numa: drop support for '-numa node' (without memory specified)
[qemu/ar7.git] / hw / ppc / spapr.c
blob2db810f73ab0f071047357db357911f813e54c38
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
86 #include "monitor/monitor.h"
88 #include <libfdt.h>
90 /* SLOF memory layout:
92 * SLOF raw image loaded at 0, copies its romfs right below the flat
93 * device-tree, then position SLOF itself 31M below that
95 * So we set FW_OVERHEAD to 40MB which should account for all of that
96 * and more
98 * We load our kernel at 4M, leaving space for SLOF initial image
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106 #define MIN_RMA_SLOF (128 * MiB)
108 #define PHANDLE_INTC 0x00001111
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 int spapr_max_server_number(SpaprMachineState *spapr)
166 MachineState *ms = MACHINE(spapr);
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
202 return ret;
205 static void spapr_dt_pa_features(SpaprMachineState *spapr,
206 PowerPCCPU *cpu,
207 void *fdt, int offset)
209 uint8_t pa_features_206[] = { 6, 0,
210 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
211 uint8_t pa_features_207[] = { 24, 0,
212 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
213 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
214 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
215 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
216 uint8_t pa_features_300[] = { 66, 0,
217 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
218 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
219 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
220 /* 6: DS207 */
221 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
222 /* 16: Vector */
223 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
224 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
225 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
226 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
227 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
228 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
229 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
230 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
232 /* 42: PM, 44: PC RA, 46: SC vec'd */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
234 /* 48: SIMD, 50: QP BFP, 52: String */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
236 /* 54: DecFP, 56: DecI, 58: SHA */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
238 /* 60: NM atomic, 62: RNG */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241 uint8_t *pa_features = NULL;
242 size_t pa_size;
244 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
245 pa_features = pa_features_206;
246 pa_size = sizeof(pa_features_206);
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_207;
250 pa_size = sizeof(pa_features_207);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_300;
254 pa_size = sizeof(pa_features_300);
256 if (!pa_features) {
257 return;
260 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
262 * Note: we keep CI large pages off by default because a 64K capable
263 * guest provisioned with large pages might otherwise try to map a qemu
264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265 * even if that qemu runs on a 4k host.
266 * We dd this bit back here if we are confident this is not an issue
268 pa_features[3] |= 0x20;
270 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
271 pa_features[24] |= 0x80; /* Transactional memory support */
273 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
274 /* Workaround for broken kernels that attempt (guest) radix
275 * mode when they can't handle it, if they see the radix bit set
276 * in pa-features. So hide it from them. */
277 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 static hwaddr spapr_node0_size(MachineState *machine)
285 if (machine->numa_state->num_nodes) {
286 int i;
287 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
288 if (machine->numa_state->nodes[i].node_mem) {
289 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
290 machine->ram_size);
294 return machine->ram_size;
297 static void add_str(GString *s, const gchar *s1)
299 g_string_append_len(s, s1, strlen(s1) + 1);
302 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
303 hwaddr start, hwaddr size)
305 char mem_name[32];
306 uint64_t mem_reg_property[2];
307 int off;
309 mem_reg_property[0] = cpu_to_be64(start);
310 mem_reg_property[1] = cpu_to_be64(size);
312 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
313 off = fdt_add_subnode(fdt, 0, mem_name);
314 _FDT(off);
315 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
316 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
317 sizeof(mem_reg_property))));
318 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
319 return off;
322 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
324 MemoryDeviceInfoList *info;
326 for (info = list; info; info = info->next) {
327 MemoryDeviceInfo *value = info->value;
329 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
330 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
332 if (addr >= pcdimm_info->addr &&
333 addr < (pcdimm_info->addr + pcdimm_info->size)) {
334 return pcdimm_info->node;
339 return -1;
342 struct sPAPRDrconfCellV2 {
343 uint32_t seq_lmbs;
344 uint64_t base_addr;
345 uint32_t drc_index;
346 uint32_t aa_index;
347 uint32_t flags;
348 } QEMU_PACKED;
350 typedef struct DrconfCellQueue {
351 struct sPAPRDrconfCellV2 cell;
352 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
353 } DrconfCellQueue;
355 static DrconfCellQueue *
356 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
357 uint32_t drc_index, uint32_t aa_index,
358 uint32_t flags)
360 DrconfCellQueue *elem;
362 elem = g_malloc0(sizeof(*elem));
363 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
364 elem->cell.base_addr = cpu_to_be64(base_addr);
365 elem->cell.drc_index = cpu_to_be32(drc_index);
366 elem->cell.aa_index = cpu_to_be32(aa_index);
367 elem->cell.flags = cpu_to_be32(flags);
369 return elem;
372 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
373 int offset, MemoryDeviceInfoList *dimms)
375 MachineState *machine = MACHINE(spapr);
376 uint8_t *int_buf, *cur_index;
377 int ret;
378 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
379 uint64_t addr, cur_addr, size;
380 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
381 uint64_t mem_end = machine->device_memory->base +
382 memory_region_size(&machine->device_memory->mr);
383 uint32_t node, buf_len, nr_entries = 0;
384 SpaprDrc *drc;
385 DrconfCellQueue *elem, *next;
386 MemoryDeviceInfoList *info;
387 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
388 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
390 /* Entry to cover RAM and the gap area */
391 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
392 SPAPR_LMB_FLAGS_RESERVED |
393 SPAPR_LMB_FLAGS_DRC_INVALID);
394 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
395 nr_entries++;
397 cur_addr = machine->device_memory->base;
398 for (info = dimms; info; info = info->next) {
399 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
401 addr = di->addr;
402 size = di->size;
403 node = di->node;
406 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
407 * area is marked hotpluggable in the next iteration for the bigger
408 * chunk including the NVDIMM occupied area.
410 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
411 continue;
413 /* Entry for hot-pluggable area */
414 if (cur_addr < addr) {
415 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
416 g_assert(drc);
417 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
418 cur_addr, spapr_drc_index(drc), -1, 0);
419 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
420 nr_entries++;
423 /* Entry for DIMM */
424 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
425 g_assert(drc);
426 elem = spapr_get_drconf_cell(size / lmb_size, addr,
427 spapr_drc_index(drc), node,
428 (SPAPR_LMB_FLAGS_ASSIGNED |
429 SPAPR_LMB_FLAGS_HOTREMOVABLE));
430 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
431 nr_entries++;
432 cur_addr = addr + size;
435 /* Entry for remaining hotpluggable area */
436 if (cur_addr < mem_end) {
437 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
438 g_assert(drc);
439 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
440 cur_addr, spapr_drc_index(drc), -1, 0);
441 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
442 nr_entries++;
445 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
446 int_buf = cur_index = g_malloc0(buf_len);
447 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
448 cur_index += sizeof(nr_entries);
450 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
451 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
452 cur_index += sizeof(elem->cell);
453 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
454 g_free(elem);
457 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
458 g_free(int_buf);
459 if (ret < 0) {
460 return -1;
462 return 0;
465 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
466 int offset, MemoryDeviceInfoList *dimms)
468 MachineState *machine = MACHINE(spapr);
469 int i, ret;
470 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
471 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
472 uint32_t nr_lmbs = (machine->device_memory->base +
473 memory_region_size(&machine->device_memory->mr)) /
474 lmb_size;
475 uint32_t *int_buf, *cur_index, buf_len;
478 * Allocate enough buffer size to fit in ibm,dynamic-memory
480 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
481 cur_index = int_buf = g_malloc0(buf_len);
482 int_buf[0] = cpu_to_be32(nr_lmbs);
483 cur_index++;
484 for (i = 0; i < nr_lmbs; i++) {
485 uint64_t addr = i * lmb_size;
486 uint32_t *dynamic_memory = cur_index;
488 if (i >= device_lmb_start) {
489 SpaprDrc *drc;
491 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
492 g_assert(drc);
494 dynamic_memory[0] = cpu_to_be32(addr >> 32);
495 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
496 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
497 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
498 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
499 if (memory_region_present(get_system_memory(), addr)) {
500 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
501 } else {
502 dynamic_memory[5] = cpu_to_be32(0);
504 } else {
506 * LMB information for RMA, boot time RAM and gap b/n RAM and
507 * device memory region -- all these are marked as reserved
508 * and as having no valid DRC.
510 dynamic_memory[0] = cpu_to_be32(addr >> 32);
511 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
512 dynamic_memory[2] = cpu_to_be32(0);
513 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
514 dynamic_memory[4] = cpu_to_be32(-1);
515 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
516 SPAPR_LMB_FLAGS_DRC_INVALID);
519 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
521 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
522 g_free(int_buf);
523 if (ret < 0) {
524 return -1;
526 return 0;
530 * Adds ibm,dynamic-reconfiguration-memory node.
531 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
532 * of this device tree node.
534 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
535 void *fdt)
537 MachineState *machine = MACHINE(spapr);
538 int ret, offset;
539 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
540 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
541 cpu_to_be32(lmb_size & 0xffffffff)};
542 MemoryDeviceInfoList *dimms = NULL;
545 * Don't create the node if there is no device memory
547 if (machine->ram_size == machine->maxram_size) {
548 return 0;
551 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
553 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
554 sizeof(prop_lmb_size));
555 if (ret < 0) {
556 return ret;
559 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
560 if (ret < 0) {
561 return ret;
564 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
565 if (ret < 0) {
566 return ret;
569 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
570 dimms = qmp_memory_device_list();
571 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
572 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
573 } else {
574 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
576 qapi_free_MemoryDeviceInfoList(dimms);
578 if (ret < 0) {
579 return ret;
582 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
584 return ret;
587 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
589 MachineState *machine = MACHINE(spapr);
590 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
591 hwaddr mem_start, node_size;
592 int i, nb_nodes = machine->numa_state->num_nodes;
593 NodeInfo *nodes = machine->numa_state->nodes;
595 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
596 if (!nodes[i].node_mem) {
597 continue;
599 if (mem_start >= machine->ram_size) {
600 node_size = 0;
601 } else {
602 node_size = nodes[i].node_mem;
603 if (node_size > machine->ram_size - mem_start) {
604 node_size = machine->ram_size - mem_start;
607 if (!mem_start) {
608 /* spapr_machine_init() checks for rma_size <= node0_size
609 * already */
610 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
611 mem_start += spapr->rma_size;
612 node_size -= spapr->rma_size;
614 for ( ; node_size; ) {
615 hwaddr sizetmp = pow2floor(node_size);
617 /* mem_start != 0 here */
618 if (ctzl(mem_start) < ctzl(sizetmp)) {
619 sizetmp = 1ULL << ctzl(mem_start);
622 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
623 node_size -= sizetmp;
624 mem_start += sizetmp;
628 /* Generate ibm,dynamic-reconfiguration-memory node if required */
629 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
630 int ret;
632 g_assert(smc->dr_lmb_enabled);
633 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
634 if (ret) {
635 return ret;
639 return 0;
642 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
643 SpaprMachineState *spapr)
645 MachineState *ms = MACHINE(spapr);
646 PowerPCCPU *cpu = POWERPC_CPU(cs);
647 CPUPPCState *env = &cpu->env;
648 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
649 int index = spapr_get_vcpu_id(cpu);
650 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
651 0xffffffff, 0xffffffff};
652 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
653 : SPAPR_TIMEBASE_FREQ;
654 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
655 uint32_t page_sizes_prop[64];
656 size_t page_sizes_prop_size;
657 unsigned int smp_threads = ms->smp.threads;
658 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
659 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
660 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
661 SpaprDrc *drc;
662 int drc_index;
663 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
664 int i;
666 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
667 if (drc) {
668 drc_index = spapr_drc_index(drc);
669 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
672 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
673 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
675 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
676 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
677 env->dcache_line_size)));
678 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
679 env->dcache_line_size)));
680 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
681 env->icache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
683 env->icache_line_size)));
685 if (pcc->l1_dcache_size) {
686 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
687 pcc->l1_dcache_size)));
688 } else {
689 warn_report("Unknown L1 dcache size for cpu");
691 if (pcc->l1_icache_size) {
692 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
693 pcc->l1_icache_size)));
694 } else {
695 warn_report("Unknown L1 icache size for cpu");
698 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
699 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
700 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
701 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
702 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
703 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
705 if (env->spr_cb[SPR_PURR].oea_read) {
706 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
708 if (env->spr_cb[SPR_SPURR].oea_read) {
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
712 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
713 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
714 segs, sizeof(segs))));
717 /* Advertise VSX (vector extensions) if available
718 * 1 == VMX / Altivec available
719 * 2 == VSX available
721 * Only CPUs for which we create core types in spapr_cpu_core.c
722 * are possible, and all of those have VMX */
723 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
724 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
725 } else {
726 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
729 /* Advertise DFP (Decimal Floating Point) if available
730 * 0 / no property == no DFP
731 * 1 == DFP available */
732 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
733 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
736 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
737 sizeof(page_sizes_prop));
738 if (page_sizes_prop_size) {
739 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
740 page_sizes_prop, page_sizes_prop_size)));
743 spapr_dt_pa_features(spapr, cpu, fdt, offset);
745 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
746 cs->cpu_index / vcpus_per_socket)));
748 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
749 pft_size_prop, sizeof(pft_size_prop))));
751 if (ms->numa_state->num_nodes > 1) {
752 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
755 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
757 if (pcc->radix_page_info) {
758 for (i = 0; i < pcc->radix_page_info->count; i++) {
759 radix_AP_encodings[i] =
760 cpu_to_be32(pcc->radix_page_info->entries[i]);
762 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
763 radix_AP_encodings,
764 pcc->radix_page_info->count *
765 sizeof(radix_AP_encodings[0]))));
769 * We set this property to let the guest know that it can use the large
770 * decrementer and its width in bits.
772 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
773 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
774 pcc->lrg_decr_bits)));
777 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
779 CPUState **rev;
780 CPUState *cs;
781 int n_cpus;
782 int cpus_offset;
783 char *nodename;
784 int i;
786 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
787 _FDT(cpus_offset);
788 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
789 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
792 * We walk the CPUs in reverse order to ensure that CPU DT nodes
793 * created by fdt_add_subnode() end up in the right order in FDT
794 * for the guest kernel the enumerate the CPUs correctly.
