memory, exec: Expose all memory block related flags.
[qemu/ar7.git] / accel / tcg / translate-all.c
blob1571987113b2f98bb45cda23385083f5bcb82974
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/ram_addr.h"
50 #endif
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/error-report.h"
57 #include "qemu/timer.h"
58 #include "qemu/main-loop.h"
59 #include "exec/log.h"
60 #include "sysemu/cpus.h"
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation. */
81 #undef DEBUG_TB_CHECK
82 #endif
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
90 /* Access to the various translations structures need to be serialised via locks
91 * for consistency.
92 * In user-mode emulation access to the memory related structures are protected
93 * with mmap_lock.
94 * In !user-mode we use per-page locks.
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
102 #define SMC_BITMAP_USE_THRESHOLD 10
104 typedef struct PageDesc {
105 /* list of TBs intersecting this ram page */
106 uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108 /* in order to optimize self modifying code, we count the number
109 of lookups we do to a given page to use a bitmap */
110 unsigned long *code_bitmap;
111 unsigned int code_write_count;
112 #else
113 unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116 QemuSpin lock;
117 #endif
118 } PageDesc;
121 * struct page_entry - page descriptor entry
122 * @pd: pointer to the &struct PageDesc of the page this entry represents
123 * @index: page index of the page
124 * @locked: whether the page is locked
126 * This struct helps us keep track of the locked state of a page, without
127 * bloating &struct PageDesc.
129 * A page lock protects accesses to all fields of &struct PageDesc.
131 * See also: &struct page_collection.
133 struct page_entry {
134 PageDesc *pd;
135 tb_page_addr_t index;
136 bool locked;
140 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141 * @tree: Binary search tree (BST) of the pages, with key == page index
142 * @max: Pointer to the page in @tree with the highest page index
144 * To avoid deadlock we lock pages in ascending order of page index.
145 * When operating on a set of pages, we need to keep track of them so that
146 * we can lock them in order and also unlock them later. For this we collect
147 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148 * @tree implementation we use does not provide an O(1) operation to obtain the
149 * highest-ranked element, we use @max to keep track of the inserted page
150 * with the highest index. This is valuable because if a page is not in
151 * the tree and its index is higher than @max's, then we can lock it
152 * without breaking the locking order rule.
154 * Note on naming: 'struct page_set' would be shorter, but we already have a few
155 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
157 * See also: page_collection_lock().
159 struct page_collection {
160 GTree *tree;
161 struct page_entry *max;
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
166 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
167 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
171 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
173 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
174 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
176 /* In system mode we want L1_MAP to be based on ram offsets,
177 while in user mode we want it to be based on virtual addresses. */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
188 /* Size of the L2 (and L3, etc) page tables. */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194 sizeof_field(TranslationBlock, trace_vcpu_dstate)
195 * BITS_PER_BYTE);
198 * L1 Mapping properties
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
204 /* The bottom level has pointers to PageDesc, and is indexed by
205 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
211 static void *l1_map[V_L1_MAX_SIZE];
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
219 static void page_table_config_init(void)
221 uint32_t v_l1_bits;
223 assert(TARGET_PAGE_BITS);
224 /* The bits remaining after N lower levels of page tables. */
225 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226 if (v_l1_bits < V_L1_MIN_BITS) {
227 v_l1_bits += V_L2_BITS;
230 v_l1_size = 1 << v_l1_bits;
231 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
234 assert(v_l1_bits <= V_L1_MAX_BITS);
235 assert(v_l1_shift % V_L2_BITS == 0);
236 assert(v_l2_levels >= 0);
239 void cpu_gen_init(void)
241 tcg_context_init(&tcg_init_ctx);
244 /* Encode VAL as a signed leb128 sequence at P.
245 Return P incremented past the encoded value. */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
248 int more, byte;
250 do {
251 byte = val & 0x7f;
252 val >>= 7;
253 more = !((val == 0 && (byte & 0x40) == 0)
254 || (val == -1 && (byte & 0x40) != 0));
255 if (more) {
256 byte |= 0x80;
258 *p++ = byte;
259 } while (more);
261 return p;
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265 decoded value. Return the decoded value. */
266 static target_long decode_sleb128(uint8_t **pp)
268 uint8_t *p = *pp;
269 target_long val = 0;
270 int byte, shift = 0;
272 do {
273 byte = *p++;
274 val |= (target_ulong)(byte & 0x7f) << shift;
275 shift += 7;
276 } while (byte & 0x80);
277 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278 val |= -(target_ulong)1 << shift;
281 *pp = p;
282 return val;
285 /* Encode the data collected about the instructions while compiling TB.
286 Place the data at BLOCK, and return the number of bytes consumed.
288 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289 which come from the target's insn_start data, followed by a uintptr_t
290 which comes from the host pc of the end of the code implementing the insn.
292 Each line of the table is encoded as sleb128 deltas from the previous
293 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294 That is, the first column is seeded with the guest pc, the last column
295 with the host pc, and the middle columns with zeros. */
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
299 uint8_t *highwater = tcg_ctx->code_gen_highwater;
300 uint8_t *p = block;
301 int i, j, n;
303 for (i = 0, n = tb->icount; i < n; ++i) {
304 target_ulong prev;
306 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307 if (i == 0) {
308 prev = (j == 0 ? tb->pc : 0);
309 } else {
310 prev = tcg_ctx->gen_insn_data[i - 1][j];
312 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
314 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
317 /* Test for (pending) buffer overflow. The assumption is that any
318 one row beginning below the high water mark cannot overrun
319 the buffer completely. Thus we can test for overflow after
320 encoding a row without having to check during encoding. */
321 if (unlikely(p > highwater)) {
322 return -1;
326 return p - block;
329 /* The cpu state corresponding to 'searched_pc' is restored.
330 * When reset_icount is true, current TB will be interrupted and
331 * icount should be recalculated.
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334 uintptr_t searched_pc, bool reset_icount)
336 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338 CPUArchState *env = cpu->env_ptr;
339 uint8_t *p = tb->tc.ptr + tb->tc.size;
340 int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342 TCGProfile *prof = &tcg_ctx->prof;
343 int64_t ti = profile_getclock();
344 #endif
346 searched_pc -= GETPC_ADJ;
348 if (searched_pc < host_pc) {
349 return -1;
352 /* Reconstruct the stored insn data while looking for the point at
353 which the end of the insn exceeds the searched_pc. */
354 for (i = 0; i < num_insns; ++i) {
355 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356 data[j] += decode_sleb128(&p);
358 host_pc += decode_sleb128(&p);
359 if (host_pc > searched_pc) {
360 goto found;
363 return -1;
365 found:
366 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367 assert(use_icount);
368 /* Reset the cycle counter to the start of the block
369 and shift if to the number of actually executed instructions */
370 cpu->icount_decr.u16.low += num_insns - i;
372 restore_state_to_opc(env, tb, data);
374 #ifdef CONFIG_PROFILER
375 atomic_set(&prof->restore_time,
376 prof->restore_time + profile_getclock() - ti);
377 atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379 return 0;
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
384 TranslationBlock *tb;
385 bool r = false;
386 uintptr_t check_offset;
388 /* The host_pc has to be in the region of current code buffer. If
389 * it is not we will not be able to resolve it here. The two cases
390 * where host_pc will not be correct are:
392 * - fault during translation (instruction fetch)
393 * - fault from helper (not using GETPC() macro)
395 * Either way we need return early as we can't resolve it here.
