target/arm: Fix vfp_gdb_get/set_reg vs FPSCR
[qemu/ar7.git] / target / arm / helper.c
blob8eedce113c167ae664031ff9402da4b6c2760640
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/cpus.h"
19 #include "sysemu/kvm.h"
20 #include "fpu/softfloat.h"
21 #include "qemu/range.h"
23 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
25 #ifndef CONFIG_USER_ONLY
26 /* Cacheability and shareability attributes for a memory access */
27 typedef struct ARMCacheAttrs {
28 unsigned int attrs:8; /* as in the MAIR register encoding */
29 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
30 } ARMCacheAttrs;
32 static bool get_phys_addr(CPUARMState *env, target_ulong address,
33 MMUAccessType access_type, ARMMMUIdx mmu_idx,
34 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
35 target_ulong *page_size,
36 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
38 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
39 MMUAccessType access_type, ARMMMUIdx mmu_idx,
40 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
41 target_ulong *page_size_ptr,
42 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
44 /* Security attributes for an address, as returned by v8m_security_lookup. */
45 typedef struct V8M_SAttributes {
46 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
47 bool ns;
48 bool nsc;
49 uint8_t sregion;
50 bool srvalid;
51 uint8_t iregion;
52 bool irvalid;
53 } V8M_SAttributes;
55 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
56 MMUAccessType access_type, ARMMMUIdx mmu_idx,
57 V8M_SAttributes *sattrs);
58 #endif
60 static void switch_mode(CPUARMState *env, int mode);
62 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
64 int nregs;
66 /* VFP data registers are always little-endian. */
67 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
68 if (reg < nregs) {
69 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
70 return 8;
72 if (arm_feature(env, ARM_FEATURE_NEON)) {
73 /* Aliases for Q regs. */
74 nregs += 16;
75 if (reg < nregs) {
76 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
77 stq_le_p(buf, q[0]);
78 stq_le_p(buf + 8, q[1]);
79 return 16;
82 switch (reg - nregs) {
83 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
84 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
85 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
87 return 0;
90 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
92 int nregs;
94 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
95 if (reg < nregs) {
96 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
97 return 8;
99 if (arm_feature(env, ARM_FEATURE_NEON)) {
100 nregs += 16;
101 if (reg < nregs) {
102 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
103 q[0] = ldq_le_p(buf);
104 q[1] = ldq_le_p(buf + 8);
105 return 16;
108 switch (reg - nregs) {
109 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
110 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
111 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
113 return 0;
116 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
118 switch (reg) {
119 case 0 ... 31:
120 /* 128 bit FP register */
122 uint64_t *q = aa64_vfp_qreg(env, reg);
123 stq_le_p(buf, q[0]);
124 stq_le_p(buf + 8, q[1]);
125 return 16;
127 case 32:
128 /* FPSR */
129 stl_p(buf, vfp_get_fpsr(env));
130 return 4;
131 case 33:
132 /* FPCR */
133 stl_p(buf, vfp_get_fpcr(env));
134 return 4;
135 default:
136 return 0;
140 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
142 switch (reg) {
143 case 0 ... 31:
144 /* 128 bit FP register */
146 uint64_t *q = aa64_vfp_qreg(env, reg);
147 q[0] = ldq_le_p(buf);
148 q[1] = ldq_le_p(buf + 8);
149 return 16;
151 case 32:
152 /* FPSR */
153 vfp_set_fpsr(env, ldl_p(buf));
154 return 4;
155 case 33:
156 /* FPCR */
157 vfp_set_fpcr(env, ldl_p(buf));
158 return 4;
159 default:
160 return 0;
164 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
166 assert(ri->fieldoffset);
167 if (cpreg_field_is_64bit(ri)) {
168 return CPREG_FIELD64(env, ri);
169 } else {
170 return CPREG_FIELD32(env, ri);
174 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t value)
177 assert(ri->fieldoffset);
178 if (cpreg_field_is_64bit(ri)) {
179 CPREG_FIELD64(env, ri) = value;
180 } else {
181 CPREG_FIELD32(env, ri) = value;
185 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
187 return (char *)env + ri->fieldoffset;
190 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
192 /* Raw read of a coprocessor register (as needed for migration, etc). */
193 if (ri->type & ARM_CP_CONST) {
194 return ri->resetvalue;
195 } else if (ri->raw_readfn) {
196 return ri->raw_readfn(env, ri);
197 } else if (ri->readfn) {
198 return ri->readfn(env, ri);
199 } else {
200 return raw_read(env, ri);
204 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
205 uint64_t v)
207 /* Raw write of a coprocessor register (as needed for migration, etc).
