4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size
;
72 typedef struct kvm_dirty_log KVMDirtyLog
;
76 AccelState parent_obj
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
85 int broken_set_mem_region
;
88 int robust_singlestep
;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 unsigned int sigmask_len
;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing
*irq_routes
;
104 int nr_allocated_irq_routes
;
105 uint32_t *used_gsi_bitmap
;
106 unsigned int gsi_count
;
107 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
118 bool kvm_kernel_irqchip
;
119 bool kvm_async_interrupts_allowed
;
120 bool kvm_halt_in_kernel_allowed
;
121 bool kvm_eventfds_allowed
;
122 bool kvm_irqfds_allowed
;
123 bool kvm_resamplefds_allowed
;
124 bool kvm_msi_via_irqfd_allowed
;
125 bool kvm_gsi_routing_allowed
;
126 bool kvm_gsi_direct_mapping
;
128 bool kvm_readonly_mem_allowed
;
130 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
131 KVM_CAP_INFO(USER_MEMORY
),
132 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
136 static KVMSlot
*kvm_get_free_slot(KVMState
*s
)
140 for (i
= 0; i
< s
->nr_slots
; i
++) {
141 if (s
->slots
[i
].memory_size
== 0) {
149 bool kvm_has_free_slot(MachineState
*ms
)
151 return kvm_get_free_slot(KVM_STATE(ms
->accelerator
));
154 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
156 KVMSlot
*slot
= kvm_get_free_slot(s
);
162 fprintf(stderr
, "%s: no free slot available\n", __func__
);
166 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
172 for (i
= 0; i
< s
->nr_slots
; i
++) {
173 KVMSlot
*mem
= &s
->slots
[i
];
175 if (start_addr
== mem
->start_addr
&&
176 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
185 * Find overlapping slot with lowest start address
187 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
191 KVMSlot
*found
= NULL
;
194 for (i
= 0; i
< s
->nr_slots
; i
++) {
195 KVMSlot
*mem
= &s
->slots
[i
];
197 if (mem
->memory_size
== 0 ||
198 (found
&& found
->start_addr
< mem
->start_addr
)) {
202 if (end_addr
> mem
->start_addr
&&
203 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
211 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
216 for (i
= 0; i
< s
->nr_slots
; i
++) {
217 KVMSlot
*mem
= &s
->slots
[i
];
219 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
220 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
228 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
230 struct kvm_userspace_memory_region mem
;
232 mem
.slot
= slot
->slot
;
233 mem
.guest_phys_addr
= slot
->start_addr
;
234 mem
.userspace_addr
= (unsigned long)slot
->ram
;
235 mem
.flags
= slot
->flags
;
236 if (s
->migration_log
) {
237 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
240 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
241 /* Set the slot size to 0 before setting the slot to the desired
242 * value. This is needed based on KVM commit 75d61fbc. */
244 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
246 mem
.memory_size
= slot
->memory_size
;
247 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
250 int kvm_init_vcpu(CPUState
*cpu
)
252 KVMState
*s
= kvm_state
;
256 DPRINTF("kvm_init_vcpu\n");
258 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
260 DPRINTF("kvm_create_vcpu failed\n");
266 cpu
->kvm_vcpu_dirty
= true;
268 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
271 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
275 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
277 if (cpu
->kvm_run
== MAP_FAILED
) {
279 DPRINTF("mmap'ing vcpu state failed\n");
283 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
284 s
->coalesced_mmio_ring
=
285 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
288 ret
= kvm_arch_init_vcpu(cpu
);
294 * dirty pages logging control
297 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
300 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
301 if (readonly
&& kvm_readonly_mem_allowed
) {
302 flags
|= KVM_MEM_READONLY
;
307 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
309 KVMState
*s
= kvm_state
;
310 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
313 old_flags
= mem
->flags
;
315 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
318 /* If nothing changed effectively, no need to issue ioctl */
319 if (s
->migration_log
) {
320 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
323 if (flags
== old_flags
) {
327 return kvm_set_user_memory_region(s
, mem
);
330 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
331 ram_addr_t size
, bool log_dirty
)
333 KVMState
*s
= kvm_state
;
334 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
337 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
338 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
339 (hwaddr
)(phys_addr
+ size
- 1));
342 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
345 static void kvm_log_start(MemoryListener
*listener
,
346 MemoryRegionSection
*section
)
350 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
351 int128_get64(section
->size
), true);
357 static void kvm_log_stop(MemoryListener
*listener
,
358 MemoryRegionSection
*section
)
362 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
363 int128_get64(section
->size
), false);
369 static int kvm_set_migration_log(bool enable
)
371 KVMState
*s
= kvm_state
;
375 s
->migration_log
= enable
;
377 for (i
= 0; i
< s
->nr_slots
; i
++) {
380 if (!mem
->memory_size
) {
383 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
386 err
= kvm_set_user_memory_region(s
, mem
);
394 /* get kvm's dirty pages bitmap and update qemu's */
395 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
396 unsigned long *bitmap
)
398 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
399 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
401 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
405 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
408 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
409 * This function updates qemu's dirty bitmap using
410 * memory_region_set_dirty(). This means all bits are set
413 * @start_add: start of logged region.
