocode ExceptionReturn() is called directly
6152 * from BXWritePC() and gets the full target PC value including
6153 * bit zero. In QEMU's implementation we treat it as a normal
6154 * jump-to-register (which is then caught later on), and so split
6155 * the target value up between env->regs[15] and env->thumb in
6156 * gen_bx(). Reconstitute it.
6158 type = env->regs[15];
6159 if (env->thumb) {
6160 type |= 1;
6163 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6164 " previous exception %d\n",
6165 type, env->v7m.exception);
6167 if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
6168 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6169 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
6172 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6173 /* Auto-clear FAULTMASK on return from other than NMI */
6174 env->daif &= ~PSTATE_F;
6177 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6178 case -1:
6179 /* attempt to exit an exception that isn't active */
6180 ufault = true;
6181 break;
6182 case 0:
6183 /* still an irq active now */
6184 break;
6185 case 1:
6186 /* we returned to base exception level, no nesting.
6187 * (In the pseudocode this is written using "NestedActivation != 1"
6188 * where we have 'rettobase == false'.)
6190 rettobase = true;
6191 break;
6192 default:
6193 g_assert_not_reached();
6196 switch (type & 0xf) {
6197 case 1: /* Return to Handler */
6198 return_to_handler = true;
6199 break;
6200 case 13: /* Return to Thread using Process stack */
6201 return_to_sp_process = true;
6202 /* fall through */
6203 case 9: /* Return to Thread using Main stack */
6204 if (!rettobase &&
6205 !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6206 ufault = true;
6208 break;
6209 default:
6210 ufault = true;
6213 if (ufault) {
6214 /* Bad exception return: instead of popping the exception
6215 * stack, directly take a usage fault on the current stack.
6217 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6218 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6219 v7m_exception_taken(cpu, type | 0xf0000000);
6220 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6221 "stackframe: failed exception return integrity check\n");
6222 return;
6225 /* Switch to the target stack. */
6226 switch_v7m_sp(env, return_to_sp_process);
6227 /* Pop registers. */
6228 env->regs[0] = v7m_pop(env);
6229 env->regs[1] = v7m_pop(env);
6230 env->regs[2] = v7m_pop(env);
6231 env->regs[3] = v7m_pop(env);
6232 env->regs[12] = v7m_pop(env);
6233 env->regs[14] = v7m_pop(env);
6234 env->regs[15] = v7m_pop(env);
6235 if (env->regs[15] & 1) {
6236 qemu_log_mask(LOG_GUEST_ERROR,
6237 "M profile return from interrupt with misaligned "
6238 "PC is UNPREDICTABLE\n");
6239 /* Actual hardware seems to ignore the lsbit, and there are several
6240 * RTOSes out there which incorrectly assume the r15 in the stack
6241 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6243 env->regs[15] &= ~1U;
6245 xpsr = v7m_pop(env);
6246 xpsr_write(env, xpsr, 0xfffffdff);
6247 /* Undo stack alignment. */
6248 if (xpsr & 0x200)
6249 env->regs[13] |= 4;
6251 /* The restored xPSR exception field will be zero if we're
6252 * resuming in Thread mode. If that doesn't match what the
6253 * exception return type specified then this is a UsageFault.
6255 if (return_to_handler == (env->v7m.exception == 0)) {
6256 /* Take an INVPC UsageFault by pushing the stack again. */
6257 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6258 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6259 v7m_push_stack(cpu);
6260 v7m_exception_taken(cpu, type | 0xf0000000);
6261 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6262 "failed exception return integrity check\n");
6263 return;
6266 /* Otherwise, we have a successful exception exit. */
6267 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6270 static void arm_log_exception(int idx)
6272 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6273 const char *exc = NULL;
6275 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6276 exc = excnames[idx];
6278 if (!exc) {
6279 exc = "unknown";
6281 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6285 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6287 ARMCPU *cpu = ARM_CPU(cs);
6288 CPUARMState *env = &cpu->env;
6289 uint32_t lr;
6291 arm_log_exception(cs->exception_index);
6293 lr = 0xfffffff1;
6294 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6295 lr |= 4;
6297 if (env->v7m.exception == 0)
6298 lr |= 8;
6300 /* For exceptions we just mark as pending on the NVIC, and let that
6301 handle it. */
6302 switch (cs->exception_index) {
6303 case EXCP_UDEF:
6304 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6305 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
6306 break;
6307 case EXCP_NOCP:
6308 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6309 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
6310 break;
6311 case EXCP_INVSTATE:
6312 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6313 env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
6314 break;
6315 case EXCP_SWI:
6316 /* The PC already points to the next instruction. */
6317 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6318 break;
6319 case EXCP_PREFETCH_ABORT:
6320 case EXCP_DATA_ABORT:
6321 /* TODO: if we implemented the MPU registers, this is where we
6322 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6324 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6325 break;
6326 case EXCP_BKPT:
6327 if (semihosting_enabled()) {
6328 int nr;
6329 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6330 if (nr == 0xab) {
6331 env->regs[15] += 2;
6332 qemu_log_mask(CPU_LOG_INT,
6333 "...handling as semihosting call 0x%x\n",
6334 env->regs[0]);
6335 env->regs[0] = do_arm_semihosting(env);
6336 return;
6339 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6340 break;
6341 case EXCP_IRQ:
6342 break;
6343 case EXCP_EXCEPTION_EXIT:
6344 do_v7m_exception_exit(cpu);
6345 return;
6346 default:
6347 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6348 return; /* Never happens. Keep compiler happy. */
6351 v7m_push_stack(cpu);
6352 v7m_exception_taken(cpu, lr);
6353 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6356 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6357 * register set. This is necessary when switching between AArch32 and AArch64
6358 * execution state.
6360 void aarch64_sync_32_to_64(CPUARMState *env)
6362 int i;
6363 uint32_t mode = env->uncached_cpsr & CPSR_M;
6365 /* We can blanket copy R[0:7] to X[0:7] */
6366 for (i = 0; i < 8; i++) {
6367 env->xregs[i] = env->regs[i];
6370 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6371 * Otherwise, they come from the banked user regs.
6373 if (mode == ARM_CPU_MODE_FIQ) {
6374 for (i = 8; i < 13; i++) {
6375 env->xregs[i] = env->usr_regs[i - 8];
6377 } else {
6378 for (i = 8; i < 13; i++) {
6379 env->xregs[i] = env->regs[i];
6383 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6384 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6385 * from the mode banked register.
6387 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6388 env->xregs[13] = env->regs[13];
6389 env->xregs[14] = env->regs[14];
6390 } else {
6391 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6392 /* HYP is an exception in that it is copied from r14 */
6393 if (mode == ARM_CPU_MODE_HYP) {
6394 env->xregs[14] = env->regs[14];
6395 } else {
6396 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6400 if (mode == ARM_CPU_MODE_HYP) {
6401 env->xregs[15] = env->regs[13];
6402 } else {
6403 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6406 if (mode == ARM_CPU_MODE_IRQ) {
6407 env->xregs[16] = env->regs[14];
6408 env->xregs[17] = env->regs[13];
6409 } else {
6410 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6411 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6414 if (mode == ARM_CPU_MODE_SVC) {
6415 env->xregs[18] = env->regs[14];
6416 env->xregs[19] = env->regs[13];
6417 } else {
6418 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6419 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6422 if (mode == ARM_CPU_MODE_ABT) {
6423 env->xregs[20] = env->regs[14];
6424 env->xregs[21] = env->regs[13];
6425 } else {
6426 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6427 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6430 if (mode == ARM_CPU_MODE_UND) {
6431 env->xregs[22] = env->regs[14];
6432 env->xregs[23] = env->regs[13];
6433 } else {
6434 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6435 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6438 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6439 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6440 * FIQ bank for r8-r14.
6442 if (mode == ARM_CPU_MODE_FIQ) {
6443 for (i = 24; i < 31; i++) {
6444 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6446 } else {
6447 for (i = 24; i < 29; i++) {
6448 env->xregs[i] = env->fiq_regs[i - 24];
6450 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6451 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6454 env->pc = env->regs[15];
6457 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6458 * register set. This is necessary when switching between AArch32 and AArch64
6459 * execution state.
6461 void aarch64_sync_64_to_32(CPUARMState *env)
6463 int i;
6464 uint32_t mode = env->uncached_cpsr & CPSR_M;
6466 /* We can blanket copy X[0:7] to R[0:7] */
6467 for (i = 0; i < 8; i++) {
6468 env->regs[i] = env->xregs[i];
6471 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6472 * Otherwise, we copy x8-x12 into the banked user regs.
6474 if (mode == ARM_CPU_MODE_FIQ) {
6475 for (i = 8; i < 13; i++) {
6476 env->usr_regs[i - 8] = env->xregs[i];
6478 } else {
6479 for (i = 8; i < 13; i++) {
6480 env->regs[i] = env->xregs[i];
6484 /* Registers r13 & r14 depend on the current mode.
6485 * If we are in a given mode, we copy the corresponding x registers to r13
6486 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6487 * for the mode.
6489 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6490 env->regs[13] = env->xregs[13];
6491 env->regs[14] = env->xregs[14];
6492 } else {
6493 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6495 /* HYP is an exception in that it does not have its own banked r14 but
6496 * shares the USR r14
6498 if (mode == ARM_CPU_MODE_HYP) {
6499 env->regs[14] = env->xregs[14];
6500 } else {
6501 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6505 if (mode == ARM_CPU_MODE_HYP) {
6506 env->regs[13] = env->xregs[15];
6507 } else {
6508 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6511 if (mode == ARM_CPU_MODE_IRQ) {
6512 env->regs[14] = env->xregs[16];
6513 env->regs[13] = env->xregs[17];
6514 } else {
6515 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6516 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6519 if (mode == ARM_CPU_MODE_SVC) {
6520 env->regs[14] = env->xregs[18];
6521 env->regs[13] = env->xregs[19];
6522 } else {
6523 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6524 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6527 if (mode == ARM_CPU_MODE_ABT) {
6528 env->regs[14] = env->xregs[20];
6529 env->regs[13] = env->xregs[21];
6530 } else {
6531 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6532 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6535 if (mode == ARM_CPU_MODE_UND) {
6536 env->regs[14] = env->xregs[22];
6537 env->regs[13] = env->xregs[23];
6538 } else {
6539 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6540 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6543 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6544 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6545 * FIQ bank for r8-r14.
6547 if (mode == ARM_CPU_MODE_FIQ) {
6548 for (i = 24; i < 31; i++) {
6549 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6551 } else {
6552 for (i = 24; i < 29; i++) {
6553 env->fiq_regs[i - 24] = env->xregs[i];
6555 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6556 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6559 env->regs[15] = env->pc;
6562 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6564 ARMCPU *cpu = ARM_CPU(cs);
6565 CPUARMState *env = &cpu->env;
6566 uint32_t addr;
6567 uint32_t mask;
6568 int new_mode;
6569 uint32_t offset;
6570 uint32_t moe;
6572 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6573 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6574 case EC_BREAKPOINT:
6575 case EC_BREAKPOINT_SAME_EL:
6576 moe = 1;
6577 break;
6578 case EC_WATCHPOINT:
6579 case EC_WATCHPOINT_SAME_EL:
6580 moe = 10;
6581 break;
6582 case EC_AA32_BKPT:
6583 moe = 3;
6584 break;
6585 case EC_VECTORCATCH:
6586 moe = 5;
6587 break;
6588 default:
6589 moe = 0;
6590 break;
6593 if (moe) {
6594 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6597 /* TODO: Vectored interrupt controller. */
6598 switch (cs->exception_index) {
6599 case EXCP_UDEF:
6600 new_mode = ARM_CPU_MODE_UND;
6601 addr = 0x04;
6602 mask = CPSR_I;
6603 if (env->thumb)
6604 offset = 2;
6605 else
6606 offset = 4;
6607 break;
6608 case EXCP_SWI:
6609 new_mode = ARM_CPU_MODE_SVC;
6610 addr = 0x08;
6611 mask = CPSR_I;
6612 /* The PC already points to the next instruction. */
6613 offset = 0;
6614 break;
6615 case EXCP_BKPT:
6616 env->exception.fsr = 2;
6617 /* Fall through to prefetch abort. */
6618 case EXCP_PREFETCH_ABORT:
6619 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6620 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6621 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6622 env->exception.fsr, (uint32_t)env->exception.vaddress);
6623 new_mode = ARM_CPU_MODE_ABT;
6624 addr = 0x0c;
6625 mask = CPSR_A | CPSR_I;
6626 offset = 4;
6627 break;
6628 case EXCP_DATA_ABORT:
6629 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6630 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6631 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6632 env->exception.fsr,
6633 (uint32_t)env->exception.vaddress);
6634 new_mode = ARM_CPU_MODE_ABT;
6635 addr = 0x10;
6636 mask = CPSR_A | CPSR_I;
6637 offset = 8;
6638 break;
6639 case EXCP_IRQ:
6640 new_mode = ARM_CPU_MODE_IRQ;
6641 addr = 0x18;
6642 /* Disable IRQ and imprecise data aborts. */
6643 mask = CPSR_A | CPSR_I;
6644 offset = 4;
6645 if (env->cp15.scr_el3 & SCR_IRQ) {
6646 /* IRQ routed to monitor mode */
6647 new_mode = ARM_CPU_MODE_MON;
6648 mask |= CPSR_F;
6650 break;
6651 case EXCP_FIQ:
6652 new_mode = ARM_CPU_MODE_FIQ;
6653 addr = 0x1c;
6654 /* Disable FIQ, IRQ and imprecise data aborts. */
6655 mask = CPSR_A | CPSR_I | CPSR_F;
6656 if (env->cp15.scr_el3 & SCR_FIQ) {
6657 /* FIQ routed to monitor mode */
6658 new_mode = ARM_CPU_MODE_MON;
6660 offset = 4;
6661 break;
6662 case EXCP_VIRQ:
6663 new_mode = ARM_CPU_MODE_IRQ;
6664 addr = 0x18;
6665 /* Disable IRQ and imprecise data aborts. */
6666 mask = CPSR_A | CPSR_I;
6667 offset = 4;
6668 break;
6669 case EXCP_VFIQ:
6670 new_mode = ARM_CPU_MODE_FIQ;
6671 addr = 0x1c;
6672 /* Disable FIQ, IRQ and imprecise data aborts. */
6673 mask = CPSR_A | CPSR_I | CPSR_F;
6674 offset = 4;
6675 break;
6676 case EXCP_SMC:
6677 new_mode = ARM_CPU_MODE_MON;
6678 addr = 0x08;
6679 mask = CPSR_A | CPSR_I | CPSR_F;
6680 offset = 0;
6681 break;
6682 default:
6683 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6684 return; /* Never happens. Keep compiler happy. */
6687 if (new_mode == ARM_CPU_MODE_MON) {
6688 addr += env->cp15.mvbar;
6689 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6690 /* High vectors. When enabled, base address cannot be remapped. */
6691 addr += 0xffff0000;
6692 } else {
6693 /* ARM v7 architectures provide a vector base address register to remap
6694 * the interrupt vector table.
