target-arm/kvm: Split 32 bit only code into its own file
[qemu/ar7.git] / hw / ppc / spapr_pci.c
blob2beedd45e958111c7bae8cfd6ae175db9b53fafa
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
36 #include "hw/pci/pci_bus.h"
38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39 #define RTAS_QUERY_FN 0
40 #define RTAS_CHANGE_FN 1
41 #define RTAS_RESET_FN 2
42 #define RTAS_CHANGE_MSI_FN 3
43 #define RTAS_CHANGE_MSIX_FN 4
45 /* Interrupt types to return on RTAS_CHANGE_* */
46 #define RTAS_TYPE_MSI 1
47 #define RTAS_TYPE_MSIX 2
49 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
51 sPAPRPHBState *sphb;
53 QLIST_FOREACH(sphb, &spapr->phbs, list) {
54 if (sphb->buid != buid) {
55 continue;
57 return sphb;
60 return NULL;
63 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64 uint32_t config_addr)
66 sPAPRPHBState *sphb = find_phb(spapr, buid);
67 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68 int bus_num = (config_addr >> 16) & 0xFF;
69 int devfn = (config_addr >> 8) & 0xFF;
71 if (!phb) {
72 return NULL;
75 return pci_find_device(phb->bus, bus_num, devfn);
78 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
80 /* This handles the encoding of extended config space addresses */
81 return ((arg >> 20) & 0xf00) | (arg & 0xff);
84 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
85 uint32_t addr, uint32_t size,
86 target_ulong rets)
88 PCIDevice *pci_dev;
89 uint32_t val;
91 if ((size != 1) && (size != 2) && (size != 4)) {
92 /* access must be 1, 2 or 4 bytes */
93 rtas_st(rets, 0, -1);
94 return;
97 pci_dev = find_dev(spapr, buid, addr);
98 addr = rtas_pci_cfgaddr(addr);
100 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
101 /* Access must be to a valid device, within bounds and
102 * naturally aligned */
103 rtas_st(rets, 0, -1);
104 return;
107 val = pci_host_config_read_common(pci_dev, addr,
108 pci_config_size(pci_dev), size);
110 rtas_st(rets, 0, 0);
111 rtas_st(rets, 1, val);
114 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
115 uint32_t token, uint32_t nargs,
116 target_ulong args,
117 uint32_t nret, target_ulong rets)
119 uint64_t buid;
120 uint32_t size, addr;
122 if ((nargs != 4) || (nret != 2)) {
123 rtas_st(rets, 0, -1);
124 return;
127 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
128 size = rtas_ld(args, 3);
129 addr = rtas_ld(args, 0);
131 finish_read_pci_config(spapr, buid, addr, size, rets);
134 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
135 uint32_t token, uint32_t nargs,
136 target_ulong args,
137 uint32_t nret, target_ulong rets)
139 uint32_t size, addr;
141 if ((nargs != 2) || (nret != 2)) {
142 rtas_st(rets, 0, -1);
143 return;
146 size = rtas_ld(args, 1);
147 addr = rtas_ld(args, 0);
149 finish_read_pci_config(spapr, 0, addr, size, rets);
152 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
153 uint32_t addr, uint32_t size,
154 uint32_t val, target_ulong rets)
156 PCIDevice *pci_dev;
158 if ((size != 1) && (size != 2) && (size != 4)) {
159 /* access must be 1, 2 or 4 bytes */
160 rtas_st(rets, 0, -1);
161 return;
164 pci_dev = find_dev(spapr, buid, addr);
165 addr = rtas_pci_cfgaddr(addr);
167 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
168 /* Access must be to a valid device, within bounds and
169 * naturally aligned */
170 rtas_st(rets, 0, -1);
171 return;
174 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
175 val, size);
177 rtas_st(rets, 0, 0);
180 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
181 uint32_t token, uint32_t nargs,
182 target_ulong args,
183 uint32_t nret, target_ulong rets)
185 uint64_t buid;
186 uint32_t val, size, addr;
188 if ((nargs != 5) || (nret != 1)) {
189 rtas_st(rets, 0, -1);
190 return;
193 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
194 val = rtas_ld(args, 4);
195 size = rtas_ld(args, 3);
196 addr = rtas_ld(args, 0);
198 finish_write_pci_config(spapr, buid, addr, size, val, rets);
201 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
202 uint32_t token, uint32_t nargs,
203 target_ulong args,
204 uint32_t nret, target_ulong rets)
206 uint32_t val, size, addr;
208 if ((nargs != 3) || (nret != 1)) {
209 rtas_st(rets, 0, -1);
210 return;
214 val = rtas_ld(args, 2);
215 size = rtas_ld(args, 1);
216 addr = rtas_ld(args, 0);
218 finish_write_pci_config(spapr, 0, addr, size, val, rets);
222 * Find an entry with config_addr or returns the empty one if not found AND
223 * alloc_new is set.