397 * We are using unsigned arithmetic so if host_pc <
398 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399 * above the code_gen_buffer_size
401 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
403 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404 tb = tcg_tb_lookup(host_pc);
405 if (tb) {
406 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407 if (tb_cflags(tb) & CF_NOCACHE) {
408 /* one-shot translation, invalidate it immediately */
409 tb_phys_invalidate(tb, -1);
410 tcg_tb_remove(tb);
412 r = true;
416 return r;
419 static void page_init(void)
421 page_size_init();
422 page_table_config_init();
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
426 #ifdef HAVE_KINFO_GETVMMAP
427 struct kinfo_vmentry *freep;
428 int i, cnt;
430 freep = kinfo_getvmmap(getpid(), &cnt);
431 if (freep) {
432 mmap_lock();
433 for (i = 0; i < cnt; i++) {
434 unsigned long startaddr, endaddr;
436 startaddr = freep[i].kve_start;
437 endaddr = freep[i].kve_end;
438 if (h2g_valid(startaddr)) {
439 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
441 if (h2g_valid(endaddr)) {
442 endaddr = h2g(endaddr);
443 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446 endaddr = ~0ul;
447 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
452 free(freep);
453 mmap_unlock();
455 #else
456 FILE *f;
458 last_brk = (unsigned long)sbrk(0);
460 f = fopen("/compat/linux/proc/self/maps", "r");
461 if (f) {
462 mmap_lock();
464 do {
465 unsigned long startaddr, endaddr;
466 int n;
468 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
470 if (n == 2 && h2g_valid(startaddr)) {
471 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
473 if (h2g_valid(endaddr)) {
474 endaddr = h2g(endaddr);
475 } else {
476 endaddr = ~0ul;
478 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
480 } while (!feof(f));
482 fclose(f);
483 mmap_unlock();
485 #endif
487 #endif
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
492 PageDesc *pd;
493 void **lp;
494 int i;
496 /* Level 1. Always allocated. */
497 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
499 /* Level 2..N-1. */
500 for (i = v_l2_levels; i > 0; i--) {
501 void **p = atomic_rcu_read(lp);
503 if (p == NULL) {
504 void *existing;
506 if (!alloc) {
507 return NULL;
509 p = g_new0(void *, V_L2_SIZE);
510 existing = atomic_cmpxchg(lp, NULL, p);
511 if (unlikely(existing)) {
512 g_free(p);
513 p = existing;
517 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
520 pd = atomic_rcu_read(lp);
521 if (pd == NULL) {
522 void *existing;
524 if (!alloc) {
525 return NULL;
527 pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
530 int i;
532 for (i = 0; i < V_L2_SIZE; i++) {
533 qemu_spin_init(&pd[i].lock);
536 #endif
537 existing = atomic_cmpxchg(lp, NULL, pd);
538 if (unlikely(existing)) {
539 g_free(pd);
540 pd = existing;
544 return pd + (index & (V_L2_SIZE - 1));
547 static inline PageDesc *page_find(tb_page_addr_t index)
549 return page_find_alloc(index, 0);
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
560 static inline void page_lock(PageDesc *pd)
563 static inline void page_unlock(PageDesc *pd)
566 static inline void page_lock_tb(const TranslationBlock *tb)
569 static inline void page_unlock_tb(const TranslationBlock *tb)
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
575 return NULL;
578 void page_collection_unlock(struct page_collection *set)
580 #else /* !CONFIG_USER_ONLY */
582 #ifdef CONFIG_DEBUG_TCG
584 static __thread GHashTable *ht_pages_locked_debug;
586 static void ht_pages_locked_debug_init(void)
588 if (ht_pages_locked_debug) {
589 return;
591 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
594 static bool page_is_locked(const PageDesc *pd)
596 PageDesc *found;
598 ht_pages_locked_debug_init();
599 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600 return !!found;
603 static void page_lock__debug(PageDesc *pd)
605 ht_pages_locked_debug_init();
606 g_assert(!page_is_locked(pd));
607 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
610 static void page_unlock__debug(const PageDesc *pd)
612 bool removed;
614 ht_pages_locked_debug_init();
615 g_assert(page_is_locked(pd));
616 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617 g_assert(removed);
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
623 if (unlikely(!page_is_locked(pd))) {
624 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625 pd, file, line);
626 abort();
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
632 void assert_no_pages_locked(void)
634 ht_pages_locked_debug_init();
635 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
638 #else /* !CONFIG_DEBUG_TCG */
640 #define assert_page_locked(pd)
642 static inline void page_lock__debug(const PageDesc *pd)
646 static inline void page_unlock__debug(const PageDesc *pd)
650 #endif /* CONFIG_DEBUG_TCG */
652 static inline void page_lock(PageDesc *pd)
654 page_lock__debug(pd);
655 qemu_spin_lock(&pd->lock);
658 static inline void page_unlock(PageDesc *pd)
660 qemu_spin_unlock(&pd->lock);
661 page_unlock__debug(pd);
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
667 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
670 static inline void page_unlock_tb(const TranslationBlock *tb)
672 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
674 page_unlock(p1);
675 if (unlikely(tb->page_addr[1] != -1)) {
676 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
678 if (p2 != p1) {
679 page_unlock(p2);
684 static inline struct page_entry *
685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
687 struct page_entry *pe = g_malloc(sizeof(*pe));
689 pe->index = index;
690 pe->pd = pd;
691 pe->locked = false;
692 return pe;
695 static void page_entry_destroy(gpointer p)
697 struct page_entry *pe = p;
699 g_assert(pe->locked);
700 page_unlock(pe->pd);
701 g_free(pe);
704 /* returns false on success */
705 static bool page_entry_trylock(struct page_entry *pe)
707 bool busy;
709 busy = qemu_spin_trylock(&pe->pd->lock);
710 if (!busy) {
711 g_assert(!pe->locked);
712 pe->locked = true;
713 page_lock__debug(pe->pd);
715 return busy;
718 static void do_page_entry_lock(struct page_entry *pe)
720 page_lock(pe->pd);
721 g_assert(!pe->locked);
722 pe->locked = true;
725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
727 struct page_entry *pe = value;
729 do_page_entry_lock(pe);
730 return FALSE;
733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
735 struct page_entry *pe = value;
737 if (pe->locked) {
738 pe->locked = false;
739 page_unlock(pe->pd);
741 return FALSE;
745 * Trylock a page, and if successful, add the page to a collection.
746 * Returns true ("busy") if the page could not be locked; false otherwise.
748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
750 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751 struct page_entry *pe;
752 PageDesc *pd;
754 pe = g_tree_lookup(set->tree, &index);
755 if (pe) {
756 return false;
759 pd = page_find(index);
760 if (pd == NULL) {
761 return false;
764 pe = page_entry_new(pd, index);
765 g_tree_insert(set->tree, &pe->index, pe);
768 * If this is either (1) the first insertion or (2) a page whose index
769 * is higher than any other so far, just lock the page and move on.
771 if (set->max == NULL || pe->index > set->max->index) {
772 set->max = pe;
773 do_page_entry_lock(pe);
774 return false;
777 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778 * locks in order.
780 return page_entry_trylock(pe);
783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
785 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
788 if (a == b) {
789 return 0;
790 } else if (a < b) {
791 return -1;
793 return 1;
797 * Lock a range of pages ([@start,@end[) as well as the pages of all
798 * intersecting TBs.
799 * Locking order: acquire locks in ascending order of page index.