6695 * This register is only followed in non-monitor mode, and is banked.
6696 * Note: only bits 31:5 are valid.
6698 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6701 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6702 env->cp15.scr_el3 &= ~SCR_NS;
6705 switch_mode (env, new_mode);
6706 /* For exceptions taken to AArch32 we must clear the SS bit in both
6707 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6709 env->uncached_cpsr &= ~PSTATE_SS;
6710 env->spsr = cpsr_read(env);
6711 /* Clear IT bits. */
6712 env->condexec_bits = 0;
6713 /* Switch to the new mode, and to the correct instruction set. */
6714 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6715 /* Set new mode endianness */
6716 env->uncached_cpsr &= ~CPSR_E;
6717 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6718 env->uncached_cpsr |= CPSR_E;
6720 env->daif |= mask;
6721 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6722 * and we should just guard the thumb mode on V4 */
6723 if (arm_feature(env, ARM_FEATURE_V4T)) {
6724 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6726 env->regs[14] = env->regs[15] + offset;
6727 env->regs[15] = addr;
6730 /* Handle exception entry to a target EL which is using AArch64 */
6731 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6733 ARMCPU *cpu = ARM_CPU(cs);
6734 CPUARMState *env = &cpu->env;
6735 unsigned int new_el = env->exception.target_el;
6736 target_ulong addr = env->cp15.vbar_el[new_el];
6737 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6739 if (arm_current_el(env) < new_el) {
6740 /* Entry vector offset depends on whether the implemented EL
6741 * immediately lower than the target level is using AArch32 or AArch64
6743 bool is_aa64;
6745 switch (new_el) {
6746 case 3:
6747 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6748 break;
6749 case 2:
6750 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6751 break;
6752 case 1:
6753 is_aa64 = is_a64(env);
6754 break;
6755 default:
6756 g_assert_not_reached();
6759 if (is_aa64) {
6760 addr += 0x400;
6761 } else {
6762 addr += 0x600;
6764 } else if (pstate_read(env) & PSTATE_SP) {
6765 addr += 0x200;
6768 switch (cs->exception_index) {
6769 case EXCP_PREFETCH_ABORT:
6770 case EXCP_DATA_ABORT:
6771 env->cp15.far_el[new_el] = env->exception.vaddress;
6772 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6773 env->cp15.far_el[new_el]);
6774 /* fall through */
6775 case EXCP_BKPT:
6776 case EXCP_UDEF:
6777 case EXCP_SWI:
6778 case EXCP_HVC:
6779 case EXCP_HYP_TRAP:
6780 case EXCP_SMC:
6781 env->cp15.esr_el[new_el] = env->exception.syndrome;
6782 break;
6783 case EXCP_IRQ:
6784 case EXCP_VIRQ:
6785 addr += 0x80;
6786 break;
6787 case EXCP_FIQ:
6788 case EXCP_VFIQ:
6789 addr += 0x100;
6790 break;
6791 case EXCP_SEMIHOST:
6792 qemu_log_mask(CPU_LOG_INT,
6793 "...handling as semihosting call 0x%" PRIx64 "\n",
6794 env->xregs[0]);
6795 env->xregs[0] = do_arm_semihosting(env);
6796 return;
6797 default:
6798 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6801 if (is_a64(env)) {
6802 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6803 aarch64_save_sp(env, arm_current_el(env));
6804 env->elr_el[new_el] = env->pc;
6805 } else {
6806 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6807 env->elr_el[new_el] = env->regs[15];
6809 aarch64_sync_32_to_64(env);
6811 env->condexec_bits = 0;
6813 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6814 env->elr_el[new_el]);
6816 pstate_write(env, PSTATE_DAIF | new_mode);
6817 env->aarch64 = 1;
6818 aarch64_restore_sp(env, new_el);
6820 env->pc = addr;
6822 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6823 new_el, env->pc, pstate_read(env));
6826 static inline bool check_for_semihosting(CPUState *cs)
6828 /* Check whether this exception is a semihosting call; if so
6829 * then handle it and return true; otherwise return false.
6831 ARMCPU *cpu = ARM_CPU(cs);
6832 CPUARMState *env = &cpu->env;
6834 if (is_a64(env)) {
6835 if (cs->exception_index == EXCP_SEMIHOST) {
6836 /* This is always the 64-bit semihosting exception.
6837 * The "is this usermode" and "is semihosting enabled"
6838 * checks have been done at translate time.
6840 qemu_log_mask(CPU_LOG_INT,
6841 "...handling as semihosting call 0x%" PRIx64 "\n",
6842 env->xregs[0]);
6843 env->xregs[0] = do_arm_semihosting(env);
6844 return true;
6846 return false;
6847 } else {
6848 uint32_t imm;
6850 /* Only intercept calls from privileged modes, to provide some
6851 * semblance of security.
6853 if (cs->exception_index != EXCP_SEMIHOST &&
6854 (!semihosting_enabled() ||
6855 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6856 return false;
6859 switch (cs->exception_index) {
6860 case EXCP_SEMIHOST:
6861 /* This is always a semihosting call; the "is this usermode"
6862 * and "is semihosting enabled" checks have been done at
6863 * translate time.
6865 break;
6866 case EXCP_SWI:
6867 /* Check for semihosting interrupt. */
6868 if (env->thumb) {
6869 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6870 & 0xff;
6871 if (imm == 0xab) {
6872 break;
6874 } else {
6875 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6876 & 0xffffff;
6877 if (imm == 0x123456) {
6878 break;
6881 return false;
6882 case EXCP_BKPT:
6883 /* See if this is a semihosting syscall. */
6884 if (env->thumb) {
6885 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6886 & 0xff;
6887 if (imm == 0xab) {
6888 env->regs[15] += 2;
6889 break;
6892 return false;
6893 default:
6894 return false;
6897 qemu_log_mask(CPU_LOG_INT,
6898 "...handling as semihosting call 0x%x\n",
6899 env->regs[0]);
6900 env->regs[0] = do_arm_semihosting(env);
6901 return true;
6905 /* Handle a CPU exception for A and R profile CPUs.
6906 * Do any appropriate logging, handle PSCI calls, and then hand off
6907 * to the AArch64-entry or AArch32-entry function depending on the
6908 * target exception level's register width.
6910 void arm_cpu_do_interrupt(CPUState *cs)
6912 ARMCPU *cpu = ARM_CPU(cs);
6913 CPUARMState *env = &cpu->env;
6914 unsigned int new_el = env->exception.target_el;
6916 assert(!arm_feature(env, ARM_FEATURE_M));
6918 arm_log_exception(cs->exception_index);
6919 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6920 new_el);
6921 if (qemu_loglevel_mask(CPU_LOG_INT)
6922 && !excp_is_internal(cs->exception_index)) {
6923 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
6924 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6925 env->exception.syndrome);
6928 if (arm_is_psci_call(cpu, cs->exception_index)) {
6929 arm_handle_psci_call(cpu);
6930 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6931 return;
6934 /* Semihosting semantics depend on the register width of the
6935 * code that caused the exception, not the target exception level,
6936 * so must be handled here.
6938 if (check_for_semihosting(cs)) {
6939 return;
6942 assert(!excp_is_internal(cs->exception_index));
6943 if (arm_el_is_aa64(env, new_el)) {
6944 arm_cpu_do_interrupt_aarch64(cs);
6945 } else {
6946 arm_cpu_do_interrupt_aarch32(cs);
6949 /* Hooks may change global state so BQL should be held, also the
6950 * BQL needs to be held for any modification of
6951 * cs->interrupt_request.
6953 g_assert(qemu_mutex_iothread_locked());
6955 arm_call_el_change_hook(cpu);
6957 if (!kvm_enabled()) {
6958 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6962 /* Return the exception level which controls this address translation regime */
6963 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6965 switch (mmu_idx) {
6966 case ARMMMUIdx_S2NS:
6967 case ARMMMUIdx_S1E2:
6968 return 2;
6969 case ARMMMUIdx_S1E3:
6970 return 3;
6971 case ARMMMUIdx_S1SE0:
6972 return arm_el_is_aa64(env, 3) ? 1 : 3;
6973 case ARMMMUIdx_S1SE1:
6974 case ARMMMUIdx_S1NSE0:
6975 case ARMMMUIdx_S1NSE1:
6976 return 1;
6977 default:
6978 g_assert_not_reached();
6982 /* Return true if this address translation regime is secure */
6983 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6985 switch (mmu_idx) {
6986 case ARMMMUIdx_S12NSE0:
6987 case ARMMMUIdx_S12NSE1:
6988 case ARMMMUIdx_S1NSE0:
6989 case ARMMMUIdx_S1NSE1:
6990 case ARMMMUIdx_S1E2:
6991 case ARMMMUIdx_S2NS:
6992 return false;
6993 case ARMMMUIdx_S1E3:
6994 case ARMMMUIdx_S1SE0:
6995 case ARMMMUIdx_S1SE1:
6996 return true;
6997 default:
6998 g_assert_not_reached();
7002 /* Return the SCTLR value which controls this address translation regime */
7003 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7005 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7008 /* Return true if the specified stage of address translation is disabled */
7009 static inline bool regime_translation_disabled(CPUARMState *env,
7010 ARMMMUIdx mmu_idx)
7012 if (mmu_idx == ARMMMUIdx_S2NS) {
7013 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7015 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7018 static inline bool regime_translation_big_endian(CPUARMState *env,
7019 ARMMMUIdx mmu_idx)
7021 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7024 /* Return the TCR controlling this translation regime */
7025 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7027 if (mmu_idx == ARMMMUIdx_S2NS) {
7028 return &env->cp15.vtcr_el2;
7030 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7033 /* Returns TBI0 value for current regime el */
7034 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7036 TCR *tcr;
7037 uint32_t el;
7039 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7040 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7042 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7043 mmu_idx += ARMMMUIdx_S1NSE0;
7046 tcr = regime_tcr(env, mmu_idx);
7047 el = regime_el(env, mmu_idx);
7049 if (el > 1) {
7050 return extract64(tcr->raw_tcr, 20, 1);
7051 } else {
7052 return extract64(tcr->raw_tcr, 37, 1);
7056 /* Returns TBI1 value for current regime el */
7057 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7059 TCR *tcr;
7060 uint32_t el;
7062 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7063 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7065 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7066 mmu_idx += ARMMMUIdx_S1NSE0;
7069 tcr = regime_tcr(env, mmu_idx);
7070 el = regime_el(env, mmu_idx);
7072 if (el > 1) {
7073 return 0;
7074 } else {
7075 return extract64(tcr->raw_tcr, 38, 1);
7079 /* Return the TTBR associated with this translation regime */
7080 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7081 int ttbrn)
7083 if (mmu_idx == ARMMMUIdx_S2NS) {
7084 return env->cp15.vttbr_el2;
7086 if (ttbrn == 0) {
7087 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7088 } else {
7089 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7093 /* Return true if the translation regime is using LPAE format page tables */
7094 static inline bool regime_using_lpae_format(CPUARMState *env,
7095 ARMMMUIdx mmu_idx)
7097 int el = regime_el(env, mmu_idx);
7098 if (el == 2 || arm_el_is_aa64(env, el)) {
7099 return true;
7101 if (arm_feature(env, ARM_FEATURE_LPAE)
7102 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7103 return true;
7105 return false;
7108 /* Returns true if the stage 1 translation regime is using LPAE format page
7109 * tables. Used when raising alignment exceptions, whose FSR changes depending
7110 * on whether the long or short descriptor format is in use. */
7111 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7113 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7114 mmu_idx += ARMMMUIdx_S1NSE0;
7117 return regime_using_lpae_format(env, mmu_idx);
7120 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7122 switch (mmu_idx) {
7123 case ARMMMUIdx_S1SE0:
7124 case ARMMMUIdx_S1NSE0:
7125 return true;
7126 default:
7127 return false;
7128 case ARMMMUIdx_S12NSE0:
7129 case ARMMMUIdx_S12NSE1:
7130 g_assert_not_reached();
7134 /* Translate section/page access permissions to page
7135 * R/W protection flags
7137 * @env: CPUARMState
7138 * @mmu_idx: MMU index indicating required translation regime
7139 * @ap: The 3-bit access permissions (AP[2:0])
7140 * @domain_prot: The 2-bit domain access permissions
7142 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7143 int ap, int domain_prot)
7145 bool is_user = regime_is_user(env, mmu_idx);
7147 if (domain_prot == 3) {
7148 return PAGE_READ | PAGE_WRITE;
7151 switch (ap) {
7152 case 0:
7153 if (arm_feature(env, ARM_FEATURE_V7)) {
7154 return 0;
7156 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7157 case SCTLR_S:
7158 return is_user ? 0 : PAGE_READ;
7159 case SCTLR_R:
7160 return PAGE_READ;
7161 default:
7162 return 0;
7164 case 1:
7165 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7166 case 2:
7167 if (is_user) {
7168 return PAGE_READ;
7169 } else {
7170 return PAGE_READ | PAGE_WRITE;
7172 case 3:
7173 return PAGE_READ | PAGE_WRITE;
7174 case 4: /* Reserved. */
7175 return 0;
7176 case 5:
7177 return is_user ? 0 : PAGE_READ;
7178 case 6:
7179 return PAGE_READ;
7180 case 7:
7181 if (!arm_feature(env, ARM_FEATURE_V6K)) {
7182 return 0;
7184 return PAGE_READ;
7185 default:
7186 g_assert_not_reached();
7190 /* Translate section/page access permissions to page
7191 * R/W protection flags.
