Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[qemu/ar7.git] / bsd-user / main.c
blob798aba512c1c6347bcfafa2cd428bd65c1aa3fc0
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qemu/accel.h"
24 #include "sysemu/tcg.h"
25 #include "qemu-version.h"
26 #include <machine/trap.h>
28 #include "qapi/error.h"
29 #include "qemu.h"
30 #include "qemu/config-file.h"
31 #include "qemu/error-report.h"
32 #include "qemu/path.h"
33 #include "qemu/help_option.h"
34 #include "qemu/module.h"
35 #include "cpu.h"
36 #include "exec/exec-all.h"
37 #include "tcg/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/envlist.h"
40 #include "exec/log.h"
41 #include "trace/control.h"
43 int singlestep;
44 unsigned long mmap_min_addr;
45 uintptr_t guest_base;
46 bool have_guest_base;
47 unsigned long reserved_va;
49 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
50 const char *qemu_uname_release;
51 extern char **environ;
52 enum BSDType bsd_type;
54 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
55    we allocate a bigger stack. Need a better solution, for example
56    by remapping the process stack directly at the right place */
57 unsigned long x86_stack_size = 512 * 1024;
59 void gemu_log(const char *fmt, ...)
61     va_list ap;
63     va_start(ap, fmt);
64     vfprintf(stderr, fmt, ap);
65     va_end(ap);
68 #if defined(TARGET_I386)
69 int cpu_get_pic_interrupt(CPUX86State *env)
71     return -1;
73 #endif
75 void fork_start(void)
79 void fork_end(int child)
81     if (child) {
82         gdbserver_fork(thread_cpu);
83     }
86 #ifdef TARGET_I386
87 /***********************************************************/
88 /* CPUX86 core interface */
90 uint64_t cpu_get_tsc(CPUX86State *env)
92     return cpu_get_host_ticks();
95 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
96                      int flags)
98     unsigned int e1, e2;
99     uint32_t *p;
100     e1 = (addr << 16) | (limit & 0xffff);
101     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
102     e2 |= flags;
103     p = ptr;
104     p[0] = tswap32(e1);
105     p[1] = tswap32(e2);
108 static uint64_t *idt_table;
109 #ifdef TARGET_X86_64
110 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
111                        uint64_t addr, unsigned int sel)
113     uint32_t *p, e1, e2;
114     e1 = (addr & 0xffff) | (sel << 16);
115     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
116     p = ptr;
117     p[0] = tswap32(e1);
118     p[1] = tswap32(e2);
119     p[2] = tswap32(addr >> 32);
120     p[3] = 0;
122 /* only dpl matters as we do only user space emulation */
123 static void set_idt(int n, unsigned int dpl)
125     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
127 #else
128 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
129                      uint32_t addr, unsigned int sel)
131     uint32_t *p, e1, e2;
132     e1 = (addr & 0xffff) | (sel << 16);
133     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
134     p = ptr;
135     p[0] = tswap32(e1);
136     p[1] = tswap32(e2);
139 /* only dpl matters as we do only user space emulation */
140 static void set_idt(int n, unsigned int dpl)
142     set_gate(idt_table + n, 0, dpl, 0, 0);
144 #endif
146 void cpu_loop(CPUX86State *env)
148     CPUState *cs = env_cpu(env);
149     int trapnr;
150     abi_ulong pc;
151     //target_siginfo_t info;
153     for(;;) {
154         cpu_exec_start(cs);
155         trapnr = cpu_exec(cs);
156         cpu_exec_end(cs);
157         process_queued_cpu_work(cs);
159         switch(trapnr) {
160         case 0x80:
161             /* syscall from int $0x80 */
162             if (bsd_type == target_freebsd) {
163                 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
164                     sizeof(int32_t);
165                 int32_t syscall_nr = env->regs[R_EAX];
166                 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
168                 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
169                     get_user_s32(syscall_nr, params);
170                     params += sizeof(int32_t);
171                 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
172                     get_user_s32(syscall_nr, params);
173                     params += sizeof(int64_t);
174                 }
175                 get_user_s32(arg1, params);
176                 params += sizeof(int32_t);
177                 get_user_s32(arg2, params);
178                 params += sizeof(int32_t);
179                 get_user_s32(arg3, params);
180                 params += sizeof(int32_t);
181                 get_user_s32(arg4, params);
182                 params += sizeof(int32_t);
183                 get_user_s32(arg5, params);
184                 params += sizeof(int32_t);
185                 get_user_s32(arg6, params);
186                 params += sizeof(int32_t);
187                 get_user_s32(arg7, params);
