coroutine: remove unnecessary parentheses in qemu_co_queue_empty
[qemu/ar7.git] / softmmu_template.h
blob16b08523e9808b57fc485b3817c46cfce2ad5606
1 /*
2 * Software MMU support
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/timer.h"
25 #include "exec/address-spaces.h"
26 #include "exec/memory.h"
28 #define DATA_SIZE (1 << SHIFT)
30 #if DATA_SIZE == 8
31 #define SUFFIX q
32 #define LSUFFIX q
33 #define SDATA_TYPE int64_t
34 #define DATA_TYPE uint64_t
35 #elif DATA_SIZE == 4
36 #define SUFFIX l
37 #define LSUFFIX l
38 #define SDATA_TYPE int32_t
39 #define DATA_TYPE uint32_t
40 #elif DATA_SIZE == 2
41 #define SUFFIX w
42 #define LSUFFIX uw
43 #define SDATA_TYPE int16_t
44 #define DATA_TYPE uint16_t
45 #elif DATA_SIZE == 1
46 #define SUFFIX b
47 #define LSUFFIX ub
48 #define SDATA_TYPE int8_t
49 #define DATA_TYPE uint8_t
50 #else
51 #error unsupported data size
52 #endif
55 /* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61 # define WORD_TYPE DATA_TYPE
62 # define USUFFIX SUFFIX
63 #else
64 # define WORD_TYPE tcg_target_ulong
65 # define USUFFIX glue(u, SUFFIX)
66 # define SSUFFIX glue(s, SUFFIX)
67 #endif
69 #ifdef SOFTMMU_CODE_ACCESS
70 #define READ_ACCESS_TYPE MMU_INST_FETCH
71 #define ADDR_READ addr_code
72 #else
73 #define READ_ACCESS_TYPE MMU_DATA_LOAD
74 #define ADDR_READ addr_read
75 #endif
77 #if DATA_SIZE == 8
78 # define BSWAP(X) bswap64(X)
79 #elif DATA_SIZE == 4
80 # define BSWAP(X) bswap32(X)
81 #elif DATA_SIZE == 2
82 # define BSWAP(X) bswap16(X)
83 #else
84 # define BSWAP(X) (X)
85 #endif
87 #ifdef TARGET_WORDS_BIGENDIAN
88 # define TGT_BE(X) (X)
89 # define TGT_LE(X) BSWAP(X)
90 #else
91 # define TGT_BE(X) BSWAP(X)
92 # define TGT_LE(X) (X)
93 #endif
95 #if DATA_SIZE == 1
96 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97 # define helper_be_ld_name helper_le_ld_name
98 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99 # define helper_be_lds_name helper_le_lds_name
100 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101 # define helper_be_st_name helper_le_st_name
102 #else
103 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109 #endif
111 #ifdef TARGET_WORDS_BIGENDIAN
112 # define helper_te_ld_name helper_be_ld_name
113 # define helper_te_st_name helper_be_st_name
114 #else
115 # define helper_te_ld_name helper_le_ld_name
116 # define helper_te_st_name helper_le_st_name
117 #endif
119 /* macro to check the victim tlb */
120 #define VICTIM_TLB_HIT(ty) \
121 ({ \
122 /* we are about to do a page table walk. our last hope is the \
123 * victim tlb. try to refill from the victim tlb before walking the \
124 * page table. */ \
125 int vidx; \
126 CPUIOTLBEntry tmpiotlb; \
127 CPUTLBEntry tmptlb; \
128 for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
129 if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
130 /* found entry in victim tlb, swap tlb and iotlb */ \
131 tmptlb = env->tlb_table[mmu_idx][index]; \
132 env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
133 env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
134 tmpiotlb = env->iotlb[mmu_idx][index]; \
135 env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
136 env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
137 break; \
140 /* return true when there is a vtlb hit, i.e. vidx >=0 */ \
141 vidx >= 0; \
144 #ifndef SOFTMMU_CODE_ACCESS
145 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
146 CPUIOTLBEntry *iotlbentry,
147 target_ulong addr,
148 uintptr_t retaddr)
150 uint64_t val;
151 CPUState *cpu = ENV_GET_CPU(env);
152 hwaddr physaddr = iotlbentry->addr;
153 MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
155 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
156 cpu->mem_io_pc = retaddr;
157 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
158 cpu_io_recompile(cpu, retaddr);
161 cpu->mem_io_vaddr = addr;
162 memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
163 iotlbentry->attrs);
164 return val;
166 #endif
168 #ifdef SOFTMMU_CODE_ACCESS
169 static __attribute__((unused))
170 #endif
171 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
172 uintptr_t retaddr)
174 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
175 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
176 uintptr_t haddr;