7193 * @ap: The 2-bit simple AP (AP[2:1])
7194 * @is_user: TRUE if accessing from PL0
7196 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7198 switch (ap) {
7199 case 0:
7200 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7201 case 1:
7202 return PAGE_READ | PAGE_WRITE;
7203 case 2:
7204 return is_user ? 0 : PAGE_READ;
7205 case 3:
7206 return PAGE_READ;
7207 default:
7208 g_assert_not_reached();
7212 static inline int
7213 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7215 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7218 /* Translate S2 section/page access permissions to protection flags
7220 * @env: CPUARMState
7221 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7222 * @xn: XN (execute-never) bit
7224 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7226 int prot = 0;
7228 if (s2ap & 1) {
7229 prot |= PAGE_READ;
7231 if (s2ap & 2) {
7232 prot |= PAGE_WRITE;
7234 if (!xn) {
7235 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7236 prot |= PAGE_EXEC;
7239 return prot;
7242 /* Translate section/page access permissions to protection flags
7244 * @env: CPUARMState
7245 * @mmu_idx: MMU index indicating required translation regime
7246 * @is_aa64: TRUE if AArch64
7247 * @ap: The 2-bit simple AP (AP[2:1])
7248 * @ns: NS (non-secure) bit
7249 * @xn: XN (execute-never) bit
7250 * @pxn: PXN (privileged execute-never) bit
7252 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7253 int ap, int ns, int xn, int pxn)
7255 bool is_user = regime_is_user(env, mmu_idx);
7256 int prot_rw, user_rw;
7257 bool have_wxn;
7258 int wxn = 0;
7260 assert(mmu_idx != ARMMMUIdx_S2NS);
7262 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7263 if (is_user) {
7264 prot_rw = user_rw;
7265 } else {
7266 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7269 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7270 return prot_rw;
7273 /* TODO have_wxn should be replaced with
7274 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7275 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7276 * compatible processors have EL2, which is required for [U]WXN.
7278 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7280 if (have_wxn) {
7281 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7284 if (is_aa64) {
7285 switch (regime_el(env, mmu_idx)) {
7286 case 1:
7287 if (!is_user) {
7288 xn = pxn || (user_rw & PAGE_WRITE);
7290 break;
7291 case 2:
7292 case 3:
7293 break;
7295 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7296 switch (regime_el(env, mmu_idx)) {
7297 case 1:
7298 case 3:
7299 if (is_user) {
7300 xn = xn || !(user_rw & PAGE_READ);
7301 } else {
7302 int uwxn = 0;
7303 if (have_wxn) {
7304 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7306 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7307 (uwxn && (user_rw & PAGE_WRITE));
7309 break;
7310 case 2:
7311 break;
7313 } else {
7314 xn = wxn = 0;
7317 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7318 return prot_rw;
7320 return prot_rw | PAGE_EXEC;
7323 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7324 uint32_t *table, uint32_t address)
7326 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7327 TCR *tcr = regime_tcr(env, mmu_idx);
7329 if (address & tcr->mask) {
7330 if (tcr->raw_tcr & TTBCR_PD1) {
7331 /* Translation table walk disabled for TTBR1 */
7332 return false;
7334 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7335 } else {
7336 if (tcr->raw_tcr & TTBCR_PD0) {
7337 /* Translation table walk disabled for TTBR0 */
7338 return false;
7340 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7342 *table |= (address >> 18) & 0x3ffc;
7343 return true;
7346 /* Translate a S1 pagetable walk through S2 if needed. */
7347 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7348 hwaddr addr, MemTxAttrs txattrs,
7349 uint32_t *fsr,
7350 ARMMMUFaultInfo *fi)
7352 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7353 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7354 target_ulong s2size;
7355 hwaddr s2pa;
7356 int s2prot;
7357 int ret;
7359 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7360 &txattrs, &s2prot, &s2size, fsr, fi);
7361 if (ret) {
7362 fi->s2addr = addr;
7363 fi->stage2 = true;
7364 fi->s1ptw = true;
7365 return ~0;
7367 addr = s2pa;
7369 return addr;
7372 /* All loads done in the course of a page table walk go through here.
7373 * TODO: rather than ignoring errors from physical memory reads (which
7374 * are external aborts in ARM terminology) we should propagate this
7375 * error out so that we can turn it into a Data Abort if this walk
7376 * was being done for a CPU load/store or an address translation instruction
7377 * (but not if it was for a debug access).
7379 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7380 ARMMMUIdx mmu_idx, uint32_t *fsr,
7381 ARMMMUFaultInfo *fi)
7383 ARMCPU *cpu = ARM_CPU(cs);
7384 CPUARMState *env = &cpu->env;
7385 MemTxAttrs attrs = {};
7386 AddressSpace *as;
7388 attrs.secure = is_secure;
7389 as = arm_addressspace(cs, attrs);
7390 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7391 if (fi->s1ptw) {
7392 return 0;
7394 if (regime_translation_big_endian(env, mmu_idx)) {
7395 return address_space_ldl_be(as, addr, attrs, NULL);
7396 } else {
7397 return address_space_ldl_le(as, addr, attrs, NULL);
7401 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7402 ARMMMUIdx mmu_idx, uint32_t *fsr,
7403 ARMMMUFaultInfo *fi)
7405 ARMCPU *cpu = ARM_CPU(cs);
7406 CPUARMState *env = &cpu->env;
7407 MemTxAttrs attrs = {};
7408 AddressSpace *as;
7410 attrs.secure = is_secure;
7411 as = arm_addressspace(cs, attrs);
7412 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7413 if (fi->s1ptw) {
7414 return 0;
7416 if (regime_translation_big_endian(env, mmu_idx)) {
7417 return address_space_ldq_be(as, addr, attrs, NULL);
7418 } else {
7419 return address_space_ldq_le(as, addr, attrs, NULL);
7423 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7424 int access_type, ARMMMUIdx mmu_idx,
7425 hwaddr *phys_ptr, int *prot,
7426 target_ulong *page_size, uint32_t *fsr,
7427 ARMMMUFaultInfo *fi)
7429 CPUState *cs = CPU(arm_env_get_cpu(env));
7430 int code;
7431 uint32_t table;
7432 uint32_t desc;
7433 int type;
7434 int ap;
7435 int domain = 0;
7436 int domain_prot;
7437 hwaddr phys_addr;
7438 uint32_t dacr;
7440 /* Pagetable walk. */
7441 /* Lookup l1 descriptor. */
7442 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7443 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7444 code = 5;
7445 goto do_fault;
7447 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7448 mmu_idx, fsr, fi);
7449 type = (desc & 3);
7450 domain = (desc >> 5) & 0x0f;
7451 if (regime_el(env, mmu_idx) == 1) {
7452 dacr = env->cp15.dacr_ns;
7453 } else {
7454 dacr = env->cp15.dacr_s;
7456 domain_prot = (dacr >> (domain * 2)) & 3;
7457 if (type == 0) {
7458 /* Section translation fault. */
7459 code = 5;
7460 goto do_fault;
7462 if (domain_prot == 0 || domain_prot == 2) {
7463 if (type == 2)
7464 code = 9; /* Section domain fault. */
7465 else
7466 code = 11; /* Page domain fault. */
7467 goto do_fault;
7469 if (type == 2) {
7470 /* 1Mb section. */
7471 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7472 ap = (desc >> 10) & 3;
7473 code = 13;
7474 *page_size = 1024 * 1024;
7475 } else {
7476 /* Lookup l2 entry. */
7477 if (type == 1) {
7478 /* Coarse pagetable. */
7479 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7480 } else {
7481 /* Fine pagetable. */
7482 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7484 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7485 mmu_idx, fsr, fi);
7486 switch (desc & 3) {
7487 case 0: /* Page translation fault. */
7488 code = 7;
7489 goto do_fault;
7490 case 1: /* 64k page. */
7491 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7492 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7493 *page_size = 0x10000;
7494 break;
7495 case 2: /* 4k page. */
7496 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7497 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7498 *page_size = 0x1000;
7499 break;
7500 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7501 if (type == 1) {
7502 /* ARMv6/XScale extended small page format */
7503 if (arm_feature(env, ARM_FEATURE_XSCALE)
7504 || arm_feature(env, ARM_FEATURE_V6)) {
7505 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7506 *page_size = 0x1000;
7507 } else {
7508 /* UNPREDICTABLE in ARMv5; we choose to take a
7509 * page translation fault.
7511 code = 7;
7512 goto do_fault;
7514 } else {
7515 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7516 *page_size = 0x400;
7518 ap = (desc >> 4) & 3;
7519 break;
7520 default:
7521 /* Never happens, but compiler isn't smart enough to tell. */
7522 abort();
7524 code = 15;
7526 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7527 *prot |= *prot ? PAGE_EXEC : 0;
7528 if (!(*prot & (1 << access_type))) {
7529 /* Access permission fault. */
7530 goto do_fault;
7532 *phys_ptr = phys_addr;
7533 return false;
7534 do_fault:
7535 *fsr = code | (domain << 4);
7536 return true;
7539 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7540 int access_type, ARMMMUIdx mmu_idx,
7541 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7542 target_ulong *page_size, uint32_t *fsr,
7543 ARMMMUFaultInfo *fi)
7545 CPUState *cs = CPU(arm_env_get_cpu(env));
7546 int code;
7547 uint32_t table;
7548 uint32_t desc;
7549 uint32_t xn;
7550 uint32_t pxn = 0;
7551 int type;
7552 int ap;
7553 int domain = 0;
7554 int domain_prot;
7555 hwaddr phys_addr;
7556 uint32_t dacr;
7557 bool ns;
7559 /* Pagetable walk. */
7560 /* Lookup l1 descriptor. */
7561 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7562 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7563 code = 5;
7564 goto do_fault;
7566 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7567 mmu_idx, fsr, fi);
7568 type = (desc & 3);
7569 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7570 /* Section translation fault, or attempt to use the encoding
7571 * which is Reserved on implementations without PXN.