188                 params += sizeof(int32_t);
189                 get_user_s32(arg8, params);
190                 env->regs[R_EAX] = do_freebsd_syscall(env,
191                                                       syscall_nr,
192                                                       arg1,
193                                                       arg2,
194                                                       arg3,
195                                                       arg4,
196                                                       arg5,
197                                                       arg6,
198                                                       arg7,
199                                                       arg8);
200             } else { //if (bsd_type == target_openbsd)
201                 env->regs[R_EAX] = do_openbsd_syscall(env,
202                                                       env->regs[R_EAX],
203                                                       env->regs[R_EBX],
204                                                       env->regs[R_ECX],
205                                                       env->regs[R_EDX],
206                                                       env->regs[R_ESI],
207                                                       env->regs[R_EDI],
208                                                       env->regs[R_EBP]);
209             }
210             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
211                 env->regs[R_EAX] = -env->regs[R_EAX];
212                 env->eflags |= CC_C;
213             } else {
214                 env->eflags &= ~CC_C;
215             }
216             break;
217 #ifndef TARGET_ABI32
218         case EXCP_SYSCALL:
219             /* syscall from syscall instruction */
220             if (bsd_type == target_freebsd)
221                 env->regs[R_EAX] = do_freebsd_syscall(env,
222                                                       env->regs[R_EAX],
223                                                       env->regs[R_EDI],
224                                                       env->regs[R_ESI],
225                                                       env->regs[R_EDX],
226                                                       env->regs[R_ECX],
227                                                       env->regs[8],
228                                                       env->regs[9], 0, 0);
229             else { //if (bsd_type == target_openbsd)
230                 env->regs[R_EAX] = do_openbsd_syscall(env,
231                                                       env->regs[R_EAX],
232                                                       env->regs[R_EDI],
233                                                       env->regs[R_ESI],
234                                                       env->regs[R_EDX],
235                                                       env->regs[10],
236                                                       env->regs[8],
237                                                       env->regs[9]);
238             }
239             env->eip = env->exception_next_eip;
240             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
241                 env->regs[R_EAX] = -env->regs[R_EAX];
242                 env->eflags |= CC_C;
243             } else {
244                 env->eflags &= ~CC_C;
245             }
246             break;
247 #endif
248 #if 0
249         case EXCP0B_NOSEG:
250         case EXCP0C_STACK:
251             info.si_signo = SIGBUS;
252             info.si_errno = 0;
253             info.si_code = TARGET_SI_KERNEL;
254             info._sifields._sigfault._addr = 0;
255             queue_signal(env, info.si_signo, &info);
256             break;
257         case EXCP0D_GPF:
258             /* XXX: potential problem if ABI32 */
259 #ifndef TARGET_X86_64
260             if (env->eflags & VM_MASK) {
261                 handle_vm86_fault(env);
262             } else
263 #endif
264             {
265                 info.si_signo = SIGSEGV;
266                 info.si_errno = 0;
267                 info.si_code = TARGET_SI_KERNEL;
268                 info._sifields._sigfault._addr = 0;
269                 queue_signal(env, info.si_signo, &info);
270             }
271             break;
272         case EXCP0E_PAGE:
273             info.si_signo = SIGSEGV;
274             info.si_errno = 0;
275             if (!(env->error_code & 1))
276                 info.si_code = TARGET_SEGV_MAPERR;
277             else
278                 info.si_code = TARGET_SEGV_ACCERR;
279             info._sifields._sigfault._addr = env->cr[2];
280             queue_signal(env, info.si_signo, &info);
281             break;
282         case EXCP00_DIVZ:
283 #ifndef TARGET_X86_64
284             if (env->eflags & VM_MASK) {
285                 handle_vm86_trap(env, trapnr);