414 * @end_addr: end of logged region.
416 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
418 KVMState
*s
= kvm_state
;
419 unsigned long size
, allocated_size
= 0;
423 hwaddr start_addr
= section
->offset_within_address_space
;
424 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
426 d
.dirty_bitmap
= NULL
;
427 while (start_addr
< end_addr
) {
428 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
433 /* XXX bad kernel interface alert
434 * For dirty bitmap, kernel allocates array of size aligned to
435 * bits-per-long. But for case when the kernel is 64bits and
436 * the userspace is 32bits, userspace can't align to the same
437 * bits-per-long, since sizeof(long) is different between kernel
438 * and user space. This way, userspace will provide buffer which
439 * may be 4 bytes less than the kernel will use, resulting in
440 * userspace memory corruption (which is not detectable by valgrind
441 * too, in most cases).
442 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
443 * a hope that sizeof(long) wont become >8 any time soon.
445 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
446 /*HOST_LONG_BITS*/ 64) / 8;
447 if (!d
.dirty_bitmap
) {
448 d
.dirty_bitmap
= g_malloc(size
);
449 } else if (size
> allocated_size
) {
450 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
452 allocated_size
= size
;
453 memset(d
.dirty_bitmap
, 0, allocated_size
);
457 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
458 DPRINTF("ioctl failed %d\n", errno
);
463 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
464 start_addr
= mem
->start_addr
+ mem
->memory_size
;
466 g_free(d
.dirty_bitmap
);
471 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
472 MemoryRegionSection
*secion
,
473 hwaddr start
, hwaddr size
)
475 KVMState
*s
= kvm_state
;
477 if (s
->coalesced_mmio
) {
478 struct kvm_coalesced_mmio_zone zone
;
484 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
488 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
489 MemoryRegionSection
*secion
,
490 hwaddr start
, hwaddr size
)
492 KVMState
*s
= kvm_state
;
494 if (s
->coalesced_mmio
) {
495 struct kvm_coalesced_mmio_zone zone
;
501 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
505 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
509 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
517 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
521 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
523 /* VM wide version not implemented, use global one instead */
524 ret
= kvm_check_extension(s
, extension
);
530 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
531 bool assign
, uint32_t size
, bool datamatch
)
534 struct kvm_ioeventfd iofd
;
536 iofd
.datamatch
= datamatch
? val
: 0;
542 if (!kvm_enabled()) {
547 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
550 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
553 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
562 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
563 bool assign
, uint32_t size
, bool datamatch
)
565 struct kvm_ioeventfd kick
= {
566 .datamatch
= datamatch
? val
: 0,
568 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
573 if (!kvm_enabled()) {
577 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
580 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
582 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
590 static int kvm_check_many_ioeventfds(void)
592 /* Userspace can use ioeventfd for io notification. This requires a host
593 * that supports eventfd(2) and an I/O thread; since eventfd does not
594 * support SIGIO it cannot interrupt the vcpu.
596 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
597 * can avoid creating too many ioeventfds.