796 * The CPU list cannot be traversed in reverse order, so we need
797 * to do extra work.
799 n_cpus = 0;
800 rev = NULL;
801 CPU_FOREACH(cs) {
802 rev = g_renew(CPUState *, rev, n_cpus + 1);
803 rev[n_cpus++] = cs;
806 for (i = n_cpus - 1; i >= 0; i--) {
807 CPUState *cs = rev[i];
808 PowerPCCPU *cpu = POWERPC_CPU(cs);
809 int index = spapr_get_vcpu_id(cpu);
810 DeviceClass *dc = DEVICE_GET_CLASS(cs);
811 int offset;
813 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
814 continue;
817 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
818 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
819 g_free(nodename);
820 _FDT(offset);
821 spapr_dt_cpu(cs, fdt, offset, spapr);
824 g_free(rev);
827 static int spapr_dt_rng(void *fdt)
829 int node;
830 int ret;
832 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
833 if (node <= 0) {
834 return -1;
836 ret = fdt_setprop_string(fdt, node, "device_type",
837 "ibm,platform-facilities");
838 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
839 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
841 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
842 if (node <= 0) {
843 return -1;
845 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
847 return ret ? -1 : 0;
850 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
852 MachineState *ms = MACHINE(spapr);
853 int rtas;
854 GString *hypertas = g_string_sized_new(256);
855 GString *qemu_hypertas = g_string_sized_new(256);
856 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
857 memory_region_size(&MACHINE(spapr)->device_memory->mr);
858 uint32_t lrdr_capacity[] = {
859 cpu_to_be32(max_device_addr >> 32),
860 cpu_to_be32(max_device_addr & 0xffffffff),
861 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
862 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
863 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
866 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
868 /* hypertas */
869 add_str(hypertas, "hcall-pft");
870 add_str(hypertas, "hcall-term");
871 add_str(hypertas, "hcall-dabr");
872 add_str(hypertas, "hcall-interrupt");
873 add_str(hypertas, "hcall-tce");
874 add_str(hypertas, "hcall-vio");
875 add_str(hypertas, "hcall-splpar");
876 add_str(hypertas, "hcall-join");
877 add_str(hypertas, "hcall-bulk");
878 add_str(hypertas, "hcall-set-mode");
879 add_str(hypertas, "hcall-sprg0");
880 add_str(hypertas, "hcall-copy");
881 add_str(hypertas, "hcall-debug");
882 add_str(hypertas, "hcall-vphn");
883 add_str(qemu_hypertas, "hcall-memop1");
885 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
886 add_str(hypertas, "hcall-multi-tce");
889 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
890 add_str(hypertas, "hcall-hpt-resize");
893 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
894 hypertas->str, hypertas->len));
895 g_string_free(hypertas, TRUE);
896 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
897 qemu_hypertas->str, qemu_hypertas->len));
898 g_string_free(qemu_hypertas, TRUE);
900 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
903 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
904 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
906 * The system reset requirements are driven by existing Linux and PowerVM
907 * implementation which (contrary to PAPR) saves r3 in the error log
908 * structure like machine check, so Linux expects to find the saved r3
909 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
910 * does not look at the error value).
912 * System reset interrupts are not subject to interlock like machine
913 * check, so this memory area could be corrupted if the sreset is
914 * interrupted by a machine check (or vice versa) if it was shared. To
915 * prevent this, system reset uses per-CPU areas for the sreset save
916 * area. A system reset that interrupts a system reset handler could
917 * still overwrite this area, but Linux doesn't try to recover in that
918 * case anyway.
920 * The extra 8 bytes is required because Linux's FWNMI error log check
921 * is off-by-one.
923 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
924 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
925 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
926 RTAS_ERROR_LOG_MAX));
927 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
928 RTAS_EVENT_SCAN_RATE));
930 g_assert(msi_nonbroken);
931 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
934 * According to PAPR, rtas ibm,os-term does not guarantee a return
935 * back to the guest cpu.
937 * While an additional ibm,extended-os-term property indicates
938 * that rtas call return will always occur. Set this property.
940 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
942 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
943 lrdr_capacity, sizeof(lrdr_capacity)));
945 spapr_dt_rtas_tokens(fdt, rtas);
949 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
950 * and the XIVE features that the guest may request and thus the valid
951 * values for bytes 23..26 of option vector 5:
953 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
954 int chosen)
956 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
958 char val[2 * 4] = {
959 23, 0x00, /* XICS / XIVE mode */
960 24, 0x00, /* Hash/Radix, filled in below. */
961 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
962 26, 0x40, /* Radix options: GTSE == yes. */
965 if (spapr->irq->xics && spapr->irq->xive) {
966 val[1] = SPAPR_OV5_XIVE_BOTH;
967 } else if (spapr->irq->xive) {
968 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
969 } else {
970 assert(spapr->irq->xics);
971 val[1] = SPAPR_OV5_XIVE_LEGACY;
974 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
975 first_ppc_cpu->compat_pvr)) {
977 * If we're in a pre POWER9 compat mode then the guest should
978 * do hash and use the legacy interrupt mode
980 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
981 val[3] = 0x00; /* Hash */
982 } else if (kvm_enabled()) {
983 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
984 val[3] = 0x80; /* OV5_MMU_BOTH */
985 } else if (kvmppc_has_cap_mmu_radix()) {
986 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
987 } else {
988 val[3] = 0x00; /* Hash */
990 } else {
991 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
992 val[3] = 0xC0;
994 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
995 val, sizeof(val)));
998 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1000 MachineState *machine = MACHINE(spapr);
1001 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1002 int chosen;
1004 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1006 if (reset) {
1007 const char *boot_device = machine->boot_order;
1008 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1009 size_t cb = 0;
1010 char *bootlist = get_boot_devices_list(&cb);
1012 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1013 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1014 machine->kernel_cmdline));
1017 if (spapr->initrd_size) {
1018 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019 spapr->initrd_base));
1020 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021 spapr->initrd_base + spapr->initrd_size));
1024 if (spapr->kernel_size) {
1025 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1026 cpu_to_be64(spapr->kernel_size) };
1028 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1029 &kprop, sizeof(kprop)));
1030 if (spapr->kernel_le) {
1031 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1034 if (boot_menu) {
1035 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1038 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1039 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1041 if (cb && bootlist) {
1042 int i;
1044 for (i = 0; i < cb; i++) {
1045 if (bootlist[i] == '\n') {
1046 bootlist[i] = ' ';
1049 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1052 if (boot_device && strlen(boot_device)) {
1053 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1056 if (!spapr->has_graphics && stdout_path) {
1058 * "linux,stdout-path" and "stdout" properties are
1059 * deprecated by linux kernel. New platforms should only
1060 * use the "stdout-path" property. Set the new property
1061 * and continue using older property to remain compatible
1062 * with the existing firmware.
1064 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1065 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1069 * We can deal with BAR reallocation just fine, advertise it
1070 * to the guest
1072 if (smc->linux_pci_probe) {
1073 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1076 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1078 g_free(stdout_path);
1079 g_free(bootlist);
1082 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1085 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1087 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1088 * KVM to work under pHyp with some guest co-operation */
1089 int hypervisor;
1090 uint8_t hypercall[16];
1092 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1093 /* indicate KVM hypercall interface */
1094 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1095 if (kvmppc_has_cap_fixup_hcalls()) {
1097 * Older KVM versions with older guest kernels were broken
1098 * with the magic page, don't allow the guest to map it.
1100 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1101 sizeof(hypercall))) {
1102 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1103 hypercall, sizeof(hypercall)));
1108 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1110 MachineState *machine = MACHINE(spapr);
1111 MachineClass *mc = MACHINE_GET_CLASS(machine);
1112 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1113 int ret;
1114 void *fdt;
1115 SpaprPhbState *phb;
1116 char *buf;
1118 fdt = g_malloc0(space);
1119 _FDT((fdt_create_empty_tree(fdt, space)));
1121 /* Root node */
1122 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1123 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1124 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1126 /* Guest UUID & Name*/
1127 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1128 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1129 if (qemu_uuid_set) {
1130 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1132 g_free(buf);
1134 if (qemu_get_vm_name()) {
1135 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1136 qemu_get_vm_name()));
1139 /* Host Model & Serial Number */
1140 if (spapr->host_model) {
1141 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1142 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1143 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1144 g_free(buf);
1147 if (spapr->host_serial) {
1148 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1149 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1150 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1151 g_free(buf);
1154 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1155 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1157 /* /interrupt controller */
1158 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1160 ret = spapr_dt_memory(spapr, fdt);
1161 if (ret < 0) {
1162 error_report("couldn't setup memory nodes in fdt");
1163 exit(1);
1166 /* /vdevice */
1167 spapr_dt_vdevice(spapr->vio_bus, fdt);
1169 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1170 ret = spapr_dt_rng(fdt);
1171 if (ret < 0) {
1172 error_report("could not set up rng device in the fdt");
1173 exit(1);
1177 QLIST_FOREACH(phb, &spapr->phbs, list) {
1178 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1179 if (ret < 0) {
1180 error_report("couldn't setup PCI devices in fdt");
1181 exit(1);
1185 spapr_dt_cpus(fdt, spapr);
1187 if (smc->dr_lmb_enabled) {
1188 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1191 if (mc->has_hotpluggable_cpus) {
1192 int offset = fdt_path_offset(fdt, "/cpus");
1193 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1194 if (ret < 0) {
1195 error_report("Couldn't set up CPU DR device tree properties");
1196 exit(1);
1200 /* /event-sources */
1201 spapr_dt_events(spapr, fdt);
1203 /* /rtas */
1204 spapr_dt_rtas(spapr, fdt);
1206 /* /chosen */
1207 spapr_dt_chosen(spapr, fdt, reset);
1209 /* /hypervisor */
1210 if (kvm_enabled()) {
1211 spapr_dt_hypervisor(spapr, fdt);
1214 /* Build memory reserve map */
1215 if (reset) {
1216 if (spapr->kernel_size) {
1217 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1218 spapr->kernel_size)));
1220 if (spapr->initrd_size) {
1221 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1222 spapr->initrd_size)));
1226 if (smc->dr_phb_enabled) {
1227 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1228 if (ret < 0) {
1229 error_report("Couldn't set up PHB DR device tree properties");
1230 exit(1);
1234 /* NVDIMM devices */
1235 if (mc->nvdimm_supported) {
1236 spapr_dt_persistent_memory(spapr, fdt);
1239 return fdt;
1242 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1244 SpaprMachineState *spapr = opaque;
1246 return (addr & 0x0fffffff) + spapr->kernel_addr;
1249 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1250 PowerPCCPU *cpu)
1252 CPUPPCState *env = &cpu->env;
1254 /* The TCG path should also be holding the BQL at this point */
1255 g_assert(qemu_mutex_iothread_locked());
1257 if (msr_pr) {
1258 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1259 env->gpr[3] = H_PRIVILEGE;
1260 } else {
1261 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1265 struct LPCRSyncState {
1266 target_ulong value;
1267 target_ulong mask;
1270 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1272 struct LPCRSyncState *s = arg.host_ptr;
1273 PowerPCCPU *cpu = POWERPC_CPU(cs);
1274 CPUPPCState *env = &cpu->env;
1275 target_ulong lpcr;
1277 cpu_synchronize_state(cs);
1278 lpcr = env->spr[SPR_LPCR];
1279 lpcr &= ~s->mask;
1280 lpcr |= s->value;
1281 ppc_store_lpcr(cpu, lpcr);
1284 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1286 CPUState *cs;
1287 struct LPCRSyncState s = {
1288 .value = value,
1289 .mask = mask
1291 CPU_FOREACH(cs) {
1292 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1296 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1298 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1300 /* Copy PATE1:GR into PATE0:HR */
1301 entry->dw0 = spapr->patb_entry & PATE0_HR;
1302 entry->dw1 = spapr->patb_entry;
1305 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1306 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1307 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1308 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1309 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1312 * Get the fd to access the kernel htab, re-opening it if necessary
1314 static int get_htab_fd(SpaprMachineState *spapr)
1316 Error *local_err = NULL;
1318 if (spapr->htab_fd >= 0) {
1319 return spapr->htab_fd;
1322 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1323 if (spapr->htab_fd < 0) {
1324 error_report_err(local_err);
1327 return spapr->htab_fd;
1330 void close_htab_fd(SpaprMachineState *spapr)
1332 if (spapr->htab_fd >= 0) {
1333 close(spapr->htab_fd);
1335 spapr->htab_fd = -1;
1338 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1340 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1342 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1345 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1347 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1349 assert(kvm_enabled());
1351 if (!spapr->htab) {
1352 return 0;
1355 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1358 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1359 hwaddr ptex, int n)
1361 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1362 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1364 if (!spapr->htab) {
1366 * HTAB is controlled by KVM. Fetch into temporary buffer
1368 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1369 kvmppc_read_hptes(hptes, ptex, n);
1370 return hptes;
1374 * HTAB is controlled by QEMU. Just point to the internally
1375 * accessible PTEG.
