2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
35 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
38 BDRVQcow2State
*s
= bs
->opaque
;
39 int new_l1_size2
, ret
, i
;
40 uint64_t *new_l1_table
;
41 int64_t old_l1_table_offset
, old_l1_size
;
42 int64_t new_l1_table_offset
, new_l1_size
;
45 if (min_size
<= s
->l1_size
)
48 /* Do a sanity check on min_size before trying to calculate new_l1_size
49 * (this prevents overflows during the while loop for the calculation of
51 if (min_size
> INT_MAX
/ sizeof(uint64_t)) {
56 new_l1_size
= min_size
;
58 /* Bump size up to reduce the number of times we have to grow */
59 new_l1_size
= s
->l1_size
;
60 if (new_l1_size
== 0) {
63 while (min_size
> new_l1_size
) {
64 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
68 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
69 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ sizeof(uint64_t)) {
74 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
75 s
->l1_size
, new_l1_size
);
78 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
79 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
,
80 align_offset(new_l1_size2
, 512));
81 if (new_l1_table
== NULL
) {
84 memset(new_l1_table
, 0, align_offset(new_l1_size2
, 512));
87 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
90 /* write new table (align to cluster) */
91 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
92 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
93 if (new_l1_table_offset
< 0) {
94 qemu_vfree(new_l1_table
);
95 return new_l1_table_offset
;
98 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
103 /* the L1 position has not yet been updated, so these clusters must
104 * indeed be completely free */
105 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
111 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
112 for(i
= 0; i
< s
->l1_size
; i
++)
113 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
114 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
,
115 new_l1_table
, new_l1_size2
);
118 for(i
= 0; i
< s
->l1_size
; i
++)
119 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
122 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
123 stl_be_p(data
, new_l1_size
);
124 stq_be_p(data
+ 4, new_l1_table_offset
);
125 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
130 qemu_vfree(s
->l1_table
);
131 old_l1_table_offset
= s
->l1_table_offset
;
132 s
->l1_table_offset
= new_l1_table_offset
;
133 s
->l1_table
= new_l1_table
;
134 old_l1_size
= s
->l1_size
;
135 s
->l1_size
= new_l1_size
;
136 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
137 QCOW2_DISCARD_OTHER
);
140 qemu_vfree(new_l1_table
);
141 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
142 QCOW2_DISCARD_OTHER
);
149 * Loads a L2 table into memory. If the table is in the cache, the cache
150 * is used; otherwise the L2 table is loaded from the image file.
152 * Returns a pointer to the L2 table on success, or NULL if the read from
153 * the image file failed.
156 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
159 BDRVQcow2State
*s
= bs
->opaque
;
161 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
166 * Writes one sector of the L1 table to the disk (can't update single entries
167 * and we really don't want bdrv_pread to perform a read-modify-write)
169 #define L1_ENTRIES_PER_SECTOR (512 / 8)
170 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
172 BDRVQcow2State
*s
= bs
->opaque
;
173 uint64_t buf
[L1_ENTRIES_PER_SECTOR
] = { 0 };
177 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
178 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
&& l1_start_index
+ i
< s
->l1_size
;
181 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
184 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
185 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
190 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
191 ret
= bdrv_pwrite_sync(bs
->file
,
192 s
->l1_table_offset
+ 8 * l1_start_index
,
204 * Allocate a new l2 entry in the file. If l1_index points to an already
205 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
206 * table) copy the contents of the old L2 table into the newly allocated one.
207 * Otherwise the new table is initialized with zeros.
211 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
213 BDRVQcow2State
*s
= bs
->opaque
;
214 uint64_t old_l2_offset
;
215 uint64_t *l2_table
= NULL
;
219 old_l2_offset
= s
->l1_table
[l1_index
];
221 trace_qcow2_l2_allocate(bs
, l1_index
);
223 /* allocate a new l2 entry */
225 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
231 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
236 /* allocate a new entry in the l2 cache */
238 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
239 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
246 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
247 /* if there was no old l2 table, clear the new table */
248 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
252 /* if there was an old l2 table, read it from the disk */
253 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
254 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
255 old_l2_offset
& L1E_OFFSET_MASK
,
256 (void**) &old_table
);
261 memcpy(l2_table
, old_table
, s
->cluster_size
);
263 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &old_table
);
266 /* write the l2 table to the file */
267 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
269 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
270 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
271 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
276 /* update the L1 entry */
277 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
278 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
279 ret
= qcow2_write_l1_entry(bs
, l1_index
);
285 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
289 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
290 if (l2_table
!= NULL
) {
291 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
293 s
->l1_table
[l1_index
] = old_l2_offset
;
295 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
296 QCOW2_DISCARD_ALWAYS
);
302 * Checks how many clusters in a given L2 table are contiguous in the image
303 * file. As soon as one of the flags in the bitmask stop_flags changes compared
304 * to the first cluster, the search is stopped and the cluster is not counted
305 * as contiguous. (This allows it, for example, to stop at the first compressed
306 * cluster which may require a different handling)
308 static int count_contiguous_clusters(int nb_clusters
, int cluster_size
,
309 uint64_t *l2_table
, uint64_t stop_flags
)
312 QCow2ClusterType first_cluster_type
;
313 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
314 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
315 uint64_t offset
= first_entry
& mask
;
321 /* must be allocated */
322 first_cluster_type
= qcow2_get_cluster_type(first_entry
);
323 assert(first_cluster_type
== QCOW2_CLUSTER_NORMAL
||
324 first_cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
);
326 for (i
= 0; i
< nb_clusters
; i
++) {
327 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
328 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
337 * Checks how many consecutive unallocated clusters in a given L2
338 * table have the same cluster type.