208 * Note that constant registers are treated as write-ignored; the
209 * caller should check for success by whether a readback gives the
210 * value written.
212 if (ri->type & ARM_CP_CONST) {
213 return;
214 } else if (ri->raw_writefn) {
215 ri->raw_writefn(env, ri, v);
216 } else if (ri->writefn) {
217 ri->writefn(env, ri, v);
218 } else {
219 raw_write(env, ri, v);
223 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
225 ARMCPU *cpu = arm_env_get_cpu(env);
226 const ARMCPRegInfo *ri;
227 uint32_t key;
229 key = cpu->dyn_xml.cpregs_keys[reg];
230 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
231 if (ri) {
232 if (cpreg_field_is_64bit(ri)) {
233 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
234 } else {
235 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
238 return 0;
241 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
243 return 0;
246 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
248 /* Return true if the regdef would cause an assertion if you called
249 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
250 * program bug for it not to have the NO_RAW flag).
251 * NB that returning false here doesn't necessarily mean that calling
252 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
253 * read/write access functions which are safe for raw use" from "has
254 * read/write access functions which have side effects but has forgotten
255 * to provide raw access functions".
256 * The tests here line up with the conditions in read/write_raw_cp_reg()
257 * and assertions in raw_read()/raw_write().
259 if ((ri->type & ARM_CP_CONST) ||
260 ri->fieldoffset ||
261 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
262 return false;
264 return true;
267 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
269 /* Write the coprocessor state from cpu->env to the (index,value) list. */
270 int i;
271 bool ok = true;
273 for (i = 0; i < cpu->cpreg_array_len; i++) {
274 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
275 const ARMCPRegInfo *ri;
276 uint64_t newval;
278 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
279 if (!ri) {
280 ok = false;
281 continue;
283 if (ri->type & ARM_CP_NO_RAW) {
284 continue;
287 newval = read_raw_cp_reg(&cpu->env, ri);
288 if (kvm_sync) {
290 * Only sync if the previous list->cpustate sync succeeded.
291 * Rather than tracking the success/failure state for every
292 * item in the list, we just recheck "does the raw write we must
293 * have made in write_list_to_cpustate() read back OK" here.
295 uint64_t oldval = cpu->cpreg_values[i];
297 if (oldval == newval) {
298 continue;
301 write_raw_cp_reg(&cpu->env, ri, oldval);
302 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
303 continue;
306 write_raw_cp_reg(&cpu->env, ri, newval);
308 cpu->cpreg_values[i] = newval;
310 return ok;
313 bool write_list_to_cpustate(ARMCPU *cpu)
315 int i;
316 bool ok = true;
318 for (i = 0; i < cpu->cpreg_array_len; i++) {
319 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
320 uint64_t v = cpu->cpreg_values[i];
321 const ARMCPRegInfo *ri;
323 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
324 if (!ri) {
325 ok = false;
326 continue;
328 if (ri->type & ARM_CP_NO_RAW) {
329 continue;
331 /* Write value and confirm it reads back as written
332 * (to catch read-only registers and partially read-only
333 * registers where the incoming migration value doesn't match)
335 write_raw_cp_reg(&cpu->env, ri, v);
336 if (read_raw_cp_reg(&cpu->env, ri) != v) {
337 ok = false;
340 return ok;
343 static void add_cpreg_to_list(gpointer key, gpointer opaque)
345 ARMCPU *cpu = opaque;
346 uint64_t regidx;
347 const ARMCPRegInfo *ri;
349 regidx = *(uint32_t *)key;
350 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
352 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
353 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
354 /* The value array need not be initialized at this point */
355 cpu->cpreg_array_len++;
359 static void count_cpreg(gpointer key, gpointer opaque)
361 ARMCPU *cpu = opaque;
362 uint64_t regidx;
363 const ARMCPRegInfo *ri;
365 regidx = *(uint32_t *)key;
366 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
368 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
369 cpu->cpreg_array_len++;
373 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
375 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
376 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
378 if (aidx > bidx) {
379 return 1;
381 if (aidx < bidx) {
382 return -1;
384 return 0;
387 void init_cpreg_list(ARMCPU *cpu)
389 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
390 * Note that we require cpreg_tuples[] to be sorted by key ID.