599 #if defined(CONFIG_EVENTFD)
602 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
603 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
604 if (ioeventfds
[i
] < 0) {
607 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
609 close(ioeventfds
[i
]);
614 /* Decide whether many devices are supported or not */
615 ret
= i
== ARRAY_SIZE(ioeventfds
);
618 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
619 close(ioeventfds
[i
]);
627 static const KVMCapabilityInfo
*
628 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
631 if (!kvm_check_extension(s
, list
->value
)) {
639 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
641 KVMState
*s
= kvm_state
;
644 MemoryRegion
*mr
= section
->mr
;
645 bool log_dirty
= memory_region_is_logging(mr
);
646 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
647 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
648 hwaddr start_addr
= section
->offset_within_address_space
;
649 ram_addr_t size
= int128_get64(section
->size
);
653 /* kvm works in page size chunks, but the function may be called
654 with sub-page size and unaligned start address. Pad the start
655 address to next and truncate size to previous page boundary. */
656 delta
= (TARGET_PAGE_SIZE
- (start_addr
& ~TARGET_PAGE_MASK
));
657 delta
&= ~TARGET_PAGE_MASK
;
663 size
&= TARGET_PAGE_MASK
;
664 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
668 if (!memory_region_is_ram(mr
)) {
669 if (writeable
|| !kvm_readonly_mem_allowed
) {
671 } else if (!mr
->romd_mode
) {
672 /* If the memory device is not in romd_mode, then we actually want
673 * to remove the kvm memory slot so all accesses will trap. */
678 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
681 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
686 if (add
&& start_addr
>= mem
->start_addr
&&
687 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
688 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
689 /* The new slot fits into the existing one and comes with
690 * identical parameters - update flags and done. */
691 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
697 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
698 kvm_physical_sync_dirty_bitmap(section
);
701 /* unregister the overlapping slot */
702 mem
->memory_size
= 0;
703 err
= kvm_set_user_memory_region(s
, mem
);
705 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
706 __func__
, strerror(-err
));
710 /* Workaround for older KVM versions: we can't join slots, even not by
711 * unregistering the previous ones and then registering the larger
712 * slot. We have to maintain the existing fragmentation. Sigh.
714 * This workaround assumes that the new slot starts at the same
715 * address as the first existing one. If not or if some overlapping
716 * slot comes around later, we will fail (not seen in practice so far)
717 * - and actually require a recent KVM version. */
718 if (s
->broken_set_mem_region
&&
719 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
720 mem
= kvm_alloc_slot(s
);
721 mem
->memory_size
= old
.memory_size
;
722 mem
->start_addr
= old
.start_addr
;
724 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
726 err
= kvm_set_user_memory_region(s
, mem
);
728 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
733 start_addr
+= old
.memory_size
;
734 ram
+= old
.memory_size
;
735 size
-= old
.memory_size
;
739 /* register prefix slot */
740 if (old
.start_addr
< start_addr
) {
741 mem
= kvm_alloc_slot(s
);
742 mem
->memory_size
= start_addr
- old
.start_addr
;
743 mem
->start_addr
= old
.start_addr
;
745 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
747 err
= kvm_set_user_memory_region(s
, mem
);
749 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
750 __func__
, strerror(-err
));
752 fprintf(stderr
, "%s: This is probably because your kernel's " \
753 "PAGE_SIZE is too big. Please try to use 4k " \
754 "PAGE_SIZE!\n", __func__
);
760 /* register suffix slot */
761 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
762 ram_addr_t size_delta
;
764 mem
= kvm_alloc_slot(s
);
765 mem
->start_addr
= start_addr
+ size
;
766 size_delta
= mem
->start_addr
- old
.start_addr
;
767 mem
->memory_size
= old
.memory_size
- size_delta
;
768 mem
->ram
= old
.ram
+ size_delta
;
769 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
771 err
= kvm_set_user_memory_region(s
, mem
);
773 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
774 __func__
, strerror(-err
));
780 /* in case the KVM bug workaround already "consumed" the new slot */
787 mem
= kvm_alloc_slot(s
);
788 mem
->memory_size
= size
;
789 mem
->start_addr
= start_addr
;
791 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
793 err
= kvm_set_user_memory_region(s
, mem
);
795 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
801 static void kvm_region_add(MemoryListener
*listener
,
802 MemoryRegionSection
*section
)
804 memory_region_ref(section
->mr
);
805 kvm_set_phys_mem(section
, true);
808 static void kvm_region_del(MemoryListener
*listener
,
809 MemoryRegionSection
*section
)
811 kvm_set_phys_mem(section
, false);
812 memory_region_unref(section
->mr
);
815 static void kvm_log_sync(MemoryListener
*listener
,
816 MemoryRegionSection
*section
)
820 r
= kvm_physical_sync_dirty_bitmap(section
);
826 static void kvm_log_global_start(struct MemoryListener
*listener
)
830 r
= kvm_set_migration_log(1);
834 static void kvm_log_global_stop(struct MemoryListener
*listener
)
838 r
= kvm_set_migration_log(0);
842 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
843 MemoryRegionSection
*section
,
844 bool match_data