7573 code = 5;
7574 goto do_fault;
7576 if ((type == 1) || !(desc & (1 << 18))) {
7577 /* Page or Section. */
7578 domain = (desc >> 5) & 0x0f;
7580 if (regime_el(env, mmu_idx) == 1) {
7581 dacr = env->cp15.dacr_ns;
7582 } else {
7583 dacr = env->cp15.dacr_s;
7585 domain_prot = (dacr >> (domain * 2)) & 3;
7586 if (domain_prot == 0 || domain_prot == 2) {
7587 if (type != 1) {
7588 code = 9; /* Section domain fault. */
7589 } else {
7590 code = 11; /* Page domain fault. */
7592 goto do_fault;
7594 if (type != 1) {
7595 if (desc & (1 << 18)) {
7596 /* Supersection. */
7597 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7598 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7599 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7600 *page_size = 0x1000000;
7601 } else {
7602 /* Section. */
7603 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7604 *page_size = 0x100000;
7606 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7607 xn = desc & (1 << 4);
7608 pxn = desc & 1;
7609 code = 13;
7610 ns = extract32(desc, 19, 1);
7611 } else {
7612 if (arm_feature(env, ARM_FEATURE_PXN)) {
7613 pxn = (desc >> 2) & 1;
7615 ns = extract32(desc, 3, 1);
7616 /* Lookup l2 entry. */
7617 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7618 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7619 mmu_idx, fsr, fi);
7620 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7621 switch (desc & 3) {
7622 case 0: /* Page translation fault. */
7623 code = 7;
7624 goto do_fault;
7625 case 1: /* 64k page. */
7626 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7627 xn = desc & (1 << 15);
7628 *page_size = 0x10000;
7629 break;
7630 case 2: case 3: /* 4k page. */
7631 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7632 xn = desc & 1;
7633 *page_size = 0x1000;
7634 break;
7635 default:
7636 /* Never happens, but compiler isn't smart enough to tell. */
7637 abort();
7639 code = 15;
7641 if (domain_prot == 3) {
7642 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7643 } else {
7644 if (pxn && !regime_is_user(env, mmu_idx)) {
7645 xn = 1;
7647 if (xn && access_type == 2)
7648 goto do_fault;
7650 if (arm_feature(env, ARM_FEATURE_V6K) &&
7651 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7652 /* The simplified model uses AP[0] as an access control bit. */
7653 if ((ap & 1) == 0) {
7654 /* Access flag fault. */
7655 code = (code == 15) ? 6 : 3;
7656 goto do_fault;
7658 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7659 } else {
7660 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7662 if (*prot && !xn) {
7663 *prot |= PAGE_EXEC;
7665 if (!(*prot & (1 << access_type))) {
7666 /* Access permission fault. */
7667 goto do_fault;
7670 if (ns) {
7671 /* The NS bit will (as required by the architecture) have no effect if
7672 * the CPU doesn't support TZ or this is a non-secure translation
7673 * regime, because the attribute will already be non-secure.
7675 attrs->secure = false;
7677 *phys_ptr = phys_addr;
7678 return false;
7679 do_fault:
7680 *fsr = code | (domain << 4);
7681 return true;
7684 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7685 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7687 typedef enum {
7688 translation_fault = 1,
7689 access_fault = 2,
7690 permission_fault = 3,
7691 } MMUFaultType;
7694 * check_s2_mmu_setup
7695 * @cpu: ARMCPU
7696 * @is_aa64: True if the translation regime is in AArch64 state
7697 * @startlevel: Suggested starting level
7698 * @inputsize: Bitsize of IPAs
7699 * @stride: Page-table stride (See the ARM ARM)
7701 * Returns true if the suggested S2 translation parameters are OK and
7702 * false otherwise.
7704 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7705 int inputsize, int stride)
7707 const int grainsize = stride + 3;
7708 int startsizecheck;
7710 /* Negative levels are never allowed. */
7711 if (level < 0) {
7712 return false;
7715 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7716 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7717 return false;
7720 if (is_aa64) {
7721 CPUARMState *env = &cpu->env;
7722 unsigned int pamax = arm_pamax(cpu);
7724 switch (stride) {
7725 case 13: /* 64KB Pages. */
7726 if (level == 0 || (level == 1 && pamax <= 42)) {
7727 return false;
7729 break;
7730 case 11: /* 16KB Pages. */
7731 if (level == 0 || (level == 1 && pamax <= 40)) {
7732 return false;
7734 break;
7735 case 9: /* 4KB Pages. */
7736 if (level == 0 && pamax <= 42) {
7737 return false;
7739 break;
7740 default:
7741 g_assert_not_reached();
7744 /* Inputsize checks. */
7745 if (inputsize > pamax &&
7746 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7747 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7748 return false;
7750 } else {
7751 /* AArch32 only supports 4KB pages. Assert on that. */
7752 assert(stride == 9);
7754 if (level == 0) {
7755 return false;
7758 return true;
7761 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7762 int access_type, ARMMMUIdx mmu_idx,
7763 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7764 target_ulong *page_size_ptr, uint32_t *fsr,
7765 ARMMMUFaultInfo *fi)
7767 ARMCPU *cpu = arm_env_get_cpu(env);
7768 CPUState *cs = CPU(cpu);
7769 /* Read an LPAE long-descriptor translation table. */
7770 MMUFaultType fault_type = translation_fault;
7771 uint32_t level;
7772 uint32_t epd = 0;
7773 int32_t t0sz, t1sz;
7774 uint32_t tg;
7775 uint64_t ttbr;
7776 int ttbr_select;
7777 hwaddr descaddr, indexmask, indexmask_grainsize;
7778 uint32_t tableattrs;
7779 target_ulong page_size;
7780 uint32_t attrs;
7781 int32_t stride = 9;
7782 int32_t addrsize;
7783 int inputsize;
7784 int32_t tbi = 0;
7785 TCR *tcr = regime_tcr(env, mmu_idx);
7786 int ap, ns, xn, pxn;
7787 uint32_t el = regime_el(env, mmu_idx);
7788 bool ttbr1_valid = true;
7789 uint64_t descaddrmask;
7790 bool aarch64 = arm_el_is_aa64(env, el);
7792 /* TODO:
7793 * This code does not handle the different format TCR for VTCR_EL2.
7794 * This code also does not support shareability levels.
7795 * Attribute and permission bit handling should also be checked when adding
7796 * support for those page table walks.
7798 if (aarch64) {
7799 level = 0;
7800 addrsize = 64;
7801 if (el > 1) {
7802 if (mmu_idx != ARMMMUIdx_S2NS) {
7803 tbi = extract64(tcr->raw_tcr, 20, 1);
7805 } else {
7806 if (extract64(address, 55, 1)) {
7807 tbi = extract64(tcr->raw_tcr, 38, 1);
7808 } else {
7809 tbi = extract64(tcr->raw_tcr, 37, 1);
7812 tbi *= 8;
7814 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7815 * invalid.
7817 if (el > 1) {
7818 ttbr1_valid = false;
7820 } else {
7821 level = 1;
7822 addrsize = 32;
7823 /* There is no TTBR1 for EL2 */
7824 if (el == 2) {
7825 ttbr1_valid = false;
7829 /* Determine whether this address is in the region controlled by
7830 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7831 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7832 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7834 if (aarch64) {
7835 /* AArch64 translation. */
7836 t0sz = extract32(tcr->raw_tcr, 0, 6);
7837 t0sz = MIN(t0sz, 39);
7838 t0sz = MAX(t0sz, 16);
7839 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7840 /* AArch32 stage 1 translation. */
7841 t0sz = extract32(tcr->raw_tcr, 0, 3);
7842 } else {
7843 /* AArch32 stage 2 translation. */
7844 bool sext = extract32(tcr->raw_tcr, 4, 1);
7845 bool sign = extract32(tcr->raw_tcr, 3, 1);
7846 /* Address size is 40-bit for a stage 2 translation,
7847 * and t0sz can be negative (from -8 to 7),
7848 * so we need to adjust it to use the TTBR selecting logic below.
7850 addrsize = 40;
7851 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7853 /* If the sign-extend bit is not the same as t0sz[3], the result
7854 * is unpredictable. Flag this as a guest error. */
7855 if (sign != sext) {
7856 qemu_log_mask(LOG_GUEST_ERROR,
7857 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7860 t1sz = extract32(tcr->raw_tcr, 16, 6);
7861 if (aarch64) {
7862 t1sz = MIN(t1sz, 39);
7863 t1sz = MAX(t1sz, 16);
7865 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7866 /* there is a ttbr0 region and we are in it (high bits all zero) */
7867 ttbr_select = 0;
7868 } else if (ttbr1_valid && t1sz &&
7869 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7870 /* there is a ttbr1 region and we are in it (high bits all one) */
7871 ttbr_select = 1;
7872 } else if (!t0sz) {
7873 /* ttbr0 region is "everything not in the ttbr1 region" */
7874 ttbr_select = 0;
7875 } else if (!t1sz && ttbr1_valid) {
7876 /* ttbr1 region is "everything not in the ttbr0 region" */
7877 ttbr_select = 1;
7878 } else {
7879 /* in the gap between the two regions, this is a Translation fault */
7880 fault_type = translation_fault;
7881 goto do_fault;
7884 /* Note that QEMU ignores shareability and cacheability attributes,
7885 * so we don't need to do anything with the SH, ORGN, IRGN fields
7886 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7887 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7888 * implement any ASID-like capability so we can ignore it (instead
7889 * we will always flush the TLB any time the ASID is changed).
7891 if (ttbr_select == 0) {
7892 ttbr = regime_ttbr(env, mmu_idx, 0);
7893 if (el < 2) {
7894 epd = extract32(tcr->raw_tcr, 7, 1);
7896 inputsize = addrsize - t0sz;
7898 tg = extract32(tcr->raw_tcr, 14, 2);
7899 if (tg == 1) { /* 64KB pages */
7900 stride = 13;
7902 if (tg == 2) { /* 16KB pages */
7903 stride = 11;
7905 } else {
7906 /* We should only be here if TTBR1 is valid */
7907 assert(ttbr1_valid);
7909 ttbr = regime_ttbr(env, mmu_idx, 1);
7910 epd = extract32(tcr->raw_tcr, 23, 1);
7911 inputsize = addrsize - t1sz;
7913 tg = extract32(tcr->raw_tcr, 30, 2);
7914 if (tg == 3) { /* 64KB pages */
7915 stride = 13;
7917 if (tg == 1) { /* 16KB pages */
7918 stride = 11;
7922 /* Here we should have set up all the parameters for the translation:
7923 * inputsize, ttbr, epd, stride, tbi
7926 if (epd) {
7927 /* Translation table walk disabled => Translation fault on TLB miss
7928 * Note: This is always 0 on 64-bit EL2 and EL3.
7930 goto do_fault;
7933 if (mmu_idx != ARMMMUIdx_S2NS) {
7934 /* The starting level depends on the virtual address size (which can
7935 * be up to 48 bits) and the translation granule size. It indicates
7936 * the number of strides (stride bits at a time) needed to
7937 * consume the bits of the input address. In the pseudocode this is:
7938 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7939 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7940 * our 'stride + 3' and 'stride' is our 'stride'.
7941 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7942 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7943 * = 4 - (inputsize - 4) / stride;
7945 level = 4 - (inputsize - 4) / stride;
7946 } else {
7947 /* For stage 2 translations the starting level is specified by the
7948 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7950 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7951 uint32_t startlevel;
7952 bool ok;
7954 if (!aarch64 || stride == 9) {
7955 /* AArch32 or 4KB pages */
7956 startlevel = 2 - sl0;
7957 } else {
7958 /* 16KB or 64KB pages */
7959 startlevel = 3 - sl0;
7962 /* Check that the starting level is valid. */
7963 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7964 inputsize, stride);
7965 if (!ok) {
7966 fault_type = translation_fault;
7967 goto do_fault;
7969 level = startlevel;
7972 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7973 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7975 /* Now we can extract the actual base address from the TTBR */
7976 descaddr = extract64(ttbr, 0, 48);
7977 descaddr &= ~indexmask;
7979 /* The address field in the descriptor goes up to bit 39 for ARMv7
7980 * but up to bit 47 for ARMv8, but we use the descaddrmask
7981 * up to bit 39 for AArch32, because we don't need other bits in that case
7982 * to construct next descriptor address (anyway they should be all zeroes).
7984 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7985 ~indexmask_grainsize;
7987 /* Secure accesses start with the page table in secure memory and
7988 * can be downgraded to non-secure at any step. Non-secure accesses
7989 * remain non-secure. We implement this by just ORing in the NSTable/NS
7990 * bits at each step.
7992 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7993 for (;;) {
7994 uint64_t descriptor;
7995 bool nstable;
7997 descaddr |= (address >> (stride * (4 - level))) & indexmask;
7998 descaddr &= ~7ULL;
7999 nstable = extract32(tableattrs, 4, 1);
8000 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8001 if (fi->s1ptw) {
8002 goto do_fault;
8005 if (!(descriptor & 1) ||
8006 (!(descriptor & 2) && (level == 3))) {
8007 /* Invalid, or the Reserved level 3 encoding */
8008 goto do_fault;
8010 descaddr = descriptor & descaddrmask;
8012 if ((descriptor & 2) && (level < 3)) {
8013 /* Table entry. The top five bits are attributes which may
8014 * propagate down through lower levels of the table (and
8015 * which are all arranged so that 0 means "no effect", so
8016 * we can gather them up by ORing in the bits at each level).