1377 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1380 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1381 const ppc_hash_pte64_t *hptes,
1382 hwaddr ptex, int n)
1384 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1386 if (!spapr->htab) {
1387 g_free((void *)hptes);
1390 /* Nothing to do for qemu managed HPT */
1393 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1394 uint64_t pte0, uint64_t pte1)
1396 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1397 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1399 if (!spapr->htab) {
1400 kvmppc_write_hpte(ptex, pte0, pte1);
1401 } else {
1402 if (pte0 & HPTE64_V_VALID) {
1403 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1405 * When setting valid, we write PTE1 first. This ensures
1406 * proper synchronization with the reading code in
1407 * ppc_hash64_pteg_search()
1409 smp_wmb();
1410 stq_p(spapr->htab + offset, pte0);
1411 } else {
1412 stq_p(spapr->htab + offset, pte0);
1414 * When clearing it we set PTE0 first. This ensures proper
1415 * synchronization with the reading code in
1416 * ppc_hash64_pteg_search()
1418 smp_wmb();
1419 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1424 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1425 uint64_t pte1)
1427 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1428 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430 if (!spapr->htab) {
1431 /* There should always be a hash table when this is called */
1432 error_report("spapr_hpte_set_c called with no hash table !");
1433 return;
1436 /* The HW performs a non-atomic byte update */
1437 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1440 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1441 uint64_t pte1)
1443 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1444 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 if (!spapr->htab) {
1447 /* There should always be a hash table when this is called */
1448 error_report("spapr_hpte_set_r called with no hash table !");
1449 return;
1452 /* The HW performs a non-atomic byte update */
1453 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1456 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1458 int shift;
1460 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1461 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1462 * that's much more than is needed for Linux guests */
1463 shift = ctz64(pow2ceil(ramsize)) - 7;
1464 shift = MAX(shift, 18); /* Minimum architected size */
1465 shift = MIN(shift, 46); /* Maximum architected size */
1466 return shift;
1469 void spapr_free_hpt(SpaprMachineState *spapr)
1471 g_free(spapr->htab);
1472 spapr->htab = NULL;
1473 spapr->htab_shift = 0;
1474 close_htab_fd(spapr);
1477 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1478 Error **errp)
1480 long rc;
1482 /* Clean up any HPT info from a previous boot */
1483 spapr_free_hpt(spapr);
1485 rc = kvmppc_reset_htab(shift);
1486 if (rc < 0) {
1487 /* kernel-side HPT needed, but couldn't allocate one */
1488 error_setg_errno(errp, errno,
1489 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1490 shift);
1491 /* This is almost certainly fatal, but if the caller really
1492 * wants to carry on with shift == 0, it's welcome to try */
1493 } else if (rc > 0) {
1494 /* kernel-side HPT allocated */
1495 if (rc != shift) {
1496 error_setg(errp,
1497 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1498 shift, rc);
1501 spapr->htab_shift = shift;
1502 spapr->htab = NULL;
1503 } else {
1504 /* kernel-side HPT not needed, allocate in userspace instead */
1505 size_t size = 1ULL << shift;
1506 int i;
1508 spapr->htab = qemu_memalign(size, size);
1509 if (!spapr->htab) {
1510 error_setg_errno(errp, errno,
1511 "Could not allocate HPT of order %d", shift);
1512 return;
1515 memset(spapr->htab, 0, size);
1516 spapr->htab_shift = shift;
1518 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1519 DIRTY_HPTE(HPTE(spapr->htab, i));
1522 /* We're setting up a hash table, so that means we're not radix */
1523 spapr->patb_entry = 0;
1524 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1527 void spapr_setup_hpt(SpaprMachineState *spapr)
1529 int hpt_shift;
1531 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1532 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1533 } else {
1534 uint64_t current_ram_size;
1536 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1537 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1539 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1541 if (kvm_enabled()) {
1542 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1544 /* Check our RMA fits in the possible VRMA */
1545 if (vrma_limit < spapr->rma_size) {
1546 error_report("Unable to create %" HWADDR_PRIu
1547 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1548 spapr->rma_size / MiB, vrma_limit / MiB);
1549 exit(EXIT_FAILURE);
1554 static int spapr_reset_drcs(Object *child, void *opaque)
1556 SpaprDrc *drc =
1557 (SpaprDrc *) object_dynamic_cast(child,
1558 TYPE_SPAPR_DR_CONNECTOR);
1560 if (drc) {
1561 spapr_drc_reset(drc);
1564 return 0;
1567 static void spapr_machine_reset(MachineState *machine)
1569 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1570 PowerPCCPU *first_ppc_cpu;
1571 hwaddr fdt_addr;
1572 void *fdt;
1573 int rc;
1575 kvmppc_svm_off(&error_fatal);
1576 spapr_caps_apply(spapr);
1578 first_ppc_cpu = POWERPC_CPU(first_cpu);
1579 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1580 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1581 spapr->max_compat_pvr)) {
1583 * If using KVM with radix mode available, VCPUs can be started
1584 * without a HPT because KVM will start them in radix mode.
1585 * Set the GR bit in PATE so that we know there is no HPT.
1587 spapr->patb_entry = PATE1_GR;
1588 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1589 } else {
1590 spapr_setup_hpt(spapr);
1593 qemu_devices_reset();
1595 spapr_ovec_cleanup(spapr->ov5_cas);
1596 spapr->ov5_cas = spapr_ovec_new();
1598 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1601 * This is fixing some of the default configuration of the XIVE
1602 * devices. To be called after the reset of the machine devices.
1604 spapr_irq_reset(spapr, &error_fatal);
1607 * There is no CAS under qtest. Simulate one to please the code that
1608 * depends on spapr->ov5_cas. This is especially needed to test device
1609 * unplug, so we do that before resetting the DRCs.
1611 if (qtest_enabled()) {
1612 spapr_ovec_cleanup(spapr->ov5_cas);
1613 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1616 /* DRC reset may cause a device to be unplugged. This will cause troubles
1617 * if this device is used by another device (eg, a running vhost backend
1618 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1619 * situations, we reset DRCs after all devices have been reset.
1621 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1623 spapr_clear_pending_events(spapr);
1626 * We place the device tree and RTAS just below either the top of the RMA,
1627 * or just below 2GB, whichever is lower, so that it can be
1628 * processed with 32-bit real mode code if necessary
1630 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1632 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1634 rc = fdt_pack(fdt);
1636 /* Should only fail if we've built a corrupted tree */
1637 assert(rc == 0);
1639 /* Load the fdt */
1640 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1641 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1642 g_free(spapr->fdt_blob);
1643 spapr->fdt_size = fdt_totalsize(fdt);
1644 spapr->fdt_initial_size = spapr->fdt_size;
1645 spapr->fdt_blob = fdt;
1647 /* Set up the entry state */
1648 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1649 first_ppc_cpu->env.gpr[5] = 0;
1651 spapr->fwnmi_system_reset_addr = -1;
1652 spapr->fwnmi_machine_check_addr = -1;
1653 spapr->fwnmi_machine_check_interlock = -1;
1655 /* Signal all vCPUs waiting on this condition */
1656 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1658 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1661 static void spapr_create_nvram(SpaprMachineState *spapr)
1663 DeviceState *dev = qdev_new("spapr-nvram");
1664 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1666 if (dinfo) {
1667 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1668 &error_fatal);
1671 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1673 spapr->nvram = (struct SpaprNvram *)dev;
1676 static void spapr_rtc_create(SpaprMachineState *spapr)
1678 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1679 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1680 &error_fatal, NULL);
1681 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1682 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1683 "date");
1686 /* Returns whether we want to use VGA or not */
1687 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1689 switch (vga_interface_type) {
1690 case VGA_NONE:
1691 return false;
1692 case VGA_DEVICE:
1693 return true;
1694 case VGA_STD:
1695 case VGA_VIRTIO:
1696 case VGA_CIRRUS:
1697 return pci_vga_init(pci_bus) != NULL;
1698 default:
1699 error_setg(errp,
1700 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1701 return false;
1705 static int spapr_pre_load(void *opaque)
1707 int rc;
1709 rc = spapr_caps_pre_load(opaque);
1710 if (rc) {
1711 return rc;
1714 return 0;
1717 static int spapr_post_load(void *opaque, int version_id)
1719 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1720 int err = 0;
1722 err = spapr_caps_post_migration(spapr);
1723 if (err) {
1724 return err;
1728 * In earlier versions, there was no separate qdev for the PAPR
1729 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1730 * So when migrating from those versions, poke the incoming offset
1731 * value into the RTC device
1733 if (version_id < 3) {
1734 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1735 if (err) {
1736 return err;
1740 if (kvm_enabled() && spapr->patb_entry) {
1741 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1742 bool radix = !!(spapr->patb_entry & PATE1_GR);
1743 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1746 * Update LPCR:HR and UPRT as they may not be set properly in
1747 * the stream
1749 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1750 LPCR_HR | LPCR_UPRT);
1752 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1753 if (err) {
1754 error_report("Process table config unsupported by the host");
1755 return -EINVAL;
1759 err = spapr_irq_post_load(spapr, version_id);
1760 if (err) {
1761 return err;
1764 return err;
1767 static int spapr_pre_save(void *opaque)
1769 int rc;
1771 rc = spapr_caps_pre_save(opaque);
1772 if (rc) {
1773 return rc;
1776 return 0;
1779 static bool version_before_3(void *opaque, int version_id)
1781 return version_id < 3;
1784 static bool spapr_pending_events_needed(void *opaque)
1786 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1787 return !QTAILQ_EMPTY(&spapr->pending_events);
1790 static const VMStateDescription vmstate_spapr_event_entry = {
1791 .name = "spapr_event_log_entry",
1792 .version_id = 1,
1793 .minimum_version_id = 1,
1794 .fields = (VMStateField[]) {
1795 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1796 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1797 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1798 NULL, extended_length),
1799 VMSTATE_END_OF_LIST()
1803 static const VMStateDescription vmstate_spapr_pending_events = {
1804 .name = "spapr_pending_events",
1805 .version_id = 1,
1806 .minimum_version_id = 1,
1807 .needed = spapr_pending_events_needed,
1808 .fields = (VMStateField[]) {
1809 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1810 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1811 VMSTATE_END_OF_LIST()
1815 static bool spapr_ov5_cas_needed(void *opaque)
1817 SpaprMachineState *spapr = opaque;
1818 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1819 bool cas_needed;
1821 /* Prior to the introduction of SpaprOptionVector, we had two option
1822 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1823 * Both of these options encode machine topology into the device-tree
1824 * in such a way that the now-booted OS should still be able to interact
1825 * appropriately with QEMU regardless of what options were actually
1826 * negotiatied on the source side.
1828 * As such, we can avoid migrating the CAS-negotiated options if these
1829 * are the only options available on the current machine/platform.
1830 * Since these are the only options available for pseries-2.7 and
1831 * earlier, this allows us to maintain old->new/new->old migration
1832 * compatibility.
1834 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1835 * via default pseries-2.8 machines and explicit command-line parameters.
1836 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1837 * of the actual CAS-negotiated values to continue working properly. For
1838 * example, availability of memory unplug depends on knowing whether
1839 * OV5_HP_EVT was negotiated via CAS.
1841 * Thus, for any cases where the set of available CAS-negotiatable
1842 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1843 * include the CAS-negotiated options in the migration stream, unless
1844 * if they affect boot time behaviour only.
1846 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1847 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1848 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1850 /* We need extra information if we have any bits outside the mask
1851 * defined above */
1852 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1854 spapr_ovec_cleanup(ov5_mask);
1856 return cas_needed;
1859 static const VMStateDescription vmstate_spapr_ov5_cas = {
1860 .name = "spapr_option_vector_ov5_cas",
1861 .version_id = 1,
1862 .minimum_version_id = 1,
1863 .needed = spapr_ov5_cas_needed,
1864 .fields = (VMStateField[]) {
1865 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1866 vmstate_spapr_ovec, SpaprOptionVector),
1867 VMSTATE_END_OF_LIST()
1871 static bool spapr_patb_entry_needed(void *opaque)
1873 SpaprMachineState *spapr = opaque;
1875 return !!spapr->patb_entry;
1878 static const VMStateDescription vmstate_spapr_patb_entry = {
1879 .name = "spapr_patb_entry",
1880 .version_id = 1,
1881 .minimum_version_id = 1,
1882 .needed = spapr_patb_entry_needed,
1883 .fields = (VMStateField[]) {
1884 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1885 VMSTATE_END_OF_LIST()
1889 static bool spapr_irq_map_needed(void *opaque)
1891 SpaprMachineState *spapr = opaque;
1893 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1896 static const VMStateDescription vmstate_spapr_irq_map = {
1897 .name = "spapr_irq_map",
1898 .version_id = 1,
1899 .minimum_version_id = 1,
1900 .needed = spapr_irq_map_needed,
1901 .fields = (VMStateField[]) {
1902 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1903 VMSTATE_END_OF_LIST()
1907 static bool spapr_dtb_needed(void *opaque)
1909 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1911 return smc->update_dt_enabled;
1914 static int spapr_dtb_pre_load(void *opaque)
1916 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1918 g_free(spapr->fdt_blob);
1919 spapr->fdt_blob = NULL;
1920 spapr->fdt_size = 0;
1922 return 0;
1925 static const VMStateDescription vmstate_spapr_dtb = {
1926 .name = "spapr_dtb",
1927 .version_id = 1,
1928 .minimum_version_id = 1,
1929 .needed = spapr_dtb_needed,
1930 .pre_load = spapr_dtb_pre_load,
1931 .fields = (VMStateField[]) {
1932 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1933 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1934 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1935 fdt_size),
1936 VMSTATE_END_OF_LIST()
1940 static bool spapr_fwnmi_needed(void *opaque)
1942 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1944 return spapr->fwnmi_machine_check_addr != -1;
1947 static int spapr_fwnmi_pre_save(void *opaque)
1949 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1952 * Check if machine check handling is in progress and print a
1953 * warning message.