340 static int count_contiguous_clusters_unallocated(int nb_clusters
,
342 QCow2ClusterType wanted_type
)
346 assert(wanted_type
== QCOW2_CLUSTER_ZERO_PLAIN
||
347 wanted_type
== QCOW2_CLUSTER_UNALLOCATED
);
348 for (i
= 0; i
< nb_clusters
; i
++) {
349 uint64_t entry
= be64_to_cpu(l2_table
[i
]);
350 QCow2ClusterType type
= qcow2_get_cluster_type(entry
);
352 if (type
!= wanted_type
) {
360 /* The crypt function is compatible with the linux cryptoloop
361 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
363 int qcow2_encrypt_sectors(BDRVQcow2State
*s
, int64_t sector_num
,
364 uint8_t *out_buf
, const uint8_t *in_buf
,
365 int nb_sectors
, bool enc
,
375 for(i
= 0; i
< nb_sectors
; i
++) {
376 ivec
.ll
[0] = cpu_to_le64(sector_num
);
378 if (qcrypto_cipher_setiv(s
->cipher
,
379 ivec
.b
, G_N_ELEMENTS(ivec
.b
),
384 ret
= qcrypto_cipher_encrypt(s
->cipher
,
390 ret
= qcrypto_cipher_decrypt(s
->cipher
,
406 static int coroutine_fn
do_perform_cow_read(BlockDriverState
*bs
,
407 uint64_t src_cluster_offset
,
408 unsigned offset_in_cluster
,
413 if (qiov
->size
== 0) {
417 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
423 /* Call .bdrv_co_readv() directly instead of using the public block-layer
424 * interface. This avoids double I/O throttling and request tracking,
425 * which can lead to deadlock when block layer copy-on-read is enabled.
427 ret
= bs
->drv
->bdrv_co_preadv(bs
, src_cluster_offset
+ offset_in_cluster
,
428 qiov
->size
, qiov
, 0);
436 static bool coroutine_fn
do_perform_cow_encrypt(BlockDriverState
*bs
,
437 uint64_t src_cluster_offset
,
438 unsigned offset_in_cluster
,
442 if (bytes
&& bs
->encrypted
) {
443 BDRVQcow2State
*s
= bs
->opaque
;
444 int64_t sector
= (src_cluster_offset
+ offset_in_cluster
)
447 assert((offset_in_cluster
& ~BDRV_SECTOR_MASK
) == 0);
448 assert((bytes
& ~BDRV_SECTOR_MASK
) == 0);
449 if (qcow2_encrypt_sectors(s
, sector
, buffer
, buffer
,
450 bytes
>> BDRV_SECTOR_BITS
, true, NULL
) < 0) {
457 static int coroutine_fn
do_perform_cow_write(BlockDriverState
*bs
,
458 uint64_t cluster_offset
,
459 unsigned offset_in_cluster
,
464 if (qiov
->size
== 0) {
468 ret
= qcow2_pre_write_overlap_check(bs
, 0,
469 cluster_offset
+ offset_in_cluster
, qiov
->size
);
474 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
475 ret
= bdrv_co_pwritev(bs
->file
, cluster_offset
+ offset_in_cluster
,
476 qiov
->size
, qiov
, 0);
488 * For a given offset of the virtual disk, find the cluster type and offset in
489 * the qcow2 file. The offset is stored in *cluster_offset.
491 * On entry, *bytes is the maximum number of contiguous bytes starting at
492 * offset that we are interested in.
494 * On exit, *bytes is the number of bytes starting at offset that have the same
495 * cluster type and (if applicable) are stored contiguously in the image file.
496 * Compressed clusters are always returned one by one.
498 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
501 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
502 unsigned int *bytes
, uint64_t *cluster_offset
)
504 BDRVQcow2State
*s
= bs
->opaque
;
505 unsigned int l2_index
;
506 uint64_t l1_index
, l2_offset
, *l2_table
;
508 unsigned int offset_in_cluster
;
509 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
510 QCow2ClusterType type
;
513 offset_in_cluster
= offset_into_cluster(s
, offset
);
514 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
516 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
518 /* compute how many bytes there are between the start of the cluster
519 * containing offset and the end of the l1 entry */
520 bytes_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1))
523 if (bytes_needed
> bytes_available
) {
524 bytes_needed
= bytes_available
;
529 /* seek to the l2 offset in the l1 table */
531 l1_index
= offset
>> l1_bits
;
532 if (l1_index
>= s
->l1_size
) {
533 type
= QCOW2_CLUSTER_UNALLOCATED
;
537 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
539 type
= QCOW2_CLUSTER_UNALLOCATED
;
543 if (offset_into_cluster(s
, l2_offset
)) {
544 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
545 " unaligned (L1 index: %#" PRIx64
")",
546 l2_offset
, l1_index
);
550 /* load the l2 table in memory */
552 ret
= l2_load(bs
, l2_offset
, &l2_table
);
557 /* find the cluster offset for the given disk offset */
559 l2_index
= offset_to_l2_index(s
, offset
);
560 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
562 nb_clusters
= size_to_clusters(s
, bytes_needed
);
563 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
564 * integers; the minimum cluster size is 512, so this assertion is always
566 assert(nb_clusters
<= INT_MAX
);
568 type
= qcow2_get_cluster_type(*cluster_offset
);
569 if (s
->qcow_version
< 3 && (type
== QCOW2_CLUSTER_ZERO_PLAIN
||
570 type
== QCOW2_CLUSTER_ZERO_ALLOC
)) {
571 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
572 " in pre-v3 image (L2 offset: %#" PRIx64
573 ", L2 index: %#x)", l2_offset
, l2_index
);
578 case QCOW2_CLUSTER_COMPRESSED
:
579 /* Compressed clusters can only be processed one by one */
581 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
583 case QCOW2_CLUSTER_ZERO_PLAIN
:
584 case QCOW2_CLUSTER_UNALLOCATED
:
585 /* how many empty clusters ? */
586 c
= count_contiguous_clusters_unallocated(nb_clusters
,
587 &l2_table
[l2_index
], type
);
590 case QCOW2_CLUSTER_ZERO_ALLOC
:
591 case QCOW2_CLUSTER_NORMAL
:
592 /* how many allocated clusters ? */
593 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
594 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
595 *cluster_offset
&= L2E_OFFSET_MASK
;
596 if (offset_into_cluster(s
, *cluster_offset
)) {
597 qcow2_signal_corruption(bs
, true, -1, -1,
598 "Cluster allocation offset %#"
599 PRIx64
" unaligned (L2 offset: %#" PRIx64
600 ", L2 index: %#x)", *cluster_offset
,
601 l2_offset
, l2_index
);
610 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
612 bytes_available
= (int64_t)c
* s
->cluster_size
;