177 DATA_TYPE res;
179 /* Adjust the given return address. */
180 retaddr -= GETPC_ADJ;
182 /* If the TLB entry is for a different page, reload and try again. */
183 if ((addr & TARGET_PAGE_MASK)
184 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
185 #ifdef ALIGNED_ONLY
186 if ((addr & (DATA_SIZE - 1)) != 0) {
187 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
188 mmu_idx, retaddr);
190 #endif
191 if (!VICTIM_TLB_HIT(ADDR_READ)) {
192 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
193 mmu_idx, retaddr);
195 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
198 /* Handle an IO access. */
199 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
200 CPUIOTLBEntry *iotlbentry;
201 if ((addr & (DATA_SIZE - 1)) != 0) {
202 goto do_unaligned_access;
204 iotlbentry = &env->iotlb[mmu_idx][index];
206 /* ??? Note that the io helpers always read data in the target
207 byte ordering. We should push the LE/BE request down into io. */
208 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
209 res = TGT_LE(res);
210 return res;
213 /* Handle slow unaligned access (it spans two pages or IO). */
214 if (DATA_SIZE > 1
215 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
216 >= TARGET_PAGE_SIZE)) {
217 target_ulong addr1, addr2;
218 DATA_TYPE res1, res2;
219 unsigned shift;
220 do_unaligned_access:
221 #ifdef ALIGNED_ONLY
222 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
223 mmu_idx, retaddr);
224 #endif
225 addr1 = addr & ~(DATA_SIZE - 1);
226 addr2 = addr1 + DATA_SIZE;
227 /* Note the adjustment at the beginning of the function.
228 Undo that for the recursion. */
229 res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
230 res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
231 shift = (addr & (DATA_SIZE - 1)) * 8;
233 /* Little-endian combine. */
234 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
235 return res;
238 /* Handle aligned access or unaligned access in the same page. */
239 #ifdef ALIGNED_ONLY
240 if ((addr & (DATA_SIZE - 1)) != 0) {
241 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
242 mmu_idx, retaddr);
244 #endif
246 haddr = addr + env->tlb_table[mmu_idx][index].addend;
247 #if DATA_SIZE == 1
248 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
249 #else
250 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
251 #endif
252 return res;
255 #if DATA_SIZE > 1
256 #ifdef SOFTMMU_CODE_ACCESS
257 static __attribute__((unused))
258 #endif
259 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
260 uintptr_t retaddr)
262 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
263 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
264 uintptr_t haddr;
265 DATA_TYPE res;
267 /* Adjust the given return address. */
268 retaddr -= GETPC_ADJ;
270 /* If the TLB entry is for a different page, reload and try again. */
271 if ((addr & TARGET_PAGE_MASK)
272 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
273 #ifdef ALIGNED_ONLY
274 if ((addr & (DATA_SIZE - 1)) != 0) {
275 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
276 mmu_idx, retaddr);
278 #endif
279 if (!VICTIM_TLB_HIT(ADDR_READ)) {
280 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
281 mmu_idx, retaddr);
283 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
286 /* Handle an IO access. */
287 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
288 CPUIOTLBEntry *iotlbentry;
289 if ((addr & (DATA_SIZE - 1)) != 0) {
290 goto do_unaligned_access;
292 iotlbentry = &env->iotlb[mmu_idx][index];
294 /* ??? Note that the io helpers always read data in the target
295 byte ordering. We should push the LE/BE request down into io. */
296 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
297 res = TGT_BE(res);
298 return res;
301 /* Handle slow unaligned access (it spans two pages or IO). */
302 if (DATA_SIZE > 1
303 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
304 >= TARGET_PAGE_SIZE)) {
305 target_ulong addr1, addr2;
306 DATA_TYPE res1, res2;
307 unsigned shift;
308 do_unaligned_access:
309 #ifdef ALIGNED_ONLY
310 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
311 mmu_idx, retaddr);
312 #endif
313 addr1 = addr & ~(DATA_SIZE - 1);
314 addr2 = addr1 + DATA_SIZE;
315 /* Note the adjustment at the beginning of the function.