, uint64_t data
,
847 int fd
= event_notifier_get_fd(e
);
850 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
851 data
, true, int128_get64(section
->size
),
854 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
855 __func__
, strerror(-r
));
860 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
861 MemoryRegionSection
*section
,
862 bool match_data
, uint64_t data
,
865 int fd
= event_notifier_get_fd(e
);
868 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
869 data
, false, int128_get64(section
->size
),
876 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
877 MemoryRegionSection
*section
,
878 bool match_data
, uint64_t data
,
881 int fd
= event_notifier_get_fd(e
);
884 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
885 data
, true, int128_get64(section
->size
),
888 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
889 __func__
, strerror(-r
));
894 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
895 MemoryRegionSection
*section
,
896 bool match_data
, uint64_t data
,
900 int fd
= event_notifier_get_fd(e
);
903 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
904 data
, false, int128_get64(section
->size
),
911 static MemoryListener kvm_memory_listener
= {
912 .region_add
= kvm_region_add
,
913 .region_del
= kvm_region_del
,
914 .log_start
= kvm_log_start
,
915 .log_stop
= kvm_log_stop
,
916 .log_sync
= kvm_log_sync
,
917 .log_global_start
= kvm_log_global_start
,
918 .log_global_stop
= kvm_log_global_stop
,
919 .eventfd_add
= kvm_mem_ioeventfd_add
,
920 .eventfd_del
= kvm_mem_ioeventfd_del
,
921 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
922 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
926 static MemoryListener kvm_io_listener
= {
927 .eventfd_add
= kvm_io_ioeventfd_add
,
928 .eventfd_del
= kvm_io_ioeventfd_del
,
932 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
934 cpu
->interrupt_request
|= mask
;
936 if (!qemu_cpu_is_self(cpu
)) {
941 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
943 struct kvm_irq_level event
;
946 assert(kvm_async_interrupts_enabled());
950 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
952 perror("kvm_set_irq");
956 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
959 #ifdef KVM_CAP_IRQ_ROUTING
960 typedef struct KVMMSIRoute
{
961 struct kvm_irq_routing_entry kroute
;
962 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
965 static void set_gsi(KVMState
*s
, unsigned int gsi
)
967 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
970 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
972 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
975 void kvm_init_irq_routing(KVMState
*s
)
979 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
981 unsigned int gsi_bits
, i
;
983 /* Round up so we can search ints using ffs */
984 gsi_bits
= ALIGN(gsi_count
, 32);
985 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
986 s
->gsi_count
= gsi_count
;
988 /* Mark any over-allocated bits as already in use */
989 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
994 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
995 s
->nr_allocated_irq_routes
= 0;
997 if (!s
->direct_msi
) {
998 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
999 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1003 kvm_arch_init_irq_routing(s
);
1006 void kvm_irqchip_commit_routes(KVMState
*s
)
1010 s
->irq_routes
->flags
= 0;
1011 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1015 static void kvm_add_routing_entry(KVMState
*s
,
1016 struct kvm_irq_routing_entry
*entry
)
1018 struct kvm_irq_routing_entry
*new;
1021 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1022 n
= s
->nr_allocated_irq_routes
* 2;
1026 size
= sizeof(struct kvm_irq_routing
);
1027 size
+= n
* sizeof(*new);
1028 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1029 s
->nr_allocated_irq_routes
= n
;
1031 n
= s
->irq_routes
->nr
++;
1032 new = &s
->irq_routes
->entries
[n
];
1036 set_gsi(s
, entry
->gsi
);
1039 static int kvm_update_routing_entry(KVMState
*s
,
1040 struct kvm_irq_routing_entry
*new_entry
)
1042 struct kvm_irq_routing_entry
*entry
;
1045 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1046 entry
= &s
->irq_routes
->entries
[n
];
1047 if (entry
->gsi
!= new_entry
->gsi
) {
1051 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1055 *entry
= *new_entry
;
1057 kvm_irqchip_commit_routes(s
);
1065 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1067 struct kvm_irq_routing_entry e
= {};
1069 assert(pin
< s
->gsi_count
);
1072 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1074 e
.u
.irqchip
.irqchip
= irqchip
;
1075 e
.u
.irqchip
.pin
= pin
;
1076 kvm_add_routing_entry(s
, &e
);
1079 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1081 struct kvm_irq_routing_entry
*e
;
1084 if (kvm_gsi_direct_mapping()) {
1088 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1089 e
= &s
->irq_routes
->entries
[i
];
1090 if (e
->gsi
== virq
) {
1091 s
->irq_routes
->nr
--;
1092 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1098 static unsigned int kvm_hash_msi(uint32_t data
)
1100 /* This is optimized for IA32 MSI layout. However, no other arch shall
1101 * repeat the mistake of not providing a direct MSI injection API. */
1105 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1107 KVMMSIRoute
*route
, *next
;
1110 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1111 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1112 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1113 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1119 static int kvm_irqchip_get_virq(KVMState