615 if (bytes_available
> bytes_needed
) {
616 bytes_available
= bytes_needed
;
619 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
620 * subtracting offset_in_cluster will therefore definitely yield something
621 * not exceeding UINT_MAX */
622 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
623 *bytes
= bytes_available
- offset_in_cluster
;
628 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
635 * for a given disk offset, load (and allocate if needed)
638 * the l2 table offset in the qcow2 file and the cluster index
639 * in the l2 table are given to the caller.
641 * Returns 0 on success, -errno in failure case
643 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
644 uint64_t **new_l2_table
,
647 BDRVQcow2State
*s
= bs
->opaque
;
648 unsigned int l2_index
;
649 uint64_t l1_index
, l2_offset
;
650 uint64_t *l2_table
= NULL
;
653 /* seek to the l2 offset in the l1 table */
655 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
656 if (l1_index
>= s
->l1_size
) {
657 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
663 assert(l1_index
< s
->l1_size
);
664 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
665 if (offset_into_cluster(s
, l2_offset
)) {
666 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
667 " unaligned (L1 index: %#" PRIx64
")",
668 l2_offset
, l1_index
);
672 /* seek the l2 table of the given l2 offset */
674 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
675 /* load the l2 table in memory */
676 ret
= l2_load(bs
, l2_offset
, &l2_table
);
681 /* First allocate a new L2 table (and do COW if needed) */
682 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
687 /* Then decrease the refcount of the old table */
689 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
690 QCOW2_DISCARD_OTHER
);
694 /* find the cluster offset for the given disk offset */
696 l2_index
= offset_to_l2_index(s
, offset
);
698 *new_l2_table
= l2_table
;
699 *new_l2_index
= l2_index
;
705 * alloc_compressed_cluster_offset
707 * For a given offset of the disk image, return cluster offset in
710 * If the offset is not found, allocate a new compressed cluster.
712 * Return the cluster offset if successful,
713 * Return 0, otherwise.
717 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
721 BDRVQcow2State
*s
= bs
->opaque
;
724 int64_t cluster_offset
;
727 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
732 /* Compression can't overwrite anything. Fail if the cluster was already
734 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
735 if (cluster_offset
& L2E_OFFSET_MASK
) {
736 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
740 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
741 if (cluster_offset
< 0) {
742 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
746 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
747 (cluster_offset
>> 9);
749 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
750 ((uint64_t)nb_csectors
<< s
->csize_shift
);
752 /* update L2 table */
754 /* compressed clusters never have the copied flag */
756 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
757 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
758 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
759 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
761 return cluster_offset
;
764 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
766 BDRVQcow2State
*s
= bs
->opaque
;
767 Qcow2COWRegion
*start
= &m
->cow_start
;
768 Qcow2COWRegion
*end
= &m
->cow_end
;
769 unsigned buffer_size
;
770 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
772 uint8_t *start_buffer
, *end_buffer
;
776 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
777 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
778 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
779 assert(!m
->data_qiov
|| m
->data_qiov
->size
== data_bytes
);
781 if (start
->nb_bytes
== 0 && end
->nb_bytes
== 0) {
785 /* If we have to read both the start and end COW regions and the
786 * middle region is not too large then perform just one read
788 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
790 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
792 /* If we have to do two reads, add some padding in the middle
793 * if necessary to make sure that the end region is optimally
795 size_t align
= bdrv_opt_mem_align(bs
);
796 assert(align
> 0 && align
<= UINT_MAX
);
797 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
798 UINT_MAX
- end
->nb_bytes
);
799 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
802 /* Reserve a buffer large enough to store all the data that we're
804 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
805 if (start_buffer
== NULL
) {
808 /* The part of the buffer where the end region is located */
809 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
811 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
? m
->data_qiov
->niov
: 0));
813 qemu_co_mutex_unlock(&s
->lock
);
814 /* First we read the existing data from both COW regions. We
815 * either read the whole region in one go, or the start and end
816 * regions separately. */
818 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
819 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
821 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
822 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
827 qemu_iovec_reset(&qiov
);
828 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
829 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
835 /* Encrypt the data if necessary before writing it */
837 if (!do_perform_cow_encrypt(bs
, m
->offset
, start
->offset
,
838 start_buffer
, start
->nb_bytes
) ||
839 !do_perform_cow_encrypt(bs
, m
->offset
, end
->offset
,
840 end_buffer
, end
->nb_bytes
)) {
846 /* And now we can write everything. If we have the guest data we
847 * can write everything in one single operation */
849 qemu_iovec_reset(&qiov
);
850 if (start
->nb_bytes
) {
851 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