1955 if (spapr->fwnmi_machine_check_interlock != -1) {
1956 warn_report("A machine check is being handled during migration. The"
1957 "handler may run and log hardware error on the destination");
1960 return 0;
1963 static const VMStateDescription vmstate_spapr_fwnmi = {
1964 .name = "spapr_fwnmi",
1965 .version_id = 1,
1966 .minimum_version_id = 1,
1967 .needed = spapr_fwnmi_needed,
1968 .pre_save = spapr_fwnmi_pre_save,
1969 .fields = (VMStateField[]) {
1970 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1971 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1972 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1973 VMSTATE_END_OF_LIST()
1977 static const VMStateDescription vmstate_spapr = {
1978 .name = "spapr",
1979 .version_id = 3,
1980 .minimum_version_id = 1,
1981 .pre_load = spapr_pre_load,
1982 .post_load = spapr_post_load,
1983 .pre_save = spapr_pre_save,
1984 .fields = (VMStateField[]) {
1985 /* used to be @next_irq */
1986 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1988 /* RTC offset */
1989 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1991 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1992 VMSTATE_END_OF_LIST()
1994 .subsections = (const VMStateDescription*[]) {
1995 &vmstate_spapr_ov5_cas,
1996 &vmstate_spapr_patb_entry,
1997 &vmstate_spapr_pending_events,
1998 &vmstate_spapr_cap_htm,
1999 &vmstate_spapr_cap_vsx,
2000 &vmstate_spapr_cap_dfp,
2001 &vmstate_spapr_cap_cfpc,
2002 &vmstate_spapr_cap_sbbc,
2003 &vmstate_spapr_cap_ibs,
2004 &vmstate_spapr_cap_hpt_maxpagesize,
2005 &vmstate_spapr_irq_map,
2006 &vmstate_spapr_cap_nested_kvm_hv,
2007 &vmstate_spapr_dtb,
2008 &vmstate_spapr_cap_large_decr,
2009 &vmstate_spapr_cap_ccf_assist,
2010 &vmstate_spapr_cap_fwnmi,
2011 &vmstate_spapr_fwnmi,
2012 NULL
2016 static int htab_save_setup(QEMUFile *f, void *opaque)
2018 SpaprMachineState *spapr = opaque;
2020 /* "Iteration" header */
2021 if (!spapr->htab_shift) {
2022 qemu_put_be32(f, -1);
2023 } else {
2024 qemu_put_be32(f, spapr->htab_shift);
2027 if (spapr->htab) {
2028 spapr->htab_save_index = 0;
2029 spapr->htab_first_pass = true;
2030 } else {
2031 if (spapr->htab_shift) {
2032 assert(kvm_enabled());
2037 return 0;
2040 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2041 int chunkstart, int n_valid, int n_invalid)
2043 qemu_put_be32(f, chunkstart);
2044 qemu_put_be16(f, n_valid);
2045 qemu_put_be16(f, n_invalid);
2046 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2047 HASH_PTE_SIZE_64 * n_valid);
2050 static void htab_save_end_marker(QEMUFile *f)
2052 qemu_put_be32(f, 0);
2053 qemu_put_be16(f, 0);
2054 qemu_put_be16(f, 0);
2057 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2058 int64_t max_ns)
2060 bool has_timeout = max_ns != -1;
2061 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2062 int index = spapr->htab_save_index;
2063 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2065 assert(spapr->htab_first_pass);
2067 do {
2068 int chunkstart;
2070 /* Consume invalid HPTEs */
2071 while ((index < htabslots)
2072 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2073 CLEAN_HPTE(HPTE(spapr->htab, index));
2074 index++;
2077 /* Consume valid HPTEs */
2078 chunkstart = index;
2079 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2080 && HPTE_VALID(HPTE(spapr->htab, index))) {
2081 CLEAN_HPTE(HPTE(spapr->htab, index));
2082 index++;
2085 if (index > chunkstart) {
2086 int n_valid = index - chunkstart;
2088 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2090 if (has_timeout &&
2091 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2092 break;
2095 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2097 if (index >= htabslots) {
2098 assert(index == htabslots);
2099 index = 0;
2100 spapr->htab_first_pass = false;
2102 spapr->htab_save_index = index;
2105 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2106 int64_t max_ns)
2108 bool final = max_ns < 0;
2109 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2110 int examined = 0, sent = 0;
2111 int index = spapr->htab_save_index;
2112 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2114 assert(!spapr->htab_first_pass);
2116 do {
2117 int chunkstart, invalidstart;
2119 /* Consume non-dirty HPTEs */
2120 while ((index < htabslots)
2121 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2122 index++;
2123 examined++;
2126 chunkstart = index;
2127 /* Consume valid dirty HPTEs */
2128 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2129 && HPTE_DIRTY(HPTE(spapr->htab, index))
2130 && HPTE_VALID(HPTE(spapr->htab, index))) {
2131 CLEAN_HPTE(HPTE(spapr->htab, index));
2132 index++;
2133 examined++;
2136 invalidstart = index;
2137 /* Consume invalid dirty HPTEs */
2138 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2139 && HPTE_DIRTY(HPTE(spapr->htab, index))
2140 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2141 CLEAN_HPTE(HPTE(spapr->htab, index));
2142 index++;
2143 examined++;
2146 if (index > chunkstart) {
2147 int n_valid = invalidstart - chunkstart;
2148 int n_invalid = index - invalidstart;
2150 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2151 sent += index - chunkstart;
2153 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2154 break;
2158 if (examined >= htabslots) {
2159 break;
2162 if (index >= htabslots) {
2163 assert(index == htabslots);
2164 index = 0;
2166 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2168 if (index >= htabslots) {
2169 assert(index == htabslots);
2170 index = 0;
2173 spapr->htab_save_index = index;
2175 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2178 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2179 #define MAX_KVM_BUF_SIZE 2048
2181 static int htab_save_iterate(QEMUFile *f, void *opaque)
2183 SpaprMachineState *spapr = opaque;
2184 int fd;
2185 int rc = 0;
2187 /* Iteration header */
2188 if (!spapr->htab_shift) {
2189 qemu_put_be32(f, -1);
2190 return 1;
2191 } else {
2192 qemu_put_be32(f, 0);
2195 if (!spapr->htab) {
2196 assert(kvm_enabled());
2198 fd = get_htab_fd(spapr);
2199 if (fd < 0) {
2200 return fd;
2203 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2204 if (rc < 0) {
2205 return rc;
2207 } else if (spapr->htab_first_pass) {
2208 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2209 } else {
2210 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2213 htab_save_end_marker(f);
2215 return rc;
2218 static int htab_save_complete(QEMUFile *f, void *opaque)
2220 SpaprMachineState *spapr = opaque;
2221 int fd;
2223 /* Iteration header */
2224 if (!spapr->htab_shift) {
2225 qemu_put_be32(f, -1);
2226 return 0;
2227 } else {
2228 qemu_put_be32(f, 0);
2231 if (!spapr->htab) {
2232 int rc;
2234 assert(kvm_enabled());
2236 fd = get_htab_fd(spapr);
2237 if (fd < 0) {
2238 return fd;
2241 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2242 if (rc < 0) {
2243 return rc;
2245 } else {
2246 if (spapr->htab_first_pass) {
2247 htab_save_first_pass(f, spapr, -1);
2249 htab_save_later_pass(f, spapr, -1);
2252 /* End marker */
2253 htab_save_end_marker(f);
2255 return 0;
2258 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2260 SpaprMachineState *spapr = opaque;
2261 uint32_t section_hdr;
2262 int fd = -1;
2263 Error *local_err = NULL;
2265 if (version_id < 1 || version_id > 1) {
2266 error_report("htab_load() bad version");
2267 return -EINVAL;
2270 section_hdr = qemu_get_be32(f);
2272 if (section_hdr == -1) {
2273 spapr_free_hpt(spapr);
2274 return 0;
2277 if (section_hdr) {
2278 /* First section gives the htab size */
2279 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2280 if (local_err) {
2281 error_report_err(local_err);
2282 return -EINVAL;
2284 return 0;
2287 if (!spapr->htab) {
2288 assert(kvm_enabled());
2290 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2291 if (fd < 0) {
2292 error_report_err(local_err);
2293 return fd;
2297 while (true) {
2298 uint32_t index;
2299 uint16_t n_valid, n_invalid;
2301 index = qemu_get_be32(f);
2302 n_valid = qemu_get_be16(f);
2303 n_invalid = qemu_get_be16(f);
2305 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2306 /* End of Stream */
2307 break;
2310 if ((index + n_valid + n_invalid) >
2311 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2312 /* Bad index in stream */
2313 error_report(
2314 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2315 index, n_valid, n_invalid, spapr->htab_shift);
2316 return -EINVAL;
2319 if (spapr->htab) {
2320 if (n_valid) {
2321 qemu_get_buffer(f, HPTE(spapr->htab, index),
2322 HASH_PTE_SIZE_64 * n_valid);
2324 if (n_invalid) {
2325 memset(HPTE(spapr->htab, index + n_valid), 0,
2326 HASH_PTE_SIZE_64 * n_invalid);
2328 } else {
2329 int rc;
2331 assert(fd >= 0);
2333 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2334 if (rc < 0) {
2335 return rc;
2340 if (!spapr->htab) {
2341 assert(fd >= 0);
2342 close(fd);
2345 return 0;
2348 static void htab_save_cleanup(void *opaque)
2350 SpaprMachineState *spapr = opaque;
2352 close_htab_fd(spapr);
2355 static SaveVMHandlers savevm_htab_handlers = {
2356 .save_setup = htab_save_setup,
2357 .save_live_iterate = htab_save_iterate,
2358 .save_live_complete_precopy = htab_save_complete,
2359 .save_cleanup = htab_save_cleanup,
2360 .load_state = htab_load,
2363 static void spapr_boot_set(void *opaque, const char *boot_device,
2364 Error **errp)
2366 MachineState *machine = MACHINE(opaque);
2367 machine->boot_order = g_strdup(boot_device);
2370 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2372 MachineState *machine = MACHINE(spapr);
2373 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2374 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2375 int i;
2377 for (i = 0; i < nr_lmbs; i++) {
2378 uint64_t addr;
2380 addr = i * lmb_size + machine->device_memory->base;
2381 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2382 addr / lmb_size);
2387 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2388 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2389 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2391 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2393 int i;
2395 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2396 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2397 " is not aligned to %" PRIu64 " MiB",
2398 machine->ram_size,
2399 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2400 return;
2403 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2404 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2405 " is not aligned to %" PRIu64 " MiB",
2406 machine->ram_size,
2407 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2408 return;
2411 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2412 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2413 error_setg(errp,
2414 "Node %d memory size 0x%" PRIx64
2415 " is not aligned to %" PRIu64 " MiB",
2416 i, machine->numa_state->nodes[i].node_mem,
2417 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2418 return;
2423 /* find cpu slot in machine->possible_cpus by core_id */
2424 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2426 int index = id / ms->smp.threads;
2428 if (index >= ms->possible_cpus->len) {
2429 return NULL;
2431 if (idx) {
2432 *idx = index;
2434 return &ms->possible_cpus->cpus[index];
2437 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2439 MachineState *ms = MACHINE(spapr);
2440 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2441 Error *local_err = NULL;
2442 bool vsmt_user = !!spapr->vsmt;
2443 int kvm_smt = kvmppc_smt_threads();
2444 int ret;
2445 unsigned int smp_threads = ms->smp.threads;
2447 if (!kvm_enabled() && (smp_threads > 1)) {
2448 error_setg(errp, "TCG cannot support more than 1 thread/core "
2449 "on a pseries machine");
2450 return;
2452 if (!is_power_of_2(smp_threads)) {
2453 error_setg(errp, "Cannot support %d threads/core on a pseries "
2454 "machine because it must be a power of 2", smp_threads);
2455 return;
2458 /* Detemine the VSMT mode to use: */
2459 if (vsmt_user) {
2460 if (spapr->vsmt < smp_threads) {
2461 error_setg(errp, "Cannot support VSMT mode %d"
2462 " because it must be >= threads/core (%d)",
2463 spapr->vsmt, smp_threads);
2464 return;
2466 /* In this case, spapr->vsmt has been set by the command line */
2467 } else if (!smc->smp_threads_vsmt) {
2469 * Default VSMT value is tricky, because we need it to be as
2470 * consistent as possible (for migration), but this requires
2471 * changing it for at least some existing cases. We pick 8 as
2472 * the value that we'd get with KVM on POWER8, the
2473 * overwhelmingly common case in production systems.
2475 spapr->vsmt = MAX(8, smp_threads);
2476 } else {
2477 spapr->vsmt = smp_threads;
2480 /* KVM: If necessary, set the SMT mode: */
2481 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2482 ret = kvmppc_set_smt_threads(spapr->vsmt);
2483 if (ret) {
2484 /* Looks like KVM isn't able to change VSMT mode */
2485 error_setg(&local_err,
2486 "Failed to set KVM's VSMT mode to %d (errno %d)",
2487 spapr->vsmt, ret);
2488 /* We can live with that if the default one is big enough
2489 * for the number of threads, and a submultiple of the one
2490 * we want. In this case we'll waste some vcpu ids, but
2491 * behaviour will be correct */
2492 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2493 warn_report_err(local_err);
2494 } else {
2495 if (!vsmt_user) {
2496 error_append_hint(&local_err,
2497 "On PPC, a VM with %d threads/core"
2498 " on a host with %d threads/core"
2499 " requires the use of VSMT mode %d.\n",
2500 smp_threads, kvm_smt, spapr->vsmt);
2502 kvmppc_error_append_smt_possible_hint(&local_err);
2503 error_propagate(errp, local_err);
2507 /* else TCG: nothing to do currently */
2510 static void spapr_init_cpus(SpaprMachineState *spapr)
2512 MachineState *machine = MACHINE(spapr);
2513 MachineClass *mc = MACHINE_GET_CLASS(machine);
2514 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2515 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2516 const CPUArchIdList *possible_cpus;
2517 unsigned int smp_cpus = machine->smp.cpus;
2518 unsigned int smp_threads = machine->smp.threads;
2519 unsigned int max_cpus = machine->smp.max_cpus;
2520 int boot_cores_nr = smp_cpus / smp_threads;
2521 int i;
2523 possible_cpus = mc->possible_cpu_arch_ids(machine);
2524 if (mc->has_hotpluggable_cpus) {
2525 if (smp_cpus % smp_threads) {
2526 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2527 smp_cpus, smp_threads);
2528 exit(1);
2530 if (max_cpus % smp_threads) {
2531 error_report("max_cpus (%u) must be multiple of threads (%u)",
2532 max_cpus, smp_threads);
2533 exit(1);
2535 } else {
2536 if (max_cpus != smp_cpus) {
2537 error_report("This machine version does not support CPU hotplug");
2538 exit(1);
2540 boot_cores_nr = possible_cpus->len;
2543 if (smc->pre_2_10_has_unused_icps) {
2544 int i;
2546 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2547 /* Dummy entries get deregistered when real ICPState objects
2548 * are registered during CPU core hotplug.