*s
)
1121 uint32_t *word
= s
->used_gsi_bitmap
;
1122 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1127 /* Return the lowest unused GSI in the bitmap */
1128 for (i
= 0; i
< max_words
; i
++) {
1129 bit
= ffs(~word
[i
]);
1134 return bit
- 1 + i
* 32;
1136 if (!s
->direct_msi
&& retry
) {
1138 kvm_flush_dynamic_msi_routes(s
);
1145 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1147 unsigned int hash
= kvm_hash_msi(msg
.data
);
1150 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1151 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1152 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1153 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1160 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1165 if (s
->direct_msi
) {
1166 msi
.address_lo
= (uint32_t)msg
.address
;
1167 msi
.address_hi
= msg
.address
>> 32;
1168 msi
.data
= le32_to_cpu(msg
.data
);
1170 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1172 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1175 route
= kvm_lookup_msi_route(s
, msg
);
1179 virq
= kvm_irqchip_get_virq(s
);
1184 route
= g_malloc0(sizeof(KVMMSIRoute
));
1185 route
->kroute
.gsi
= virq
;
1186 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1187 route
->kroute
.flags
= 0;
1188 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1189 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1190 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1192 kvm_add_routing_entry(s
, &route
->kroute
);
1193 kvm_irqchip_commit_routes(s
);
1195 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1199 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1201 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1204 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1206 struct kvm_irq_routing_entry kroute
= {};
1209 if (kvm_gsi_direct_mapping()) {
1210 return msg
.data
& 0xffff;
1213 if (!kvm_gsi_routing_enabled()) {
1217 virq
= kvm_irqchip_get_virq(s
);
1223 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1225 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1226 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1227 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1228 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1229 kvm_irqchip_release_virq(s
, virq
);
1233 kvm_add_routing_entry(s
, &kroute
);
1234 kvm_irqchip_commit_routes(s
);
1239 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1241 struct kvm_irq_routing_entry kroute
= {};
1243 if (kvm_gsi_direct_mapping()) {
1247 if (!kvm_irqchip_in_kernel()) {
1252 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1254 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1255 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1256 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1257 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1261 return kvm_update_routing_entry(s
, &kroute
);
1264 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1267 struct kvm_irqfd irqfd
= {
1270 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1274 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1275 irqfd
.resamplefd
= rfd
;
1278 if (!kvm_irqfds_enabled()) {
1282 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1285 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1287 struct kvm_irq_routing_entry kroute
= {};
1290 if (!kvm_gsi_routing_enabled()) {
1294 virq
= kvm_irqchip_get_virq(s
);
1300 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1302 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1303 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1304 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1305 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1306 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1308 kvm_add_routing_entry(s
, &kroute
);
1309 kvm_irqchip_commit_routes(s
);
1314 #else /* !KVM_CAP_IRQ_ROUTING */
1316 void kvm_init_irq_routing(KVMState
*s
)
1320 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1324 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1329 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1334 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1339 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1344 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1348 #endif /* !KVM_CAP_IRQ_ROUTING */
1350 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1351 EventNotifier
*rn
, int virq
)
1353 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1354 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1357 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1359 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1363 static int kvm_irqchip_create(KVMState
*s
)
1367 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1368 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1369 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1373 /* First probe and see if there's a arch-specific hook to create the
1374 * in-kernel irqchip for us */
1375 ret
= kvm_arch_irqchip_create(s
);
1378 } else if (ret
== 0) {
1379 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1381 fprintf(stderr
, "Create kernel irqchip failed\n");
1386 kvm_kernel_irqchip
= true;
1387 /* If we have an in-kernel IRQ chip then we must have asynchronous
1388 * interrupt delivery (though the reverse is not necessarily true)
1390 kvm_async_interrupts_allowed
= true;
1391 kvm_halt_in_kernel_allowed
= true;
1393 kvm_init_irq_routing(s
);
1398 /* Find number of supported CPUs using the recommended
1399 * procedure from the kernel API documentation to cope with
1400 * older kernels that may be missing capabilities.