8018 tableattrs |= extract64(descriptor, 59, 5);
8019 level++;
8020 indexmask = indexmask_grainsize;
8021 continue;
8023 /* Block entry at level 1 or 2, or page entry at level 3.
8024 * These are basically the same thing, although the number
8025 * of bits we pull in from the vaddr varies.
8027 page_size = (1ULL << ((stride * (4 - level)) + 3));
8028 descaddr |= (address & (page_size - 1));
8029 /* Extract attributes from the descriptor */
8030 attrs = extract64(descriptor, 2, 10)
8031 | (extract64(descriptor, 52, 12) << 10);
8033 if (mmu_idx == ARMMMUIdx_S2NS) {
8034 /* Stage 2 table descriptors do not include any attribute fields */
8035 break;
8037 /* Merge in attributes from table descriptors */
8038 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8039 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8040 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8041 * means "force PL1 access only", which means forcing AP[1] to 0.
8043 if (extract32(tableattrs, 2, 1)) {
8044 attrs &= ~(1 << 4);
8046 attrs |= nstable << 3; /* NS */
8047 break;
8049 /* Here descaddr is the final physical address, and attributes
8050 * are all in attrs.
8052 fault_type = access_fault;
8053 if ((attrs & (1 << 8)) == 0) {
8054 /* Access flag */
8055 goto do_fault;
8058 ap = extract32(attrs, 4, 2);
8059 xn = extract32(attrs, 12, 1);
8061 if (mmu_idx == ARMMMUIdx_S2NS) {
8062 ns = true;
8063 *prot = get_S2prot(env, ap, xn);
8064 } else {
8065 ns = extract32(attrs, 3, 1);
8066 pxn = extract32(attrs, 11, 1);
8067 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8070 fault_type = permission_fault;
8071 if (!(*prot & (1 << access_type))) {
8072 goto do_fault;
8075 if (ns) {
8076 /* The NS bit will (as required by the architecture) have no effect if
8077 * the CPU doesn't support TZ or this is a non-secure translation
8078 * regime, because the attribute will already be non-secure.
8080 txattrs->secure = false;
8082 *phys_ptr = descaddr;
8083 *page_size_ptr = page_size;
8084 return false;
8086 do_fault:
8087 /* Long-descriptor format IFSR/DFSR value */
8088 *fsr = (1 << 9) | (fault_type << 2) | level;
8089 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8090 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8091 return true;
8094 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8095 ARMMMUIdx mmu_idx,
8096 int32_t address, int *prot)
8098 *prot = PAGE_READ | PAGE_WRITE;
8099 switch (address) {
8100 case 0xF0000000 ... 0xFFFFFFFF:
8101 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
8102 *prot |= PAGE_EXEC;
8104 break;
8105 case 0x00000000 ... 0x7FFFFFFF:
8106 *prot |= PAGE_EXEC;
8107 break;
8112 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8113 int access_type, ARMMMUIdx mmu_idx,
8114 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8116 ARMCPU *cpu = arm_env_get_cpu(env);
8117 int n;
8118 bool is_user = regime_is_user(env, mmu_idx);
8120 *phys_ptr = address;
8121 *prot = 0;
8123 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8124 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8125 } else { /* MPU enabled */
8126 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8127 /* region search */
8128 uint32_t base = env->pmsav7.drbar[n];
8129 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8130 uint32_t rmask;
8131 bool srdis = false;
8133 if (!(env->pmsav7.drsr[n] & 0x1)) {
8134 continue;
8137 if (!rsize) {
8138 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
8139 continue;
8141 rsize++;
8142 rmask = (1ull << rsize) - 1;
8144 if (base & rmask) {
8145 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
8146 "to DRSR region size, mask = %" PRIx32,
8147 base, rmask);
8148 continue;
8151 if (address < base || address > base + rmask) {
8152 continue;
8155 /* Region matched */
8157 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8158 int i, snd;
8159 uint32_t srdis_mask;
8161 rsize -= 3; /* sub region size (power of 2) */
8162 snd = ((address - base) >> rsize) & 0x7;
8163 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8165 srdis_mask = srdis ? 0x3 : 0x0;
8166 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8167 /* This will check in groups of 2, 4 and then 8, whether
8168 * the subregion bits are consistent. rsize is incremented
8169 * back up to give the region size, considering consistent
8170 * adjacent subregions as one region. Stop testing if rsize
8171 * is already big enough for an entire QEMU page.
8173 int snd_rounded = snd & ~(i - 1);
8174 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8175 snd_rounded + 8, i);
8176 if (srdis_mask ^ srdis_multi) {
8177 break;
8179 srdis_mask = (srdis_mask << i) | srdis_mask;
8180 rsize++;
8183 if (rsize < TARGET_PAGE_BITS) {
8184 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
8185 "alignment of %" PRIu32 " bits. Minimum is %d\n",
8186 rsize, TARGET_PAGE_BITS);
8187 continue;
8189 if (srdis) {
8190 continue;
8192 break;
8195 if (n == -1) { /* no hits */
8196 if (cpu->pmsav7_dregion &&
8197 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
8198 /* background fault */
8199 *fsr = 0;
8200 return true;
8202 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8203 } else { /* a MPU hit! */
8204 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8206 if (is_user) { /* User mode AP bit decoding */
8207 switch (ap) {
8208 case 0:
8209 case 1:
8210 case 5:
8211 break; /* no access */
8212 case 3:
8213 *prot |= PAGE_WRITE;
8214 /* fall through */
8215 case 2:
8216 case 6:
8217 *prot |= PAGE_READ | PAGE_EXEC;
8218 break;
8219 default:
8220 qemu_log_mask(LOG_GUEST_ERROR,
8221 "Bad value for AP bits in DRACR %"
8222 PRIx32 "\n", ap);
8224 } else { /* Priv. mode AP bits decoding */
8225 switch (ap) {
8226 case 0:
8227 break; /* no access */
8228 case 1:
8229 case 2:
8230 case 3:
8231 *prot |= PAGE_WRITE;
8232 /* fall through */
8233 case 5:
8234 case 6:
8235 *prot |= PAGE_READ | PAGE_EXEC;
8236 break;
8237 default:
8238 qemu_log_mask(LOG_GUEST_ERROR,
8239 "Bad value for AP bits in DRACR %"
8240 PRIx32 "\n", ap);
8244 /* execute never */
8245 if (env->pmsav7.dracr[n] & (1 << 12)) {
8246 *prot &= ~PAGE_EXEC;
8251 *fsr = 0x00d; /* Permission fault */
8252 return !(*prot & (1 << access_type));
8255 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8256 int access_type, ARMMMUIdx mmu_idx,
8257 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8259 int n;
8260 uint32_t mask;
8261 uint32_t base;
8262 bool is_user = regime_is_user(env, mmu_idx);
8264 *phys_ptr = address;
8265 for (n = 7; n >= 0; n--) {
8266 base = env->cp15.c6_region[n];
8267 if ((base & 1) == 0) {
8268 continue;
8270 mask = 1 << ((base >> 1) & 0x1f);
8271 /* Keep this shift separate from the above to avoid an
8272 (undefined) << 32. */
8273 mask = (mask << 1) - 1;
8274 if (((base ^ address) & ~mask) == 0) {
8275 break;
8278 if (n < 0) {
8279 *fsr = 2;
8280 return true;
8283 if (access_type == 2) {
8284 mask = env->cp15.pmsav5_insn_ap;
8285 } else {
8286 mask = env->cp15.pmsav5_data_ap;
8288 mask = (mask >> (n * 4)) & 0xf;
8289 switch (mask) {
8290 case 0:
8291 *fsr = 1;
8292 return true;
8293 case 1:
8294 if (is_user) {
8295 *fsr = 1;
8296 return true;
8298 *prot = PAGE_READ | PAGE_WRITE;
8299 break;
8300 case 2:
8301 *prot = PAGE_READ;
8302 if (!is_user) {
8303 *prot |= PAGE_WRITE;
8305 break;
8306 case 3:
8307 *prot = PAGE_READ | PAGE_WRITE;
8308 break;
8309 case 5:
8310 if (is_user) {
8311 *fsr = 1;
8312 return true;
8314 *prot = PAGE_READ;
8315 break;
8316 case 6:
8317 *prot = PAGE_READ;
8318 break;
8319 default:
8320 /* Bad permission. */
8321 *fsr = 1;
8322 return true;
8324 *prot |= PAGE_EXEC;
8325 return false;
8328 /* get_phys_addr - get the physical address for this virtual address
8330 * Find the physical address corresponding to the given virtual address,
8331 * by doing a translation table walk on MMU based systems or using the
8332 * MPU state on MPU based systems.
8334 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8335 * prot and page_size may not be filled in, and the populated fsr value provides
8336 * information on why the translation aborted, in the format of a
8337 * DFSR/IFSR fault register, with the following caveats:
8338 * * we honour the short vs long DFSR format differences.
8339 * * the WnR bit is never set (the caller must do this).
8340 * * for PSMAv5 based systems we don't bother to return a full FSR format
8341 * value.
8343 * @env: CPUARMState
8344 * @address: virtual address to get physical address for
8345 * @access_type: 0 for read, 1 for write, 2 for execute
8346 * @mmu_idx: MMU index indicating required translation regime
8347 * @phys_ptr: set to the physical address corresponding to the virtual address
8348 * @attrs: set to the memory transaction attributes to use
8349 * @prot: set to the permissions for the page containing phys_ptr
8350 * @page_size: set to the size of the page containing phys_ptr
8351 * @fsr: set to the DFSR/IFSR value on failure
8353 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8354 int access_type, ARMMMUIdx mmu_idx,
8355 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8356 target_ulong *page_size, uint32_t *fsr,
8357 ARMMMUFaultInfo *fi)
8359 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8360 /* Call ourselves recursively to do the stage 1 and then stage 2
8361 * translations.
8363 if (arm_feature(env, ARM_FEATURE_EL2)) {
8364 hwaddr ipa;
8365 int s2_prot;
8366 int ret;
8368 ret = get_phys_addr(env, address, access_type,
8369 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8370 prot, page_size, fsr, fi);
8372 /* If S1 fails or S2 is disabled, return early. */
8373 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8374 *phys_ptr = ipa;
8375 return ret;
8378 /* S1 is done. Now do S2 translation. */
8379 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8380 phys_ptr, attrs, &s2_prot,
8381 page_size, fsr, fi);
8382 fi->s2addr = ipa;
8383 /* Combine the S1 and S2 perms. */
8384 *prot &= s2_prot;
8385 return ret;
8386 } else {
8388 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8390 mmu_idx += ARMMMUIdx_S1NSE0;
8394 /* The page table entries may downgrade secure to non-secure, but
8395 * cannot upgrade an non-secure translation regime's attributes
8396 * to secure.
8398 attrs->secure = regime_is_secure(env, mmu_idx);
8399 attrs->user = regime_is_user(env, mmu_idx);
8401 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8402 * In v7 and earlier it affects all stage 1 translations.
8404 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8405 && !arm_feature(env, ARM_FEATURE_V8)) {
8406 if (regime_el(env, mmu_idx) == 3) {
8407 address += env->cp15.fcseidr_s;
8408 } else {
8409 address += env->cp15.fcseidr_ns;
8413 /* pmsav7 has special handling for when MPU is disabled so call it before
8414 * the common MMU/MPU disabled check below.
8416 if (arm_feature(env, ARM_FEATURE_MPU) &&
8417 arm_feature(env, ARM_FEATURE_V7)) {
8418 *page_size = TARGET_PAGE_SIZE;
8419 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8420 phys_ptr, prot, fsr);
8423 if (regime_translation_disabled(env, mmu_idx)) {
8424 /* MMU/MPU disabled. */
8425 *phys_ptr = address;
8426 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8427 *page_size = TARGET_PAGE_SIZE;
8428 return 0;
8431 if (arm_feature(env, ARM_FEATURE_MPU)) {
8432 /* Pre-v7 MPU */
8433 *page_size = TARGET_PAGE_SIZE;
8434 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8435 phys_ptr, prot, fsr);
8438 if (regime_using_lpae_format(env, mmu_idx)) {
8439 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8440 attrs, prot, page_size, fsr, fi);
8441 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8442 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8443 attrs, prot, page_size, fsr, fi);
8444 } else {
8445 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8446 prot, page_size, fsr, fi);
8450 /* Walk the page table and (if the mapping exists) add the page
8451 * to the TLB. Return false on success, or true on failure. Populate
8452 * fsr with ARM DFSR/IFSR fault register format value on failure.