316 Undo that for the recursion. */
317 res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
318 res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
319 shift = (addr & (DATA_SIZE - 1)) * 8;
321 /* Big-endian combine. */
322 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
323 return res;
326 /* Handle aligned access or unaligned access in the same page. */
327 #ifdef ALIGNED_ONLY
328 if ((addr & (DATA_SIZE - 1)) != 0) {
329 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
330 mmu_idx, retaddr);
332 #endif
334 haddr = addr + env->tlb_table[mmu_idx][index].addend;
335 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
336 return res;
338 #endif /* DATA_SIZE > 1 */
340 DATA_TYPE
341 glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
342 int mmu_idx)
344 return helper_te_ld_name (env, addr, mmu_idx, GETRA());
347 #ifndef SOFTMMU_CODE_ACCESS
349 /* Provide signed versions of the load routines as well. We can of course
350 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
351 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
352 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
353 int mmu_idx, uintptr_t retaddr)
355 return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
358 # if DATA_SIZE > 1
359 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
360 int mmu_idx, uintptr_t retaddr)
362 return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
364 # endif
365 #endif
367 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
368 CPUIOTLBEntry *iotlbentry,
369 DATA_TYPE val,
370 target_ulong addr,
371 uintptr_t retaddr)
373 CPUState *cpu = ENV_GET_CPU(env);
374 hwaddr physaddr = iotlbentry->addr;
375 MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
377 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
378 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
379 cpu_io_recompile(cpu, retaddr);
382 cpu->mem_io_vaddr = addr;
383 cpu->mem_io_pc = retaddr;
384 memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
385 iotlbentry->attrs);
388 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
389 int mmu_idx, uintptr_t retaddr)
391 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
392 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
393 uintptr_t haddr;
395 /* Adjust the given return address. */
396 retaddr -= GETPC_ADJ;
398 /* If the TLB entry is for a different page, reload and try again. */
399 if ((addr & TARGET_PAGE_MASK)
400 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
401 #ifdef ALIGNED_ONLY
402 if ((addr & (DATA_SIZE - 1)) != 0) {
403 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
404 mmu_idx, retaddr);
406 #endif
407 if (!VICTIM_TLB_HIT(addr_write)) {
408 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
410 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
413 /* Handle an IO access. */
414 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
415 CPUIOTLBEntry *iotlbentry;
416 if ((addr & (DATA_SIZE - 1)) != 0) {
417 goto do_unaligned_access;
419 iotlbentry = &env->iotlb[mmu_idx][index];
421 /* ??? Note that the io helpers always read data in the target
422 byte ordering. We should push the LE/BE request down into io. */
423 val = TGT_LE(val);
424 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
425 return;
428 /* Handle slow unaligned access (it spans two pages or IO). */
429 if (DATA_SIZE > 1
430 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
431 >= TARGET_PAGE_SIZE)) {
432 int i;
433 do_unaligned_access:
434 #ifdef ALIGNED_ONLY
435 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
436 mmu_idx, retaddr);
437 #endif
438 /* XXX: not efficient, but simple */
439 /* Note: relies on the fact that tlb_fill() does not remove the
440 * previous page from the TLB cache. */
441 for (i = DATA_SIZE - 1; i >= 0; i--) {
442 /* Little-endian extract. */
443 uint8_t val8 = val >> (i * 8);
444 /* Note the adjustment at the beginning of the function.