1402 static int kvm_recommended_vcpus(KVMState
*s
)
1404 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1405 return (ret
) ? ret
: 4;
1408 static int kvm_max_vcpus(KVMState
*s
)
1410 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1411 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1414 static int kvm_init(MachineState
*ms
)
1416 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1417 static const char upgrade_note
[] =
1418 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1419 "(see http://sourceforge.net/projects/kvm).\n";
1424 { "SMP", smp_cpus
},
1425 { "hotpluggable", max_cpus
},
1428 int soft_vcpus_limit
, hard_vcpus_limit
;
1430 const KVMCapabilityInfo
*missing_cap
;
1433 const char *kvm_type
;
1435 s
= KVM_STATE(ms
->accelerator
);
1438 * On systems where the kernel can support different base page
1439 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1440 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1441 * page size for the system though.
1443 assert(TARGET_PAGE_SIZE
<= getpagesize());
1448 #ifdef KVM_CAP_SET_GUEST_DEBUG
1449 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1452 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1454 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1459 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1460 if (ret
< KVM_API_VERSION
) {
1464 fprintf(stderr
, "kvm version too old\n");
1468 if (ret
> KVM_API_VERSION
) {
1470 fprintf(stderr
, "kvm version not supported\n");
1474 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1476 /* If unspecified, use the default value */
1481 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1483 for (i
= 0; i
< s
->nr_slots
; i
++) {
1484 s
->slots
[i
].slot
= i
;
1487 /* check the vcpu limits */
1488 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1489 hard_vcpus_limit
= kvm_max_vcpus(s
);
1492 if (nc
->num
> soft_vcpus_limit
) {
1494 "Warning: Number of %s cpus requested (%d) exceeds "
1495 "the recommended cpus supported by KVM (%d)\n",
1496 nc
->name
, nc
->num
, soft_vcpus_limit
);
1498 if (nc
->num
> hard_vcpus_limit
) {
1499 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1500 "the maximum cpus supported by KVM (%d)\n",
1501 nc
->name
, nc
->num
, hard_vcpus_limit
);
1508 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1510 type
= mc
->kvm_type(kvm_type
);
1511 } else if (kvm_type
) {
1513 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1518 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1519 } while (ret
== -EINTR
);
1522 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1526 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1527 "your host kernel command line\n");
1533 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1536 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1540 fprintf(stderr
, "kvm does not support %s\n%s",
1541 missing_cap
->name
, upgrade_note
);
1545 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1547 s
->broken_set_mem_region
= 1;
1548 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1550 s
->broken_set_mem_region
= 0;
1553 #ifdef KVM_CAP_VCPU_EVENTS
1554 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1557 s
->robust_singlestep
=
1558 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1560 #ifdef KVM_CAP_DEBUGREGS
1561 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1564 #ifdef KVM_CAP_XSAVE
1565 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1569 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1572 #ifdef KVM_CAP_PIT_STATE2
1573 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1576 #ifdef KVM_CAP_IRQ_ROUTING
1577 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1580 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1582 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1583 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1584 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1587 #ifdef KVM_CAP_READONLY_MEM
1588 kvm_readonly_mem_allowed
=
1589 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1592 kvm_eventfds_allowed
=
1593 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1595 kvm_irqfds_allowed
=
1596 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1598 kvm_resamplefds_allowed
=
1599 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1601 ret
= kvm_arch_init(s
);
1606 ret
= kvm_irqchip_create(s
);
1612 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1613 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1615 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1617 cpu_interrupt_handler
= kvm_handle_interrupt
;
1634 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1636 s
->sigmask_len
= sigmask_len
;
1639 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1643 uint8_t *ptr
= data
;
1645 for (i
= 0; i
< count
; i
++) {
1646 address_space_rw(&address_space_io
, port
, ptr
, size
,
1647 direction
== KVM_EXIT_IO_OUT
);
1652 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1654 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1655 run
->internal
.suberror
);
1657 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1660 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1661 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1662 i
, (uint64_t)run
->internal
.data
[i
]);
1665 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1666 fprintf(stderr
, "emulation failure\n");
1667 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1668 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1669 return EXCP_INTERRUPT
;
1672 /* FIXME: Should trigger a qmp message to let management know
1673 * something went wrong.