801 struct page_collection *
802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
804 struct page_collection *set = g_malloc(sizeof(*set));
805 tb_page_addr_t index;
806 PageDesc *pd;
808 start >>= TARGET_PAGE_BITS;
809 end >>= TARGET_PAGE_BITS;
810 g_assert(start <= end);
812 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813 page_entry_destroy);
814 set->max = NULL;
815 assert_no_pages_locked();
817 retry:
818 g_tree_foreach(set->tree, page_entry_lock, NULL);
820 for (index = start; index <= end; index++) {
821 TranslationBlock *tb;
822 int n;
824 pd = page_find(index);
825 if (pd == NULL) {
826 continue;
828 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829 g_tree_foreach(set->tree, page_entry_unlock, NULL);
830 goto retry;
832 assert_page_locked(pd);
833 PAGE_FOR_EACH_TB(pd, tb, n) {
834 if (page_trylock_add(set, tb->page_addr[0]) ||
835 (tb->page_addr[1] != -1 &&
836 page_trylock_add(set, tb->page_addr[1]))) {
837 /* drop all locks, and reacquire in order */
838 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839 goto retry;
843 return set;
846 void page_collection_unlock(struct page_collection *set)
848 /* entries are unlocked and freed via page_entry_destroy */
849 g_tree_destroy(set->tree);
850 g_free(set);
853 #endif /* !CONFIG_USER_ONLY */
855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
858 PageDesc *p1, *p2;
859 tb_page_addr_t page1;
860 tb_page_addr_t page2;
862 assert_memory_lock();
863 g_assert(phys1 != -1);
865 page1 = phys1 >> TARGET_PAGE_BITS;
866 page2 = phys2 >> TARGET_PAGE_BITS;
868 p1 = page_find_alloc(page1, alloc);
869 if (ret_p1) {
870 *ret_p1 = p1;
872 if (likely(phys2 == -1)) {
873 page_lock(p1);
874 return;
875 } else if (page1 == page2) {
876 page_lock(p1);
877 if (ret_p2) {
878 *ret_p2 = p1;
880 return;
882 p2 = page_find_alloc(page2, alloc);
883 if (ret_p2) {
884 *ret_p2 = p2;
886 if (page1 < page2) {
887 page_lock(p1);
888 page_lock(p2);
889 } else {
890 page_lock(p2);
891 page_lock(p1);
895 #if defined(CONFIG_USER_ONLY)
896 /* Currently it is not recommended to allocate big chunks of data in
897 user mode. It will change when a dedicated libc will be used. */
898 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
899 region in which the guest needs to run. Revisit this. */
900 #define USE_STATIC_CODE_GEN_BUFFER
901 #endif
903 /* Minimum size of the code gen buffer. This number is randomly chosen,
904 but not so small that we can't have a fair number of TB's live. */
905 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
907 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
908 indicated, this is constrained by the range of direct branches on the
909 host cpu, as used by the TCG implementation of goto_tb. */
910 #if defined(__x86_64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
912 #elif defined(__sparc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
914 #elif defined(__powerpc64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
916 #elif defined(__powerpc__)
917 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
918 #elif defined(__aarch64__)
919 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
920 #elif defined(__s390x__)
921 /* We have a +- 4GB range on the branches; leave some slop. */
922 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
923 #elif defined(__mips__)
924 /* We have a 256MB branch region, but leave room to make sure the
925 main executable is also within that region. */
926 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
927 #else
928 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
929 #endif
931 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
933 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
934 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
935 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
937 static inline size_t size_code_gen_buffer(size_t tb_size)
939 /* Size the buffer. */
940 if (tb_size == 0) {
941 #ifdef USE_STATIC_CODE_GEN_BUFFER
942 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
943 #else
944 /* ??? Needs adjustments. */
945 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
946 static buffer, we could size this on RESERVED_VA, on the text
947 segment size of the executable, or continue to use the default. */
948 tb_size = (unsigned long)(ram_size / 4);
949 #endif
951 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
952 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
954 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
955 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
957 return tb_size;
960 #ifdef __mips__
961 /* In order to use J and JAL within the code_gen_buffer, we require
962 that the buffer not cross a 256MB boundary. */
963 static inline bool cross_256mb(void *addr, size_t size)
965 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
968 /* We weren't able to allocate a buffer without crossing that boundary,
969 so make do with the larger portion of the buffer that doesn't cross.
970 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
971 static inline void *split_cross_256mb(void *buf1, size_t size1)
973 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
974 size_t size2 = buf1 + size1 - buf2;
976 size1 = buf2 - buf1;
977 if (size1 < size2) {
978 size1 = size2;
979 buf1 = buf2;
982 tcg_ctx->code_gen_buffer_size = size1;
983 return buf1;
985 #endif
987 #ifdef USE_STATIC_CODE_GEN_BUFFER
988 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
989 __attribute__((aligned(CODE_GEN_ALIGN)));
991 static inline void *alloc_code_gen_buffer(void)
993 void *buf = static_code_gen_buffer;
994 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
995 size_t size;
997 /* page-align the beginning and end of the buffer */
998 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
999 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1001 size = end - buf;
1003 /* Honor a command-line option limiting the size of the buffer. */
1004 if (size > tcg_ctx->code_gen_buffer_size) {
1005 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1006 qemu_real_host_page_size);
1008 tcg_ctx->code_gen_buffer_size = size;
1010 #ifdef __mips__
1011 if (cross_256mb(buf, size)) {
1012 buf = split_cross_256mb(buf, size);
1013 size = tcg_ctx->code_gen_buffer_size;
1015 #endif
1017 if (qemu_mprotect_rwx(buf, size)) {
1018 abort();
1020 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1022 return buf;
1024 #elif defined(_WIN32)
1025 static inline void *alloc_code_gen_buffer(void)
1027 size_t size = tcg_ctx->code_gen_buffer_size;
1028 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1029 PAGE_EXECUTE_READWRITE);
1031 #else
1032 static inline void *alloc_code_gen_buffer(void)
1034 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1035 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1036 uintptr_t start = 0;
1037 size_t size = tcg_ctx->code_gen_buffer_size;
1038 void *buf;
1040 /* Constrain the position of the buffer based on the host cpu.
1041 Note that these addresses are chosen in concert with the
1042 addresses assigned in the relevant linker script file. */
1043 # if defined(__PIE__) || defined(__PIC__)
1044 /* Don't bother setting a preferred location if we're building
1045 a position-independent executable. We're more likely to get
1046 an address near the main executable if we let the kernel
1047 choose the address. */
1048 # elif defined(__x86_64__) && defined(MAP_32BIT)
1049 /* Force the memory down into low memory with the executable.
1050 Leave the choice of exact location with the kernel. */
1051 flags |= MAP_32BIT;
1052 /* Cannot expect to map more than 800MB in low memory. */
1053 if (size > 800u * 1024 * 1024) {
1054 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1056 # elif defined(__sparc__)
1057 start = 0x40000000ul;
1058 # elif defined(__s390x__)
1059 start = 0x90000000ul;
1060 # elif defined(__mips__)
1061 # if _MIPS_SIM == _ABI64
1062 start = 0x128000000ul;
1063 # else
1064 start = 0x08000000ul;
1065 # endif
1066 # endif
1068 buf = mmap((void *)start, size, prot, flags, -1, 0);
1069 if (buf == MAP_FAILED) {
1070 return NULL;
1073 #ifdef __mips__
1074 if (cross_256mb(buf, size)) {
1075 /* Try again, with the original still mapped, to avoid re-acquiring
1076 that 256mb crossing. This time don't specify an address. */
1077 size_t size2;
1078 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1079 switch ((int)(buf2 != MAP_FAILED)) {
1080 case 1:
1081 if (!cross_256mb(buf2, size)) {
1082 /* Success! Use the new buffer. */
1083 munmap(buf, size);
1084 break;
1086 /* Failure. Work with what we had. */
1087 munmap(buf2, size);
1088 /* fallthru */
1089 default:
1090 /* Split the original buffer. Free the smaller half. */
1091 buf2 = split_cross_256mb(buf, size);
1092 size2 = tcg_ctx->code_gen_buffer_size;
1093 if (buf == buf2) {
1094 munmap(buf + size2, size - size2);
1095 } else {
1096 munmap(buf, size - size2);
1098 size = size2;
1099 break;
1101 buf = buf2;
1103 #endif
1105 /* Request large pages for the buffer. */
1106 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1108 return buf;
1110 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1112 static inline void code_gen_alloc(size_t tb_size)
1114 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1115 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1116 if (tcg_ctx->code_gen_buffer == NULL) {
1117 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1118 exit(1);
1122 static bool tb_cmp(const void *ap, const void *bp)
1124 const TranslationBlock *a = ap;
1125 const TranslationBlock *b = bp;
1127 return a->pc == b->pc &&
1128 a->cs_base == b->cs_base &&
1129 a->flags == b->flags &&
1130 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1131 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1132 a->page_addr[0] == b->page_addr[0] &&
1133 a->page_addr[1] == b->page_addr[1];
1136 static void tb_htable_init(void)
1138 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1140 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1143 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1144 (in bytes) allocated to the translation buffer. Zero means default
1145 size. */
1146 void tcg_exec_init(unsigned long tb_size)
1148 tcg_allowed = true;
1149 cpu_gen_init();
1150 page_init();
1151 tb_htable_init();
1152 code_gen_alloc(tb_size);
1153 #if defined(CONFIG_SOFTMMU)
1154 /* There's no guest base to take into account, so go ahead and
1155 initialize the prologue now. */
1156 tcg_prologue_init(tcg_ctx);
1157 #endif
1161 * Allocate a new translation block. Flush the translation buffer if
1162 * too many translation blocks or too much generated code.