8454 bool arm_tlb_fill(CPUState *cs, vaddr address,
8455 int access_type, int mmu_idx, uint32_t *fsr,
8456 ARMMMUFaultInfo *fi)
8458 ARMCPU *cpu = ARM_CPU(cs);
8459 CPUARMState *env = &cpu->env;
8460 hwaddr phys_addr;
8461 target_ulong page_size;
8462 int prot;
8463 int ret;
8464 MemTxAttrs attrs = {};
8466 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8467 &attrs, &prot, &page_size, fsr, fi);
8468 if (!ret) {
8469 /* Map a single [sub]page. */
8470 phys_addr &= TARGET_PAGE_MASK;
8471 address &= TARGET_PAGE_MASK;
8472 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8473 prot, mmu_idx, page_size);
8474 return 0;
8477 return ret;
8480 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8481 MemTxAttrs *attrs)
8483 ARMCPU *cpu = ARM_CPU(cs);
8484 CPUARMState *env = &cpu->env;
8485 hwaddr phys_addr;
8486 target_ulong page_size;
8487 int prot;
8488 bool ret;
8489 uint32_t fsr;
8490 ARMMMUFaultInfo fi = {};
8492 *attrs = (MemTxAttrs) {};
8494 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8495 attrs, &prot, &page_size, &fsr, &fi);
8497 if (ret) {
8498 return -1;
8500 return phys_addr;
8503 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8505 uint32_t mask;
8506 unsigned el = arm_current_el(env);
8508 /* First handle registers which unprivileged can read */
8510 switch (reg) {
8511 case 0 ... 7: /* xPSR sub-fields */
8512 mask = 0;
8513 if ((reg & 1) && el) {
8514 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8516 if (!(reg & 4)) {
8517 mask |= 0xf8000000; /* APSR */
8519 /* EPSR reads as zero */
8520 return xpsr_read(env) & mask;
8521 break;
8522 case 20: /* CONTROL */
8523 return env->v7m.control;
8526 if (el == 0) {
8527 return 0; /* unprivileged reads others as zero */
8530 switch (reg) {
8531 case 8: /* MSP */
8532 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8533 env->v7m.other_sp : env->regs[13];
8534 case 9: /* PSP */
8535 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8536 env->regs[13] : env->v7m.other_sp;
8537 case 16: /* PRIMASK */
8538 return (env->daif & PSTATE_I) != 0;
8539 case 17: /* BASEPRI */
8540 case 18: /* BASEPRI_MAX */
8541 return env->v7m.basepri;
8542 case 19: /* FAULTMASK */
8543 return (env->daif & PSTATE_F) != 0;
8544 default:
8545 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8546 " register %d\n", reg);
8547 return 0;
8551 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8553 /* We're passed bits [11..0] of the instruction; extract
8554 * SYSm and the mask bits.
8555 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8556 * we choose to treat them as if the mask bits were valid.
8557 * NB that the pseudocode 'mask' variable is bits [11..10],
8558 * whereas ours is [11..8].
8560 uint32_t mask = extract32(maskreg, 8, 4);
8561 uint32_t reg = extract32(maskreg, 0, 8);
8563 if (arm_current_el(env) == 0 && reg > 7) {
8564 /* only xPSR sub-fields may be written by unprivileged */
8565 return;
8568 switch (reg) {
8569 case 0 ... 7: /* xPSR sub-fields */
8570 /* only APSR is actually writable */
8571 if (!(reg & 4)) {
8572 uint32_t apsrmask = 0;
8574 if (mask & 8) {
8575 apsrmask |= 0xf8000000; /* APSR NZCVQ */
8577 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
8578 apsrmask |= 0x000f0000; /* APSR GE[3:0] */
8580 xpsr_write(env, val, apsrmask);
8582 break;
8583 case 8: /* MSP */
8584 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8585 env->v7m.other_sp = val;
8586 } else {
8587 env->regs[13] = val;
8589 break;
8590 case 9: /* PSP */
8591 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8592 env->regs[13] = val;
8593 } else {
8594 env->v7m.other_sp = val;
8596 break;
8597 case 16: /* PRIMASK */
8598 if (val & 1) {
8599 env->daif |= PSTATE_I;
8600 } else {
8601 env->daif &= ~PSTATE_I;
8603 break;
8604 case 17: /* BASEPRI */
8605 env->v7m.basepri = val & 0xff;
8606 break;
8607 case 18: /* BASEPRI_MAX */
8608 val &= 0xff;
8609 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8610 env->v7m.basepri = val;
8611 break;
8612 case 19: /* FAULTMASK */
8613 if (val & 1) {
8614 env->daif |= PSTATE_F;
8615 } else {
8616 env->daif &= ~PSTATE_F;
8618 break;
8619 case 20: /* CONTROL */
8620 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8621 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
8622 R_V7M_CONTROL_NPRIV_MASK);
8623 break;
8624 default:
8625 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8626 " register %d\n", reg);
8627 return;
8631 #endif
8633 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8635 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8636 * Note that we do not implement the (architecturally mandated)
8637 * alignment fault for attempts to use this on Device memory
8638 * (which matches the usual QEMU behaviour of not implementing either
8639 * alignment faults or any memory attribute handling).
8642 ARMCPU *cpu = arm_env_get_cpu(env);
8643 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8644 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8646 #ifndef CONFIG_USER_ONLY
8648 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8649 * the block size so we might have to do more than one TLB lookup.
8650 * We know that in fact for any v8 CPU the page size is at least 4K
8651 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8652 * 1K as an artefact of legacy v5 subpage support being present in the
8653 * same QEMU executable.
8655 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8656 void *hostaddr[maxidx];
8657 int try, i;
8658 unsigned mmu_idx = cpu_mmu_index(env, false);
8659 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8661 for (try = 0; try < 2; try++) {
8663 for (i = 0; i < maxidx; i++) {
8664 hostaddr[i] = tlb_vaddr_to_host(env,
8665 vaddr + TARGET_PAGE_SIZE * i,
8666 1, mmu_idx);
8667 if (!hostaddr[i]) {
8668 break;
8671 if (i == maxidx) {
8672 /* If it's all in the TLB it's fair game for just writing to;
8673 * we know we don't need to update dirty status, etc.
8675 for (i = 0; i < maxidx - 1; i++) {
8676 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8678 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8679 return;
8681 /* OK, try a store and see if we can populate the tlb. This
8682 * might cause an exception if the memory isn't writable,
8683 * in which case we will longjmp out of here. We must for
8684 * this purpose use the actual register value passed to us
8685 * so that we get the fault address right.
8687 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8688 /* Now we can populate the other TLB entries, if any */
8689 for (i = 0; i < maxidx; i++) {
8690 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8691 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8692 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8697 /* Slow path (probably attempt to do this to an I/O device or
8698 * similar, or clearing of a block of code we have translations
8699 * cached for). Just do a series of byte writes as the architecture
8700 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8701 * memset(), unmap() sequence here because:
8702 * + we'd need to account for the blocksize being larger than a page
8703 * + the direct-RAM access case is almost always going to be dealt
8704 * with in the fastpath code above, so there's no speed benefit
8705 * + we would have to deal with the map returning NULL because the
8706 * bounce buffer was in use
8708 for (i = 0; i < blocklen; i++) {
8709 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8712 #else
8713 memset(g2h(vaddr), 0, blocklen);
8714 #endif
8717 /* Note that signed overflow is undefined in C. The following routines are
8718 careful to use unsigned types where modulo arithmetic is required.
8719 Failure to do so _will_ break on newer gcc. */
8721 /* Signed saturating arithmetic. */
8723 /* Perform 16-bit signed saturating addition. */
8724 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8726 uint16_t res;
8728 res = a + b;
8729 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8730 if (a & 0x8000)
8731 res = 0x8000;
8732 else
8733 res = 0x7fff;
8735 return res;
8738 /* Perform 8-bit signed saturating addition. */
8739 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8741 uint8_t res;
8743 res = a + b;
8744 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8745 if (a & 0x80)
8746 res = 0x80;
8747 else
8748 res = 0x7f;
8750 return res;
8753 /* Perform 16-bit signed saturating subtraction. */
8754 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8756 uint16_t res;
8758 res = a - b;
8759 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8760 if (a & 0x8000)
8761 res = 0x8000;
8762 else
8763 res = 0x7fff;
8765 return res;
8768 /* Perform 8-bit signed saturating subtraction. */
8769 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8771 uint8_t res;
8773 res = a - b;
8774 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8775 if (a & 0x80)
8776 res = 0x80;
8777 else
8778 res = 0x7f;
8780 return res;
8783 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8784 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8785 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8786 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8787 #define PFX q
8789 #include "op_addsub.h"
8791 /* Unsigned saturating arithmetic. */
8792 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8794 uint16_t res;
8795 res = a + b;
8796 if (res < a)
8797 res = 0xffff;
8798 return res;
8801 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8803 if (a > b)
8804 return a - b;
8805 else
8806 return 0;
8809 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8811 uint8_t res;
8812 res = a + b;
8813 if (res < a)
8814 res = 0xff;
8815 return res;
8818 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8820 if (a > b)
8821 return a - b;
8822 else
8823 return 0;
8826 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8827 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8828 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8829 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8830 #define PFX uq
8832 #include "op_addsub.h"
8834 /* Signed modulo arithmetic. */
8835 #define SARITH16(a, b, n, op) do { \
8836 int32_t sum; \
8837 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8838 RESULT(sum, n, 16); \
8839 if (sum >= 0) \
8840 ge |= 3 << (n * 2); \
8841 } while(0)
8843 #define SARITH8(a, b, n, op) do { \
8844 int32_t sum; \
8845 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8846 RESULT(sum, n, 8); \
8847 if (sum >= 0) \
8848 ge |= 1 << n; \
8849 } while(0)
8852 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8853 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8854 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8855 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8856 #define PFX s
8857 #define ARITH_GE
8859 #include "op_addsub.h"
8861 /* Unsigned modulo arithmetic. */
8862 #define ADD16(a, b, n) do { \
8863 uint32_t sum; \
8864 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8865 RESULT(sum, n, 16); \
8866 if ((sum >> 16) == 1) \
8867 ge |= 3 << (n * 2); \
8868 } while(0)
8870 #define ADD8(a, b, n) do { \
8871 uint32_t sum; \
8872 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8873 RESULT(sum, n, 8); \
8874 if ((sum >> 8) == 1) \
8875 ge |= 1 << n; \
8876 } while(0)
8878 #define SUB16(a, b, n) do { \
8879 uint32_t sum; \
8880 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8881 RESULT(sum, n, 16); \
8882 if ((sum >> 16) == 0) \
8883 ge |= 3 << (n * 2); \
8884 } while(0)
8886 #define SUB8(a, b, n) do { \
8887 uint32_t sum; \
8888 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8889 RESULT(sum, n, 8); \
8890 if ((sum >> 8) == 0) \
8891 ge |= 1 << n; \
8892 } while(0)
8894 #define PFX u
8895 #define ARITH_GE
8897 #include "op_addsub.h"
8899 /* Halved signed arithmetic. */
8900 #define ADD16(a, b, n) \
8901 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8902 #define SUB16(a, b, n) \
8903 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8904 #define ADD8(a, b, n) \
8905 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8906 #define SUB8(a, b, n) \
8907 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8908 #define PFX sh
8910 #include "op_addsub.h"
8912 /* Halved unsigned arithmetic. */
8913 #define ADD16(a, b, n) \
8914 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8915 #define SUB16(a, b, n) \
8916 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8917 #define ADD8(a, b, n) \
8918 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8919 #define SUB8(a, b, n) \
8920 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8921 #define PFX uh
8923 #include "op_addsub.h"
8925 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8927 if (a > b)
8928 return a - b;
8929 else
8930 return b - a;
8933 /* Unsigned sum of absolute byte differences. */
8934 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8936 uint32_t sum;
8937 sum = do_usad(a, b);
8938 sum += do_usad(a >> 8, b >> 8);
8939 sum += do_usad(a >> 16, b >>16);
8940 sum += do_usad(a >> 24, b >> 24);
8941 return sum;
8944 /* For ARMv6 SEL instruction. */
8945 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8947 uint32_t mask;
8949 mask = 0;
8950 if (flags & 1)
8951 mask |= 0xff;
8952 if (flags & 2)
8953 mask |= 0xff00;
8954 if (flags & 4)
8955 mask |= 0xff0000;
8956 if (flags & 8)
8957 mask |= 0xff000000;