392 GList *keys;
393 int arraylen;
395 keys = g_hash_table_get_keys(cpu->cp_regs);
396 keys = g_list_sort(keys, cpreg_key_compare);
398 cpu->cpreg_array_len = 0;
400 g_list_foreach(keys, count_cpreg, cpu);
402 arraylen = cpu->cpreg_array_len;
403 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
404 cpu->cpreg_values = g_new(uint64_t, arraylen);
405 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
406 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
407 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
408 cpu->cpreg_array_len = 0;
410 g_list_foreach(keys, add_cpreg_to_list, cpu);
412 assert(cpu->cpreg_array_len == arraylen);
414 g_list_free(keys);
418 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
419 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
421 * access_el3_aa32ns: Used to check AArch32 register views.
422 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
424 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
425 const ARMCPRegInfo *ri,
426 bool isread)
428 bool secure = arm_is_secure_below_el3(env);
430 assert(!arm_el_is_aa64(env, 3));
431 if (secure) {
432 return CP_ACCESS_TRAP_UNCATEGORIZED;
434 return CP_ACCESS_OK;
437 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
438 const ARMCPRegInfo *ri,
439 bool isread)
441 if (!arm_el_is_aa64(env, 3)) {
442 return access_el3_aa32ns(env, ri, isread);
444 return CP_ACCESS_OK;
447 /* Some secure-only AArch32 registers trap to EL3 if used from
448 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
449 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
450 * We assume that the .access field is set to PL1_RW.
452 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
453 const ARMCPRegInfo *ri,
454 bool isread)
456 if (arm_current_el(env) == 3) {
457 return CP_ACCESS_OK;
459 if (arm_is_secure_below_el3(env)) {
460 return CP_ACCESS_TRAP_EL3;
462 /* This will be EL1 NS and EL2 NS, which just UNDEF */
463 return CP_ACCESS_TRAP_UNCATEGORIZED;
466 /* Check for traps to "powerdown debug" registers, which are controlled
467 * by MDCR.TDOSA
469 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
470 bool isread)
472 int el = arm_current_el(env);
473 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
474 (env->cp15.mdcr_el2 & MDCR_TDE) ||
475 (arm_hcr_el2_eff(env) & HCR_TGE);
477 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
478 return CP_ACCESS_TRAP_EL2;
480 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
481 return CP_ACCESS_TRAP_EL3;
483 return CP_ACCESS_OK;
486 /* Check for traps to "debug ROM" registers, which are controlled
487 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
489 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
490 bool isread)
492 int el = arm_current_el(env);
493 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
494 (env->cp15.mdcr_el2 & MDCR_TDE) ||
495 (arm_hcr_el2_eff(env) & HCR_TGE);
497 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
498 return CP_ACCESS_TRAP_EL2;
500 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
501 return CP_ACCESS_TRAP_EL3;
503 return CP_ACCESS_OK;
506 /* Check for traps to general debug registers, which are controlled
507 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
509 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
510 bool isread)
512 int el = arm_current_el(env);
513 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
514 (env->cp15.mdcr_el2 & MDCR_TDE) ||
515 (arm_hcr_el2_eff(env) & HCR_TGE);
517 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
518 return CP_ACCESS_TRAP_EL2;
520 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
521 return CP_ACCESS_TRAP_EL3;
523 return CP_ACCESS_OK;
526 /* Check for traps to performance monitor registers, which are controlled
527 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
529 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
530 bool isread)
532 int el = arm_current_el(env);
534 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
535 && !arm_is_secure_below_el3(env)) {
536 return CP_ACCESS_TRAP_EL2;
538 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
539 return CP_ACCESS_TRAP_EL3;
541 return CP_ACCESS_OK;
544 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
546 ARMCPU *cpu = arm_env_get_cpu(env);
548 raw_write(env, ri, value);
549 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
552 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
554 ARMCPU *cpu = arm_env_get_cpu(env);
556 if (raw_read(env, ri) != value) {
557 /* Unlike real hardware the qemu TLB uses virtual addresses,
558 * not modified virtual addresses, so this causes a TLB flush.