224 * At the moment the msi_table entries are never released so there is
225 * no point to look till the end of the list if we need to find the free entry.
227 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
228 bool alloc_new)
230 int i;
232 for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
233 if (!phb->msi_table[i].nvec) {
234 break;
236 if (phb->msi_table[i].config_addr == config_addr) {
237 return i;
240 if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
241 trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
242 return i;
245 return -1;
249 * Set MSI/MSIX message data.
250 * This is required for msi_notify()/msix_notify() which
251 * will write at the addresses via spapr_msi_write().
253 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
254 unsigned first_irq, unsigned req_num)
256 unsigned i;
257 MSIMessage msg = { .address = addr, .data = first_irq };
259 if (!msix) {
260 msi_set_message(pdev, msg);
261 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
262 return;
265 for (i = 0; i < req_num; ++i, ++msg.data) {
266 msix_set_message(pdev, i, msg);
267 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
271 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
272 uint32_t token, uint32_t nargs,
273 target_ulong args, uint32_t nret,
274 target_ulong rets)
276 uint32_t config_addr = rtas_ld(args, 0);
277 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
278 unsigned int func = rtas_ld(args, 3);
279 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
280 unsigned int seq_num = rtas_ld(args, 5);
281 unsigned int ret_intr_type;
282 int ndev, irq;
283 sPAPRPHBState *phb = NULL;
284 PCIDevice *pdev = NULL;
286 switch (func) {
287 case RTAS_CHANGE_MSI_FN:
288 case RTAS_CHANGE_FN:
289 ret_intr_type = RTAS_TYPE_MSI;
290 break;
291 case RTAS_CHANGE_MSIX_FN:
292 ret_intr_type = RTAS_TYPE_MSIX;
293 break;
294 default:
295 fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
296 rtas_st(rets, 0, -3); /* Parameter error */
297 return;
300 /* Fins sPAPRPHBState */
301 phb = find_phb(spapr, buid);
302 if (phb) {
303 pdev = find_dev(spapr, buid, config_addr);
305 if (!phb || !pdev) {
306 rtas_st(rets, 0, -3); /* Parameter error */
307 return;
310 /* Releasing MSIs */
311 if (!req_num) {
312 ndev = spapr_msicfg_find(phb, config_addr, false);
313 if (ndev < 0) {
314 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
315 rtas_st(rets, 0, -1); /* Hardware error */
316 return;
318 trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
319 rtas_st(rets, 0, 0);
320 rtas_st(rets, 1, 0);
321 return;
324 /* Enabling MSI */
326 /* Find a device number in the map to add or reuse the existing one */
327 ndev = spapr_msicfg_find(phb, config_addr, true);
328 if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
329 fprintf(stderr, "No free entry for a new MSI device\n");
330 rtas_st(rets, 0, -1); /* Hardware error */
331 return;
333 trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
335 /* Check if there is an old config and MSI number has not changed */
336 if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
337 /* Unexpected behaviour */
338 fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
339 rtas_st(rets, 0, -1); /* Hardware error */
340 return;
343 /* There is no cached config, allocate MSIs */
344 if (!phb->msi_table[ndev].nvec) {
345 irq = spapr_allocate_irq_block(req_num, false,
346 ret_intr_type == RTAS_TYPE_MSI);
347 if (irq < 0) {
348 fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
349 rtas_st(rets, 0, -1); /* Hardware error */
350 return;
352 phb->msi_table[ndev].irq = irq;
353 phb->msi_table[ndev].nvec = req_num;
354 phb->msi_table[ndev].config_addr = config_addr;
357 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
358 spapr_msi_setmsg(pdev, spapr->msi_win_addr, ret_intr_type == RTAS_TYPE_MSIX,
359 phb->msi_table[ndev].irq, req_num);
361 rtas_st(rets, 0, 0);
362 rtas_st(rets, 1, req_num);
363 rtas_st(rets, 2, ++seq_num);
364 rtas_st(rets, 3, ret_intr_type);
366 trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
369 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
370 sPAPREnvironment *spapr,
371 uint32_t token,
372 uint32_t nargs,
373 target_ulong args,
374 uint32_t nret,
375 target_ulong rets)
377 uint32_t config_addr = rtas_ld(args, 0);
378 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
379 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
380 int ndev;
381 sPAPRPHBState *phb = NULL;
383 /* Fins sPAPRPHBState */
384 phb = find_phb(spapr, buid);
385 if (!phb) {
386 rtas_st(rets, 0, -3); /* Parameter error */
387 return;
390 /* Find device descriptor and start IRQ */
391 ndev = spapr_msicfg_find(phb, config_addr, false);
392 if (ndev < 0) {
393 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
394 rtas_st(rets, 0, -1); /* Hardware error */