8958 return (a & mask) | (b & ~mask);
8961 /* VFP support. We follow the convention used for VFP instructions:
8962 Single precision routines have a "s" suffix, double precision a
8963 "d" suffix. */
8965 /* Convert host exception flags to vfp form. */
8966 static inline int vfp_exceptbits_from_host(int host_bits)
8968 int target_bits = 0;
8970 if (host_bits & float_flag_invalid)
8971 target_bits |= 1;
8972 if (host_bits & float_flag_divbyzero)
8973 target_bits |= 2;
8974 if (host_bits & float_flag_overflow)
8975 target_bits |= 4;
8976 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8977 target_bits |= 8;
8978 if (host_bits & float_flag_inexact)
8979 target_bits |= 0x10;
8980 if (host_bits & float_flag_input_denormal)
8981 target_bits |= 0x80;
8982 return target_bits;
8985 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8987 int i;
8988 uint32_t fpscr;
8990 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8991 | (env->vfp.vec_len << 16)
8992 | (env->vfp.vec_stride << 20);
8993 i = get_float_exception_flags(&env->vfp.fp_status);
8994 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8995 fpscr |= vfp_exceptbits_from_host(i);
8996 return fpscr;
8999 uint32_t vfp_get_fpscr(CPUARMState *env)
9001 return HELPER(vfp_get_fpscr)(env);
9004 /* Convert vfp exception flags to target form. */
9005 static inline int vfp_exceptbits_to_host(int target_bits)
9007 int host_bits = 0;
9009 if (target_bits & 1)
9010 host_bits |= float_flag_invalid;
9011 if (target_bits & 2)
9012 host_bits |= float_flag_divbyzero;
9013 if (target_bits & 4)
9014 host_bits |= float_flag_overflow;
9015 if (target_bits & 8)
9016 host_bits |= float_flag_underflow;
9017 if (target_bits & 0x10)
9018 host_bits |= float_flag_inexact;
9019 if (target_bits & 0x80)
9020 host_bits |= float_flag_input_denormal;
9021 return host_bits;
9024 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9026 int i;
9027 uint32_t changed;
9029 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9030 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9031 env->vfp.vec_len = (val >> 16) & 7;
9032 env->vfp.vec_stride = (val >> 20) & 3;
9034 changed ^= val;
9035 if (changed & (3 << 22)) {
9036 i = (val >> 22) & 3;
9037 switch (i) {
9038 case FPROUNDING_TIEEVEN:
9039 i = float_round_nearest_even;
9040 break;
9041 case FPROUNDING_POSINF:
9042 i = float_round_up;
9043 break;
9044 case FPROUNDING_NEGINF:
9045 i = float_round_down;
9046 break;
9047 case FPROUNDING_ZERO:
9048 i = float_round_to_zero;
9049 break;
9051 set_float_rounding_mode(i, &env->vfp.fp_status);
9053 if (changed & (1 << 24)) {
9054 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9055 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9057 if (changed & (1 << 25))
9058 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9060 i = vfp_exceptbits_to_host(val);
9061 set_float_exception_flags(i, &env->vfp.fp_status);
9062 set_float_exception_flags(0, &env->vfp.standard_fp_status);
9065 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9067 HELPER(vfp_set_fpscr)(env, val);
9070 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9072 #define VFP_BINOP(name) \
9073 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9075 float_status *fpst = fpstp; \
9076 return float32_ ## name(a, b, fpst); \
9078 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9080 float_status *fpst = fpstp; \
9081 return float64_ ## name(a, b, fpst); \
9083 VFP_BINOP(add)
9084 VFP_BINOP(sub)
9085 VFP_BINOP(mul)
9086 VFP_BINOP(div)
9087 VFP_BINOP(min)
9088 VFP_BINOP(max)
9089 VFP_BINOP(minnum)
9090 VFP_BINOP(maxnum)
9091 #undef VFP_BINOP
9093 float32 VFP_HELPER(neg, s)(float32 a)
9095 return float32_chs(a);
9098 float64 VFP_HELPER(neg, d)(float64 a)
9100 return float64_chs(a);
9103 float32 VFP_HELPER(abs, s)(float32 a)
9105 return float32_abs(a);
9108 float64 VFP_HELPER(abs, d)(float64 a)
9110 return float64_abs(a);
9113 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9115 return float32_sqrt(a, &env->vfp.fp_status);
9118 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9120 return float64_sqrt(a, &env->vfp.fp_status);
9123 /* XXX: check quiet/signaling case */
9124 #define DO_VFP_cmp(p, type) \
9125 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
9127 uint32_t flags; \
9128 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9129 case 0: flags = 0x6; break; \
9130 case -1: flags = 0x8; break; \
9131 case 1: flags = 0x2; break; \
9132 default: case 2: flags = 0x3; break; \
9134 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9135 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9137 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9139 uint32_t flags; \
9140 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9141 case 0: flags = 0x6; break; \
9142 case -1: flags = 0x8; break; \
9143 case 1: flags = 0x2; break; \
9144 default: case 2: flags = 0x3; break; \
9146 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9147 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9149 DO_VFP_cmp(s, float32)
9150 DO_VFP_cmp(d, float64)
9151 #undef DO_VFP_cmp
9153 /* Integer to float and float to integer conversions */
9155 #define CONV_ITOF(name, fsz, sign) \
9156 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9158 float_status *fpst = fpstp; \
9159 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9162 #define CONV_FTOI(name, fsz, sign, round) \
9163 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9165 float_status *fpst = fpstp; \
9166 if (float##fsz##_is_any_nan(x)) { \
9167 float_raise(float_flag_invalid, fpst); \
9168 return 0; \
9170 return float##fsz##_to_##sign##int32##round(x, fpst); \
9173 #define FLOAT_CONVS(name, p, fsz, sign) \
9174 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9175 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9176 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9178 FLOAT_CONVS(si, s, 32, )
9179 FLOAT_CONVS(si, d, 64, )
9180 FLOAT_CONVS(ui, s, 32, u)
9181 FLOAT_CONVS(ui, d, 64, u)
9183 #undef CONV_ITOF
9184 #undef CONV_FTOI
9185 #undef FLOAT_CONVS
9187 /* floating point conversion */
9188 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9190 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9191 /* ARM requires that S<->D conversion of any kind of NaN generates
9192 * a quiet NaN by forcing the most significant frac bit to 1.
9194 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9197 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9199 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9200 /* ARM requires that S<->D conversion of any kind of NaN generates
9201 * a quiet NaN by forcing the most significant frac bit to 1.
9203 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9206 /* VFP3 fixed point conversion. */
9207 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9208 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9209 void *fpstp) \
9211 float_status *fpst = fpstp; \
9212 float##fsz tmp; \
9213 tmp = itype##_to_##float##fsz(x, fpst); \
9214 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9217 /* Notice that we want only input-denormal exception flags from the
9218 * scalbn operation: the other possible flags (overflow+inexact if
9219 * we overflow to infinity, output-denormal) aren't correct for the
9220 * complete scale-and-convert operation.
9222 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9223 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9224 uint32_t shift, \
9225 void *fpstp) \
9227 float_status *fpst = fpstp; \
9228 int old_exc_flags = get_float_exception_flags(fpst); \
9229 float##fsz tmp; \
9230 if (float##fsz##_is_any_nan(x)) { \
9231 float_raise(float_flag_invalid, fpst); \
9232 return 0; \
9234 tmp = float##fsz##_scalbn(x, shift, fpst); \
9235 old_exc_flags |= get_float_exception_flags(fpst) \
9236 & float_flag_input_denormal; \
9237 set_float_exception_flags(old_exc_flags, fpst); \
9238 return float##fsz##_to_##itype##round(tmp, fpst); \
9241 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9242 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9243 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9244 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9246 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9247 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9248 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9250 VFP_CONV_FIX(sh, d, 64, 64, int16)
9251 VFP_CONV_FIX(sl, d, 64, 64, int32)
9252 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9253 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9254 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9255 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9256 VFP_CONV_FIX(sh, s, 32, 32, int16)
9257 VFP_CONV_FIX(sl, s, 32, 32, int32)
9258 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9259 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9260 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9261 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9262 #undef VFP_CONV_FIX
9263 #undef VFP_CONV_FIX_FLOAT
9264 #undef VFP_CONV_FLOAT_FIX_ROUND
9266 /* Set the current fp rounding mode and return the old one.
9267 * The argument is a softfloat float_round_ value.
9269 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9271 float_status *fp_status = &env->vfp.fp_status;
9273 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9274 set_float_rounding_mode(rmode, fp_status);
9276 return prev_rmode;
9279 /* Set the current fp rounding mode in the standard fp status and return
9280 * the old one. This is for NEON instructions that need to change the
9281 * rounding mode but wish to use the standard FPSCR values for everything
9282 * else. Always set the rounding mode back to the correct value after
9283 * modifying it.
9284 * The argument is a softfloat float_round_ value.
9286 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9288 float_status *fp_status = &env->vfp.standard_fp_status;
9290 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9291 set_float_rounding_mode(rmode, fp_status);
9293 return prev_rmode;
9296 /* Half precision conversions. */
9297 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9299 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9300 float32 r = float16_to_float32(make_float16(a), ieee, s);
9301 if (ieee) {
9302 return float32_maybe_silence_nan(r, s);
9304 return r;
9307 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9309 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9310 float16 r = float32_to_float16(a, ieee, s);
9311 if (ieee) {
9312 r = float16_maybe_silence_nan(r, s);
9314 return float16_val(r);
9317 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9319 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9322 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9324 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9327 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9329 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9332 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9334 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9337 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9339 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9340 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9341 if (ieee) {
9342 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9344 return r;
9347 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9349 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9350 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9351 if (ieee) {
9352 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9354 return float16_val(r);
9357 #define float32_two make_float32(0x40000000)
9358 #define float32_three make_float32(0x40400000)
9359 #define float32_one_point_five make_float32(0x3fc00000)
9361 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9363 float_status *s = &env->vfp.standard_fp_status;
9364 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9365 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9366 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9367 float_raise(float_flag_input_denormal, s);
9369 return float32_two;
9371 return float32_sub(float32_two, float32_mul(a, b, s), s);
9374 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9376 float_status *s = &env->vfp.standard_fp_status;
9377 float32 product;
9378 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9379 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9380 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9381 float_raise(float_flag_input_denormal, s);
9383 return float32_one_point_five;
9385 product = float32_mul(a, b, s);
9386 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9389 /* NEON helpers. */
9391 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9392 * int->float conversions at run-time. */
9393 #define float64_256 make_float64(0x4070000000000000LL)
9394 #define float64_512 make_float64(0x4080000000000000LL)
9395 #define float32_maxnorm make_float32(0x7f7fffff)
9396 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9398 /* Reciprocal functions
9400 * The algorithm that must be used to calculate the estimate
9401 * is specified by the ARM ARM, see FPRecipEstimate()
9404 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9406 /* These calculations mustn't set any fp exception flags,
9407 * so we use a local copy of the fp_status.