1164 static TranslationBlock *tb_alloc(target_ulong pc)
1166 TranslationBlock *tb;
1168 assert_memory_lock();
1170 tb = tcg_tb_alloc(tcg_ctx);
1171 if (unlikely(tb == NULL)) {
1172 return NULL;
1174 return tb;
1177 /* call with @p->lock held */
1178 static inline void invalidate_page_bitmap(PageDesc *p)
1180 assert_page_locked(p);
1181 #ifdef CONFIG_SOFTMMU
1182 g_free(p->code_bitmap);
1183 p->code_bitmap = NULL;
1184 p->code_write_count = 0;
1185 #endif
1188 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1189 static void page_flush_tb_1(int level, void **lp)
1191 int i;
1193 if (*lp == NULL) {
1194 return;
1196 if (level == 0) {
1197 PageDesc *pd = *lp;
1199 for (i = 0; i < V_L2_SIZE; ++i) {
1200 page_lock(&pd[i]);
1201 pd[i].first_tb = (uintptr_t)NULL;
1202 invalidate_page_bitmap(pd + i);
1203 page_unlock(&pd[i]);
1205 } else {
1206 void **pp = *lp;
1208 for (i = 0; i < V_L2_SIZE; ++i) {
1209 page_flush_tb_1(level - 1, pp + i);
1214 static void page_flush_tb(void)
1216 int i, l1_sz = v_l1_size;
1218 for (i = 0; i < l1_sz; i++) {
1219 page_flush_tb_1(v_l2_levels, l1_map + i);
1223 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1225 const TranslationBlock *tb = value;
1226 size_t *size = data;
1228 *size += tb->tc.size;
1229 return false;
1232 /* flush all the translation blocks */
1233 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1235 mmap_lock();
1236 /* If it is already been done on request of another CPU,
1237 * just retry.
1239 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1240 goto done;
1243 if (DEBUG_TB_FLUSH_GATE) {
1244 size_t nb_tbs = tcg_nb_tbs();
1245 size_t host_size = 0;
1247 tcg_tb_foreach(tb_host_size_iter, &host_size);
1248 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1249 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1252 CPU_FOREACH(cpu) {
1253 cpu_tb_jmp_cache_clear(cpu);
1256 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1257 page_flush_tb();
1259 tcg_region_reset_all();
1260 /* XXX: flush processor icache at this point if cache flush is
1261 expensive */
1262 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1264 done:
1265 mmap_unlock();
1268 void tb_flush(CPUState *cpu)
1270 if (tcg_enabled()) {
1271 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1272 async_safe_run_on_cpu(cpu, do_tb_flush,
1273 RUN_ON_CPU_HOST_INT(tb_flush_count));
1278 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1279 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1280 * and let the optimizer get rid of them by wrapping their user-only callers
1281 * with if (DEBUG_TB_CHECK_GATE).
1283 #ifdef CONFIG_USER_ONLY
1285 static void
1286 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1288 TranslationBlock *tb = p;
1289 target_ulong addr = *(target_ulong *)userp;
1291 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1292 printf("ERROR invalidate: address=" TARGET_FMT_lx
1293 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1297 /* verify that all the pages have correct rights for code
1299 * Called with mmap_lock held.
1301 static void tb_invalidate_check(target_ulong address)
1303 address &= TARGET_PAGE_MASK;
1304 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1307 static void
1308 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1310 TranslationBlock *tb = p;
1311 int flags1, flags2;
1313 flags1 = page_get_flags(tb->pc);
1314 flags2 = page_get_flags(tb->pc + tb->size - 1);
1315 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1316 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1317 (long)tb->pc, tb->size, flags1, flags2);
1321 /* verify that all the pages have correct rights for code */
1322 static void tb_page_check(void)
1324 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1327 #endif /* CONFIG_USER_ONLY */
1330 * user-mode: call with mmap_lock held
1331 * !user-mode: call with @pd->lock held
1333 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1335 TranslationBlock *tb1;
1336 uintptr_t *pprev;
1337 unsigned int n1;
1339 assert_page_locked(pd);
1340 pprev = &pd->first_tb;
1341 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1342 if (tb1 == tb) {
1343 *pprev = tb1->page_next[n1];
1344 return;
1346 pprev = &tb1->page_next[n1];
1348 g_assert_not_reached();
1351 /* remove @orig from its @n_orig-th jump list */
1352 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1354 uintptr_t ptr, ptr_locked;
1355 TranslationBlock *dest;
1356 TranslationBlock *tb;
1357 uintptr_t *pprev;
1358 int n;
1360 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1361 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1362 dest = (TranslationBlock *)(ptr & ~1);
1363 if (dest == NULL) {
1364 return;
1367 qemu_spin_lock(&dest->jmp_lock);
1369 * While acquiring the lock, the jump might have been removed if the
1370 * destination TB was invalidated; check again.
1372 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1373 if (ptr_locked != ptr) {
1374 qemu_spin_unlock(&dest->jmp_lock);
1376 * The only possibility is that the jump was unlinked via
1377 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1378 * because we set the LSB above.
1380 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1381 return;
1384 * We first acquired the lock, and since the destination pointer matches,
1385 * we know for sure that @orig is in the jmp list.
1387 pprev = &dest->jmp_list_head;
1388 TB_FOR_EACH_JMP(dest, tb, n) {
1389 if (tb == orig && n == n_orig) {
1390 *pprev = tb->jmp_list_next[n];
1391 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1392 qemu_spin_unlock(&dest->jmp_lock);
1393 return;
1395 pprev = &tb->jmp_list_next[n];
1397 g_assert_not_reached();
1400 /* reset the jump entry 'n' of a TB so that it is not chained to
1401 another TB */
1402 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1404 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1405 tb_set_jmp_target(tb, n, addr);
1408 /* remove any jumps to the TB */
1409 static inline void tb_jmp_unlink(TranslationBlock *dest)
1411 TranslationBlock *tb;
1412 int n;
1414 qemu_spin_lock(&dest->jmp_lock);
1416 TB_FOR_EACH_JMP(dest, tb, n) {
1417 tb_reset_jump(tb, n);
1418 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1419 /* No need to clear the list entry; setting the dest ptr is enough */
1421 dest->jmp_list_head = (uintptr_t)NULL;
1423 qemu_spin_unlock(&dest->jmp_lock);
1427 * In user-mode, call with mmap_lock held.
1428 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1429 * locks held.
1431 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1433 CPUState *cpu;
1434 PageDesc *p;
1435 uint32_t h;
1436 tb_page_addr_t phys_pc;
1438 assert_memory_lock();
1440 /* make sure no further incoming jumps will be chained to this TB */
1441 qemu_spin_lock(&tb->jmp_lock);
1442 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1443 qemu_spin_unlock(&tb->jmp_lock);
1445 /* remove the TB from the hash list */
1446 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1447 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1448 tb->trace_vcpu_dstate);
1449 if (!(tb->cflags & CF_NOCACHE) &&
1450 !qht_remove(&tb_ctx.htable, tb, h)) {
1451 return;
1454 /* remove the TB from the page list */
1455 if (rm_from_page_list) {
1456 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1457 tb_page_remove(p, tb);
1458 invalidate_page_bitmap(p);
1459 if (tb->page_addr[1] != -1) {
1460 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1461 tb_page_remove(p, tb);
1462 invalidate_page_bitmap(p);
1466 /* remove the TB from the hash list */
1467 h = tb_jmp_cache_hash_func(tb->pc);
1468 CPU_FOREACH(cpu) {
1469 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1470 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1474 /* suppress this TB from the two jump lists */
1475 tb_remove_from_jmp_list(tb, 0);
1476 tb_remove_from_jmp_list(tb, 1);
1478 /* suppress any remaining jumps to this TB */
1479 tb_jmp_unlink(tb);
1481 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1482 tcg_ctx->tb_phys_invalidate_count + 1);
1485 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1487 do_tb_phys_invalidate(tb, true);
1490 /* invalidate one TB
1492 * Called with mmap_lock held in user-mode.