286             } else
287 #endif
288             {
289                 /* division by zero */
290                 info.si_signo = SIGFPE;
291                 info.si_errno = 0;
292                 info.si_code = TARGET_FPE_INTDIV;
293                 info._sifields._sigfault._addr = env->eip;
294                 queue_signal(env, info.si_signo, &info);
295             }
296             break;
297         case EXCP01_DB:
298         case EXCP03_INT3:
299 #ifndef TARGET_X86_64
300             if (env->eflags & VM_MASK) {
301                 handle_vm86_trap(env, trapnr);
302             } else
303 #endif
304             {
305                 info.si_signo = SIGTRAP;
306                 info.si_errno = 0;
307                 if (trapnr == EXCP01_DB) {
308                     info.si_code = TARGET_TRAP_BRKPT;
309                     info._sifields._sigfault._addr = env->eip;
310                 } else {
311                     info.si_code = TARGET_SI_KERNEL;
312                     info._sifields._sigfault._addr = 0;
313                 }
314                 queue_signal(env, info.si_signo, &info);
315             }
316             break;
317         case EXCP04_INTO:
318         case EXCP05_BOUND:
319 #ifndef TARGET_X86_64
320             if (env->eflags & VM_MASK) {
321                 handle_vm86_trap(env, trapnr);
322             } else
323 #endif
324             {
325                 info.si_signo = SIGSEGV;
326                 info.si_errno = 0;
327                 info.si_code = TARGET_SI_KERNEL;
328                 info._sifields._sigfault._addr = 0;
329                 queue_signal(env, info.si_signo, &info);
330             }
331             break;
332         case EXCP06_ILLOP:
333             info.si_signo = SIGILL;
334             info.si_errno = 0;
335             info.si_code = TARGET_ILL_ILLOPN;
336             info._sifields._sigfault._addr = env->eip;
337             queue_signal(env, info.si_signo, &info);
338             break;
339 #endif
340         case EXCP_INTERRUPT:
341             /* just indicate that signals should be handled asap */
342             break;
343 #if 0
344         case EXCP_DEBUG:
345             {
346                 int sig;
348                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
349                 if (sig)
350                   {
351                     info.si_signo = sig;
352                     info.si_errno = 0;
353                     info.si_code = TARGET_TRAP_BRKPT;
354                     queue_signal(env, info.si_signo, &info);
355                   }
356             }
357             break;
358 #endif
359         default:
360             pc = env->segs[R_CS].base + env->eip;
361             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
362                     (long)pc, trapnr);
363             abort();
364         }
365         process_pending_signals(env);
366     }
368 #endif
370 #ifdef TARGET_SPARC
371 #define SPARC64_STACK_BIAS 2047
373 //#define DEBUG_WIN
374 /* WARNING: dealing with register windows _is_ complicated. More info
375    can be found at http://www.sics.se/~psm/sparcstack.html */
376 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
378     index = (index + cwp * 16) % (16 * env->nwindows);
379     /* wrap handling : if cwp is on the last window, then we use the
380        registers 'after' the end */
381     if (index < 8 && env->cwp == env->nwindows - 1)
382         index += 16 * env->nwindows;
383     return index;
386 /* save the register window 'cwp1' */
387 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
389     unsigned int i;
390     abi_ulong sp_ptr;
392     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
393 #ifdef TARGET_SPARC64
394     if (sp_ptr & 3)
395         sp_ptr += SPARC64_STACK_BIAS;
396 #endif
397 #if defined(DEBUG_WIN)
398     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
399            sp_ptr, cwp1);
400 #endif
401     for(i = 0; i < 16; i++) {
402         /* FIXME - what to do if put_user() fails? */
403         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
404         sp_ptr += sizeof(abi_ulong);
405     }
408 static void save_window(CPUSPARCState *env)
410 #ifndef TARGET_SPARC64
411     unsigned int new_wim;
412     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
413         ((1LL << env->nwindows) - 1);
414     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
415     env->wim = new_wim;
416 #else
417     /*
418      * cansave is zero if the spill trap handler is triggered by `save` and
419      * nonzero if triggered by a `flushw`
420      */
421     save_window_offset(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
422     env->cansave++;
423     env->canrestore--;
424 #endif
427 static void restore_window(CPUSPARCState *env)
429 #ifndef TARGET_SPARC64
430     unsigned int new_wim;
431 #endif
432     unsigned int i, cwp1;