853 qemu_iovec_concat(&qiov
, m
->data_qiov
, 0, data_bytes
);
855 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
857 /* NOTE: we have a write_aio blkdebug event here followed by
858 * a cow_write one in do_perform_cow_write(), but there's only
859 * one single I/O operation */
860 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
861 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
863 /* If there's no guest data then write both COW regions separately */
864 qemu_iovec_reset(&qiov
);
865 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
866 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
871 qemu_iovec_reset(&qiov
);
872 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
873 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
877 qemu_co_mutex_lock(&s
->lock
);
880 * Before we update the L2 table to actually point to the new cluster, we
881 * need to be sure that the refcounts have been increased and COW was
885 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
888 qemu_vfree(start_buffer
);
889 qemu_iovec_destroy(&qiov
);
893 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
895 BDRVQcow2State
*s
= bs
->opaque
;
896 int i
, j
= 0, l2_index
, ret
;
897 uint64_t *old_cluster
, *l2_table
;
898 uint64_t cluster_offset
= m
->alloc_offset
;
900 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
901 assert(m
->nb_clusters
> 0);
903 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
904 if (old_cluster
== NULL
) {
909 /* copy content of unmodified sectors */
910 ret
= perform_cow(bs
, m
);
915 /* Update L2 table. */
916 if (s
->use_lazy_refcounts
) {
917 qcow2_mark_dirty(bs
);
919 if (qcow2_need_accurate_refcounts(s
)) {
920 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
921 s
->refcount_block_cache
);
924 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
928 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
930 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
931 for (i
= 0; i
< m
->nb_clusters
; i
++) {
932 /* if two concurrent writes happen to the same unallocated cluster
933 * each write allocates separate cluster and writes data concurrently.
934 * The first one to complete updates l2 table with pointer to its
935 * cluster the second one has to do RMW (which is done above by
936 * perform_cow()), update l2 table with its cluster pointer and free
937 * old cluster. This is what this loop does */
938 if (l2_table
[l2_index
+ i
] != 0) {
939 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
942 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
943 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
947 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
950 * If this was a COW, we need to decrease the refcount of the old cluster.
952 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
953 * clusters), the next write will reuse them anyway.
955 if (!m
->keep_old_clusters
&& j
!= 0) {
956 for (i
= 0; i
< j
; i
++) {
957 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
958 QCOW2_DISCARD_NEVER
);
969 * Returns the number of contiguous clusters that can be used for an allocating
970 * write, but require COW to be performed (this includes yet unallocated space,
971 * which must copy from the backing file)
973 static int count_cow_clusters(BDRVQcow2State
*s
, int nb_clusters
,
974 uint64_t *l2_table
, int l2_index
)
978 for (i
= 0; i
< nb_clusters
; i
++) {
979 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
980 QCow2ClusterType cluster_type
= qcow2_get_cluster_type(l2_entry
);
982 switch(cluster_type
) {
983 case QCOW2_CLUSTER_NORMAL
:
984 if (l2_entry
& QCOW_OFLAG_COPIED
) {
988 case QCOW2_CLUSTER_UNALLOCATED
:
989 case QCOW2_CLUSTER_COMPRESSED
:
990 case QCOW2_CLUSTER_ZERO_PLAIN
:
991 case QCOW2_CLUSTER_ZERO_ALLOC
:
999 assert(i
<= nb_clusters
);
1004 * Check if there already is an AIO write request in flight which allocates
1005 * the same cluster. In this case we need to wait until the previous
1006 * request has completed and updated the L2 table accordingly.
1009 * 0 if there was no dependency. *cur_bytes indicates the number of
1010 * bytes from guest_offset that can be read before the next
1011 * dependency must be processed (or the request is complete)
1013 * -EAGAIN if we had to wait for another request, previously gathered
1014 * information on cluster allocation may be invalid now. The caller
1015 * must start over anyway, so consider *cur_bytes undefined.
1017 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
1018 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1020 BDRVQcow2State
*s
= bs
->opaque
;
1021 QCowL2Meta
*old_alloc
;
1022 uint64_t bytes
= *cur_bytes
;
1024 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1026 uint64_t start
= guest_offset
;
1027 uint64_t end
= start
+ bytes
;
1028 uint64_t old_start
= l2meta_cow_start(old_alloc
);
1029 uint64_t old_end
= l2meta_cow_end(old_alloc
);
1031 if (end
<= old_start
|| start
>= old_end
) {
1032 /* No intersection */
1034 if (start
< old_start
) {
1035 /* Stop at the start of a running allocation */
1036 bytes
= old_start
- start
;
1041 /* Stop if already an l2meta exists. After yielding, it wouldn't
1042 * be valid any more, so we'd have to clean up the old L2Metas
1043 * and deal with requests depending on them before starting to
1044 * gather new ones. Not worth the trouble. */
1045 if (bytes
== 0 && *m
) {
1051 /* Wait for the dependency to complete. We need to recheck
1052 * the free/allocated clusters when we continue. */
1053 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1059 /* Make sure that existing clusters and new allocations are only used up to
1060 * the next dependency if we shortened the request above */
1067 * Checks how many already allocated clusters that don't require a copy on
1068 * write there are at the given guest_offset (up to *bytes). If
1069 * *host_offset is not zero, only physically contiguous clusters beginning at
1070 * this host offset are counted.