395 return;
398 intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
399 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
400 intr_src_num);
402 rtas_st(rets, 0, 0);
403 rtas_st(rets, 1, intr_src_num);
404 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
407 static int pci_spapr_swizzle(int slot, int pin)
409 return (slot + pin) % PCI_NUM_PINS;
412 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
415 * Here we need to convert pci_dev + irq_num to some unique value
416 * which is less than number of IRQs on the specific bus (4). We
417 * use standard PCI swizzling, that is (slot number + pin number)
418 * % 4.
420 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
423 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
426 * Here we use the number returned by pci_spapr_map_irq to find a
427 * corresponding qemu_irq.
429 sPAPRPHBState *phb = opaque;
431 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
432 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
435 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
437 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
438 PCIINTxRoute route;
440 route.mode = PCI_INTX_ENABLED;
441 route.irq = sphb->lsi_table[pin].irq;
443 return route;
447 * MSI/MSIX memory region implementation.
448 * The handler handles both MSI and MSIX.
449 * For MSI-X, the vector number is encoded as a part of the address,
450 * data is set to 0.
451 * For MSI, the vector number is encoded in least bits in data.
453 static void spapr_msi_write(void *opaque, hwaddr addr,
454 uint64_t data, unsigned size)
456 uint32_t irq = data;
458 trace_spapr_pci_msi_write(addr, data, irq);
460 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
463 static const MemoryRegionOps spapr_msi_ops = {
464 /* There is no .read as the read result is undefined by PCI spec */
465 .read = NULL,
466 .write = spapr_msi_write,
467 .endianness = DEVICE_LITTLE_ENDIAN
470 void spapr_pci_msi_init(sPAPREnvironment *spapr, hwaddr addr)
473 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
474 * we need to allocate some memory to catch those writes coming
475 * from msi_notify()/msix_notify().
476 * As MSIMessage:addr is going to be the same and MSIMessage:data
477 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
478 * be used.
480 spapr->msi_win_addr = addr;
481 memory_region_init_io(&spapr->msiwindow, NULL, &spapr_msi_ops, spapr,
482 "msi", getpagesize());
483 memory_region_add_subregion(get_system_memory(), spapr->msi_win_addr,
484 &spapr->msiwindow);
488 * PHB PCI device
490 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
492 sPAPRPHBState *phb = opaque;
494 return &phb->iommu_as;
497 static int spapr_phb_init(SysBusDevice *s)
499 DeviceState *dev = DEVICE(s);
500 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
501 PCIHostState *phb = PCI_HOST_BRIDGE(s);
502 const char *busname;
503 char *namebuf;
504 int i;
505 PCIBus *bus;
507 if (sphb->index != -1) {
508 hwaddr windows_base;
510 if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
511 || (sphb->mem_win_addr != -1)
512 || (sphb->io_win_addr != -1)) {
513 fprintf(stderr, "Either \"index\" or other parameters must"
514 " be specified for PAPR PHB, not both\n");
515 return -1;
518 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
519 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
521 windows_base = SPAPR_PCI_WINDOW_BASE
522 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
523 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
524 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
527 if (sphb->buid == -1) {
528 fprintf(stderr, "BUID not specified for PHB\n");
529 return -1;
532 if (sphb->dma_liobn == -1) {
533 fprintf(stderr, "LIOBN not specified for PHB\n");
534 return -1;
537 if (sphb->mem_win_addr == -1) {
538 fprintf(stderr, "Memory window address not specified for PHB\n");
539 return -1;
542 if (sphb->io_win_addr == -1) {
543 fprintf(stderr, "IO window address not specified for PHB\n");
544 return -1;
547 if (find_phb(spapr, sphb->buid)) {
548 fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
549 return -1;
552 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
554 namebuf = alloca(strlen(sphb->dtbusname) + 32);
556 /* Initialize memory regions */
557 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
558 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
560 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
561 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
562 namebuf, &sphb->memspace,
563 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
564 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
565 &sphb->memwindow);
567 /* On ppc, we only have MMIO no specific IO space from the CPU
568 * perspective. In theory we ought to be able to embed the PCI IO