560 tlb_flush(CPU(cpu));
561 raw_write(env, ri, value);
565 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
568 ARMCPU *cpu = arm_env_get_cpu(env);
570 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
571 && !extended_addresses_enabled(env)) {
572 /* For VMSA (when not using the LPAE long descriptor page table
573 * format) this register includes the ASID, so do a TLB flush.
574 * For PMSA it is purely a process ID and no action is needed.
576 tlb_flush(CPU(cpu));
578 raw_write(env, ri, value);
581 /* IS variants of TLB operations must affect all cores */
582 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 CPUState *cs = ENV_GET_CPU(env);
587 tlb_flush_all_cpus_synced(cs);
590 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
593 CPUState *cs = ENV_GET_CPU(env);
595 tlb_flush_all_cpus_synced(cs);
598 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
599 uint64_t value)
601 CPUState *cs = ENV_GET_CPU(env);
603 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
606 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 uint64_t value)
609 CPUState *cs = ENV_GET_CPU(env);
611 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
615 * Non-IS variants of TLB operations are upgraded to
616 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
617 * force broadcast of these operations.
619 static bool tlb_force_broadcast(CPUARMState *env)
621 return (env->cp15.hcr_el2 & HCR_FB) &&
622 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
625 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
626 uint64_t value)
628 /* Invalidate all (TLBIALL) */
629 ARMCPU *cpu = arm_env_get_cpu(env);
631 if (tlb_force_broadcast(env)) {
632 tlbiall_is_write(env, NULL, value);
633 return;
636 tlb_flush(CPU(cpu));
639 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
640 uint64_t value)
642 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
643 ARMCPU *cpu = arm_env_get_cpu(env);
645 if (tlb_force_broadcast(env)) {
646 tlbimva_is_write(env, NULL, value);
647 return;
650 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
653 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
654 uint64_t value)
656 /* Invalidate by ASID (TLBIASID) */
657 ARMCPU *cpu = arm_env_get_cpu(env);
659 if (tlb_force_broadcast(env)) {
660 tlbiasid_is_write(env, NULL, value);
661 return;
664 tlb_flush(CPU(cpu));
667 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
668 uint64_t value)
670 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
671 ARMCPU *cpu = arm_env_get_cpu(env);
673 if (tlb_force_broadcast(env)) {
674 tlbimvaa_is_write(env, NULL, value);
675 return;
678 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
681 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
682 uint64_t value)
684 CPUState *cs = ENV_GET_CPU(env);
686 tlb_flush_by_mmuidx(cs,
687 ARMMMUIdxBit_S12NSE1 |
688 ARMMMUIdxBit_S12NSE0 |
689 ARMMMUIdxBit_S2NS);
692 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
693 uint64_t value)
695 CPUState *cs = ENV_GET_CPU(env);
697 tlb_flush_by_mmuidx_all_cpus_synced(cs,
698 ARMMMUIdxBit_S12NSE1 |
699 ARMMMUIdxBit_S12NSE0 |
700 ARMMMUIdxBit_S2NS);
703 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
704 uint64_t value)
706 /* Invalidate by IPA. This has to invalidate any structures that
707 * contain only stage 2 translation information, but does not need
708 * to apply to structures that contain combined stage 1 and stage 2
709 * translation information.
710 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
712 CPUState *cs = ENV_GET_CPU(env);
713 uint64_t pageaddr;
715 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
716 return;
719 pageaddr = sextract64(value << 12, 0, 40);
721 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
724 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
725 uint64_t value)
727 CPUState *cs = ENV_GET_CPU(env);
728 uint64_t pageaddr;
730 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
731 return;
734 pageaddr = sextract64(value << 12, 0, 40);
736 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
737 ARMMMUIdxBit_S2NS);
740 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
743 CPUState *cs = ENV_GET_CPU(env);
745 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
748 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
749 uint64_t value)
751 CPUState *cs = ENV_GET_CPU(env);
753 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
756 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
759 CPUState *cs = ENV_GET_CPU(env);
760 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
762 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
765 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
768 CPUState *cs = ENV_GET_CPU(env);
769 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
771 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
772 ARMMMUIdxBit_S1E2);
775 static const ARMCPRegInfo cp_reginfo[] = {
776 /* Define the secure and non-secure FCSE identifier CP registers
777 * separately because there is no secure bank in V8 (no _EL3). This allows
778 * the secure register to be properly reset and migrated. There is also no
779 * v8 EL1 version of the register so the non-secure instance stands alone.