9409 float_status dummy_status = *real_fp_status;
9410 float_status *s = &dummy_status;
9411 /* q = (int)(a * 512.0) */
9412 float64 q = float64_mul(float64_512, a, s);
9413 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9415 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9416 q = int64_to_float64(q_int, s);
9417 q = float64_add(q, float64_half, s);
9418 q = float64_div(q, float64_512, s);
9419 q = float64_div(float64_one, q, s);
9421 /* s = (int)(256.0 * r + 0.5) */
9422 q = float64_mul(q, float64_256, s);
9423 q = float64_add(q, float64_half, s);
9424 q_int = float64_to_int64_round_to_zero(q, s);
9426 /* return (double)s / 256.0 */
9427 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9430 /* Common wrapper to call recip_estimate */
9431 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9433 uint64_t val64 = float64_val(num);
9434 uint64_t frac = extract64(val64, 0, 52);
9435 int64_t exp = extract64(val64, 52, 11);
9436 uint64_t sbit;
9437 float64 scaled, estimate;
9439 /* Generate the scaled number for the estimate function */
9440 if (exp == 0) {
9441 if (extract64(frac, 51, 1) == 0) {
9442 exp = -1;
9443 frac = extract64(frac, 0, 50) << 2;
9444 } else {
9445 frac = extract64(frac, 0, 51) << 1;
9449 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9450 scaled = make_float64((0x3feULL << 52)
9451 | extract64(frac, 44, 8) << 44);
9453 estimate = recip_estimate(scaled, fpst);
9455 /* Build new result */
9456 val64 = float64_val(estimate);
9457 sbit = 0x8000000000000000ULL & val64;
9458 exp = off - exp;
9459 frac = extract64(val64, 0, 52);
9461 if (exp == 0) {
9462 frac = 1ULL << 51 | extract64(frac, 1, 51);
9463 } else if (exp == -1) {
9464 frac = 1ULL << 50 | extract64(frac, 2, 50);
9465 exp = 0;
9468 return make_float64(sbit | (exp << 52) | frac);
9471 static bool round_to_inf(float_status *fpst, bool sign_bit)
9473 switch (fpst->float_rounding_mode) {
9474 case float_round_nearest_even: /* Round to Nearest */
9475 return true;
9476 case float_round_up: /* Round to +Inf */
9477 return !sign_bit;
9478 case float_round_down: /* Round to -Inf */
9479 return sign_bit;
9480 case float_round_to_zero: /* Round to Zero */
9481 return false;
9484 g_assert_not_reached();
9487 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9489 float_status *fpst = fpstp;
9490 float32 f32 = float32_squash_input_denormal(input, fpst);
9491 uint32_t f32_val = float32_val(f32);
9492 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9493 int32_t f32_exp = extract32(f32_val, 23, 8);
9494 uint32_t f32_frac = extract32(f32_val, 0, 23);
9495 float64 f64, r64;
9496 uint64_t r64_val;
9497 int64_t r64_exp;
9498 uint64_t r64_frac;
9500 if (float32_is_any_nan(f32)) {
9501 float32 nan = f32;
9502 if (float32_is_signaling_nan(f32, fpst)) {
9503 float_raise(float_flag_invalid, fpst);
9504 nan = float32_maybe_silence_nan(f32, fpst);
9506 if (fpst->default_nan_mode) {
9507 nan = float32_default_nan(fpst);
9509 return nan;
9510 } else if (float32_is_infinity(f32)) {
9511 return float32_set_sign(float32_zero, float32_is_neg(f32));
9512 } else if (float32_is_zero(f32)) {
9513 float_raise(float_flag_divbyzero, fpst);
9514 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9515 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9516 /* Abs(value) < 2.0^-128 */
9517 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9518 if (round_to_inf(fpst, f32_sbit)) {
9519 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9520 } else {
9521 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9523 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9524 float_raise(float_flag_underflow, fpst);
9525 return float32_set_sign(float32_zero, float32_is_neg(f32));
9529 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9530 r64 = call_recip_estimate(f64, 253, fpst);
9531 r64_val = float64_val(r64);
9532 r64_exp = extract64(r64_val, 52, 11);
9533 r64_frac = extract64(r64_val, 0, 52);
9535 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9536 return make_float32(f32_sbit |
9537 (r64_exp & 0xff) << 23 |
9538 extract64(r64_frac, 29, 24));
9541 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9543 float_status *fpst = fpstp;
9544 float64 f64 = float64_squash_input_denormal(input, fpst);
9545 uint64_t f64_val = float64_val(f64);
9546 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9547 int64_t f64_exp = extract64(f64_val, 52, 11);
9548 float64 r64;
9549 uint64_t r64_val;
9550 int64_t r64_exp;
9551 uint64_t r64_frac;
9553 /* Deal with any special cases */
9554 if (float64_is_any_nan(f64)) {
9555 float64 nan = f64;
9556 if (float64_is_signaling_nan(f64, fpst)) {
9557 float_raise(float_flag_invalid, fpst);
9558 nan = float64_maybe_silence_nan(f64, fpst);
9560 if (fpst->default_nan_mode) {
9561 nan = float64_default_nan(fpst);
9563 return nan;
9564 } else if (float64_is_infinity(f64)) {
9565 return float64_set_sign(float64_zero, float64_is_neg(f64));
9566 } else if (float64_is_zero(f64)) {
9567 float_raise(float_flag_divbyzero, fpst);
9568 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9569 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9570 /* Abs(value) < 2.0^-1024 */
9571 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9572 if (round_to_inf(fpst, f64_sbit)) {
9573 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9574 } else {
9575 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9577 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9578 float_raise(float_flag_underflow, fpst);
9579 return float64_set_sign(float64_zero, float64_is_neg(f64));
9582 r64 = call_recip_estimate(f64, 2045, fpst);
9583 r64_val = float64_val(r64);
9584 r64_exp = extract64(r64_val, 52, 11);
9585 r64_frac = extract64(r64_val, 0, 52);
9587 /* result = sign : result_exp<10:0> : fraction<51:0> */
9588 return make_float64(f64_sbit |
9589 ((r64_exp & 0x7ff) << 52) |
9590 r64_frac);
9593 /* The algorithm that must be used to calculate the estimate
9594 * is specified by the ARM ARM.
9596 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9598 /* These calculations mustn't set any fp exception flags,
9599 * so we use a local copy of the fp_status.
9601 float_status dummy_status = *real_fp_status;
9602 float_status *s = &dummy_status;
9603 float64 q;
9604 int64_t q_int;
9606 if (float64_lt(a, float64_half, s)) {
9607 /* range 0.25 <= a < 0.5 */
9609 /* a in units of 1/512 rounded down */
9610 /* q0 = (int)(a * 512.0); */
9611 q = float64_mul(float64_512, a, s);
9612 q_int = float64_to_int64_round_to_zero(q, s);
9614 /* reciprocal root r */
9615 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9616 q = int64_to_float64(q_int, s);
9617 q = float64_add(q, float64_half, s);
9618 q = float64_div(q, float64_512, s);
9619 q = float64_sqrt(q, s);
9620 q = float64_div(float64_one, q, s);
9621 } else {
9622 /* range 0.5 <= a < 1.0 */
9624 /* a in units of 1/256 rounded down */
9625 /* q1 = (int)(a * 256.0); */
9626 q = float64_mul(float64_256, a, s);
9627 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9629 /* reciprocal root r */
9630 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9631 q = int64_to_float64(q_int, s);
9632 q = float64_add(q, float64_half, s);
9633 q = float64_div(q, float64_256, s);
9634 q = float64_sqrt(q, s);
9635 q = float64_div(float64_one, q, s);
9637 /* r in units of 1/256 rounded to nearest */
9638 /* s = (int)(256.0 * r + 0.5); */
9640 q = float64_mul(q, float64_256,s );
9641 q = float64_add(q, float64_half, s);
9642 q_int = float64_to_int64_round_to_zero(q, s);
9644 /* return (double)s / 256.0;*/
9645 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9648 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9650 float_status *s = fpstp;
9651 float32 f32 = float32_squash_input_denormal(input, s);
9652 uint32_t val = float32_val(f32);
9653 uint32_t f32_sbit = 0x80000000 & val;
9654 int32_t f32_exp = extract32(val, 23, 8);
9655 uint32_t f32_frac = extract32(val, 0, 23);
9656 uint64_t f64_frac;
9657 uint64_t val64;
9658 int result_exp;
9659 float64 f64;
9661 if (float32_is_any_nan(f32)) {
9662 float32 nan = f32;
9663 if (float32_is_signaling_nan(f32, s)) {
9664 float_raise(float_flag_invalid, s);
9665 nan = float32_maybe_silence_nan(f32, s);
9667 if (s->default_nan_mode) {
9668 nan = float32_default_nan(s);
9670 return nan;
9671 } else if (float32_is_zero(f32)) {
9672 float_raise(float_flag_divbyzero, s);
9673 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9674 } else if (float32_is_neg(f32)) {
9675 float_raise(float_flag_invalid, s);
9676 return float32_default_nan(s);
9677 } else if (float32_is_infinity(f32)) {
9678 return float32_zero;
9681 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9682 * preserving the parity of the exponent. */
9684 f64_frac = ((uint64_t) f32_frac) << 29;
9685 if (f32_exp == 0) {
9686 while (extract64(f64_frac, 51, 1) == 0) {
9687 f64_frac = f64_frac << 1;
9688 f32_exp = f32_exp-1;
9690 f64_frac = extract64(f64_frac, 0, 51) << 1;
9693 if (extract64(f32_exp, 0, 1) == 0) {
9694 f64 = make_float64(((uint64_t) f32_sbit) << 32
9695 | (0x3feULL << 52)
9696 | f64_frac);
9697 } else {
9698 f64 = make_float64(((uint64_t) f32_sbit) << 32
9699 | (0x3fdULL << 52)
9700 | f64_frac);
9703 result_exp = (380 - f32_exp) / 2;
9705 f64 = recip_sqrt_estimate(f64, s);
9707 val64 = float64_val(f64);
9709 val = ((result_exp & 0xff) << 23)
9710 | ((val64 >> 29) & 0x7fffff);
9711 return make_float32(val);
9714 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9716 float_status *s = fpstp;
9717 float64 f64 = float64_squash_input_denormal(input, s);
9718 uint64_t val = float64_val(f64);
9719 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9720 int64_t f64_exp = extract64(val, 52, 11);
9721 uint64_t f64_frac = extract64(val, 0, 52);
9722 int64_t result_exp;
9723 uint64_t result_frac;
9725 if (float64_is_any_nan(f64)) {
9726 float64 nan = f64;
9727 if (float64_is_signaling_nan(f64, s)) {
9728 float_raise(float_flag_invalid, s);
9729 nan = float64_maybe_silence_nan(f64, s);
9731 if (s->default_nan_mode) {
9732 nan = float64_default_nan(s);
9734 return nan;
9735 } else if (float64_is_zero(f64)) {
9736 float_raise(float_flag_divbyzero, s);
9737 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9738 } else if (float64_is_neg(f64)) {
9739 float_raise(float_flag_invalid, s);
9740 return float64_default_nan(s);
9741 } else if (float64_is_infinity(f64)) {
9742 return float64_zero;
9745 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9746 * preserving the parity of the exponent. */
9748 if (f64_exp == 0) {
9749 while (extract64(f64_frac, 51, 1) == 0) {
9750 f64_frac = f64_frac << 1;
9751 f64_exp = f64_exp - 1;
9753 f64_frac = extract64(f64_frac, 0, 51) << 1;
9756 if (extract64(f64_exp, 0, 1) == 0) {
9757 f64 = make_float64(f64_sbit
9758 | (0x3feULL << 52)
9759 | f64_frac);
9760 } else {
9761 f64 = make_float64(f64_sbit
9762 | (0x3fdULL << 52)
9763 | f64_frac);
9766 result_exp = (3068 - f64_exp) / 2;
9768 f64 = recip_sqrt_estimate(f64, s);
9770 result_frac = extract64(float64_val(f64), 0, 52);
9772 return make_float64(f64_sbit |
9773 ((result_exp & 0x7ff) << 52) |
9774 result_frac);
9777 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9779 float_status *s = fpstp;
9780 float64 f64;
9782 if ((a & 0x80000000) == 0) {
9783 return 0xffffffff;
9786 f64 = make_float64((0x3feULL << 52)
9787 | ((int64_t)(a & 0x7fffffff) << 21));
9789 f64 = recip_estimate(f64, s);
9791 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9794 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9796 float_status *fpst = fpstp;
9797 float64 f64;
9799 if ((a & 0xc0000000) == 0) {
9800 return 0xffffffff;
9803 if (a & 0x80000000) {
9804 f64 = make_float64((0x3feULL << 52)
9805 | ((uint64_t)(a & 0x7fffffff) << 21));
9806 } else { /* bits 31-30 == '01' */
9807 f64 = make_float64((0x3fdULL << 52)
9808 | ((uint64_t)(a & 0x3fffffff) << 22));
9811 f64 = recip_sqrt_estimate(f64, fpst);
9813 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9816 /* VFPv4 fused multiply-accumulate */
9817 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9819 float_status *fpst = fpstp;
9820 return float32_muladd(a, b, c, 0, fpst);
9823 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9825 float_status *fpst = fpstp;
9826 return float64_muladd(a, b, c, 0, fpst);
9829 /* ARMv8 round to integral */
9830 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9832 return float32_round_to_int(x, fp_status);
9835 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9837 return float64_round_to_int(x, fp_status);
9840 float32 HELPER(rints)(float32 x, void *fp_status)
9842 int old_flags = get_float_exception_flags(fp_status), new_flags;
9843 float32 ret;
9845 ret = float32_round_to_int(x, fp_status);
9847 /* Suppress any inexact exceptions the conversion produced */
9848 if (!(old_flags & float_flag_inexact)) {
9849 new_flags = get_float_exception_flags(fp_status);
9850 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9853 return ret;
9856 float64 HELPER(rintd)(float64 x, void *fp_status)
9858 int old_flags = get_float_exception_flags(fp_status), new_flags;
9859 float64 ret;
9861 ret = float64_round_to_int(x, fp_status);
9863 new_flags = get_float_exception_flags(fp_status);
9865 /* Suppress any inexact exceptions the conversion produced */
9866 if (!(old_flags & float_flag_inexact)) {
9867 new_flags = get_float_exception_flags(fp_status);
9868 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9871 return ret;
9874 /* Convert ARM rounding mode to softfloat */
9875 int arm_rmode_to_sf(int rmode)
9877 switch (rmode) {
9878 case FPROUNDING_TIEAWAY:
9879 rmode = float_round_ties_away;
9880 break;
9881 case FPROUNDING_ODD:
9882 /* FIXME: add support for TIEAWAY and ODD */
9883 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9884 rmode);
9885 case FPROUNDING_TIEEVEN:
9886 default:
9887 rmode = float_round_nearest_even;
9888 break;
9889 case FPROUNDING_POSINF:
9890 rmode = float_round_up;
9891 break;
9892 case FPROUNDING_NEGINF:
9893 rmode = float_round_down;
9894 break;
9895 case FPROUNDING_ZERO:
9896 rmode = float_round_to_zero;
9897 break;
9899 return rmode;
9902 /* CRC helpers.
9903 * The upper bytes of val (above the number specified by 'bytes') must have
9904 * been zeroed out by the caller.
9906 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9908 uint8_t buf[4];
9910 stl_le_p(buf, val);
9912 /* zlib crc32 converts the accumulator and output to one's complement. */
9913 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9916 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9918 uint8_t buf[4];
9920 stl_le_p(buf, val);
9922 /* Linux crc32c converts the output to one's complement. */
9923 return crc32c(acc, buf, bytes) ^ 0xffffffff;