1072 * Note that guest_offset may not be cluster aligned. In this case, the
1073 * returned *host_offset points to exact byte referenced by guest_offset and
1074 * therefore isn't cluster aligned as well.
1077 * 0: if no allocated clusters are available at the given offset.
1078 * *bytes is normally unchanged. It is set to 0 if the cluster
1079 * is allocated and doesn't need COW, but doesn't have the right
1082 * 1: if allocated clusters that don't require a COW are available at
1083 * the requested offset. *bytes may have decreased and describes
1084 * the length of the area that can be written to.
1086 * -errno: in error cases
1088 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1089 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1091 BDRVQcow2State
*s
= bs
->opaque
;
1093 uint64_t cluster_offset
;
1095 uint64_t nb_clusters
;
1096 unsigned int keep_clusters
;
1099 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1102 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
1103 == offset_into_cluster(s
, *host_offset
));
1106 * Calculate the number of clusters to look for. We stop at L2 table
1107 * boundaries to keep things simple.
1110 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1112 l2_index
= offset_to_l2_index(s
, guest_offset
);
1113 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1114 assert(nb_clusters
<= INT_MAX
);
1116 /* Find L2 entry for the first involved cluster */
1117 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1122 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
1124 /* Check how many clusters are already allocated and don't need COW */
1125 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
1126 && (cluster_offset
& QCOW_OFLAG_COPIED
))
1128 /* If a specific host_offset is required, check it */
1129 bool offset_matches
=
1130 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
1132 if (offset_into_cluster(s
, cluster_offset
& L2E_OFFSET_MASK
)) {
1133 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1134 "%#llx unaligned (guest offset: %#" PRIx64
1135 ")", cluster_offset
& L2E_OFFSET_MASK
,
1141 if (*host_offset
!= 0 && !offset_matches
) {
1147 /* We keep all QCOW_OFLAG_COPIED clusters */
1149 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1150 &l2_table
[l2_index
],
1151 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1152 assert(keep_clusters
<= nb_clusters
);
1154 *bytes
= MIN(*bytes
,
1155 keep_clusters
* s
->cluster_size
1156 - offset_into_cluster(s
, guest_offset
));
1165 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1167 /* Only return a host offset if we actually made progress. Otherwise we
1168 * would make requirements for handle_alloc() that it can't fulfill */
1170 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
1171 + offset_into_cluster(s
, guest_offset
);
1178 * Allocates new clusters for the given guest_offset.
1180 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1181 * contain the number of clusters that have been allocated and are contiguous
1182 * in the image file.
1184 * If *host_offset is non-zero, it specifies the offset in the image file at
1185 * which the new clusters must start. *nb_clusters can be 0 on return in this
1186 * case if the cluster at host_offset is already in use. If *host_offset is
1187 * zero, the clusters can be allocated anywhere in the image file.
1189 * *host_offset is updated to contain the offset into the image file at which
1190 * the first allocated cluster starts.
1192 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1193 * function has been waiting for another request and the allocation must be
1194 * restarted, but the whole request should not be failed.
1196 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1197 uint64_t *host_offset
, uint64_t *nb_clusters
)
1199 BDRVQcow2State
*s
= bs
->opaque
;
1201 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1202 *host_offset
, *nb_clusters
);
1204 /* Allocate new clusters */
1205 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1206 if (*host_offset
== 0) {
1207 int64_t cluster_offset
=
1208 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1209 if (cluster_offset
< 0) {
1210 return cluster_offset
;
1212 *host_offset
= cluster_offset
;
1215 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1225 * Allocates new clusters for an area that either is yet unallocated or needs a
1226 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1227 * the new allocation can match the specified host offset.
1229 * Note that guest_offset may not be cluster aligned. In this case, the
1230 * returned *host_offset points to exact byte referenced by guest_offset and
1231 * therefore isn't cluster aligned as well.
1234 * 0: if no clusters could be allocated. *bytes is set to 0,
1235 * *host_offset is left unchanged.
1237 * 1: if new clusters were allocated. *bytes may be decreased if the
1238 * new allocation doesn't cover all of the requested area.
1239 * *host_offset is updated to contain the host offset of the first
1240 * newly allocated cluster.
1242 * -errno: in error cases
1244 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1245 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1247 BDRVQcow2State
*s
= bs
->opaque
;
1251 uint64_t nb_clusters
;
1253 bool keep_old_clusters
= false;
1255 uint64_t alloc_cluster_offset
= 0;
1257 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1262 * Calculate the number of clusters to look for. We stop at L2 table
1263 * boundaries to keep things simple.