2550 pre_2_10_vmstate_register_dummy_icp(i);
2554 for (i = 0; i < possible_cpus->len; i++) {
2555 int core_id = i * smp_threads;
2557 if (mc->has_hotpluggable_cpus) {
2558 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2559 spapr_vcpu_id(spapr, core_id));
2562 if (i < boot_cores_nr) {
2563 Object *core = object_new(type);
2564 int nr_threads = smp_threads;
2566 /* Handle the partially filled core for older machine types */
2567 if ((i + 1) * smp_threads >= smp_cpus) {
2568 nr_threads = smp_cpus - i * smp_threads;
2571 object_property_set_int(core, "nr-threads", nr_threads,
2572 &error_fatal);
2573 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2574 &error_fatal);
2575 qdev_realize(DEVICE(core), NULL, &error_fatal);
2577 object_unref(core);
2582 static PCIHostState *spapr_create_default_phb(void)
2584 DeviceState *dev;
2586 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2587 qdev_prop_set_uint32(dev, "index", 0);
2588 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2590 return PCI_HOST_BRIDGE(dev);
2593 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2595 MachineState *machine = MACHINE(spapr);
2596 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2597 hwaddr rma_size = machine->ram_size;
2598 hwaddr node0_size = spapr_node0_size(machine);
2600 /* RMA has to fit in the first NUMA node */
2601 rma_size = MIN(rma_size, node0_size);
2604 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2605 * never exceed that
2607 rma_size = MIN(rma_size, 1 * TiB);
2610 * Clamp the RMA size based on machine type. This is for
2611 * migration compatibility with older qemu versions, which limited
2612 * the RMA size for complicated and mostly bad reasons.
2614 if (smc->rma_limit) {
2615 rma_size = MIN(rma_size, smc->rma_limit);
2618 if (rma_size < MIN_RMA_SLOF) {
2619 error_setg(errp,
2620 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2621 "ldMiB guest RMA (Real Mode Area memory)",
2622 MIN_RMA_SLOF / MiB);
2623 return 0;
2626 return rma_size;
2629 /* pSeries LPAR / sPAPR hardware init */
2630 static void spapr_machine_init(MachineState *machine)
2632 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2633 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2634 MachineClass *mc = MACHINE_GET_CLASS(machine);
2635 const char *kernel_filename = machine->kernel_filename;
2636 const char *initrd_filename = machine->initrd_filename;
2637 PCIHostState *phb;
2638 int i;
2639 MemoryRegion *sysmem = get_system_memory();
2640 long load_limit, fw_size;
2641 char *filename;
2642 Error *resize_hpt_err = NULL;
2644 msi_nonbroken = true;
2646 QLIST_INIT(&spapr->phbs);
2647 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2649 /* Determine capabilities to run with */
2650 spapr_caps_init(spapr);
2652 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2653 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2655 * If the user explicitly requested a mode we should either
2656 * supply it, or fail completely (which we do below). But if
2657 * it's not set explicitly, we reset our mode to something
2658 * that works
2660 if (resize_hpt_err) {
2661 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2662 error_free(resize_hpt_err);
2663 resize_hpt_err = NULL;
2664 } else {
2665 spapr->resize_hpt = smc->resize_hpt_default;
2669 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2671 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2673 * User requested HPT resize, but this host can't supply it. Bail out
2675 error_report_err(resize_hpt_err);
2676 exit(1);
2678 error_free(resize_hpt_err);
2680 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2682 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2683 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2686 * VSMT must be set in order to be able to compute VCPU ids, ie to
2687 * call spapr_max_server_number() or spapr_vcpu_id().
2689 spapr_set_vsmt_mode(spapr, &error_fatal);
2691 /* Set up Interrupt Controller before we create the VCPUs */
2692 spapr_irq_init(spapr, &error_fatal);
2694 /* Set up containers for ibm,client-architecture-support negotiated options
2696 spapr->ov5 = spapr_ovec_new();
2697 spapr->ov5_cas = spapr_ovec_new();
2699 if (smc->dr_lmb_enabled) {
2700 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2701 spapr_validate_node_memory(machine, &error_fatal);
2704 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2706 /* advertise support for dedicated HP event source to guests */
2707 if (spapr->use_hotplug_event_source) {
2708 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2711 /* advertise support for HPT resizing */
2712 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2713 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2716 /* advertise support for ibm,dyamic-memory-v2 */
2717 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2719 /* advertise XIVE on POWER9 machines */
2720 if (spapr->irq->xive) {
2721 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2724 /* init CPUs */
2725 spapr_init_cpus(spapr);
2728 * check we don't have a memory-less/cpu-less NUMA node
2729 * Firmware relies on the existing memory/cpu topology to provide the
2730 * NUMA topology to the kernel.
2731 * And the linux kernel needs to know the NUMA topology at start
2732 * to be able to hotplug CPUs later.
2734 if (machine->numa_state->num_nodes) {
2735 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2736 /* check for memory-less node */
2737 if (machine->numa_state->nodes[i].node_mem == 0) {
2738 CPUState *cs;
2739 int found = 0;
2740 /* check for cpu-less node */
2741 CPU_FOREACH(cs) {
2742 PowerPCCPU *cpu = POWERPC_CPU(cs);
2743 if (cpu->node_id == i) {
2744 found = 1;
2745 break;
2748 /* memory-less and cpu-less node */
2749 if (!found) {
2750 error_report(
2751 "Memory-less/cpu-less nodes are not supported (node %d)",
2753 exit(1);
2761 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2762 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2763 * called from vPHB reset handler so we initialize the counter here.
2764 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2765 * must be equally distant from any other node.
2766 * The final value of spapr->gpu_numa_id is going to be written to
2767 * max-associativity-domains in spapr_build_fdt().
2769 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2771 /* Init numa_assoc_array */
2772 spapr_numa_associativity_init(spapr, machine);
2774 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2775 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2776 spapr->max_compat_pvr)) {
2777 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2778 /* KVM and TCG always allow GTSE with radix... */
2779 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2781 /* ... but not with hash (currently). */
2783 if (kvm_enabled()) {
2784 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2785 kvmppc_enable_logical_ci_hcalls();
2786 kvmppc_enable_set_mode_hcall();
2788 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2789 kvmppc_enable_clear_ref_mod_hcalls();
2791 /* Enable H_PAGE_INIT */
2792 kvmppc_enable_h_page_init();
2795 /* map RAM */
2796 memory_region_add_subregion(sysmem, 0, machine->ram);
2798 /* always allocate the device memory information */
2799 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2801 /* initialize hotplug memory address space */
2802 if (machine->ram_size < machine->maxram_size) {
2803 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2805 * Limit the number of hotpluggable memory slots to half the number
2806 * slots that KVM supports, leaving the other half for PCI and other
2807 * devices. However ensure that number of slots doesn't drop below 32.
2809 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2810 SPAPR_MAX_RAM_SLOTS;
2812 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2813 max_memslots = SPAPR_MAX_RAM_SLOTS;
2815 if (machine->ram_slots > max_memslots) {
2816 error_report("Specified number of memory slots %"
2817 PRIu64" exceeds max supported %d",
2818 machine->ram_slots, max_memslots);
2819 exit(1);
2822 machine->device_memory->base = ROUND_UP(machine->ram_size,
2823 SPAPR_DEVICE_MEM_ALIGN);
2824 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2825 "device-memory", device_mem_size);
2826 memory_region_add_subregion(sysmem, machine->device_memory->base,
2827 &machine->device_memory->mr);
2830 if (smc->dr_lmb_enabled) {
2831 spapr_create_lmb_dr_connectors(spapr);
2834 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2835 /* Create the error string for live migration blocker */
2836 error_setg(&spapr->fwnmi_migration_blocker,
2837 "A machine check is being handled during migration. The handler"
2838 "may run and log hardware error on the destination");
2841 if (mc->nvdimm_supported) {
2842 spapr_create_nvdimm_dr_connectors(spapr);
2845 /* Set up RTAS event infrastructure */
2846 spapr_events_init(spapr);
2848 /* Set up the RTC RTAS interfaces */
2849 spapr_rtc_create(spapr);
2851 /* Set up VIO bus */
2852 spapr->vio_bus = spapr_vio_bus_init();
2854 for (i = 0; i < serial_max_hds(); i++) {
2855 if (serial_hd(i)) {
2856 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2860 /* We always have at least the nvram device on VIO */
2861 spapr_create_nvram(spapr);
2864 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2865 * connectors (described in root DT node's "ibm,drc-types" property)
2866 * are pre-initialized here. additional child connectors (such as
2867 * connectors for a PHBs PCI slots) are added as needed during their
2868 * parent's realization.
2870 if (smc->dr_phb_enabled) {
2871 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2872 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2876 /* Set up PCI */
2877 spapr_pci_rtas_init();
2879 phb = spapr_create_default_phb();
2881 for (i = 0; i < nb_nics; i++) {
2882 NICInfo *nd = &nd_table[i];
2884 if (!nd->model) {
2885 nd->model = g_strdup("spapr-vlan");
2888 if (g_str_equal(nd->model, "spapr-vlan") ||
2889 g_str_equal(nd->model, "ibmveth")) {
2890 spapr_vlan_create(spapr->vio_bus, nd);
2891 } else {
2892 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2896 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2897 spapr_vscsi_create(spapr->vio_bus);
2900 /* Graphics */
2901 if (spapr_vga_init(phb->bus, &error_fatal)) {
2902 spapr->has_graphics = true;
2903 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2906 if (machine->usb) {
2907 if (smc->use_ohci_by_default) {
2908 pci_create_simple(phb->bus, -1, "pci-ohci");
2909 } else {
2910 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2913 if (spapr->has_graphics) {
2914 USBBus *usb_bus = usb_bus_find(-1);
2916 usb_create_simple(usb_bus, "usb-kbd");
2917 usb_create_simple(usb_bus, "usb-mouse");
2921 if (kernel_filename) {
2922 spapr->kernel_size = load_elf(kernel_filename, NULL,
2923 translate_kernel_address, spapr,
2924 NULL, NULL, NULL, NULL, 1,
2925 PPC_ELF_MACHINE, 0, 0);
2926 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2927 spapr->kernel_size = load_elf(kernel_filename, NULL,
2928 translate_kernel_address, spapr,
2929 NULL, NULL, NULL, NULL, 0,
2930 PPC_ELF_MACHINE, 0, 0);
2931 spapr->kernel_le = spapr->kernel_size > 0;
2933 if (spapr->kernel_size < 0) {
2934 error_report("error loading %s: %s", kernel_filename,
2935 load_elf_strerror(spapr->kernel_size));
2936 exit(1);
2939 /* load initrd */
2940 if (initrd_filename) {
2941 /* Try to locate the initrd in the gap between the kernel
2942 * and the firmware. Add a bit of space just in case
2944 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2945 + 0x1ffff) & ~0xffff;
2946 spapr->initrd_size = load_image_targphys(initrd_filename,
2947 spapr->initrd_base,
2948 load_limit
2949 - spapr->initrd_base);
2950 if (spapr->initrd_size < 0) {
2951 error_report("could not load initial ram disk '%s'",
2952 initrd_filename);
2953 exit(1);
2958 if (bios_name == NULL) {
2959 bios_name = FW_FILE_NAME;
2961 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2962 if (!filename) {
2963 error_report("Could not find LPAR firmware '%s'", bios_name);
2964 exit(1);
2966 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2967 if (fw_size <= 0) {
2968 error_report("Could not load LPAR firmware '%s'", filename);
2969 exit(1);
2971 g_free(filename);
2973 /* FIXME: Should register things through the MachineState's qdev
2974 * interface, this is a legacy from the sPAPREnvironment structure
2975 * which predated MachineState but had a similar function */
2976 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2977 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2978 &savevm_htab_handlers, spapr);
2980 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2982 qemu_register_boot_set(spapr_boot_set, spapr);
2985 * Nothing needs to be done to resume a suspended guest because
2986 * suspending does not change the machine state, so no need for
2987 * a ->wakeup method.
2989 qemu_register_wakeup_support();
2991 if (kvm_enabled()) {
2992 /* to stop and start vmclock */
2993 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2994 &spapr->tb);
2996 kvmppc_spapr_enable_inkernel_multitce();
2999 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3002 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3004 if (!vm_type) {
3005 return 0;
3008 if (!strcmp(vm_type, "HV")) {
3009 return 1;
3012 if (!strcmp(vm_type, "PR")) {
3013 return 2;
3016 error_report("Unknown kvm-type specified '%s'", vm_type);
3017 exit(1);
3021 * Implementation of an interface to adjust firmware path
3022 * for the bootindex property handling.