569 * memory region direction in the system memory space. However,
570 * if any of the IO BAR subregions use the old_portio mechanism,
571 * that won't be processed properly unless accessed from the
572 * system io address space. This hack to bounce things via
573 * system_io works around the problem until all the users of
574 * old_portion are updated */
575 sprintf(namebuf, "%s.io", sphb->dtbusname);
576 memory_region_init(&sphb->iospace, OBJECT(sphb),
577 namebuf, SPAPR_PCI_IO_WIN_SIZE);
578 /* FIXME: fix to support multiple PHBs */
579 memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
581 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
582 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
583 get_system_io(), 0, SPAPR_PCI_IO_WIN_SIZE);
584 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
585 &sphb->iowindow);
587 * Selecting a busname is more complex than you'd think, due to
588 * interacting constraints. If the user has specified an id
589 * explicitly for the phb , then we want to use the qdev default
590 * of naming the bus based on the bridge device (so the user can
591 * then assign devices to it in the way they expect). For the
592 * first / default PCI bus (index=0) we want to use just "pci"
593 * because libvirt expects there to be a bus called, simply,
594 * "pci". Otherwise, we use the same name as in the device tree,
595 * since it's unique by construction, and makes the guest visible
596 * BUID clear.
598 if (dev->id) {
599 busname = NULL;
600 } else if (sphb->index == 0) {
601 busname = "pci";
602 } else {
603 busname = sphb->dtbusname;
605 bus = pci_register_bus(dev, busname,
606 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
607 &sphb->memspace, &sphb->iospace,
608 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
609 phb->bus = bus;
611 sphb->dma_window_start = 0;
612 sphb->dma_window_size = 0x40000000;
613 sphb->tcet = spapr_tce_new_table(dev, sphb->dma_liobn,
614 sphb->dma_window_size);
615 if (!sphb->tcet) {
616 fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
617 return -1;
619 address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet),
620 sphb->dtbusname);
622 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
624 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
626 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
628 /* Initialize the LSI table */
629 for (i = 0; i < PCI_NUM_PINS; i++) {
630 uint32_t irq;
632 irq = spapr_allocate_lsi(0);
633 if (!irq) {
634 return -1;
637 sphb->lsi_table[i].irq = irq;
640 return 0;
643 static void spapr_phb_reset(DeviceState *qdev)
645 SysBusDevice *s = SYS_BUS_DEVICE(qdev);
646 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
648 /* Reset the IOMMU state */
649 device_reset(DEVICE(sphb->tcet));
652 static Property spapr_phb_properties[] = {
653 DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
654 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1),
655 DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1),
656 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
657 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size,
658 SPAPR_PCI_MMIO_WIN_SIZE),
659 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
660 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size,
661 SPAPR_PCI_IO_WIN_SIZE),
662 DEFINE_PROP_END_OF_LIST(),
665 static const VMStateDescription vmstate_spapr_pci_lsi = {
666 .name = "spapr_pci/lsi",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .minimum_version_id_old = 1,
670 .fields = (VMStateField []) {
671 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
673 VMSTATE_END_OF_LIST()
677 static const VMStateDescription vmstate_spapr_pci_msi = {
678 .name = "spapr_pci/lsi",
679 .version_id = 1,
680 .minimum_version_id = 1,
681 .minimum_version_id_old = 1,
682 .fields = (VMStateField []) {
683 VMSTATE_UINT32(config_addr, struct spapr_pci_msi),
684 VMSTATE_UINT32(irq, struct spapr_pci_msi),
685 VMSTATE_UINT32(nvec, struct spapr_pci_msi),
687 VMSTATE_END_OF_LIST()
691 static const VMStateDescription vmstate_spapr_pci = {
692 .name = "spapr_pci",
693 .version_id = 1,
694 .minimum_version_id = 1,
695 .minimum_version_id_old = 1,
696 .fields = (VMStateField []) {
697 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
698 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
699 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
700 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
701 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
702 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
703 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
704 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
705 VMSTATE_STRUCT_ARRAY(msi_table, sPAPRPHBState, SPAPR_MSIX_MAX_DEVS, 0,
706 vmstate_spapr_pci_msi, struct spapr_pci_msi),
708 VMSTATE_END_OF_LIST()
712 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