781 { .name = "FCSEIDR",
782 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
783 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
784 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
785 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
786 { .name = "FCSEIDR_S",
787 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
788 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
789 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
790 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
791 /* Define the secure and non-secure context identifier CP registers
792 * separately because there is no secure bank in V8 (no _EL3). This allows
793 * the secure register to be properly reset and migrated. In the
794 * non-secure case, the 32-bit register will have reset and migration
795 * disabled during registration as it is handled by the 64-bit instance.
797 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
798 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
799 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
800 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
801 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
802 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
803 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
804 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
805 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
806 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
807 REGINFO_SENTINEL
810 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
811 /* NB: Some of these registers exist in v8 but with more precise
812 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
814 /* MMU Domain access control / MPU write buffer control */
815 { .name = "DACR",
816 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
817 .access = PL1_RW, .resetvalue = 0,
818 .writefn = dacr_write, .raw_writefn = raw_write,
819 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
820 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
821 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
822 * For v6 and v5, these mappings are overly broad.
824 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
825 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
826 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
827 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
828 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
829 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
830 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
831 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
832 /* Cache maintenance ops; some of this space may be overridden later. */
833 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
834 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
835 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
836 REGINFO_SENTINEL
839 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
840 /* Not all pre-v6 cores implemented this WFI, so this is slightly
841 * over-broad.
843 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
844 .access = PL1_W, .type = ARM_CP_WFI },
845 REGINFO_SENTINEL
848 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
849 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
850 * is UNPREDICTABLE; we choose to NOP as most implementations do).
852 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
853 .access = PL1_W, .type = ARM_CP_WFI },
854 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
855 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
856 * OMAPCP will override this space.
858 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
859 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
860 .resetvalue = 0 },
861 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
862 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
863 .resetvalue = 0 },
864 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
865 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
866 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
867 .resetvalue = 0 },
868 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
869 * implementing it as RAZ means the "debug architecture version" bits
870 * will read as a reserved value, which should cause Linux to not try
871 * to use the debug hardware.
873 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
874 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
875 /* MMU TLB control. Note that the wildcarding means we cover not just
876 * the unified TLB ops but also the dside/iside/inner-shareable variants.
878 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
879 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
880 .type = ARM_CP_NO_RAW },
881 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
882 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
883 .type = ARM_CP_NO_RAW },
884 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
885 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
886 .type = ARM_CP_NO_RAW },
887 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
888 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
889 .type = ARM_CP_NO_RAW },
890 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
891 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
892 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
893 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
894 REGINFO_SENTINEL
897 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
898 uint64_t value)
900 uint32_t mask = 0;
902 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
903 if (!arm_feature(env, ARM_FEATURE_V8)) {
904 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
905 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
906 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
908 if (arm_feature(env, ARM_FEATURE_VFP)) {
909 /* VFP coprocessor: cp10 & cp11 [23:20] */
910 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
912 if (!arm_feature(env, ARM_FEATURE_NEON)) {
913 /* ASEDIS [31] bit is RAO/WI */
914 value |= (1 << 31);
917 /* VFPv3 and upwards with NEON implement 32 double precision
918 * registers (D0-D31).
920 if (!arm_feature(env, ARM_FEATURE_NEON) ||
921 !arm_feature(env, ARM_FEATURE_VFP3)) {
922 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
923 value |= (1 << 30);
926 value &= mask;
928 env->cp15.cpacr_el1 = value;
931 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
933 /* Call cpacr_write() so that we reset with the correct RAO bits set
934 * for our CPU features.
936 cpacr_write(env, ri, 0);
939 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
940 bool isread)
942 if (arm_feature(env, ARM_FEATURE_V8)) {
943 /* Check if CPACR accesses are to be trapped to EL2 */
944 if (arm_current_el(env) == 1 &&
945 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
946 return CP_ACCESS_TRAP_EL2;
947 /* Check if CPACR accesses are to be trapped to EL3 */
948 } else if (arm_current_el(env) < 3 &&
949 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
950 return CP_ACCESS_TRAP_EL3;
954 return CP_ACCESS_OK;
957 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
958 bool isread)
960 /* Check if CPTR accesses are set to trap to EL3 */
961 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
962 return CP_ACCESS_TRAP_EL3;
965 return CP_ACCESS_OK;
968 static const ARMCPRegInfo v6_cp_reginfo[] = {
969 /* prefetch by MVA in v6, NOP in v7 */
970 { .name = "MVA_prefetch",
971 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
972 .access = PL1_W, .type = ARM_CP_NOP },
973 /* We need to break the TB after ISB to execute self-modifying code
974 * correctly and also to take any pending interrupts immediately.