3024 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3025 DeviceState *dev)
3027 #define CAST(type, obj, name) \
3028 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3029 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3030 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3031 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3033 if (d) {
3034 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3035 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3036 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3038 if (spapr) {
3040 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3041 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3042 * 0x8000 | (target << 8) | (bus << 5) | lun
3043 * (see the "Logical unit addressing format" table in SAM5)
3045 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3046 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3047 (uint64_t)id << 48);
3048 } else if (virtio) {
3050 * We use SRP luns of the form 01000000 | (target << 8) | lun
3051 * in the top 32 bits of the 64-bit LUN
3052 * Note: the quote above is from SLOF and it is wrong,
3053 * the actual binding is:
3054 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3056 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3057 if (d->lun >= 256) {
3058 /* Use the LUN "flat space addressing method" */
3059 id |= 0x4000;
3061 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3062 (uint64_t)id << 32);
3063 } else if (usb) {
3065 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3066 * in the top 32 bits of the 64-bit LUN
3068 unsigned usb_port = atoi(usb->port->path);
3069 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3071 (uint64_t)id << 32);
3076 * SLOF probes the USB devices, and if it recognizes that the device is a
3077 * storage device, it changes its name to "storage" instead of "usb-host",
3078 * and additionally adds a child node for the SCSI LUN, so the correct
3079 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3081 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3082 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3083 if (usb_host_dev_is_scsi_storage(usbdev)) {
3084 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3088 if (phb) {
3089 /* Replace "pci" with "pci@800000020000000" */
3090 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3093 if (vsc) {
3094 /* Same logic as virtio above */
3095 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3096 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3099 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3100 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3101 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3102 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3105 return NULL;
3108 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3110 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3112 return g_strdup(spapr->kvm_type);
3115 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3117 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3119 g_free(spapr->kvm_type);
3120 spapr->kvm_type = g_strdup(value);
3123 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3125 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3127 return spapr->use_hotplug_event_source;
3130 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3131 Error **errp)
3133 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3135 spapr->use_hotplug_event_source = value;
3138 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3140 return true;
3143 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3145 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3147 switch (spapr->resize_hpt) {
3148 case SPAPR_RESIZE_HPT_DEFAULT:
3149 return g_strdup("default");
3150 case SPAPR_RESIZE_HPT_DISABLED:
3151 return g_strdup("disabled");
3152 case SPAPR_RESIZE_HPT_ENABLED:
3153 return g_strdup("enabled");
3154 case SPAPR_RESIZE_HPT_REQUIRED:
3155 return g_strdup("required");
3157 g_assert_not_reached();
3160 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3162 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3164 if (strcmp(value, "default") == 0) {
3165 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3166 } else if (strcmp(value, "disabled") == 0) {
3167 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3168 } else if (strcmp(value, "enabled") == 0) {
3169 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3170 } else if (strcmp(value, "required") == 0) {
3171 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3172 } else {
3173 error_setg(errp, "Bad value for \"resize-hpt\" property");
3177 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3179 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3181 if (spapr->irq == &spapr_irq_xics_legacy) {
3182 return g_strdup("legacy");
3183 } else if (spapr->irq == &spapr_irq_xics) {
3184 return g_strdup("xics");
3185 } else if (spapr->irq == &spapr_irq_xive) {
3186 return g_strdup("xive");
3187 } else if (spapr->irq == &spapr_irq_dual) {
3188 return g_strdup("dual");
3190 g_assert_not_reached();
3193 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3195 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3197 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3198 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3199 return;
3202 /* The legacy IRQ backend can not be set */
3203 if (strcmp(value, "xics") == 0) {
3204 spapr->irq = &spapr_irq_xics;
3205 } else if (strcmp(value, "xive") == 0) {
3206 spapr->irq = &spapr_irq_xive;
3207 } else if (strcmp(value, "dual") == 0) {
3208 spapr->irq = &spapr_irq_dual;
3209 } else {
3210 error_setg(errp, "Bad value for \"ic-mode\" property");
3214 static char *spapr_get_host_model(Object *obj, Error **errp)
3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218 return g_strdup(spapr->host_model);
3221 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3223 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3225 g_free(spapr->host_model);
3226 spapr->host_model = g_strdup(value);
3229 static char *spapr_get_host_serial(Object *obj, Error **errp)
3231 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233 return g_strdup(spapr->host_serial);
3236 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3238 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3240 g_free(spapr->host_serial);
3241 spapr->host_serial = g_strdup(value);
3244 static void spapr_instance_init(Object *obj)
3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3249 spapr->htab_fd = -1;
3250 spapr->use_hotplug_event_source = true;
3251 object_property_add_str(obj, "kvm-type",
3252 spapr_get_kvm_type, spapr_set_kvm_type);
3253 object_property_set_description(obj, "kvm-type",
3254 "Specifies the KVM virtualization mode (HV, PR)");
3255 object_property_add_bool(obj, "modern-hotplug-events",
3256 spapr_get_modern_hotplug_events,
3257 spapr_set_modern_hotplug_events);
3258 object_property_set_description(obj, "modern-hotplug-events",
3259 "Use dedicated hotplug event mechanism in"
3260 " place of standard EPOW events when possible"
3261 " (required for memory hot-unplug support)");
3262 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3263 "Maximum permitted CPU compatibility mode");
3265 object_property_add_str(obj, "resize-hpt",
3266 spapr_get_resize_hpt, spapr_set_resize_hpt);
3267 object_property_set_description(obj, "resize-hpt",
3268 "Resizing of the Hash Page Table (enabled, disabled, required)");
3269 object_property_add_uint32_ptr(obj, "vsmt",
3270 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3271 object_property_set_description(obj, "vsmt",
3272 "Virtual SMT: KVM behaves as if this were"
3273 " the host's SMT mode");
3275 object_property_add_bool(obj, "vfio-no-msix-emulation",
3276 spapr_get_msix_emulation, NULL);
3278 object_property_add_uint64_ptr(obj, "kernel-addr",
3279 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3280 object_property_set_description(obj, "kernel-addr",
3281 stringify(KERNEL_LOAD_ADDR)
3282 " for -kernel is the default");
3283 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3284 /* The machine class defines the default interrupt controller mode */
3285 spapr->irq = smc->irq;
3286 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3287 spapr_set_ic_mode);
3288 object_property_set_description(obj, "ic-mode",
3289 "Specifies the interrupt controller mode (xics, xive, dual)");
3291 object_property_add_str(obj, "host-model",
3292 spapr_get_host_model, spapr_set_host_model);
3293 object_property_set_description(obj, "host-model",
3294 "Host model to advertise in guest device tree");
3295 object_property_add_str(obj, "host-serial",
3296 spapr_get_host_serial, spapr_set_host_serial);
3297 object_property_set_description(obj, "host-serial",
3298 "Host serial number to advertise in guest device tree");
3301 static void spapr_machine_finalizefn(Object *obj)
3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305 g_free(spapr->kvm_type);
3308 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3310 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3311 PowerPCCPU *cpu = POWERPC_CPU(cs);
3312 CPUPPCState *env = &cpu->env;
3314 cpu_synchronize_state(cs);
3315 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3316 if (spapr->fwnmi_system_reset_addr != -1) {
3317 uint64_t rtas_addr, addr;
3319 /* get rtas addr from fdt */
3320 rtas_addr = spapr_get_rtas_addr();
3321 if (!rtas_addr) {
3322 qemu_system_guest_panicked(NULL);
3323 return;
3326 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3327 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3328 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3329 env->gpr[3] = addr;
3331 ppc_cpu_do_system_reset(cs);
3332 if (spapr->fwnmi_system_reset_addr != -1) {
3333 env->nip = spapr->fwnmi_system_reset_addr;
3337 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3339 CPUState *cs;
3341 CPU_FOREACH(cs) {
3342 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3346 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3347 void *fdt, int *fdt_start_offset, Error **errp)
3349 uint64_t addr;
3350 uint32_t node;
3352 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3353 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3354 &error_abort);
3355 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3356 SPAPR_MEMORY_BLOCK_SIZE);
3357 return 0;
3360 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3361 bool dedicated_hp_event_source, Error **errp)
3363 SpaprDrc *drc;
3364 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3365 int i;
3366 uint64_t addr = addr_start;
3367 bool hotplugged = spapr_drc_hotplugged(dev);
3368 Error *local_err = NULL;
3370 for (i = 0; i < nr_lmbs; i++) {
3371 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3372 addr / SPAPR_MEMORY_BLOCK_SIZE);
3373 g_assert(drc);
3375 spapr_drc_attach(drc, dev, &local_err);
3376 if (local_err) {
3377 while (addr > addr_start) {
3378 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3379 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3380 addr / SPAPR_MEMORY_BLOCK_SIZE);
3381 spapr_drc_detach(drc);
3383 error_propagate(errp, local_err);
3384 return;
3386 if (!hotplugged) {
3387 spapr_drc_reset(drc);
3389 addr += SPAPR_MEMORY_BLOCK_SIZE;
3391 /* send hotplug notification to the
3392 * guest only in case of hotplugged memory
3394 if (hotplugged) {
3395 if (dedicated_hp_event_source) {
3396 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3397 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3398 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3399 nr_lmbs,
3400 spapr_drc_index(drc));
3401 } else {
3402 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3403 nr_lmbs);
3408 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3409 Error **errp)
3411 Error *local_err = NULL;
3412 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3413 PCDIMMDevice *dimm = PC_DIMM(dev);
3414 uint64_t size, addr, slot;
3415 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3417 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3419 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3420 if (local_err) {
3421 goto out;
3424 if (!is_nvdimm) {
3425 addr = object_property_get_uint(OBJECT(dimm),
3426 PC_DIMM_ADDR_PROP, &local_err);
3427 if (local_err) {
3428 goto out_unplug;
3430 spapr_add_lmbs(dev, addr, size,
3431 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3432 &local_err);
3433 } else {
3434 slot = object_property_get_uint(OBJECT(dimm),
3435 PC_DIMM_SLOT_PROP, &local_err);
3436 if (local_err) {
3437 goto out_unplug;
3439 spapr_add_nvdimm(dev, slot, &local_err);
3442 if (local_err) {
3443 goto out_unplug;
3446 return;
3448 out_unplug:
3449 pc_dimm_unplug(dimm, MACHINE(ms));
3450 out:
3451 error_propagate(errp, local_err);
3454 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3455 Error **errp)
3457 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3458 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3459 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3460 PCDIMMDevice *dimm = PC_DIMM(dev);
3461 Error *local_err = NULL;
3462 uint64_t size;
3463 Object *memdev;
3464 hwaddr pagesize;
3466 if (!smc->dr_lmb_enabled) {
3467 error_setg(errp, "Memory hotplug not supported for this machine");
3468 return;
3471 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3472 if (local_err) {
3473 error_propagate(errp, local_err);
3474 return;
3477 if (is_nvdimm) {
3478 spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, &local_err);
3479 if (local_err) {
3480 error_propagate(errp, local_err);
3481 return;
3483 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3484 error_setg(errp, "Hotplugged memory size must be a multiple of "
3485 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3486 return;
3489 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3490 &error_abort);
3491 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3492 spapr_check_pagesize(spapr, pagesize, &local_err);
3493 if (local_err) {
3494 error_propagate(errp, local_err);
3495 return;
3498 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3501 struct SpaprDimmState {
3502 PCDIMMDevice *dimm;
3503 uint32_t nr_lmbs;
3504 QTAILQ_ENTRY(SpaprDimmState) next;
3507 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3508 PCDIMMDevice *dimm)
3510 SpaprDimmState *dimm_state = NULL;
3512 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3513 if (dimm_state->dimm == dimm) {
3514 break;
3517 return dimm_state;
3520 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3521 uint32_t nr_lmbs,
3522 PCDIMMDevice *dimm)
3524 SpaprDimmState *ds = NULL;
3527 * If this request is for a DIMM whose removal had failed earlier
3528 * (due to guest's refusal to remove the LMBs), we would have this
3529 * dimm already in the pending_dimm_unplugs list. In that
3530 * case don't add again.
3532 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3533 if (!ds) {
3534 ds = g_malloc0(sizeof(SpaprDimmState));
3535 ds->nr_lmbs = nr_lmbs;
3536 ds->dimm = dimm;
3537 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3539 return ds;
3542 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3543 SpaprDimmState *dimm_state)
3545 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3546 g_free(dimm_state);
3549 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3550 PCDIMMDevice *dimm)
3552 SpaprDrc *drc;
3553 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3554 &error_abort);
3555 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3556 uint32_t avail_lmbs = 0;
3557 uint64_t addr_start, addr;
3558 int i;
3560 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3561 &error_abort);
3563 addr = addr_start;
3564 for (i = 0; i < nr_lmbs; i++) {
3565 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3566 addr / SPAPR_MEMORY_BLOCK_SIZE);
3567 g_assert(drc);
3568 if (drc->dev) {
3569 avail_lmbs++;
3571 addr += SPAPR_MEMORY_BLOCK_SIZE;
3574 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3577 /* Callback to be called during DRC release. */
3578 void spapr_lmb_release(DeviceState *dev)
3580 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3581 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3582 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3584 /* This information will get lost if a migration occurs
3585 * during the unplug process. In this case recover it. */
3586 if (ds == NULL) {
3587 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3588 g_assert(ds);
3589 /* The DRC being examined by the caller at least must be counted */
3590 g_assert(ds->nr_lmbs);
3593 if (--ds->nr_lmbs) {
3594 return;
3598 * Now that all the LMBs have been removed by the guest, call the
3599 * unplug handler chain. This can never fail.
3601 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3602 object_unparent(OBJECT(dev));
3605 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3607 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3608 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3610 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3611 qdev_unrealize(dev);
3612 spapr_pending_dimm_unplugs_remove(spapr, ds);
3615 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3616 DeviceState *dev, Error **errp)
3618 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3619 Error *local_err = NULL;
3620 PCDIMMDevice *dimm = PC_DIMM(dev);
3621 uint32_t nr_lmbs;
3622 uint64_t size, addr_start, addr;
3623 int i;
3624 SpaprDrc *drc;
3626 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3627 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3628 return;
3631 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3632 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3634 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3635 &local_err);
3636 if (local_err) {
3637 error_propagate(errp, local_err);
3638 return;
3642 * An existing pending dimm state for this DIMM means that there is an
3643 * unplug operation in progress, waiting for the spapr_lmb_release
3644 * callback to complete the job (BQL can't cover that far). In this case,
3645 * bail out to avoid detaching DRCs that were already released.