1266 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1268 l2_index
= offset_to_l2_index(s
, guest_offset
);
1269 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1270 assert(nb_clusters
<= INT_MAX
);
1272 /* Find L2 entry for the first involved cluster */
1273 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1278 entry
= be64_to_cpu(l2_table
[l2_index
]);
1280 /* For the moment, overwrite compressed clusters one by one */
1281 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1284 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1287 /* This function is only called when there were no non-COW clusters, so if
1288 * we can't find any unallocated or COW clusters either, something is
1289 * wrong with our code. */
1290 assert(nb_clusters
> 0);
1292 if (qcow2_get_cluster_type(entry
) == QCOW2_CLUSTER_ZERO_ALLOC
&&
1293 (entry
& QCOW_OFLAG_COPIED
) &&
1295 start_of_cluster(s
, *host_offset
) == (entry
& L2E_OFFSET_MASK
)))
1297 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1298 * would be fine, too, but count_cow_clusters() above has limited
1299 * nb_clusters already to a range of COW clusters */
1300 int preallocated_nb_clusters
=
1301 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1302 &l2_table
[l2_index
], QCOW_OFLAG_COPIED
);
1303 assert(preallocated_nb_clusters
> 0);
1305 nb_clusters
= preallocated_nb_clusters
;
1306 alloc_cluster_offset
= entry
& L2E_OFFSET_MASK
;
1308 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1309 * should not free them. */
1310 keep_old_clusters
= true;
1313 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1315 if (!alloc_cluster_offset
) {
1316 /* Allocate, if necessary at a given offset in the image file */
1317 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1318 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1324 /* Can't extend contiguous allocation */
1325 if (nb_clusters
== 0) {
1330 /* !*host_offset would overwrite the image header and is reserved for
1331 * "no host offset preferred". If 0 was a valid host offset, it'd
1332 * trigger the following overlap check; do that now to avoid having an
1333 * invalid value in *host_offset. */
1334 if (!alloc_cluster_offset
) {
1335 ret
= qcow2_pre_write_overlap_check(bs
, 0, alloc_cluster_offset
,
1336 nb_clusters
* s
->cluster_size
);
1343 * Save info needed for meta data update.
1345 * requested_bytes: Number of bytes from the start of the first
1346 * newly allocated cluster to the end of the (possibly shortened
1347 * before) write request.
1349 * avail_bytes: Number of bytes from the start of the first
1350 * newly allocated to the end of the last newly allocated cluster.
1352 * nb_bytes: The number of bytes from the start of the first
1353 * newly allocated cluster to the end of the area that the write
1354 * request actually writes to (excluding COW at the end)
1356 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1357 int avail_bytes
= MIN(INT_MAX
, nb_clusters
<< s
->cluster_bits
);
1358 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1359 QCowL2Meta
*old_m
= *m
;
1361 *m
= g_malloc0(sizeof(**m
));
1363 **m
= (QCowL2Meta
) {
1366 .alloc_offset
= alloc_cluster_offset
,
1367 .offset
= start_of_cluster(s
, guest_offset
),
1368 .nb_clusters
= nb_clusters
,
1370 .keep_old_clusters
= keep_old_clusters
,
1374 .nb_bytes
= offset_into_cluster(s
, guest_offset
),
1378 .nb_bytes
= avail_bytes
- nb_bytes
,
1381 qemu_co_queue_init(&(*m
)->dependent_requests
);
1382 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1384 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1385 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1386 assert(*bytes
!= 0);
1391 if (*m
&& (*m
)->nb_clusters
> 0) {
1392 QLIST_REMOVE(*m
, next_in_flight
);
1398 * alloc_cluster_offset
1400 * For a given offset on the virtual disk, find the cluster offset in qcow2
1401 * file. If the offset is not found, allocate a new cluster.
1403 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1404 * other fields in m are meaningless.
1406 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1407 * contiguous clusters that have been allocated. In this case, the other
1408 * fields of m are valid and contain information about the first allocated
1411 * If the request conflicts with another write request in flight, the coroutine
1412 * is queued and will be reentered when the dependency has completed.
1414 * Return 0 on success and -errno in error cases
1416 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1417 unsigned int *bytes
, uint64_t *host_offset
,
1420 BDRVQcow2State
*s
= bs
->opaque
;
1421 uint64_t start
, remaining
;
1422 uint64_t cluster_offset
;
1426 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1438 if (!*host_offset
) {
1439 *host_offset
= start_of_cluster(s
, cluster_offset
);
1442 assert(remaining
>= cur_bytes
);
1445 remaining
-= cur_bytes
;
1446 cluster_offset
+= cur_bytes
;
1448 if (remaining
== 0) {
1452 cur_bytes
= remaining
;
1455 * Now start gathering as many contiguous clusters as possible:
1457 * 1. Check for overlaps with in-flight allocations
1459 * a) Overlap not in the first cluster -> shorten this request and
1460 * let the caller handle the rest in its next loop iteration.
1462 * b) Real overlaps of two requests. Yield and restart the search
1463 * for contiguous clusters (the situation could have changed
1464 * while we were sleeping)
1466 * c) TODO: Request starts in the same cluster as the in-flight
1467 * allocation ends. Shorten the COW of the in-fight allocation,
1468 * set cluster_offset to write to the same cluster and set up
1469 * the right synchronisation between the in-flight request and
1472 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1473 if (ret
== -EAGAIN
) {
1474 /* Currently handle_dependencies() doesn't yield if we already had
1475 * an allocation. If it did, we would have to clean up the L2Meta
1476 * structs before starting over. */
1479 } else if (ret
< 0) {
1481 } else if (cur_bytes
== 0) {
1484 /* handle_dependencies() may have decreased cur_bytes (shortened
1485 * the allocations below) so that the next dependency is processed
1486 * correctly during the next loop iteration. */
1490 * 2. Count contiguous COPIED clusters.
1492 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1497 } else if (cur_bytes
== 0) {
1502 * 3. If the request still hasn't completed, allocate new clusters,
1503 * considering any cluster_offset of steps 1c or 2.