975 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
977 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
978 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
979 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
980 .access = PL0_W, .type = ARM_CP_NOP },
981 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
982 .access = PL0_W, .type = ARM_CP_NOP },
983 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
984 .access = PL1_RW,
985 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
986 offsetof(CPUARMState, cp15.ifar_ns) },
987 .resetvalue = 0, },
988 /* Watchpoint Fault Address Register : should actually only be present
989 * for 1136, 1176, 11MPCore.
991 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
992 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
993 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
994 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
995 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
996 .resetfn = cpacr_reset, .writefn = cpacr_write },
997 REGINFO_SENTINEL
1000 /* Definitions for the PMU registers */
1001 #define PMCRN_MASK 0xf800
1002 #define PMCRN_SHIFT 11
1003 #define PMCRLC 0x40
1004 #define PMCRDP 0x10
1005 #define PMCRD 0x8
1006 #define PMCRC 0x4
1007 #define PMCRP 0x2
1008 #define PMCRE 0x1
1010 #define PMXEVTYPER_P 0x80000000
1011 #define PMXEVTYPER_U 0x40000000
1012 #define PMXEVTYPER_NSK 0x20000000
1013 #define PMXEVTYPER_NSU 0x10000000
1014 #define PMXEVTYPER_NSH 0x08000000
1015 #define PMXEVTYPER_M 0x04000000
1016 #define PMXEVTYPER_MT 0x02000000
1017 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1018 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1019 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1020 PMXEVTYPER_M | PMXEVTYPER_MT | \
1021 PMXEVTYPER_EVTCOUNT)
1023 #define PMCCFILTR 0xf8000000
1024 #define PMCCFILTR_M PMXEVTYPER_M
1025 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1027 static inline uint32_t pmu_num_counters(CPUARMState *env)
1029 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1032 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1033 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1035 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1038 typedef struct pm_event {
1039 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1040 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1041 bool (*supported)(CPUARMState *);
1043 * Retrieve the current count of the underlying event. The programmed
1044 * counters hold a difference from the return value from this function
1046 uint64_t (*get_count)(CPUARMState *);
1048 * Return how many nanoseconds it will take (at a minimum) for count events
1049 * to occur. A negative value indicates the counter will never overflow, or
1050 * that the counter has otherwise arranged for the overflow bit to be set
1051 * and the PMU interrupt to be raised on overflow.
1053 int64_t (*ns_per_count)(uint64_t);
1054 } pm_event;
1056 static bool event_always_supported(CPUARMState *env)
1058 return true;
1061 static uint64_t swinc_get_count(CPUARMState *env)
1064 * SW_INCR events are written directly to the pmevcntr's by writes to
1065 * PMSWINC, so there is no underlying count maintained by the PMU itself
1067 return 0;
1070 static int64_t swinc_ns_per(uint64_t ignored)
1072 return -1;
1076 * Return the underlying cycle count for the PMU cycle counters. If we're in
1077 * usermode, simply return 0.
1079 static uint64_t cycles_get_count(CPUARMState *env)
1081 #ifndef CONFIG_USER_ONLY
1082 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1083 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1084 #else
1085 return cpu_get_host_ticks();
1086 #endif
1089 #ifndef CONFIG_USER_ONLY
1090 static int64_t cycles_ns_per(uint64_t cycles)
1092 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1095 static bool instructions_supported(CPUARMState *env)
1097 return use_icount == 1 /* Precise instruction counting */;
1100 static uint64_t instructions_get_count(CPUARMState *env)
1102 return (uint64_t)cpu_get_icount_raw();
1105 static int64_t instructions_ns_per(uint64_t icount)
1107 return cpu_icount_to_ns((int64_t)icount);
1109 #endif
1111 static const pm_event pm_events[] = {
1112 { .number = 0x000, /* SW_INCR */
1113 .supported = event_always_supported,
1114 .get_count = swinc_get_count,
1115 .ns_per_count = swinc_ns_per,
1117 #ifndef CONFIG_USER_ONLY
1118 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1119 .supported = instructions_supported,
1120 .get_count = instructions_get_count,
1121 .ns_per_count = instructions_ns_per,
1123 { .number = 0x011, /* CPU_CYCLES, Cycle */
1124 .supported = event_always_supported,
1125 .get_count = cycles_get_count,
1126 .ns_per_count = cycles_ns_per,
1128 #endif
1132 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1133 * events (i.e. the statistical profiling extension), this implementation
1134 * should first be updated to something sparse instead of the current
1135 * supported_event_map[] array.