445 Undo that for the recursion. */
446 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
447 mmu_idx, retaddr + GETPC_ADJ);
449 return;
452 /* Handle aligned access or unaligned access in the same page. */
453 #ifdef ALIGNED_ONLY
454 if ((addr & (DATA_SIZE - 1)) != 0) {
455 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
456 mmu_idx, retaddr);
458 #endif
460 haddr = addr + env->tlb_table[mmu_idx][index].addend;
461 #if DATA_SIZE == 1
462 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
463 #else
464 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
465 #endif
468 #if DATA_SIZE > 1
469 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
470 int mmu_idx, uintptr_t retaddr)
472 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
473 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
474 uintptr_t haddr;
476 /* Adjust the given return address. */
477 retaddr -= GETPC_ADJ;
479 /* If the TLB entry is for a different page, reload and try again. */
480 if ((addr & TARGET_PAGE_MASK)
481 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
482 #ifdef ALIGNED_ONLY
483 if ((addr & (DATA_SIZE - 1)) != 0) {
484 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
485 mmu_idx, retaddr);
487 #endif
488 if (!VICTIM_TLB_HIT(addr_write)) {
489 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
491 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
494 /* Handle an IO access. */
495 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
496 CPUIOTLBEntry *iotlbentry;
497 if ((addr & (DATA_SIZE - 1)) != 0) {
498 goto do_unaligned_access;
500 iotlbentry = &env->iotlb[mmu_idx][index];
502 /* ??? Note that the io helpers always read data in the target
503 byte ordering. We should push the LE/BE request down into io. */
504 val = TGT_BE(val);
505 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
506 return;
509 /* Handle slow unaligned access (it spans two pages or IO). */
510 if (DATA_SIZE > 1
511 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
512 >= TARGET_PAGE_SIZE)) {
513 int i;
514 do_unaligned_access:
515 #ifdef ALIGNED_ONLY
516 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
517 mmu_idx, retaddr);
518 #endif
519 /* XXX: not efficient, but simple */
520 /* Note: relies on the fact that tlb_fill() does not remove the
521 * previous page from the TLB cache. */
522 for (i = DATA_SIZE - 1; i >= 0; i--) {
523 /* Big-endian extract. */
524 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
525 /* Note the adjustment at the beginning of the function.
526 Undo that for the recursion. */
527 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
528 mmu_idx, retaddr + GETPC_ADJ);
530 return;
533 /* Handle aligned access or unaligned access in the same page. */
534 #ifdef ALIGNED_ONLY
535 if ((addr & (DATA_SIZE - 1)) != 0) {
536 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
537 mmu_idx, retaddr);
539 #endif
541 haddr = addr + env->tlb_table[mmu_idx][index].addend;
542 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
544 #endif /* DATA_SIZE > 1 */
546 void
547 glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
548 DATA_TYPE val, int mmu_idx)
550 helper_te_st_name(env, addr, val, mmu_idx, GETRA());
553 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
555 #undef READ_ACCESS_TYPE
556 #undef SHIFT
557 #undef DATA_TYPE
558 #undef SUFFIX
559 #undef LSUFFIX
560 #undef DATA_SIZE
561 #undef ADDR_READ
562 #undef WORD_TYPE
563 #undef SDATA_TYPE
564 #undef USUFFIX
565 #undef SSUFFIX
566 #undef BSWAP
567 #undef TGT_BE
568 #undef TGT_LE
569 #undef CPU_BE
570 #undef CPU_LE
571 #undef helper_le_ld_name
572 #undef helper_be_ld_name
573 #undef helper_le_lds_name
574 #undef helper_be_lds_name
575 #undef helper_le_st_name
576 #undef helper_be_st_name
577 #undef helper_te_ld_name
578 #undef helper_te_st_name