1678 void kvm_flush_coalesced_mmio_buffer(void)
1680 KVMState
*s
= kvm_state
;
1682 if (s
->coalesced_flush_in_progress
) {
1686 s
->coalesced_flush_in_progress
= true;
1688 if (s
->coalesced_mmio_ring
) {
1689 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1690 while (ring
->first
!= ring
->last
) {
1691 struct kvm_coalesced_mmio
*ent
;
1693 ent
= &ring
->coalesced_mmio
[ring
->first
];
1695 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1697 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1701 s
->coalesced_flush_in_progress
= false;
1704 static void do_kvm_cpu_synchronize_state(void *arg
)
1706 CPUState
*cpu
= arg
;
1708 if (!cpu
->kvm_vcpu_dirty
) {
1709 kvm_arch_get_registers(cpu
);
1710 cpu
->kvm_vcpu_dirty
= true;
1714 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1716 if (!cpu
->kvm_vcpu_dirty
) {
1717 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1721 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1723 CPUState
*cpu
= arg
;
1725 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1726 cpu
->kvm_vcpu_dirty
= false;
1729 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1731 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1734 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1736 CPUState
*cpu
= arg
;
1738 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1739 cpu
->kvm_vcpu_dirty
= false;
1742 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1744 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1747 void kvm_cpu_clean_state(CPUState
*cpu
)
1749 cpu
->kvm_vcpu_dirty
= false;
1752 int kvm_cpu_exec(CPUState
*cpu
)
1754 struct kvm_run
*run
= cpu
->kvm_run
;
1757 DPRINTF("kvm_cpu_exec()\n");
1759 if (kvm_arch_process_async_events(cpu
)) {
1760 cpu
->exit_request
= 0;
1765 if (cpu
->kvm_vcpu_dirty
) {
1766 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1767 cpu
->kvm_vcpu_dirty
= false;
1770 kvm_arch_pre_run(cpu
, run
);
1771 if (cpu
->exit_request
) {
1772 DPRINTF("interrupt exit requested\n");
1774 * KVM requires us to reenter the kernel after IO exits to complete
1775 * instruction emulation. This self-signal will ensure that we
1778 qemu_cpu_kick_self();
1780 qemu_mutex_unlock_iothread();
1782 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1784 qemu_mutex_lock_iothread();
1785 kvm_arch_post_run(cpu
, run
);
1788 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1789 DPRINTF("io window exit\n");
1790 ret
= EXCP_INTERRUPT
;
1793 fprintf(stderr
, "error: kvm run failed %s\n",
1794 strerror(-run_ret
));
1799 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1800 switch (run
->exit_reason
) {
1802 DPRINTF("handle_io\n");
1803 kvm_handle_io(run
->io
.port
,
1804 (uint8_t *)run
+ run
->io
.data_offset
,
1811 DPRINTF("handle_mmio\n");
1812 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1815 run
->mmio
.is_write
);
1818 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1819 DPRINTF("irq_window_open\n");
1820 ret
= EXCP_INTERRUPT
;
1822 case KVM_EXIT_SHUTDOWN
:
1823 DPRINTF("shutdown\n");
1824 qemu_system_reset_request();
1825 ret
= EXCP_INTERRUPT
;
1827 case KVM_EXIT_UNKNOWN
:
1828 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1829 (uint64_t)run
->hw
.hardware_exit_reason
);
1832 case KVM_EXIT_INTERNAL_ERROR
:
1833 ret
= kvm_handle_internal_error(cpu
, run
);
1835 case KVM_EXIT_SYSTEM_EVENT
:
1836 switch (run
->system_event
.type
) {
1837 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1838 qemu_system_shutdown_request();
1839 ret
= EXCP_INTERRUPT
;
1841 case KVM_SYSTEM_EVENT_RESET
:
1842 qemu_system_reset_request();
1843 ret
= EXCP_INTERRUPT
;
1846 DPRINTF("kvm_arch_handle_exit\n");
1847 ret
= kvm_arch_handle_exit(cpu
, run
);
1852 DPRINTF("kvm_arch_handle_exit\n");
1853 ret
= kvm_arch_handle_exit(cpu
, run
);
1859 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1860 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1863 cpu
->exit_request
= 0;
1867 int kvm_ioctl(KVMState
*s
, int type
, ...)
1874 arg
= va_arg(ap
, void *);
1877 trace_kvm_ioctl(type
, arg
);
1878 ret
= ioctl(s
->fd
, type
, arg
);
1885 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1892 arg
= va_arg(ap
, void *);
1895 trace_kvm_vm_ioctl(type
, arg
);
1896 ret
= ioctl(s
->vmfd
, type
, arg
);
1903 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1910 arg
= va_arg(ap
, void *);
1913 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1914 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1921 int kvm_device_ioctl(int fd
, int type
, ...)