1137 #define MAX_EVENT_ID 0x11
1138 #define UNSUPPORTED_EVENT UINT16_MAX
1139 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1142 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1143 * of ARM event numbers to indices in our pm_events array.
1145 * Note: Events in the 0x40XX range are not currently supported.
1147 void pmu_init(ARMCPU *cpu)
1149 unsigned int i;
1152 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1153 * events to them
1155 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1156 supported_event_map[i] = UNSUPPORTED_EVENT;
1158 cpu->pmceid0 = 0;
1159 cpu->pmceid1 = 0;
1161 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1162 const pm_event *cnt = &pm_events[i];
1163 assert(cnt->number <= MAX_EVENT_ID);
1164 /* We do not currently support events in the 0x40xx range */
1165 assert(cnt->number <= 0x3f);
1167 if (cnt->supported(&cpu->env)) {
1168 supported_event_map[cnt->number] = i;
1169 uint64_t event_mask = 1 << (cnt->number & 0x1f);
1170 if (cnt->number & 0x20) {
1171 cpu->pmceid1 |= event_mask;
1172 } else {
1173 cpu->pmceid0 |= event_mask;
1180 * Check at runtime whether a PMU event is supported for the current machine
1182 static bool event_supported(uint16_t number)
1184 if (number > MAX_EVENT_ID) {
1185 return false;
1187 return supported_event_map[number] != UNSUPPORTED_EVENT;
1190 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1191 bool isread)
1193 /* Performance monitor registers user accessibility is controlled
1194 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1195 * trapping to EL2 or EL3 for other accesses.
1197 int el = arm_current_el(env);
1199 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1200 return CP_ACCESS_TRAP;
1202 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1203 && !arm_is_secure_below_el3(env)) {
1204 return CP_ACCESS_TRAP_EL2;
1206 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1207 return CP_ACCESS_TRAP_EL3;
1210 return CP_ACCESS_OK;
1213 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1214 const ARMCPRegInfo *ri,
1215 bool isread)
1217 /* ER: event counter read trap control */
1218 if (arm_feature(env, ARM_FEATURE_V8)
1219 && arm_current_el(env) == 0
1220 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1221 && isread) {
1222 return CP_ACCESS_OK;
1225 return pmreg_access(env, ri, isread);
1228 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1229 const ARMCPRegInfo *ri,
1230 bool isread)
1232 /* SW: software increment write trap control */
1233 if (arm_feature(env, ARM_FEATURE_V8)
1234 && arm_current_el(env) == 0
1235 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1236 && !isread) {
1237 return CP_ACCESS_OK;
1240 return pmreg_access(env, ri, isread);
1243 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1244 const ARMCPRegInfo *ri,
1245 bool isread)
1247 /* ER: event counter read trap control */
1248 if (arm_feature(env, ARM_FEATURE_V8)
1249 && arm_current_el(env) == 0
1250 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1251 return CP_ACCESS_OK;
1254 return pmreg_access(env, ri, isread);
1257 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1258 const ARMCPRegInfo *ri,
1259 bool isread)
1261 /* CR: cycle counter read trap control */
1262 if (arm_feature(env, ARM_FEATURE_V8)
1263 && arm_current_el(env) == 0
1264 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1265 && isread) {
1266 return CP_ACCESS_OK;
1269 return pmreg_access(env, ri, isread);
1272 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1273 * the current EL, security state, and register configuration.