1494 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1496 if (page_addr == -1) {
1497 page_lock_tb(tb);
1498 do_tb_phys_invalidate(tb, true);
1499 page_unlock_tb(tb);
1500 } else {
1501 do_tb_phys_invalidate(tb, false);
1505 #ifdef CONFIG_SOFTMMU
1506 /* call with @p->lock held */
1507 static void build_page_bitmap(PageDesc *p)
1509 int n, tb_start, tb_end;
1510 TranslationBlock *tb;
1512 assert_page_locked(p);
1513 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1515 PAGE_FOR_EACH_TB(p, tb, n) {
1516 /* NOTE: this is subtle as a TB may span two physical pages */
1517 if (n == 0) {
1518 /* NOTE: tb_end may be after the end of the page, but
1519 it is not a problem */
1520 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1521 tb_end = tb_start + tb->size;
1522 if (tb_end > TARGET_PAGE_SIZE) {
1523 tb_end = TARGET_PAGE_SIZE;
1525 } else {
1526 tb_start = 0;
1527 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1529 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1532 #endif
1534 /* add the tb in the target page and protect it if necessary
1536 * Called with mmap_lock held for user-mode emulation.
1537 * Called with @p->lock held in !user-mode.
1539 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1540 unsigned int n, tb_page_addr_t page_addr)
1542 #ifndef CONFIG_USER_ONLY
1543 bool page_already_protected;
1544 #endif
1546 assert_page_locked(p);
1548 tb->page_addr[n] = page_addr;
1549 tb->page_next[n] = p->first_tb;
1550 #ifndef CONFIG_USER_ONLY
1551 page_already_protected = p->first_tb != (uintptr_t)NULL;
1552 #endif
1553 p->first_tb = (uintptr_t)tb | n;
1554 invalidate_page_bitmap(p);
1556 #if defined(CONFIG_USER_ONLY)
1557 if (p->flags & PAGE_WRITE) {
1558 target_ulong addr;
1559 PageDesc *p2;
1560 int prot;
1562 /* force the host page as non writable (writes will have a
1563 page fault + mprotect overhead) */
1564 page_addr &= qemu_host_page_mask;
1565 prot = 0;
1566 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1567 addr += TARGET_PAGE_SIZE) {
1569 p2 = page_find(addr >> TARGET_PAGE_BITS);
1570 if (!p2) {
1571 continue;
1573 prot |= p2->flags;
1574 p2->flags &= ~PAGE_WRITE;
1576 mprotect(g2h(page_addr), qemu_host_page_size,
1577 (prot & PAGE_BITS) & ~PAGE_WRITE);
1578 if (DEBUG_TB_INVALIDATE_GATE) {
1579 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1582 #else
1583 /* if some code is already present, then the pages are already
1584 protected. So we handle the case where only the first TB is
1585 allocated in a physical page */
1586 if (!page_already_protected) {
1587 tlb_protect_code(page_addr);
1589 #endif
1592 /* add a new TB and link it to the physical page tables. phys_page2 is
1593 * (-1) to indicate that only one page contains the TB.
1595 * Called with mmap_lock held for user-mode emulation.
1597 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1598 * Note that in !user-mode, another thread might have already added a TB
1599 * for the same block of guest code that @tb corresponds to. In that case,
1600 * the caller should discard the original @tb, and use instead the returned TB.
1602 static TranslationBlock *
1603 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1604 tb_page_addr_t phys_page2)
1606 PageDesc *p;
1607 PageDesc *p2 = NULL;
1609 assert_memory_lock();
1612 * Add the TB to the page list, acquiring first the pages's locks.
1613 * We keep the locks held until after inserting the TB in the hash table,
1614 * so that if the insertion fails we know for sure that the TBs are still
1615 * in the page descriptors.
1616 * Note that inserting into the hash table first isn't an option, since
1617 * we can only insert TBs that are fully initialized.
1619 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1620 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1621 if (p2) {
1622 tb_page_add(p2, tb, 1, phys_page2);
1623 } else {
1624 tb->page_addr[1] = -1;
1627 if (!(tb->cflags & CF_NOCACHE)) {
1628 void *existing_tb = NULL;
1629 uint32_t h;
1631 /* add in the hash table */
1632 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1633 tb->trace_vcpu_dstate);
1634 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1636 /* remove TB from the page(s) if we couldn't insert it */
1637 if (unlikely(existing_tb)) {
1638 tb_page_remove(p, tb);
1639 invalidate_page_bitmap(p);
1640 if (p2) {
1641 tb_page_remove(p2, tb);
1642 invalidate_page_bitmap(p2);
1644 tb = existing_tb;
1648 if (p2 && p2 != p) {
1649 page_unlock(p2);
1651 page_unlock(p);
1653 #ifdef CONFIG_USER_ONLY
1654 if (DEBUG_TB_CHECK_GATE) {
1655 tb_page_check();
1657 #endif
1658 return tb;
1661 /* Called with mmap_lock held for user mode emulation. */
1662 TranslationBlock *tb_gen_code(CPUState *cpu,
1663 target_ulong pc, target_ulong cs_base,
1664 uint32_t flags, int cflags)
1666 CPUArchState *env = cpu->env_ptr;
1667 TranslationBlock *tb, *existing_tb;
1668 tb_page_addr_t phys_pc, phys_page2;
1669 target_ulong virt_page2;
1670 tcg_insn_unit *gen_code_buf;
1671 int gen_code_size, search_size;
1672 #ifdef CONFIG_PROFILER
1673 TCGProfile *prof = &tcg_ctx->prof;
1674 int64_t ti;
1675 #endif
1676 assert_memory_lock();
1678 phys_pc = get_page_addr_code(env, pc);
1680 buffer_overflow:
1681 tb = tb_alloc(pc);
1682 if (unlikely(!tb)) {
1683 /* flush must be done */
1684 tb_flush(cpu);
1685 mmap_unlock();
1686 /* Make the execution loop process the flush as soon as possible. */
1687 cpu->exception_index = EXCP_INTERRUPT;
1688 cpu_loop_exit(cpu);
1691 gen_code_buf = tcg_ctx->code_gen_ptr;
1692 tb->tc.ptr = gen_code_buf;
1693 tb->pc = pc;
1694 tb->cs_base = cs_base;
1695 tb->flags = flags;
1696 tb->cflags = cflags;
1697 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1698 tcg_ctx->tb_cflags = cflags;
1700 #ifdef CONFIG_PROFILER
1701 /* includes aborted translations because of exceptions */
1702 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1703 ti = profile_getclock();
1704 #endif
1706 tcg_func_start(tcg_ctx);
1708 tcg_ctx->cpu = ENV_GET_CPU(env);
1709 gen_intermediate_code(cpu, tb);
1710 tcg_ctx->cpu = NULL;
1712 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1714 /* generate machine code */
1715 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1716 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1717 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1718 if (TCG_TARGET_HAS_direct_jump) {
1719 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1720 tcg_ctx->tb_jmp_target_addr = NULL;
1721 } else {
1722 tcg_ctx->tb_jmp_insn_offset = NULL;
1723 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1726 #ifdef CONFIG_PROFILER
1727 atomic_set(&prof->tb_count, prof->tb_count + 1);
1728 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1729 ti = profile_getclock();
1730 #endif
1732 /* ??? Overflow could be handled better here. In particular, we
1733 don't need to re-do gen_intermediate_code, nor should we re-do
1734 the tcg optimization currently hidden inside tcg_gen_code. All
1735 that should be required is to flush the TBs, allocate a new TB,
1736 re-initialize it per above, and re-do the actual code generation. */
1737 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1738 if (unlikely(gen_code_size < 0)) {
1739 goto buffer_overflow;
1741 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1742 if (unlikely(search_size < 0)) {
1743 goto buffer_overflow;
1745 tb->tc.size = gen_code_size;
1747 #ifdef CONFIG_PROFILER
1748 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1749 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1750 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1751 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1752 #endif
1754 #ifdef DEBUG_DISAS
1755 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1756 qemu_log_in_addr_range(tb->pc)) {
1757 qemu_log_lock();
1758 qemu_log("OUT: [size=%d]\n", gen_code_size);
1759 if (tcg_ctx->data_gen_ptr) {
1760 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1761 size_t data_size = gen_code_size - code_size;
1762 size_t i;
1764 log_disas(tb->tc.ptr, code_size);
1766 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1767 if (sizeof(tcg_target_ulong) == 8) {
1768 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1769 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1770 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1771 } else {
1772 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1773 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1774 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1777 } else {
1778 log_disas(tb->tc.ptr, gen_code_size);
1780 qemu_log("\n");
1781 qemu_log_flush();
1782 qemu_log_unlock();
1784 #endif
1786 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1787 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1788 CODE_GEN_ALIGN));
1790 /* init jump list */
1791 qemu_spin_init(&tb->jmp_lock);
1792 tb->jmp_list_head = (uintptr_t)NULL;
1793 tb->jmp_list_next[0] = (uintptr_t)NULL;
1794 tb->jmp_list_next[1] = (uintptr_t)NULL;
1795 tb->jmp_dest[0] = (uintptr_t)NULL;
1796 tb->jmp_dest[1] = (uintptr_t)NULL;
1798 /* init original jump addresses which have been set during tcg_gen_code() */
1799 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1800 tb_reset_jump(tb, 0);
1802 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1803 tb_reset_jump(tb, 1);
1806 /* check next page if needed */
1807 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1808 phys_page2 = -1;
1809 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1810 phys_page2 = get_page_addr_code(env, virt_page2);
1813 * No explicit memory barrier is required -- tb_link_page() makes the
1814 * TB visible in a consistent state.