433     abi_ulong sp_ptr;
435 #ifndef TARGET_SPARC64
436     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
437         ((1LL << env->nwindows) - 1);
438 #endif
440     /* restore the invalid window */
441     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
442     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
443 #ifdef TARGET_SPARC64
444     if (sp_ptr & 3)
445         sp_ptr += SPARC64_STACK_BIAS;
446 #endif
447 #if defined(DEBUG_WIN)
448     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
449            sp_ptr, cwp1);
450 #endif
451     for(i = 0; i < 16; i++) {
452         /* FIXME - what to do if get_user() fails? */
453         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
454         sp_ptr += sizeof(abi_ulong);
455     }
456 #ifdef TARGET_SPARC64
457     env->canrestore++;
458     if (env->cleanwin < env->nwindows - 1)
459         env->cleanwin++;
460     env->cansave--;
461 #else
462     env->wim = new_wim;
463 #endif
466 static void flush_windows(CPUSPARCState *env)
468     int offset, cwp1;
470     offset = 1;
471     for(;;) {
472         /* if restore would invoke restore_window(), then we can stop */
473         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
474 #ifndef TARGET_SPARC64
475         if (env->wim & (1 << cwp1))
476             break;
477 #else
478         if (env->canrestore == 0)
479             break;
480         env->cansave++;
481         env->canrestore--;
482 #endif
483         save_window_offset(env, cwp1);
484         offset++;
485     }
486     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
487 #ifndef TARGET_SPARC64
488     /* set wim so that restore will reload the registers */
489     env->wim = 1 << cwp1;
490 #endif
491 #if defined(DEBUG_WIN)
492     printf("flush_windows: nb=%d\n", offset - 1);
493 #endif
496 void cpu_loop(CPUSPARCState *env)
498     CPUState *cs = env_cpu(env);
499     int trapnr, ret, syscall_nr;
500     //target_siginfo_t info;
502     while (1) {
503         cpu_exec_start(cs);
504         trapnr = cpu_exec(cs);
505         cpu_exec_end(cs);
506         process_queued_cpu_work(cs);
508         switch (trapnr) {
509 #ifndef TARGET_SPARC64
510         case 0x80:
511 #else
512         /* FreeBSD uses 0x141 for syscalls too */
513         case 0x141:
514             if (bsd_type != target_freebsd)
515                 goto badtrap;
516             /* fallthrough */
517         case 0x100:
518 #endif
519             syscall_nr = env->gregs[1];
520             if (bsd_type == target_freebsd)
521                 ret = do_freebsd_syscall(env, syscall_nr,
522                                          env->regwptr[0], env->regwptr[1],
523                                          env->regwptr[2], env->regwptr[3],
524                                          env->regwptr[4], env->regwptr[5], 0, 0);
525             else if (bsd_type == target_netbsd)
526                 ret = do_netbsd_syscall(env, syscall_nr,
527                                         env->regwptr[0], env->regwptr[1],
528                                         env->regwptr[2], env->regwptr[3],
529                                         env->regwptr[4], env->regwptr[5]);
530             else { //if (bsd_type == target_openbsd)
531 #if defined(TARGET_SPARC64)
532                 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
533                                 TARGET_OPENBSD_SYSCALL_G2RFLAG);
534 #endif
535                 ret = do_openbsd_syscall(env, syscall_nr,
536                                          env->regwptr[0], env->regwptr[1],
537                                          env->regwptr[2], env->regwptr[3],
538                                          env->regwptr[4], env->regwptr[5]);
539             }
540             if ((unsigned int)ret >= (unsigned int)(-515)) {
541                 ret = -ret;
542 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
543                 env->xcc |= PSR_CARRY;
544 #else
545                 env->psr |= PSR_CARRY;
546 #endif
547             } else {
548 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
549                 env->xcc &= ~PSR_CARRY;
550 #else
551                 env->psr &= ~PSR_CARRY;
552 #endif
553             }
554             env->regwptr[0] = ret;
555             /* next instruction */
556 #if defined(TARGET_SPARC64)
557             if (bsd_type == target_openbsd &&
558                 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
559                 env->pc = env->gregs[2];
560                 env->npc = env->pc + 4;
561             } else if (bsd_type == target_openbsd &&
562                        env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
563                 env->pc = env->gregs[7];
564                 env->npc = env->pc + 4;
565             } else {
566                 env->pc = env->npc;
567                 env->npc = env->npc + 4;