3647 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3648 error_setg(errp, "Memory unplug already in progress for device %s",
3649 dev->id);
3650 return;
3653 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3655 addr = addr_start;
3656 for (i = 0; i < nr_lmbs; i++) {
3657 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3658 addr / SPAPR_MEMORY_BLOCK_SIZE);
3659 g_assert(drc);
3661 spapr_drc_detach(drc);
3662 addr += SPAPR_MEMORY_BLOCK_SIZE;
3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3666 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3667 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3668 nr_lmbs, spapr_drc_index(drc));
3671 /* Callback to be called during DRC release. */
3672 void spapr_core_release(DeviceState *dev)
3674 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3676 /* Call the unplug handler chain. This can never fail. */
3677 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3678 object_unparent(OBJECT(dev));
3681 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3683 MachineState *ms = MACHINE(hotplug_dev);
3684 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3685 CPUCore *cc = CPU_CORE(dev);
3686 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3688 if (smc->pre_2_10_has_unused_icps) {
3689 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3690 int i;
3692 for (i = 0; i < cc->nr_threads; i++) {
3693 CPUState *cs = CPU(sc->threads[i]);
3695 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3699 assert(core_slot);
3700 core_slot->cpu = NULL;
3701 qdev_unrealize(dev);
3704 static
3705 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3706 Error **errp)
3708 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3709 int index;
3710 SpaprDrc *drc;
3711 CPUCore *cc = CPU_CORE(dev);
3713 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3714 error_setg(errp, "Unable to find CPU core with core-id: %d",
3715 cc->core_id);
3716 return;
3718 if (index == 0) {
3719 error_setg(errp, "Boot CPU core may not be unplugged");
3720 return;
3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3724 spapr_vcpu_id(spapr, cc->core_id));
3725 g_assert(drc);
3727 if (!spapr_drc_unplug_requested(drc)) {
3728 spapr_drc_detach(drc);
3729 spapr_hotplug_req_remove_by_index(drc);
3733 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3734 void *fdt, int *fdt_start_offset, Error **errp)
3736 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3737 CPUState *cs = CPU(core->threads[0]);
3738 PowerPCCPU *cpu = POWERPC_CPU(cs);
3739 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3740 int id = spapr_get_vcpu_id(cpu);
3741 char *nodename;
3742 int offset;
3744 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3745 offset = fdt_add_subnode(fdt, 0, nodename);
3746 g_free(nodename);
3748 spapr_dt_cpu(cs, fdt, offset, spapr);
3750 *fdt_start_offset = offset;
3751 return 0;
3754 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3755 Error **errp)
3757 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3758 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3759 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3760 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3761 CPUCore *cc = CPU_CORE(dev);
3762 CPUState *cs;
3763 SpaprDrc *drc;
3764 Error *local_err = NULL;
3765 CPUArchId *core_slot;
3766 int index;
3767 bool hotplugged = spapr_drc_hotplugged(dev);
3768 int i;
3770 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3771 if (!core_slot) {
3772 error_setg(errp, "Unable to find CPU core with core-id: %d",
3773 cc->core_id);
3774 return;
3776 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3777 spapr_vcpu_id(spapr, cc->core_id));
3779 g_assert(drc || !mc->has_hotpluggable_cpus);
3781 if (drc) {
3782 spapr_drc_attach(drc, dev, &local_err);
3783 if (local_err) {
3784 error_propagate(errp, local_err);
3785 return;
3788 if (hotplugged) {
3790 * Send hotplug notification interrupt to the guest only
3791 * in case of hotplugged CPUs.
3793 spapr_hotplug_req_add_by_index(drc);
3794 } else {
3795 spapr_drc_reset(drc);
3799 core_slot->cpu = OBJECT(dev);
3801 if (smc->pre_2_10_has_unused_icps) {
3802 for (i = 0; i < cc->nr_threads; i++) {
3803 cs = CPU(core->threads[i]);
3804 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3809 * Set compatibility mode to match the boot CPU, which was either set
3810 * by the machine reset code or by CAS.
3812 if (hotplugged) {
3813 for (i = 0; i < cc->nr_threads; i++) {
3814 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3815 &local_err);
3816 if (local_err) {
3817 error_propagate(errp, local_err);
3818 return;
3824 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3825 Error **errp)
3827 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3828 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3829 CPUCore *cc = CPU_CORE(dev);
3830 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3831 const char *type = object_get_typename(OBJECT(dev));
3832 CPUArchId *core_slot;
3833 int index;
3834 unsigned int smp_threads = machine->smp.threads;
3836 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3837 error_setg(errp, "CPU hotplug not supported for this machine");
3838 return;
3841 if (strcmp(base_core_type, type)) {
3842 error_setg(errp, "CPU core type should be %s", base_core_type);
3843 return;
3846 if (cc->core_id % smp_threads) {
3847 error_setg(errp, "invalid core id %d", cc->core_id);
3848 return;
3852 * In general we should have homogeneous threads-per-core, but old
3853 * (pre hotplug support) machine types allow the last core to have
3854 * reduced threads as a compatibility hack for when we allowed
3855 * total vcpus not a multiple of threads-per-core.
3857 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3858 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3859 smp_threads);
3860 return;
3863 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3864 if (!core_slot) {
3865 error_setg(errp, "core id %d out of range", cc->core_id);
3866 return;
3869 if (core_slot->cpu) {
3870 error_setg(errp, "core %d already populated", cc->core_id);
3871 return;
3874 numa_cpu_pre_plug(core_slot, dev, errp);
3877 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3878 void *fdt, int *fdt_start_offset, Error **errp)
3880 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3881 int intc_phandle;
3883 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3884 if (intc_phandle <= 0) {
3885 return -1;
3888 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3889 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3890 return -1;
3893 /* generally SLOF creates these, for hotplug it's up to QEMU */
3894 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3896 return 0;
3899 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3900 Error **errp)
3902 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3903 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3904 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3905 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3907 if (dev->hotplugged && !smc->dr_phb_enabled) {
3908 error_setg(errp, "PHB hotplug not supported for this machine");
3909 return;
3912 if (sphb->index == (uint32_t)-1) {
3913 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3914 return;
3918 * This will check that sphb->index doesn't exceed the maximum number of
3919 * PHBs for the current machine type.
3921 smc->phb_placement(spapr, sphb->index,
3922 &sphb->buid, &sphb->io_win_addr,
3923 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3924 windows_supported, sphb->dma_liobn,
3925 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3926 errp);
3929 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3930 Error **errp)
3932 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3933 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3934 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3935 SpaprDrc *drc;
3936 bool hotplugged = spapr_drc_hotplugged(dev);
3937 Error *local_err = NULL;
3939 if (!smc->dr_phb_enabled) {
3940 return;
3943 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3944 /* hotplug hooks should check it's enabled before getting this far */
3945 assert(drc);
3947 spapr_drc_attach(drc, dev, &local_err);
3948 if (local_err) {
3949 error_propagate(errp, local_err);
3950 return;
3953 if (hotplugged) {
3954 spapr_hotplug_req_add_by_index(drc);
3955 } else {
3956 spapr_drc_reset(drc);
3960 void spapr_phb_release(DeviceState *dev)
3962 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3964 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3965 object_unparent(OBJECT(dev));
3968 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3970 qdev_unrealize(dev);
3973 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3974 DeviceState *dev, Error **errp)
3976 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3977 SpaprDrc *drc;
3979 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3980 assert(drc);
3982 if (!spapr_drc_unplug_requested(drc)) {
3983 spapr_drc_detach(drc);
3984 spapr_hotplug_req_remove_by_index(drc);
3988 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3989 Error **errp)
3991 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3992 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3994 if (spapr->tpm_proxy != NULL) {
3995 error_setg(errp, "Only one TPM proxy can be specified for this machine");
3996 return;
3999 spapr->tpm_proxy = tpm_proxy;
4002 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4004 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4006 qdev_unrealize(dev);
4007 object_unparent(OBJECT(dev));
4008 spapr->tpm_proxy = NULL;
4011 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4012 DeviceState *dev, Error **errp)
4014 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4015 spapr_memory_plug(hotplug_dev, dev, errp);
4016 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4017 spapr_core_plug(hotplug_dev, dev, errp);
4018 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4019 spapr_phb_plug(hotplug_dev, dev, errp);
4020 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4021 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4025 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4026 DeviceState *dev, Error **errp)
4028 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4029 spapr_memory_unplug(hotplug_dev, dev);
4030 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4031 spapr_core_unplug(hotplug_dev, dev);
4032 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4033 spapr_phb_unplug(hotplug_dev, dev);
4034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4035 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4039 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4040 DeviceState *dev, Error **errp)
4042 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4043 MachineClass *mc = MACHINE_GET_CLASS(sms);
4044 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4046 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4047 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4048 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4049 } else {
4050 /* NOTE: this means there is a window after guest reset, prior to
4051 * CAS negotiation, where unplug requests will fail due to the
4052 * capability not being detected yet. This is a bit different than
4053 * the case with PCI unplug, where the events will be queued and
4054 * eventually handled by the guest after boot
4056 error_setg(errp, "Memory hot unplug not supported for this guest");
4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4059 if (!mc->has_hotpluggable_cpus) {
4060 error_setg(errp, "CPU hot unplug not supported on this machine");
4061 return;
4063 spapr_core_unplug_request(hotplug_dev, dev, errp);
4064 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4065 if (!smc->dr_phb_enabled) {
4066 error_setg(errp, "PHB hot unplug not supported on this machine");
4067 return;
4069 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4070 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4071 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4075 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4076 DeviceState *dev, Error **errp)
4078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4079 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4081 spapr_core_pre_plug(hotplug_dev, dev, errp);
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4083 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4087 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4088 DeviceState *dev)
4090 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4091 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4092 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4093 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4094 return HOTPLUG_HANDLER(machine);
4096 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4097 PCIDevice *pcidev = PCI_DEVICE(dev);
4098 PCIBus *root = pci_device_root_bus(pcidev);
4099 SpaprPhbState *phb =
4100 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4101 TYPE_SPAPR_PCI_HOST_BRIDGE);
4103 if (phb) {
4104 return HOTPLUG_HANDLER(phb);
4107 return NULL;
4110 static CpuInstanceProperties
4111 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4113 CPUArchId *core_slot;
4114 MachineClass *mc = MACHINE_GET_CLASS(machine);
4116 /* make sure possible_cpu are intialized */
4117 mc->possible_cpu_arch_ids(machine);
4118 /* get CPU core slot containing thread that matches cpu_index */
4119 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4120 assert(core_slot);
4121 return core_slot->props;
4124 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4126 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4129 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4131 int i;
4132 unsigned int smp_threads = machine->smp.threads;
4133 unsigned int smp_cpus = machine->smp.cpus;
4134 const char *core_type;
4135 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4136 MachineClass *mc = MACHINE_GET_CLASS(machine);
4138 if (!mc->has_hotpluggable_cpus) {
4139 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4141 if (machine->possible_cpus) {
4142 assert(machine->possible_cpus->len == spapr_max_cores);
4143 return machine->possible_cpus;
4146 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4147 if (!core_type) {
4148 error_report("Unable to find sPAPR CPU Core definition");
4149 exit(1);
4152 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4153 sizeof(CPUArchId) * spapr_max_cores);
4154 machine->possible_cpus->len = spapr_max_cores;
4155 for (i = 0; i < machine->possible_cpus->len; i++) {
4156 int core_id = i * smp_threads;
4158 machine->possible_cpus->cpus[i].type = core_type;
4159 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4160 machine->possible_cpus->cpus[i].arch_id = core_id;
4161 machine->possible_cpus->cpus[i].props.has_core_id = true;
4162 machine->possible_cpus->cpus[i].props.core_id = core_id;
4164 return machine->possible_cpus;
4167 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4168 uint64_t *buid, hwaddr *pio,
4169 hwaddr *mmio32, hwaddr *mmio64,
4170 unsigned n_dma, uint32_t *liobns,
4171 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4174 * New-style PHB window placement.
4176 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4177 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4178 * windows.
4180 * Some guest kernels can't work with MMIO windows above 1<<46
4181 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4183 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4184 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4185 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4186 * 1TiB 64-bit MMIO windows for each PHB.
4188 const uint64_t base_buid = 0x800000020000000ULL;
4189 int i;
4191 /* Sanity check natural alignments */
4192 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4193 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4194 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4195 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4196 /* Sanity check bounds */
4197 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4198 SPAPR_PCI_MEM32_WIN_SIZE);
4199 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4200 SPAPR_PCI_MEM64_WIN_SIZE);
4202 if (index >= SPAPR_MAX_PHBS) {
4203 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4204 SPAPR_MAX_PHBS - 1);
4205 return;
4208 *buid = base_buid + index;
4209 for (i = 0; i < n_dma; ++i) {
4210 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4213 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4214 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4215 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4217 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4218 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4221 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4223 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4225 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4228 static void spapr_ics_resend(XICSFabric *dev)
4230 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4232 ics_resend(spapr->ics);
4235 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4237 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4239 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4242 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4243 Monitor *mon)
4245 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4247 spapr_irq_print_info(spapr, mon);
4248 monitor_printf(mon, "irqchip: %s\n",
4249 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4253 * This is a XIVE only operation
4255 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4256 uint8_t nvt_blk, uint32_t nvt_idx,
4257 bool cam_ignore, uint8_t priority,
4258 uint32_t logic_serv, XiveTCTXMatch *match)
4260 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4261 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4262 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4263 int count;
4265 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4266 priority, logic_serv, match);
4267 if (count < 0) {
4268 return count;
4272 * When we implement the save and restore of the thread interrupt
4273 * contexts in the enter/exit CPU handlers of the machine and the
4274 * escalations in QEMU, we should be able to handle non dispatched
4275 * vCPUs.
4277 * Until this is done, the sPAPR machine should find at least one
4278 * matching context always.