1816 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1817 /* if the TB already exists, discard what we just translated */
1818 if (unlikely(existing_tb != tb)) {
1819 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1821 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1822 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1823 return existing_tb;
1825 tcg_tb_insert(tb);
1826 return tb;
1830 * @p must be non-NULL.
1831 * user-mode: call with mmap_lock held.
1832 * !user-mode: call with all @pages locked.
1834 static void
1835 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1836 PageDesc *p, tb_page_addr_t start,
1837 tb_page_addr_t end,
1838 int is_cpu_write_access)
1840 TranslationBlock *tb;
1841 tb_page_addr_t tb_start, tb_end;
1842 int n;
1843 #ifdef TARGET_HAS_PRECISE_SMC
1844 CPUState *cpu = current_cpu;
1845 CPUArchState *env = NULL;
1846 int current_tb_not_found = is_cpu_write_access;
1847 TranslationBlock *current_tb = NULL;
1848 int current_tb_modified = 0;
1849 target_ulong current_pc = 0;
1850 target_ulong current_cs_base = 0;
1851 uint32_t current_flags = 0;
1852 #endif /* TARGET_HAS_PRECISE_SMC */
1854 assert_page_locked(p);
1856 #if defined(TARGET_HAS_PRECISE_SMC)
1857 if (cpu != NULL) {
1858 env = cpu->env_ptr;
1860 #endif
1862 /* we remove all the TBs in the range [start, end[ */
1863 /* XXX: see if in some cases it could be faster to invalidate all
1864 the code */
1865 PAGE_FOR_EACH_TB(p, tb, n) {
1866 assert_page_locked(p);
1867 /* NOTE: this is subtle as a TB may span two physical pages */
1868 if (n == 0) {
1869 /* NOTE: tb_end may be after the end of the page, but
1870 it is not a problem */
1871 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1872 tb_end = tb_start + tb->size;
1873 } else {
1874 tb_start = tb->page_addr[1];
1875 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1877 if (!(tb_end <= start || tb_start >= end)) {
1878 #ifdef TARGET_HAS_PRECISE_SMC
1879 if (current_tb_not_found) {
1880 current_tb_not_found = 0;
1881 current_tb = NULL;
1882 if (cpu->mem_io_pc) {
1883 /* now we have a real cpu fault */
1884 current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1887 if (current_tb == tb &&
1888 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1889 /* If we are modifying the current TB, we must stop
1890 its execution. We could be more precise by checking
1891 that the modification is after the current PC, but it
1892 would require a specialized function to partially
1893 restore the CPU state */
1895 current_tb_modified = 1;
1896 cpu_restore_state_from_tb(cpu, current_tb,
1897 cpu->mem_io_pc, true);
1898 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1899 &current_flags);
1901 #endif /* TARGET_HAS_PRECISE_SMC */
1902 tb_phys_invalidate__locked(tb);
1905 #if !defined(CONFIG_USER_ONLY)
1906 /* if no code remaining, no need to continue to use slow writes */
1907 if (!p->first_tb) {
1908 invalidate_page_bitmap(p);
1909 tlb_unprotect_code(start);
1911 #endif
1912 #ifdef TARGET_HAS_PRECISE_SMC
1913 if (current_tb_modified) {
1914 page_collection_unlock(pages);
1915 /* Force execution of one insn next time. */
1916 cpu->cflags_next_tb = 1 | curr_cflags();
1917 mmap_unlock();
1918 cpu_loop_exit_noexc(cpu);
1920 #endif
1924 * Invalidate all TBs which intersect with the target physical address range
1925 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1926 * 'is_cpu_write_access' should be true if called from a real cpu write
1927 * access: the virtual CPU will exit the current TB if code is modified inside
1928 * this TB.
1930 * Called with mmap_lock held for user-mode emulation
1932 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1933 int is_cpu_write_access)
1935 struct page_collection *pages;
1936 PageDesc *p;
1938 assert_memory_lock();
1940 p = page_find(start >> TARGET_PAGE_BITS);
1941 if (p == NULL) {
1942 return;
1944 pages = page_collection_lock(start, end);
1945 tb_invalidate_phys_page_range__locked(pages, p, start, end,
1946 is_cpu_write_access);
1947 page_collection_unlock(pages);
1951 * Invalidate all TBs which intersect with the target physical address range
1952 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1953 * 'is_cpu_write_access' should be true if called from a real cpu write
1954 * access: the virtual CPU will exit the current TB if code is modified inside
1955 * this TB.
1957 * Called with mmap_lock held for user-mode emulation.
1959 #ifdef CONFIG_SOFTMMU
1960 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1961 #else
1962 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1963 #endif
1965 struct page_collection *pages;
1966 tb_page_addr_t next;
1968 assert_memory_lock();
1970 pages = page_collection_lock(start, end);
1971 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1972 start < end;
1973 start = next, next += TARGET_PAGE_SIZE) {
1974 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1975 tb_page_addr_t bound = MIN(next, end);
1977 if (pd == NULL) {
1978 continue;
1980 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1982 page_collection_unlock(pages);
1985 #ifdef CONFIG_SOFTMMU
1986 /* len must be <= 8 and start must be a multiple of len.
1987 * Called via softmmu_template.h when code areas are written to with
1988 * iothread mutex not held.
1990 * Call with all @pages in the range [@start, @start + len[ locked.
1992 void tb_invalidate_phys_page_fast(struct page_collection *pages,
1993 tb_page_addr_t start, int len)
1995 PageDesc *p;
1997 #if 0
1998 if (1) {
1999 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2000 cpu_single_env->mem_io_vaddr, len,
2001 cpu_single_env->eip,
2002 cpu_single_env->eip +
2003 (intptr_t)cpu_single_env->segs[R_CS].base);
2005 #endif
2006 assert_memory_lock();
2008 p = page_find(start >> TARGET_PAGE_BITS);
2009 if (!p) {
2010 return;
2013 assert_page_locked(p);
2014 if (!p->code_bitmap &&
2015 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2016 build_page_bitmap(p);
2018 if (p->code_bitmap) {
2019 unsigned int nr;
2020 unsigned long b;
2022 nr = start & ~TARGET_PAGE_MASK;
2023 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2024 if (b & ((1 << len) - 1)) {
2025 goto do_invalidate;
2027 } else {
2028 do_invalidate:
2029 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2032 #else
2033 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2034 * host PC of the faulting store instruction that caused this invalidate.
2035 * Returns true if the caller needs to abort execution of the current
2036 * TB (because it was modified by this store and the guest CPU has
2037 * precise-SMC semantics).