568             }
569 #else
570             env->pc = env->npc;
571             env->npc = env->npc + 4;
572 #endif
573             break;
574         case 0x83: /* flush windows */
575 #ifdef TARGET_ABI32
576         case 0x103:
577 #endif
578             flush_windows(env);
579             /* next instruction */
580             env->pc = env->npc;
581             env->npc = env->npc + 4;
582             break;
583 #ifndef TARGET_SPARC64
584         case TT_WIN_OVF: /* window overflow */
585             save_window(env);
586             break;
587         case TT_WIN_UNF: /* window underflow */
588             restore_window(env);
589             break;
590         case TT_TFAULT:
591         case TT_DFAULT:
592 #if 0
593             {
594                 info.si_signo = SIGSEGV;
595                 info.si_errno = 0;
596                 /* XXX: check env->error_code */
597                 info.si_code = TARGET_SEGV_MAPERR;
598                 info._sifields._sigfault._addr = env->mmuregs[4];
599                 queue_signal(env, info.si_signo, &info);
600             }
601 #endif
602             break;
603 #else
604         case TT_SPILL: /* window overflow */
605             save_window(env);
606             break;
607         case TT_FILL: /* window underflow */
608             restore_window(env);
609             break;
610         case TT_TFAULT:
611         case TT_DFAULT:
612 #if 0
613             {
614                 info.si_signo = SIGSEGV;
615                 info.si_errno = 0;
616                 /* XXX: check env->error_code */
617                 info.si_code = TARGET_SEGV_MAPERR;
618                 if (trapnr == TT_DFAULT)
619                     info._sifields._sigfault._addr = env->dmmuregs[4];
620                 else
621                     info._sifields._sigfault._addr = env->tsptr->tpc;
622                 //queue_signal(env, info.si_signo, &info);
623             }
624 #endif
625             break;
626 #endif
627         case EXCP_INTERRUPT:
628             /* just indicate that signals should be handled asap */
629             break;
630         case EXCP_DEBUG:
631             {
632 #if 0
633                 int sig =
634 #endif
635                 gdb_handlesig(cs, TARGET_SIGTRAP);
636 #if 0
637                 if (sig)
638                   {
639                     info.si_signo = sig;
640                     info.si_errno = 0;
641                     info.si_code = TARGET_TRAP_BRKPT;
642                     //queue_signal(env, info.si_signo, &info);
643                   }
644 #endif
645             }
646             break;
647         default:
648 #ifdef TARGET_SPARC64
649         badtrap:
650 #endif
651             printf ("Unhandled trap: 0x%x\n", trapnr);
652             cpu_dump_state(cs, stderr, 0);
653             exit (1);
654         }
655         process_pending_signals (env);
656     }
659 #endif
661 static void usage(void)
663     printf("qemu-" TARGET_NAME " version " QEMU_FULL_VERSION
664            "\n" QEMU_COPYRIGHT "\n"
665            "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
666            "BSD CPU emulator (compiled for %s emulation)\n"
667            "\n"
668            "Standard options:\n"
669            "-h                print this help\n"
670            "-g port           wait gdb connection to port\n"
671            "-L path           set the elf interpreter prefix (default=%s)\n"
672            "-s size           set the stack size in bytes (default=%ld)\n"
673            "-cpu model        select CPU (-cpu help for list)\n"
674            "-drop-ld-preload  drop LD_PRELOAD for target process\n"
675            "-E var=value      sets/modifies targets environment variable(s)\n"
676            "-U var            unsets targets environment variable(s)\n"
677            "-B address        set guest_base address to address\n"
678            "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
679            "\n"
680            "Debug options:\n"
681            "-d item1[,...]    enable logging of specified items\n"
682            "                  (use '-d help' for a list of log items)\n"
683            "-D logfile        write logs to 'logfile' (default stderr)\n"
684            "-p pagesize       set the host page size to 'pagesize'\n"
685            "-singlestep       always run in singlestep mode\n"
686            "-strace           log system calls\n"
687            "-trace            [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
688            "                  specify tracing options\n"
689            "\n"
690            "Environment variables:\n"
691            "QEMU_STRACE       Print system calls and arguments similar to the\n"
692            "                  'strace' program.  Enable by setting to any value.\n"
693            "You can use -E and -U options to set/unset environment variables\n"