1505 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1511 assert(cur_bytes
== 0);
1516 *bytes
-= remaining
;
1518 assert(*host_offset
!= 0);
1523 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1524 const uint8_t *buf
, int buf_size
)
1526 z_stream strm1
, *strm
= &strm1
;
1529 memset(strm
, 0, sizeof(*strm
));
1531 strm
->next_in
= (uint8_t *)buf
;
1532 strm
->avail_in
= buf_size
;
1533 strm
->next_out
= out_buf
;
1534 strm
->avail_out
= out_buf_size
;
1536 ret
= inflateInit2(strm
, -12);
1539 ret
= inflate(strm
, Z_FINISH
);
1540 out_len
= strm
->next_out
- out_buf
;
1541 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1542 out_len
!= out_buf_size
) {
1550 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1552 BDRVQcow2State
*s
= bs
->opaque
;
1553 int ret
, csize
, nb_csectors
, sector_offset
;
1556 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1557 if (s
->cluster_cache_offset
!= coffset
) {
1558 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1559 sector_offset
= coffset
& 511;
1560 csize
= nb_csectors
* 512 - sector_offset
;
1561 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1562 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
,
1567 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1568 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1571 s
->cluster_cache_offset
= coffset
;
1577 * This discards as many clusters of nb_clusters as possible at once (i.e.
1578 * all clusters in the same L2 table) and returns the number of discarded
1581 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1582 uint64_t nb_clusters
, enum qcow2_discard_type type
,
1585 BDRVQcow2State
*s
= bs
->opaque
;
1591 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1596 /* Limit nb_clusters to one L2 table */
1597 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1598 assert(nb_clusters
<= INT_MAX
);
1600 for (i
= 0; i
< nb_clusters
; i
++) {
1601 uint64_t old_l2_entry
;
1603 old_l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1606 * If full_discard is false, make sure that a discarded area reads back
1607 * as zeroes for v3 images (we cannot do it for v2 without actually
1608 * writing a zero-filled buffer). We can skip the operation if the
1609 * cluster is already marked as zero, or if it's unallocated and we
1610 * don't have a backing file.
1612 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1613 * holding s->lock, so that doesn't work today.
1615 * If full_discard is true, the sector should not read back as zeroes,
1616 * but rather fall through to the backing file.
1618 switch (qcow2_get_cluster_type(old_l2_entry
)) {
1619 case QCOW2_CLUSTER_UNALLOCATED
:
1620 if (full_discard
|| !bs
->backing
) {
1625 case QCOW2_CLUSTER_ZERO_PLAIN
:
1626 if (!full_discard
) {
1631 case QCOW2_CLUSTER_ZERO_ALLOC
:
1632 case QCOW2_CLUSTER_NORMAL
:
1633 case QCOW2_CLUSTER_COMPRESSED
:
1640 /* First remove L2 entries */
1641 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1642 if (!full_discard
&& s
->qcow_version
>= 3) {
1643 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1645 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1648 /* Then decrease the refcount */
1649 qcow2_free_any_clusters(bs
, old_l2_entry
, 1, type
);
1652 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1657 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1658 uint64_t bytes
, enum qcow2_discard_type type
,
1661 BDRVQcow2State
*s
= bs
->opaque
;
1662 uint64_t end_offset
= offset
+ bytes
;
1663 uint64_t nb_clusters
;
1667 /* Caller must pass aligned values, except at image end */
1668 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1669 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1670 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1672 nb_clusters
= size_to_clusters(s
, bytes
);
1674 s
->cache_discards
= true;
1676 /* Each L2 table is handled by its own loop iteration */
1677 while (nb_clusters
> 0) {
1678 cleared
= discard_single_l2(bs
, offset
, nb_clusters
, type
,
1685 nb_clusters
-= cleared
;
1686 offset
+= (cleared
* s
->cluster_size
);
1691 s
->cache_discards
= false;
1692 qcow2_process_discards(bs
, ret
);
1698 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1699 * all clusters in the same L2 table) and returns the number of zeroed
1702 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1703 uint64_t nb_clusters
, int flags
)
1705 BDRVQcow2State
*s
= bs
->opaque
;
1710 bool unmap
= !!(flags
& BDRV_REQ_MAY_UNMAP
);
1712 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1717 /* Limit nb_clusters to one L2 table */
1718 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1719 assert(nb_clusters
<= INT_MAX
);
1721 for (i
= 0; i
< nb_clusters
; i
++) {
1722 uint64_t old_offset
;
1723 QCow2ClusterType cluster_type
;
1725 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1728 * Minimize L2 changes if the cluster already reads back as
1729 * zeroes with correct allocation.
1731 cluster_type
= qcow2_get_cluster_type(old_offset
);
1732 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
||
1733 (cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
&& !unmap
)) {
1737 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1738 if (cluster_type
== QCOW2_CLUSTER_COMPRESSED
|| unmap
) {
1739 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1740 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1742 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1746 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1751 int qcow2_cluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
1752 uint64_t bytes
, int flags
)
1754 BDRVQcow2State
*s
= bs
->opaque
;
1755 uint64_t end_offset
= offset
+ bytes
;
1756 uint64_t nb_clusters
;
1760 /* Caller must pass aligned values, except at image end */
1761 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1762 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1763 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1765 /* The zero flag is only supported by version 3 and newer */
1766 if (s
->qcow_version
< 3) {
1770 /* Each L2 table is handled by its own loop iteration */
1771 nb_clusters
= size_to_clusters(s
, bytes
);
1773 s
->cache_discards
= true;
1775 while (nb_clusters
> 0) {
1776 cleared
= zero_single_l2(bs
, offset
, nb_clusters
, flags
);
1782 nb_clusters
-= cleared
;
1783 offset
+= (cleared
* s
->cluster_size
);
1788 s
->cache_discards
= false;
1789 qcow2_process_discards(bs
, ret
);
1795 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1796 * non-backed non-pre-allocated zero clusters).