2039 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2041 TranslationBlock *tb;
2042 PageDesc *p;
2043 int n;
2044 #ifdef TARGET_HAS_PRECISE_SMC
2045 TranslationBlock *current_tb = NULL;
2046 CPUState *cpu = current_cpu;
2047 CPUArchState *env = NULL;
2048 int current_tb_modified = 0;
2049 target_ulong current_pc = 0;
2050 target_ulong current_cs_base = 0;
2051 uint32_t current_flags = 0;
2052 #endif
2054 assert_memory_lock();
2056 addr &= TARGET_PAGE_MASK;
2057 p = page_find(addr >> TARGET_PAGE_BITS);
2058 if (!p) {
2059 return false;
2062 #ifdef TARGET_HAS_PRECISE_SMC
2063 if (p->first_tb && pc != 0) {
2064 current_tb = tcg_tb_lookup(pc);
2066 if (cpu != NULL) {
2067 env = cpu->env_ptr;
2069 #endif
2070 assert_page_locked(p);
2071 PAGE_FOR_EACH_TB(p, tb, n) {
2072 #ifdef TARGET_HAS_PRECISE_SMC
2073 if (current_tb == tb &&
2074 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2075 /* If we are modifying the current TB, we must stop
2076 its execution. We could be more precise by checking
2077 that the modification is after the current PC, but it
2078 would require a specialized function to partially
2079 restore the CPU state */
2081 current_tb_modified = 1;
2082 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2083 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2084 &current_flags);
2086 #endif /* TARGET_HAS_PRECISE_SMC */
2087 tb_phys_invalidate(tb, addr);
2089 p->first_tb = (uintptr_t)NULL;
2090 #ifdef TARGET_HAS_PRECISE_SMC
2091 if (current_tb_modified) {
2092 /* Force execution of one insn next time. */
2093 cpu->cflags_next_tb = 1 | curr_cflags();
2094 return true;
2096 #endif
2098 return false;
2100 #endif
2102 /* user-mode: call with mmap_lock held */
2103 void tb_check_watchpoint(CPUState *cpu)
2105 TranslationBlock *tb;
2107 assert_memory_lock();
2109 tb = tcg_tb_lookup(cpu->mem_io_pc);
2110 if (tb) {
2111 /* We can use retranslation to find the PC. */
2112 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2113 tb_phys_invalidate(tb, -1);
2114 } else {
2115 /* The exception probably happened in a helper. The CPU state should
2116 have been saved before calling it. Fetch the PC from there. */
2117 CPUArchState *env = cpu->env_ptr;
2118 target_ulong pc, cs_base;
2119 tb_page_addr_t addr;
2120 uint32_t flags;
2122 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2123 addr = get_page_addr_code(env, pc);
2124 tb_invalidate_phys_range(addr, addr + 1);
2128 #ifndef CONFIG_USER_ONLY
2129 /* in deterministic execution mode, instructions doing device I/Os
2130 * must be at the end of the TB.
2132 * Called by softmmu_template.h, with iothread mutex not held.
2134 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2136 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2137 CPUArchState *env = cpu->env_ptr;
2138 #endif
2139 TranslationBlock *tb;
2140 uint32_t n;
2142 tb = tcg_tb_lookup(retaddr);
2143 if (!tb) {
2144 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2145 (void *)retaddr);
2147 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2149 /* On MIPS and SH, delay slot instructions can only be restarted if
2150 they were already the first instruction in the TB. If this is not
2151 the first instruction in a TB then re-execute the preceding
2152 branch. */
2153 n = 1;
2154 #if defined(TARGET_MIPS)
2155 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2156 && env->active_tc.PC != tb->pc) {
2157 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2158 cpu->icount_decr.u16.low++;
2159 env->hflags &= ~MIPS_HFLAG_BMASK;
2160 n = 2;
2162 #elif defined(TARGET_SH4)
2163 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2164 && env->pc != tb->pc) {
2165 env->pc -= 2;
2166 cpu->icount_decr.u16.low++;
2167 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2168 n = 2;
2170 #endif
2172 /* Generate a new TB executing the I/O insn. */
2173 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2175 if (tb_cflags(tb) & CF_NOCACHE) {
2176 if (tb->orig_tb) {
2177 /* Invalidate original TB if this TB was generated in
2178 * cpu_exec_nocache() */
2179 tb_phys_invalidate(tb->orig_tb, -1);
2181 tcg_tb_remove(tb);
2184 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2185 * the first in the TB) then we end up generating a whole new TB and
2186 * repeating the fault, which is horribly inefficient.
2187 * Better would be to execute just this insn uncached, or generate a
2188 * second new TB.
2190 cpu_loop_exit_noexc(cpu);
2193 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2195 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2197 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2198 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2202 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2204 /* Discard jump cache entries for any tb which might potentially
2205 overlap the flushed page. */
2206 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2207 tb_jmp_cache_clear_page(cpu, addr);
2210 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
2211 struct qht_stats hst)
2213 uint32_t hgram_opts;
2214 size_t hgram_bins;
2215 char *hgram;
2217 if (!hst.head_buckets) {
2218 return;
2220 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2221 hst.used_head_buckets, hst.head_buckets,
2222 (double)hst.used_head_buckets / hst.head_buckets * 100);
2224 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2225 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2226 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2227 hgram_opts |= QDIST_PR_NODECIMAL;
2229 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2230 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2231 qdist_avg(&hst.occupancy) * 100, hgram);
2232 g_free(hgram);
2234 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2235 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2236 if (hgram_bins > 10) {
2237 hgram_bins = 10;
2238 } else {
2239 hgram_bins = 0;
2240 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2242 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2243 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
2244 qdist_avg(&hst.chain), hgram);
2245 g_free(hgram);
2248 struct tb_tree_stats {
2249 size_t nb_tbs;
2250 size_t host_size;
2251 size_t target_size;
2252 size_t max_target_size;
2253 size_t direct_jmp_count;
2254 size_t direct_jmp2_count;
2255 size_t cross_page;
2258 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2260 const TranslationBlock *tb = value;
2261 struct tb_tree_stats *tst = data;
2263 tst->nb_tbs++;
2264 tst->host_size += tb->tc.size;
2265 tst->target_size += tb->size;
2266 if (tb->size > tst->max_target_size) {
2267 tst->max_target_size = tb->size;
2269 if (tb->page_addr[1] != -1) {
2270 tst->cross_page++;
2272 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2273 tst->direct_jmp_count++;
2274 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2275 tst->direct_jmp2_count++;
2278 return false;
2281 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
2283 struct tb_tree_stats tst = {};
2284 struct qht_stats hst;
2285 size_t nb_tbs;
2287 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2288 nb_tbs = tst.nb_tbs;
2289 /* XXX: avoid using doubles ? */
2290 cpu_fprintf(f, "Translation buffer state:\n");
2292 * Report total code size including the padding and TB structs;
2293 * otherwise users might think "-tb-size" is not honoured.
2294 * For avg host size we use the precise numbers from tb_tree_stats though.
2296 cpu_fprintf(f, "gen code size %zu/%zu\n",
2297 tcg_code_size(), tcg_code_capacity());
2298 cpu_fprintf(f, "TB count %zu\n", nb_tbs);
2299 cpu_fprintf(f, "TB avg target size %zu max=%zu bytes\n",
2300 nb_tbs ? tst.target_size / nb_tbs : 0,
2301 tst.max_target_size);
2302 cpu_fprintf(f, "TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2303 nb_tbs ? tst.host_size / nb_tbs : 0,
2304 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2305 cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
2306 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2307 cpu_fprintf(f, "direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2308 tst.direct_jmp_count,
2309 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2310 tst.direct_jmp2_count,
2311 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2313 qht_statistics_init(&tb_ctx.htable, &hst);
2314 print_qht_statistics(f, cpu_fprintf, hst);
2315 qht_statistics_destroy(&hst);
2317 cpu_fprintf(f, "\nStatistics:\n");
2318 cpu_fprintf(f, "TB flush count %u\n",
2319 atomic_read(&tb_ctx.tb_flush_count));
2320 cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
2321 cpu_fprintf(f, "TLB flush count %zu\n", tlb_flush_count());
2322 tcg_dump_info(f, cpu_fprintf);
2325 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
2327 tcg_dump_op_count(f, cpu_fprintf);
2330 #else /* CONFIG_USER_ONLY */
2332 void cpu_interrupt(CPUState *cpu, int mask)
2334 g_assert(qemu_mutex_iothread_locked());
2335 cpu->interrupt_request |= mask;
2336 cpu->icount_decr.u16.high = -1;
2340 * Walks guest process memory "regions" one by one
2341 * and calls callback function 'fn' for each region.