694            "for target process.  It is possible to provide several variables\n"
695            "by repeating the option.  For example:\n"
696            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
697            "Note that if you provide several changes to single variable\n"
698            "last change will stay in effect.\n"
699            "\n"
700            QEMU_HELP_BOTTOM "\n"
701            ,
702            TARGET_NAME,
703            interp_prefix,
704            x86_stack_size);
705     exit(1);
708 THREAD CPUState *thread_cpu;
710 bool qemu_cpu_is_self(CPUState *cpu)
712     return thread_cpu == cpu;
715 void qemu_cpu_kick(CPUState *cpu)
717     cpu_exit(cpu);
720 /* Assumes contents are already zeroed.  */
721 void init_task_state(TaskState *ts)
723     int i;
725     ts->used = 1;
726     ts->first_free = ts->sigqueue_table;
727     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
728         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
729     }
730     ts->sigqueue_table[i].next = NULL;
733 int main(int argc, char **argv)
735     const char *filename;
736     const char *cpu_model;
737     const char *cpu_type;
738     const char *log_file = NULL;
739     const char *log_mask = NULL;
740     struct target_pt_regs regs1, *regs = &regs1;
741     struct image_info info1, *info = &info1;
742     TaskState ts1, *ts = &ts1;
743     CPUArchState *env;
744     CPUState *cpu;
745     int optind;
746     const char *r;
747     const char *gdbstub = NULL;
748     char **target_environ, **wrk;
749     envlist_t *envlist = NULL;
750     bsd_type = target_openbsd;
752     if (argc <= 1)
753         usage();
755     error_init(argv[0]);
756     module_call_init(MODULE_INIT_TRACE);
757     qemu_init_cpu_list();
758     module_call_init(MODULE_INIT_QOM);
760     envlist = envlist_create();
762     /* add current environment into the list */
763     for (wrk = environ; *wrk != NULL; wrk++) {
764         (void) envlist_setenv(envlist, *wrk);
765     }
767     cpu_model = NULL;
769     qemu_add_opts(&qemu_trace_opts);
771     optind = 1;
772     for (;;) {
773         if (optind >= argc)
774             break;
775         r = argv[optind];
776         if (r[0] != '-')
777             break;
778         optind++;
779         r++;
780         if (!strcmp(r, "-")) {
781             break;
782         } else if (!strcmp(r, "d")) {
783             if (optind >= argc) {
784                 break;
785             }
786             log_mask = argv[optind++];
787         } else if (!strcmp(r, "D")) {
788             if (optind >= argc) {
789                 break;
790             }
791             log_file = argv[optind++];
792         } else if (!strcmp(r, "E")) {
793             r = argv[optind++];
794             if (envlist_setenv(envlist, r) != 0)
795                 usage();
796         } else if (!strcmp(r, "ignore-environment")) {
797             envlist_free(envlist);
798             envlist = envlist_create();
799         } else if (!strcmp(r, "U")) {
800             r = argv[optind++];
801             if (envlist_unsetenv(envlist, r) != 0)
802                 usage();
803         } else if (!strcmp(r, "s")) {
804             r = argv[optind++];
805             x86_stack_size = strtol(r, (char **)&r, 0);
806             if (x86_stack_size <= 0)
807                 usage();
808             if (*r == 'M')
809                 x86_stack_size *= MiB;
810             else if (*r == 'k' || *r == 'K')
811                 x86_stack_size *= KiB;
812         } else if (!strcmp(r, "L")) {
813             interp_prefix = argv[optind++];
814         } else if (!strcmp(r, "p")) {
815             qemu_host_page_size = atoi(argv[optind++]);
816             if (qemu_host_page_size == 0 ||
817                 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
818                 fprintf(stderr, "page size must be a power of two\n");
819                 exit(1);
820             }
821         } else if (!strcmp(r, "g")) {
822             gdbstub = g_strdup(argv[optind++]);
823         } else if (!strcmp(r, "r")) {
824             qemu_uname_release = argv[optind++];
825         } else if (!strcmp(r, "cpu")) {
826             cpu_model = argv[optind++];
827             if (is_help_option(cpu_model)) {
828 /* XXX: implement xxx_cpu_list for targets that still miss it */
829 #if defined(cpu_list)
830                     cpu_list();
831 #endif
832                 exit(1);
833             }
834         } else if (!strcmp(r, "B")) {
835            guest_base = strtol(argv[optind++], NULL, 0);
836            have_guest_base = true;
837         } else if (!strcmp(r, "drop-ld-preload")) {
838             (void) envlist_unsetenv(envlist, "LD_PRELOAD");
839         } else if (!strcmp(r, "bsd")) {
840             if (!strcasecmp(argv[optind], "freebsd")) {
841                 bsd_type = target_freebsd;