1798 * l1_entries and *visited_l1_entries are used to keep track of progress for
1799 * status_cb(). l1_entries contains the total number of L1 entries and
1800 * *visited_l1_entries counts all visited L1 entries.
1802 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1803 int l1_size
, int64_t *visited_l1_entries
,
1805 BlockDriverAmendStatusCB
*status_cb
,
1808 BDRVQcow2State
*s
= bs
->opaque
;
1809 bool is_active_l1
= (l1_table
== s
->l1_table
);
1810 uint64_t *l2_table
= NULL
;
1814 if (!is_active_l1
) {
1815 /* inactive L2 tables require a buffer to be stored in when loading
1817 l2_table
= qemu_try_blockalign(bs
->file
->bs
, s
->cluster_size
);
1818 if (l2_table
== NULL
) {
1823 for (i
= 0; i
< l1_size
; i
++) {
1824 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1825 bool l2_dirty
= false;
1826 uint64_t l2_refcount
;
1830 (*visited_l1_entries
)++;
1832 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1837 if (offset_into_cluster(s
, l2_offset
)) {
1838 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1839 PRIx64
" unaligned (L1 index: %#x)",
1846 /* get active L2 tables from cache */
1847 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1848 (void **)&l2_table
);
1850 /* load inactive L2 tables from disk */
1851 ret
= bdrv_read(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1852 (void *)l2_table
, s
->cluster_sectors
);
1858 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1864 for (j
= 0; j
< s
->l2_size
; j
++) {
1865 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1866 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1867 QCow2ClusterType cluster_type
= qcow2_get_cluster_type(l2_entry
);
1869 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
1870 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
1874 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1876 /* not backed; therefore we can simply deallocate the
1883 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1889 if (l2_refcount
> 1) {
1890 /* For shared L2 tables, set the refcount accordingly (it is
1891 * already 1 and needs to be l2_refcount) */
1892 ret
= qcow2_update_cluster_refcount(bs
,
1893 offset
>> s
->cluster_bits
,
1894 refcount_diff(1, l2_refcount
), false,
1895 QCOW2_DISCARD_OTHER
);
1897 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1898 QCOW2_DISCARD_OTHER
);
1904 if (offset_into_cluster(s
, offset
)) {
1905 qcow2_signal_corruption(bs
, true, -1, -1,
1906 "Cluster allocation offset "
1907 "%#" PRIx64
" unaligned (L2 offset: %#"
1908 PRIx64
", L2 index: %#x)", offset
,
1910 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1911 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1912 QCOW2_DISCARD_ALWAYS
);
1918 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
1920 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1921 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1922 QCOW2_DISCARD_ALWAYS
);
1927 ret
= bdrv_pwrite_zeroes(bs
->file
, offset
, s
->cluster_size
, 0);
1929 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1930 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1931 QCOW2_DISCARD_ALWAYS
);
1936 if (l2_refcount
== 1) {
1937 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1939 l2_table
[j
] = cpu_to_be64(offset
);
1946 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1947 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1949 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1952 ret
= qcow2_pre_write_overlap_check(bs
,
1953 QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
, l2_offset
,
1959 ret
= bdrv_write(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1960 (void *)l2_table
, s
->cluster_sectors
);
1967 (*visited_l1_entries
)++;
1969 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1977 if (!is_active_l1
) {
1978 qemu_vfree(l2_table
);
1980 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1987 * For backed images, expands all zero clusters on the image. For non-backed
1988 * images, deallocates all non-pre-allocated zero clusters (and claims the
1989 * allocation for pre-allocated ones). This is important for downgrading to a
1990 * qcow2 version which doesn't yet support metadata zero clusters.
1992 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
1993 BlockDriverAmendStatusCB
*status_cb
,
1996 BDRVQcow2State
*s
= bs
->opaque
;
1997 uint64_t *l1_table
= NULL
;
1998 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2003 l1_entries
= s
->l1_size
;
2004 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2005 l1_entries
+= s
->snapshots
[i
].l1_size
;
2009 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2010 &visited_l1_entries
, l1_entries
,
2011 status_cb
, cb_opaque
);
2016 /* Inactive L1 tables may point to active L2 tables - therefore it is
2017 * necessary to flush the L2 table cache before trying to access the L2
2018 * tables pointed to by inactive L1 entries (else we might try to expand
2019 * zero clusters that have already been expanded); furthermore, it is also
2020 * necessary to empty the L2 table cache, since it may contain tables which
2021 * are now going to be modified directly on disk, bypassing the cache.
2022 * qcow2_cache_empty() does both for us. */
2023 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2028 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2029 int l1_sectors
= DIV_ROUND_UP(s
->snapshots
[i
].l1_size
*
2030 sizeof(uint64_t), BDRV_SECTOR_SIZE
);
2032 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
2034 ret
= bdrv_read(bs
->file
,
2035 s
->snapshots
[i
].l1_table_offset
/ BDRV_SECTOR_SIZE
,
2036 (void *)l1_table
, l1_sectors
);
2041 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2042 be64_to_cpus(&l1_table
[j
]);
2045 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2046 &visited_l1_entries
, l1_entries
,
2047 status_cb
, cb_opaque
);