2343 struct walk_memory_regions_data {
2344 walk_memory_regions_fn fn;
2345 void *priv;
2346 target_ulong start;
2347 int prot;
2350 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2351 target_ulong end, int new_prot)
2353 if (data->start != -1u) {
2354 int rc = data->fn(data->priv, data->start, end, data->prot);
2355 if (rc != 0) {
2356 return rc;
2360 data->start = (new_prot ? end : -1u);
2361 data->prot = new_prot;
2363 return 0;
2366 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2367 target_ulong base, int level, void **lp)
2369 target_ulong pa;
2370 int i, rc;
2372 if (*lp == NULL) {
2373 return walk_memory_regions_end(data, base, 0);
2376 if (level == 0) {
2377 PageDesc *pd = *lp;
2379 for (i = 0; i < V_L2_SIZE; ++i) {
2380 int prot = pd[i].flags;
2382 pa = base | (i << TARGET_PAGE_BITS);
2383 if (prot != data->prot) {
2384 rc = walk_memory_regions_end(data, pa, prot);
2385 if (rc != 0) {
2386 return rc;
2390 } else {
2391 void **pp = *lp;
2393 for (i = 0; i < V_L2_SIZE; ++i) {
2394 pa = base | ((target_ulong)i <<
2395 (TARGET_PAGE_BITS + V_L2_BITS * level));
2396 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2397 if (rc != 0) {
2398 return rc;
2403 return 0;
2406 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2408 struct walk_memory_regions_data data;
2409 uintptr_t i, l1_sz = v_l1_size;
2411 data.fn = fn;
2412 data.priv = priv;
2413 data.start = -1u;
2414 data.prot = 0;
2416 for (i = 0; i < l1_sz; i++) {
2417 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2418 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2419 if (rc != 0) {
2420 return rc;
2424 return walk_memory_regions_end(&data, 0, 0);
2427 static int dump_region(void *priv, target_ulong start,
2428 target_ulong end, unsigned long prot)
2430 FILE *f = (FILE *)priv;
2432 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2433 " "TARGET_FMT_lx" %c%c%c\n",
2434 start, end, end - start,
2435 ((prot & PAGE_READ) ? 'r' : '-'),
2436 ((prot & PAGE_WRITE) ? 'w' : '-'),
2437 ((prot & PAGE_EXEC) ? 'x' : '-'));
2439 return 0;
2442 /* dump memory mappings */
2443 void page_dump(FILE *f)
2445 const int length = sizeof(target_ulong) * 2;
2446 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2447 length, "start", length, "end", length, "size", "prot");
2448 walk_memory_regions(f, dump_region);
2451 int page_get_flags(target_ulong address)
2453 PageDesc *p;
2455 p = page_find(address >> TARGET_PAGE_BITS);
2456 if (!p) {
2457 return 0;
2459 return p->flags;
2462 /* Modify the flags of a page and invalidate the code if necessary.
2463 The flag PAGE_WRITE_ORG is positioned automatically depending
2464 on PAGE_WRITE. The mmap_lock should already be held. */
2465 void page_set_flags(target_ulong start, target_ulong end, int flags)
2467 target_ulong addr, len;
2469 /* This function should never be called with addresses outside the
2470 guest address space. If this assert fires, it probably indicates
2471 a missing call to h2g_valid. */
2472 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2473 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2474 #endif
2475 assert(start < end);
2476 assert_memory_lock();
2478 start = start & TARGET_PAGE_MASK;
2479 end = TARGET_PAGE_ALIGN(end);
2481 if (flags & PAGE_WRITE) {
2482 flags |= PAGE_WRITE_ORG;
2485 for (addr = start, len = end - start;
2486 len != 0;
2487 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2488 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2490 /* If the write protection bit is set, then we invalidate
2491 the code inside. */
2492 if (!(p->flags & PAGE_WRITE) &&
2493 (flags & PAGE_WRITE) &&
2494 p->first_tb) {
2495 tb_invalidate_phys_page(addr, 0);
2497 p->flags = flags;
2501 int page_check_range(target_ulong start, target_ulong len, int flags)
2503 PageDesc *p;
2504 target_ulong end;
2505 target_ulong addr;
2507 /* This function should never be called with addresses outside the
2508 guest address space. If this assert fires, it probably indicates
2509 a missing call to h2g_valid. */
2510 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2511 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2512 #endif
2514 if (len == 0) {
2515 return 0;
2517 if (start + len - 1 < start) {
2518 /* We've wrapped around. */
2519 return -1;
2522 /* must do before we loose bits in the next step */
2523 end = TARGET_PAGE_ALIGN(start + len);
2524 start = start & TARGET_PAGE_MASK;
2526 for (addr = start, len = end - start;
2527 len != 0;
2528 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2529 p = page_find(addr >> TARGET_PAGE_BITS);
2530 if (!p) {
2531 return -1;
2533 if (!(p->flags & PAGE_VALID)) {
2534 return -1;
2537 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2538 return -1;
2540 if (flags & PAGE_WRITE) {
2541 if (!(p->flags & PAGE_WRITE_ORG)) {
2542 return -1;
2544 /* unprotect the page if it was put read-only because it
2545 contains translated code */
2546 if (!(p->flags & PAGE_WRITE)) {
2547 if (!page_unprotect(addr, 0)) {
2548 return -1;
2553 return 0;
2556 /* called from signal handler: invalidate the code and unprotect the
2557 * page. Return 0 if the fault was not handled, 1 if it was handled,
2558 * and 2 if it was handled but the caller must cause the TB to be
2559 * immediately exited. (We can only return 2 if the 'pc' argument is
2560 * non-zero.)
2562 int page_unprotect(target_ulong address, uintptr_t pc)
2564 unsigned int prot;
2565 bool current_tb_invalidated;
2566 PageDesc *p;
2567 target_ulong host_start, host_end, addr;
2569 /* Technically this isn't safe inside a signal handler. However we
2570 know this only ever happens in a synchronous SEGV handler, so in
2571 practice it seems to be ok. */
2572 mmap_lock();
2574 p = page_find(address >> TARGET_PAGE_BITS);
2575 if (!p) {
2576 mmap_unlock();
2577 return 0;
2580 /* if the page was really writable, then we change its
2581 protection back to writable */
2582 if (p->flags & PAGE_WRITE_ORG) {
2583 current_tb_invalidated = false;
2584 if (p->flags & PAGE_WRITE) {
2585 /* If the page is actually marked WRITE then assume this is because
2586 * this thread raced with another one which got here first and
2587 * set the page to PAGE_WRITE and did the TB invalidate for us.
2589 #ifdef TARGET_HAS_PRECISE_SMC
2590 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2591 if (current_tb) {
2592 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2594 #endif
2595 } else {
2596 host_start = address & qemu_host_page_mask;
2597 host_end = host_start + qemu_host_page_size;
2599 prot = 0;
2600 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2601 p = page_find(addr >> TARGET_PAGE_BITS);
2602 p->flags |= PAGE_WRITE;
2603 prot |= p->flags;
2605 /* and since the content will be modified, we must invalidate
2606 the corresponding translated code. */
2607 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2608 #ifdef CONFIG_USER_ONLY
2609 if (DEBUG_TB_CHECK_GATE) {
2610 tb_invalidate_check(addr);
2612 #endif
2614 mprotect((void *)g2h(host_start), qemu_host_page_size,
2615 prot & PAGE_BITS);
2617 mmap_unlock();
2618 /* If current TB was invalidated return to main loop */
2619 return current_tb_invalidated ? 2 : 1;
2621 mmap_unlock();
2622 return 0;
2624 #endif /* CONFIG_USER_ONLY */
2626 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2627 void tcg_flush_softmmu_tlb(CPUState *cs)
2629 #ifdef CONFIG_SOFTMMU
2630 tlb_flush(cs);
2631 #endif