842             } else if (!strcasecmp(argv[optind], "netbsd")) {
843                 bsd_type = target_netbsd;
844             } else if (!strcasecmp(argv[optind], "openbsd")) {
845                 bsd_type = target_openbsd;
846             } else {
847                 usage();
848             }
849             optind++;
850         } else if (!strcmp(r, "singlestep")) {
851             singlestep = 1;
852         } else if (!strcmp(r, "strace")) {
853             do_strace = 1;
854         } else if (!strcmp(r, "trace")) {
855             trace_opt_parse(optarg);
856         } else {
857             usage();
858         }
859     }
861     /* init debug */
862     qemu_log_needs_buffers();
863     qemu_set_log_filename(log_file, &error_fatal);
864     if (log_mask) {
865         int mask;
867         mask = qemu_str_to_log_mask(log_mask);
868         if (!mask) {
869             qemu_print_log_usage(stdout);
870             exit(1);
871         }
872         qemu_set_log(mask);
873     }
875     if (optind >= argc) {
876         usage();
877     }
878     filename = argv[optind];
880     if (!trace_init_backends()) {
881         exit(1);
882     }
883     trace_init_file();
885     /* Zero out regs */
886     memset(regs, 0, sizeof(struct target_pt_regs));
888     /* Zero out image_info */
889     memset(info, 0, sizeof(struct image_info));
891     /* Scan interp_prefix dir for replacement files. */
892     init_paths(interp_prefix);
894     if (cpu_model == NULL) {
895 #if defined(TARGET_I386)
896 #ifdef TARGET_X86_64
897         cpu_model = "qemu64";
898 #else
899         cpu_model = "qemu32";
900 #endif
901 #elif defined(TARGET_SPARC)
902 #ifdef TARGET_SPARC64
903         cpu_model = "TI UltraSparc II";
904 #else
905         cpu_model = "Fujitsu MB86904";
906 #endif
907 #else
908         cpu_model = "any";
909 #endif
910     }
912     cpu_type = parse_cpu_option(cpu_model);
913     /* init tcg before creating CPUs and to get qemu_host_page_size */
914     {
915         AccelClass *ac = ACCEL_GET_CLASS(current_accel());
917         ac->init_machine(NULL);
918         accel_init_interfaces(ac);
919     }
920     cpu = cpu_create(cpu_type);
921     env = cpu->env_ptr;
922 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
923     cpu_reset(cpu);
924 #endif
925     thread_cpu = cpu;
927     if (getenv("QEMU_STRACE")) {
928         do_strace = 1;
929     }
931     target_environ = envlist_to_environ(envlist, NULL);
932     envlist_free(envlist);
934     /*
935      * Now that page sizes are configured in tcg_exec_init() we can do
936      * proper page alignment for guest_base.
937      */
938     guest_base = HOST_PAGE_ALIGN(guest_base);
940     /*
941      * Read in mmap_min_addr kernel parameter.  This value is used
942      * When loading the ELF image to determine whether guest_base
943      * is needed.
944      *
945      * When user has explicitly set the quest base, we skip this
946      * test.
947      */
948     if (!have_guest_base) {
949         FILE *fp;
951         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
952             unsigned long tmp;
953             if (fscanf(fp, "%lu", &tmp) == 1) {
954                 mmap_min_addr = tmp;
955                 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
956             }
957             fclose(fp);
958         }
959     }
961     if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
962         printf("Error loading %s\n", filename);
963         _exit(1);
964     }
966     for (wrk = target_environ; *wrk; wrk++) {
967         g_free(*wrk);
968     }
970     g_free(target_environ);
972     if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
973         qemu_log("guest_base  %p\n", (void *)guest_base);
974         log_page_dump("binary load");
976         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
977         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
978         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
979                  info->start_code);
980         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
981                  info->start_data);
982         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
983         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
984                  info->start_stack);
985         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
986         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
987     }
989     target_set_brk(info->brk);
990     syscall_init();
991     signal_init();
993     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
994        generating the prologue until now so that the prologue can take
995        the real value of GUEST_BASE into account.  */
996     tcg_prologue_init(tcg_ctx);
997     tcg_region_init();
999     /* build Task State */
1000     memset(ts, 0, sizeof(TaskState));
1001     init_task_state(ts);