1928 arg
= va_arg(ap
, void *);
1931 trace_kvm_device_ioctl(fd
, type
, arg
);
1932 ret
= ioctl(fd
, type
, arg
);
1939 int kvm_has_sync_mmu(void)
1941 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1944 int kvm_has_vcpu_events(void)
1946 return kvm_state
->vcpu_events
;
1949 int kvm_has_robust_singlestep(void)
1951 return kvm_state
->robust_singlestep
;
1954 int kvm_has_debugregs(void)
1956 return kvm_state
->debugregs
;
1959 int kvm_has_xsave(void)
1961 return kvm_state
->xsave
;
1964 int kvm_has_xcrs(void)
1966 return kvm_state
->xcrs
;
1969 int kvm_has_pit_state2(void)
1971 return kvm_state
->pit_state2
;
1974 int kvm_has_many_ioeventfds(void)
1976 if (!kvm_enabled()) {
1979 return kvm_state
->many_ioeventfds
;
1982 int kvm_has_gsi_routing(void)
1984 #ifdef KVM_CAP_IRQ_ROUTING
1985 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1991 int kvm_has_intx_set_mask(void)
1993 return kvm_state
->intx_set_mask
;
1996 void kvm_setup_guest_memory(void *start
, size_t size
)
1998 if (!kvm_has_sync_mmu()) {
1999 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2002 perror("qemu_madvise");
2004 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2010 #ifdef KVM_CAP_SET_GUEST_DEBUG
2011 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2014 struct kvm_sw_breakpoint
*bp
;
2016 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2024 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2026 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2029 struct kvm_set_guest_debug_data
{
2030 struct kvm_guest_debug dbg
;
2035 static void kvm_invoke_set_guest_debug(void *data
)
2037 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2039 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2043 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2045 struct kvm_set_guest_debug_data data
;
2047 data
.dbg
.control
= reinject_trap
;
2049 if (cpu
->singlestep_enabled
) {
2050 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2052 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2055 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2059 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2060 target_ulong len
, int type
)
2062 struct kvm_sw_breakpoint
*bp
;
2065 if (type
== GDB_BREAKPOINT_SW
) {
2066 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2072 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2075 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2081 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2083 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2090 err
= kvm_update_guest_debug(cpu
, 0);
2098 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2099 target_ulong len
, int type
)
2101 struct kvm_sw_breakpoint
*bp
;
2104 if (type
== GDB_BREAKPOINT_SW
) {
2105 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2110 if (bp
->use_count
> 1) {
2115 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2120 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2123 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2130 err
= kvm_update_guest_debug(cpu
, 0);
2138 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2140 struct kvm_sw_breakpoint
*bp
, *next
;
2141 KVMState
*s
= cpu
->kvm_state
;
2144 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2145 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2146 /* Try harder to find a CPU that currently sees the breakpoint. */
2147 CPU_FOREACH(tmpcpu
) {
2148 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2153 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2156 kvm_arch_remove_all_hw_breakpoints();
2159 kvm_update_guest_debug(cpu
, 0);
2163 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2165 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2170 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2171 target_ulong len
, int type
)
2176 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2177 target_ulong len
, int type
)
2182 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2185 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2187 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2189 KVMState
*s
= kvm_state
;
2190 struct kvm_signal_mask
*sigmask
;
2194 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2197 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2199 sigmask
->len
= s
->sigmask_len
;
2200 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2201 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2206 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2208 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2211 int kvm_on_sigbus(int code
, void *addr
)
2213 return kvm_arch_on_sigbus(code
, addr
);
2216 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2219 struct kvm_create_device create_dev
;
2221 create_dev
.type
= type
;
2223 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2225 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2229 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2234 return test
? 0 : create_dev
.fd
;
2237 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2239 struct kvm_one_reg reg
;
2243 reg
.addr
= (uintptr_t) source
;
2244 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2246 trace_kvm_failed_reg_set(id
, strerror(r
));
2251 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2253 struct kvm_one_reg reg
;
2257 reg
.addr
= (uintptr_t) target
;
2258 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2260 trace_kvm_failed_reg_get(id
, strerror(r
));
2265 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2267 AccelClass
*ac
= ACCEL_CLASS(oc
);
2269 ac
->init_machine
= kvm_init
;
2270 ac
->allowed
= &kvm_allowed
;
2273 static const TypeInfo kvm_accel_type
= {
2274 .name
= TYPE_KVM_ACCEL
,
2275 .parent
= TYPE_ACCEL
,
2276 .class_init
= kvm_accel_class_init
,
2277 .instance_size
= sizeof(KVMState
),
2280 static void kvm_type_init(void)
2282 type_register_static(&kvm_accel_type
);
2285 type_init(kvm_type_init
);