713 PCIBus *rootbus)
715 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
717 return sphb->dtbusname;
720 static void spapr_phb_class_init(ObjectClass *klass, void *data)
722 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
723 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
724 DeviceClass *dc = DEVICE_CLASS(klass);
726 hc->root_bus_path = spapr_phb_root_bus_path;
727 sdc->init = spapr_phb_init;
728 dc->props = spapr_phb_properties;
729 dc->reset = spapr_phb_reset;
730 dc->vmsd = &vmstate_spapr_pci;
733 static const TypeInfo spapr_phb_info = {
734 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
735 .parent = TYPE_PCI_HOST_BRIDGE,
736 .instance_size = sizeof(sPAPRPHBState),
737 .class_init = spapr_phb_class_init,
740 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
742 DeviceState *dev;
744 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
745 qdev_prop_set_uint32(dev, "index", index);
746 qdev_init_nofail(dev);
748 return PCI_HOST_BRIDGE(dev);
751 /* Macros to operate with address in OF binding to PCI */
752 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
753 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
754 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
755 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
756 #define b_ss(x) b_x((x), 24, 2) /* the space code */
757 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
758 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
759 #define b_fff(x) b_x((x), 8, 3) /* function number */
760 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
762 int spapr_populate_pci_dt(sPAPRPHBState *phb,
763 uint32_t xics_phandle,
764 void *fdt)
766 int bus_off, i, j;
767 char nodename[256];
768 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
769 struct {
770 uint32_t hi;
771 uint64_t child;
772 uint64_t parent;
773 uint64_t size;
774 } QEMU_PACKED ranges[] = {
776 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
777 cpu_to_be64(phb->io_win_addr),
778 cpu_to_be64(memory_region_size(&phb->iospace)),
781 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
782 cpu_to_be64(phb->mem_win_addr),
783 cpu_to_be64(memory_region_size(&phb->memwindow)),
786 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
787 uint32_t interrupt_map_mask[] = {
788 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
789 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
791 /* Start populating the FDT */
792 sprintf(nodename, "pci@%" PRIx64, phb->buid);
793 bus_off = fdt_add_subnode(fdt, 0, nodename);
794 if (bus_off < 0) {
795 return bus_off;
798 #define _FDT(exp) \
799 do { \
800 int ret = (exp); \
801 if (ret < 0) { \
802 return ret; \
804 } while (0)
806 /* Write PHB properties */
807 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
808 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
809 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
810 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
811 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
812 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
813 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
814 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
815 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
816 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
818 /* Build the interrupt-map, this must matches what is done
819 * in pci_spapr_map_irq
821 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
822 &interrupt_map_mask, sizeof(interrupt_map_mask)));
823 for (i = 0; i < PCI_SLOT_MAX; i++) {
824 for (j = 0; j < PCI_NUM_PINS; j++) {
825 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
826 int lsi_num = pci_spapr_swizzle(i, j);
828 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
829 irqmap[1] = 0;
830 irqmap[2] = 0;
831 irqmap[3] = cpu_to_be32(j+1);
832 irqmap[4] = cpu_to_be32(xics_phandle);
833 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
834 irqmap[6] = cpu_to_be32(0x8);
837 /* Write interrupt map */
838 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
839 sizeof(interrupt_map)));
841 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
842 phb->dma_liobn, phb->dma_window_start,
843 phb->dma_window_size);
845 return 0;
848 void spapr_pci_rtas_init(void)
850 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
851 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
852 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
853 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
854 if (msi_supported) {
855 spapr_rtas_register("ibm,query-interrupt-source-number",
856 rtas_ibm_query_interrupt_source_number);
857 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
861 static void spapr_pci_register_types(void)
863 type_register_static(&spapr_phb_info);
866 type_init(spapr_pci_register_types)