1002     ts->info = info;
1003     cpu->opaque = ts;
1005 #if defined(TARGET_I386)
1006     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
1007     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
1008     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
1009         env->cr[4] |= CR4_OSFXSR_MASK;
1010         env->hflags |= HF_OSFXSR_MASK;
1011     }
1012 #ifndef TARGET_ABI32
1013     /* enable 64 bit mode if possible */
1014     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
1015         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
1016         exit(1);
1017     }
1018     env->cr[4] |= CR4_PAE_MASK;
1019     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1020     env->hflags |= HF_LMA_MASK;
1021 #endif
1023     /* flags setup : we activate the IRQs by default as in user mode */
1024     env->eflags |= IF_MASK;
1026     /* linux register setup */
1027 #ifndef TARGET_ABI32
1028     env->regs[R_EAX] = regs->rax;
1029     env->regs[R_EBX] = regs->rbx;
1030     env->regs[R_ECX] = regs->rcx;
1031     env->regs[R_EDX] = regs->rdx;
1032     env->regs[R_ESI] = regs->rsi;
1033     env->regs[R_EDI] = regs->rdi;
1034     env->regs[R_EBP] = regs->rbp;
1035     env->regs[R_ESP] = regs->rsp;
1036     env->eip = regs->rip;
1037 #else
1038     env->regs[R_EAX] = regs->eax;
1039     env->regs[R_EBX] = regs->ebx;
1040     env->regs[R_ECX] = regs->ecx;
1041     env->regs[R_EDX] = regs->edx;
1042     env->regs[R_ESI] = regs->esi;
1043     env->regs[R_EDI] = regs->edi;
1044     env->regs[R_EBP] = regs->ebp;
1045     env->regs[R_ESP] = regs->esp;
1046     env->eip = regs->eip;
1047 #endif
1049     /* linux interrupt setup */
1050 #ifndef TARGET_ABI32
1051     env->idt.limit = 511;
1052 #else
1053     env->idt.limit = 255;
1054 #endif
1055     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1056                                 PROT_READ|PROT_WRITE,
1057                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1058     idt_table = g2h_untagged(env->idt.base);
1059     set_idt(0, 0);
1060     set_idt(1, 0);
1061     set_idt(2, 0);
1062     set_idt(3, 3);
1063     set_idt(4, 3);
1064     set_idt(5, 0);
1065     set_idt(6, 0);
1066     set_idt(7, 0);
1067     set_idt(8, 0);
1068     set_idt(9, 0);
1069     set_idt(10, 0);
1070     set_idt(11, 0);
1071     set_idt(12, 0);
1072     set_idt(13, 0);
1073     set_idt(14, 0);
1074     set_idt(15, 0);
1075     set_idt(16, 0);
1076     set_idt(17, 0);
1077     set_idt(18, 0);
1078     set_idt(19, 0);
1079     set_idt(0x80, 3);
1081     /* linux segment setup */
1082     {
1083         uint64_t *gdt_table;
1084         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1085                                     PROT_READ|PROT_WRITE,
1086                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1087         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1088         gdt_table = g2h_untagged(env->gdt.base);
1089 #ifdef TARGET_ABI32
1090         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1091                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1092                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1093 #else
1094         /* 64 bit code segment */
1095         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1096                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1097                  DESC_L_MASK |
1098                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1099 #endif
1100         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1101                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1102                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1103     }
1105     cpu_x86_load_seg(env, R_CS, __USER_CS);
1106     cpu_x86_load_seg(env, R_SS, __USER_DS);
1107 #ifdef TARGET_ABI32
1108     cpu_x86_load_seg(env, R_DS, __USER_DS);
1109     cpu_x86_load_seg(env, R_ES, __USER_DS);
1110     cpu_x86_load_seg(env, R_FS, __USER_DS);
1111     cpu_x86_load_seg(env, R_GS, __USER_DS);
1112     /* This hack makes Wine work... */
1113     env->segs[R_FS].selector = 0;
1114 #else
1115     cpu_x86_load_seg(env, R_DS, 0);
1116     cpu_x86_load_seg(env, R_ES, 0);
1117     cpu_x86_load_seg(env, R_FS, 0);
1118     cpu_x86_load_seg(env, R_GS, 0);
1119 #endif
1120 #elif defined(TARGET_SPARC)
1121     {
1122         int i;
1123         env->pc = regs->pc;
1124         env->npc = regs->npc;
1125         env->y = regs->y;
1126         for(i = 0; i < 8; i++)
1127             env->gregs[i] = regs->u_regs[i];
1128         for(i = 0; i < 8; i++)
1129             env->regwptr[i] = regs->u_regs[i + 8];
1130     }
1131 #else
1132 #error unsupported target CPU
1133 #endif
1135     if (gdbstub) {
1136         gdbserver_start(gdbstub);
1137         gdb_handlesig(cpu, 0);
1138     }
1139     cpu_loop(env);
1140     /* never exits */
1141     return 0;