4280 if (count == 0) {
4281 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4282 nvt_blk, nvt_idx);
4285 return count;
4288 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4290 return cpu->vcpu_id;
4293 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4295 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4296 MachineState *ms = MACHINE(spapr);
4297 int vcpu_id;
4299 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4301 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4302 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4303 error_append_hint(errp, "Adjust the number of cpus to %d "
4304 "or try to raise the number of threads per core\n",
4305 vcpu_id * ms->smp.threads / spapr->vsmt);
4306 return;
4309 cpu->vcpu_id = vcpu_id;
4312 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4314 CPUState *cs;
4316 CPU_FOREACH(cs) {
4317 PowerPCCPU *cpu = POWERPC_CPU(cs);
4319 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4320 return cpu;
4324 return NULL;
4327 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4329 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4331 /* These are only called by TCG, KVM maintains dispatch state */
4333 spapr_cpu->prod = false;
4334 if (spapr_cpu->vpa_addr) {
4335 CPUState *cs = CPU(cpu);
4336 uint32_t dispatch;
4338 dispatch = ldl_be_phys(cs->as,
4339 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4340 dispatch++;
4341 if ((dispatch & 1) != 0) {
4342 qemu_log_mask(LOG_GUEST_ERROR,
4343 "VPA: incorrect dispatch counter value for "
4344 "dispatched partition %u, correcting.\n", dispatch);
4345 dispatch++;
4347 stl_be_phys(cs->as,
4348 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4352 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4354 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4356 if (spapr_cpu->vpa_addr) {
4357 CPUState *cs = CPU(cpu);
4358 uint32_t dispatch;
4360 dispatch = ldl_be_phys(cs->as,
4361 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4362 dispatch++;
4363 if ((dispatch & 1) != 1) {
4364 qemu_log_mask(LOG_GUEST_ERROR,
4365 "VPA: incorrect dispatch counter value for "
4366 "preempted partition %u, correcting.\n", dispatch);
4367 dispatch++;
4369 stl_be_phys(cs->as,
4370 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4374 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4376 MachineClass *mc = MACHINE_CLASS(oc);
4377 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4378 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4379 NMIClass *nc = NMI_CLASS(oc);
4380 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4381 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4382 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4383 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4384 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4386 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4387 mc->ignore_boot_device_suffixes = true;
4390 * We set up the default / latest behaviour here. The class_init
4391 * functions for the specific versioned machine types can override
4392 * these details for backwards compatibility
4394 mc->init = spapr_machine_init;
4395 mc->reset = spapr_machine_reset;
4396 mc->block_default_type = IF_SCSI;
4397 mc->max_cpus = 1024;
4398 mc->no_parallel = 1;
4399 mc->default_boot_order = "";
4400 mc->default_ram_size = 512 * MiB;
4401 mc->default_ram_id = "ppc_spapr.ram";
4402 mc->default_display = "std";
4403 mc->kvm_type = spapr_kvm_type;
4404 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4405 mc->pci_allow_0_address = true;
4406 assert(!mc->get_hotplug_handler);
4407 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4408 hc->pre_plug = spapr_machine_device_pre_plug;
4409 hc->plug = spapr_machine_device_plug;
4410 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4411 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4412 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4413 hc->unplug_request = spapr_machine_device_unplug_request;
4414 hc->unplug = spapr_machine_device_unplug;
4416 smc->dr_lmb_enabled = true;
4417 smc->update_dt_enabled = true;
4418 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4419 mc->has_hotpluggable_cpus = true;
4420 mc->nvdimm_supported = true;
4421 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4422 fwc->get_dev_path = spapr_get_fw_dev_path;
4423 nc->nmi_monitor_handler = spapr_nmi;
4424 smc->phb_placement = spapr_phb_placement;
4425 vhc->hypercall = emulate_spapr_hypercall;
4426 vhc->hpt_mask = spapr_hpt_mask;
4427 vhc->map_hptes = spapr_map_hptes;
4428 vhc->unmap_hptes = spapr_unmap_hptes;
4429 vhc->hpte_set_c = spapr_hpte_set_c;
4430 vhc->hpte_set_r = spapr_hpte_set_r;
4431 vhc->get_pate = spapr_get_pate;
4432 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4433 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4434 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4435 xic->ics_get = spapr_ics_get;
4436 xic->ics_resend = spapr_ics_resend;
4437 xic->icp_get = spapr_icp_get;
4438 ispc->print_info = spapr_pic_print_info;
4439 /* Force NUMA node memory size to be a multiple of
4440 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4441 * in which LMBs are represented and hot-added
4443 mc->numa_mem_align_shift = 28;
4444 mc->auto_enable_numa = true;
4446 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4447 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4448 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4449 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4450 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4451 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4452 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4453 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4454 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4455 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4456 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4457 spapr_caps_add_properties(smc);
4458 smc->irq = &spapr_irq_dual;
4459 smc->dr_phb_enabled = true;
4460 smc->linux_pci_probe = true;
4461 smc->smp_threads_vsmt = true;
4462 smc->nr_xirqs = SPAPR_NR_XIRQS;
4463 xfc->match_nvt = spapr_match_nvt;
4466 static const TypeInfo spapr_machine_info = {
4467 .name = TYPE_SPAPR_MACHINE,
4468 .parent = TYPE_MACHINE,
4469 .abstract = true,
4470 .instance_size = sizeof(SpaprMachineState),
4471 .instance_init = spapr_instance_init,
4472 .instance_finalize = spapr_machine_finalizefn,
4473 .class_size = sizeof(SpaprMachineClass),
4474 .class_init = spapr_machine_class_init,
4475 .interfaces = (InterfaceInfo[]) {
4476 { TYPE_FW_PATH_PROVIDER },
4477 { TYPE_NMI },
4478 { TYPE_HOTPLUG_HANDLER },
4479 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4480 { TYPE_XICS_FABRIC },
4481 { TYPE_INTERRUPT_STATS_PROVIDER },
4482 { TYPE_XIVE_FABRIC },
4487 static void spapr_machine_latest_class_options(MachineClass *mc)
4489 mc->alias = "pseries";
4490 mc->is_default = true;
4493 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4494 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4495 void *data) \
4497 MachineClass *mc = MACHINE_CLASS(oc); \
4498 spapr_machine_##suffix##_class_options(mc); \
4499 if (latest) { \
4500 spapr_machine_latest_class_options(mc); \
4503 static const TypeInfo spapr_machine_##suffix##_info = { \
4504 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4505 .parent = TYPE_SPAPR_MACHINE, \
4506 .class_init = spapr_machine_##suffix##_class_init, \
4507 }; \
4508 static void spapr_machine_register_##suffix(void) \
4510 type_register(&spapr_machine_##suffix##_info); \
4512 type_init(spapr_machine_register_##suffix)
4515 * pseries-5.2
4517 static void spapr_machine_5_2_class_options(MachineClass *mc)
4519 /* Defaults for the latest behaviour inherited from the base class */
4522 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4525 * pseries-5.1
4527 static void spapr_machine_5_1_class_options(MachineClass *mc)
4529 spapr_machine_5_2_class_options(mc);
4530 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4533 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4536 * pseries-5.0
4538 static void spapr_machine_5_0_class_options(MachineClass *mc)
4540 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4541 static GlobalProperty compat[] = {
4542 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4545 spapr_machine_5_1_class_options(mc);
4546 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4547 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4548 mc->numa_mem_supported = true;
4549 smc->pre_5_1_assoc_refpoints = true;
4552 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4555 * pseries-4.2
4557 static void spapr_machine_4_2_class_options(MachineClass *mc)
4559 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4561 spapr_machine_5_0_class_options(mc);
4562 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4563 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4564 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4565 smc->rma_limit = 16 * GiB;
4566 mc->nvdimm_supported = false;
4569 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4572 * pseries-4.1
4574 static void spapr_machine_4_1_class_options(MachineClass *mc)
4576 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4577 static GlobalProperty compat[] = {
4578 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4579 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4582 spapr_machine_4_2_class_options(mc);
4583 smc->linux_pci_probe = false;
4584 smc->smp_threads_vsmt = false;
4585 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4586 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4589 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4592 * pseries-4.0
4594 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4595 uint64_t *buid, hwaddr *pio,
4596 hwaddr *mmio32, hwaddr *mmio64,
4597 unsigned n_dma, uint32_t *liobns,
4598 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4600 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4601 nv2gpa, nv2atsd, errp);
4602 *nv2gpa = 0;
4603 *nv2atsd = 0;
4606 static void spapr_machine_4_0_class_options(MachineClass *mc)
4608 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4610 spapr_machine_4_1_class_options(mc);
4611 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4612 smc->phb_placement = phb_placement_4_0;
4613 smc->irq = &spapr_irq_xics;
4614 smc->pre_4_1_migration = true;
4617 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4620 * pseries-3.1
4622 static void spapr_machine_3_1_class_options(MachineClass *mc)
4624 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4626 spapr_machine_4_0_class_options(mc);
4627 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4629 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4630 smc->update_dt_enabled = false;
4631 smc->dr_phb_enabled = false;
4632 smc->broken_host_serial_model = true;
4633 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4634 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4635 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4636 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4639 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4642 * pseries-3.0
4645 static void spapr_machine_3_0_class_options(MachineClass *mc)
4647 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4649 spapr_machine_3_1_class_options(mc);
4650 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4652 smc->legacy_irq_allocation = true;
4653 smc->nr_xirqs = 0x400;
4654 smc->irq = &spapr_irq_xics_legacy;
4657 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4660 * pseries-2.12
4662 static void spapr_machine_2_12_class_options(MachineClass *mc)
4664 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4665 static GlobalProperty compat[] = {
4666 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4667 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4670 spapr_machine_3_0_class_options(mc);
4671 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4672 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4674 /* We depend on kvm_enabled() to choose a default value for the
4675 * hpt-max-page-size capability. Of course we can't do it here
4676 * because this is too early and the HW accelerator isn't initialzed
4677 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4679 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4682 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4684 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4686 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4688 spapr_machine_2_12_class_options(mc);
4689 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4690 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4691 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4694 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4697 * pseries-2.11
4700 static void spapr_machine_2_11_class_options(MachineClass *mc)
4702 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4704 spapr_machine_2_12_class_options(mc);
4705 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4706 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4709 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4712 * pseries-2.10
4715 static void spapr_machine_2_10_class_options(MachineClass *mc)
4717 spapr_machine_2_11_class_options(mc);
4718 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4721 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4724 * pseries-2.9
4727 static void spapr_machine_2_9_class_options(MachineClass *mc)
4729 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4730 static GlobalProperty compat[] = {
4731 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4734 spapr_machine_2_10_class_options(mc);
4735 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4736 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4737 smc->pre_2_10_has_unused_icps = true;
4738 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4741 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4744 * pseries-2.8
4747 static void spapr_machine_2_8_class_options(MachineClass *mc)
4749 static GlobalProperty compat[] = {
4750 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4753 spapr_machine_2_9_class_options(mc);
4754 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4755 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4756 mc->numa_mem_align_shift = 23;
4759 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4762 * pseries-2.7
4765 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4766 uint64_t *buid, hwaddr *pio,
4767 hwaddr *mmio32, hwaddr *mmio64,
4768 unsigned n_dma, uint32_t *liobns,
4769 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4771 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4772 const uint64_t base_buid = 0x800000020000000ULL;
4773 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4774 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4775 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4776 const uint32_t max_index = 255;
4777 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4779 uint64_t ram_top = MACHINE(spapr)->ram_size;
4780 hwaddr phb0_base, phb_base;
4781 int i;
4783 /* Do we have device memory? */
4784 if (MACHINE(spapr)->maxram_size > ram_top) {
4785 /* Can't just use maxram_size, because there may be an
4786 * alignment gap between normal and device memory regions
4788 ram_top = MACHINE(spapr)->device_memory->base +
4789 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4792 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4794 if (index > max_index) {
4795 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4796 max_index);
4797 return;
4800 *buid = base_buid + index;
4801 for (i = 0; i < n_dma; ++i) {
4802 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4805 phb_base = phb0_base + index * phb_spacing;
4806 *pio = phb_base + pio_offset;
4807 *mmio32 = phb_base + mmio_offset;
4809 * We don't set the 64-bit MMIO window, relying on the PHB's
4810 * fallback behaviour of automatically splitting a large "32-bit"
4811 * window into contiguous 32-bit and 64-bit windows
4814 *nv2gpa = 0;
4815 *nv2atsd = 0;
4818 static void spapr_machine_2_7_class_options(MachineClass *mc)
4820 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4821 static GlobalProperty compat[] = {
4822 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4823 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4824 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4825 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4828 spapr_machine_2_8_class_options(mc);
4829 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4830 mc->default_machine_opts = "modern-hotplug-events=off";
4831 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4832 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4833 smc->phb_placement = phb_placement_2_7;
4836 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4839 * pseries-2.6
4842 static void spapr_machine_2_6_class_options(MachineClass *mc)
4844 static GlobalProperty compat[] = {
4845 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4848 spapr_machine_2_7_class_options(mc);
4849 mc->has_hotpluggable_cpus = false;
4850 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4851 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4854 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4857 * pseries-2.5
4860 static void spapr_machine_2_5_class_options(MachineClass *mc)
4862 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4863 static GlobalProperty compat[] = {
4864 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4867 spapr_machine_2_6_class_options(mc);
4868 smc->use_ohci_by_default = true;
4869 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4870 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4873 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4876 * pseries-2.4
4879 static void spapr_machine_2_4_class_options(MachineClass *mc)
4881 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4883 spapr_machine_2_5_class_options(mc);
4884 smc->dr_lmb_enabled = false;
4885 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4888 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4891 * pseries-2.3
4894 static void spapr_machine_2_3_class_options(MachineClass *mc)
4896 static GlobalProperty compat[] = {
4897 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4899 spapr_machine_2_4_class_options(mc);
4900 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4901 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4903 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4906 * pseries-2.2
4909 static void spapr_machine_2_2_class_options(MachineClass *mc)
4911 static GlobalProperty compat[] = {
4912 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4915 spapr_machine_2_3_class_options(mc);
4916 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4917 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4918 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4920 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4923 * pseries-2.1
4926 static void spapr_machine_2_1_class_options(MachineClass *mc)
4928 spapr_machine_2_2_class_options(mc);
4929 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4931 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4933 static void spapr_machine_register_types(void)
4935 type_register_static(&spapr_machine_info);
4938 type_init(spapr_machine_register_types)