1275 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1277 uint64_t filter;
1278 bool e, p, u, nsk, nsu, nsh, m;
1279 bool enabled, prohibited, filtered;
1280 bool secure = arm_is_secure(env);
1281 int el = arm_current_el(env);
1282 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1284 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1285 (counter < hpmn || counter == 31)) {
1286 e = env->cp15.c9_pmcr & PMCRE;
1287 } else {
1288 e = env->cp15.mdcr_el2 & MDCR_HPME;
1290 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1292 if (!secure) {
1293 if (el == 2 && (counter < hpmn || counter == 31)) {
1294 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1295 } else {
1296 prohibited = false;
1298 } else {
1299 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1300 (env->cp15.mdcr_el3 & MDCR_SPME);
1303 if (prohibited && counter == 31) {
1304 prohibited = env->cp15.c9_pmcr & PMCRDP;
1307 if (counter == 31) {
1308 filter = env->cp15.pmccfiltr_el0;
1309 } else {
1310 filter = env->cp15.c14_pmevtyper[counter];
1313 p = filter & PMXEVTYPER_P;
1314 u = filter & PMXEVTYPER_U;
1315 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1316 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1317 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1318 m = arm_el_is_aa64(env, 1) &&
1319 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1321 if (el == 0) {
1322 filtered = secure ? u : u != nsu;
1323 } else if (el == 1) {
1324 filtered = secure ? p : p != nsk;
1325 } else if (el == 2) {
1326 filtered = !nsh;
1327 } else { /* EL3 */
1328 filtered = m != p;
1331 if (counter != 31) {
1333 * If not checking PMCCNTR, ensure the counter is setup to an event we
1334 * support
1336 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1337 if (!event_supported(event)) {
1338 return false;
1342 return enabled && !prohibited && !filtered;
1345 static void pmu_update_irq(CPUARMState *env)
1347 ARMCPU *cpu = arm_env_get_cpu(env);
1348 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1349 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1353 * Ensure c15_ccnt is the guest-visible count so that operations such as
1354 * enabling/disabling the counter or filtering, modifying the count itself,
1355 * etc. can be done logically. This is essentially a no-op if the counter is
1356 * not enabled at the time of the call.
1358 void pmccntr_op_start(CPUARMState *env)
1360 uint64_t cycles = cycles_get_count(env);
1362 if (pmu_counter_enabled(env, 31)) {
1363 uint64_t eff_cycles = cycles;
1364 if (env->cp15.c9_pmcr & PMCRD) {
1365 /* Increment once every 64 processor clock cycles */
1366 eff_cycles /= 64;
1369 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1371 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1372 1ull << 63 : 1ull << 31;
1373 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1374 env->cp15.c9_pmovsr |= (1 << 31);
1375 pmu_update_irq(env);
1378 env->cp15.c15_ccnt = new_pmccntr;
1380 env->cp15.c15_ccnt_delta = cycles;
1384 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1385 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1386 * pmccntr_op_start.
1388 void pmccntr_op_finish(CPUARMState *env)
1390 if (pmu_counter_enabled(env, 31)) {
1391 #ifndef CONFIG_USER_ONLY
1392 /* Calculate when the counter will next overflow */
1393 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1394 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1395 remaining_cycles = (uint32_t)remaining_cycles;
1397 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1399 if (overflow_in > 0) {
1400 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1401 overflow_in;
1402 ARMCPU *cpu = arm_env_get_cpu(env);
1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1405 #endif
1407 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1408 if (env->cp15.c9_pmcr & PMCRD) {
1409 /* Increment once every 64 processor clock cycles */
1410 prev_cycles /= 64;
1412 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1416 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1419 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1420 uint64_t count = 0;
1421 if (event_supported(event)) {
1422 uint16_t event_idx = supported_event_map[event];
1423 count = pm_events[event_idx].get_count(env);
1426 if (pmu_counter_enabled(env, counter)) {
1427 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1429 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1430 env->cp15.c9_pmovsr |= (1 << counter);
1431 pmu_update_irq(env);
1433 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1435 env->cp15.c14_pmevcntr_delta[counter] = count;
1438 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1440 if (pmu_counter_enabled(env, counter)) {
1441 #ifndef CONFIG_USER_ONLY
1442 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1443 uint16_t event_idx = supported_event_map[event];
1444 uint64_t delta = UINT32_MAX -
1445 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1446 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1448 if (overflow_in > 0) {
1449 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1450 overflow_in;
1451 ARMCPU *cpu = arm_env_get_cpu(env);
1452 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1454 #endif
1456 env->cp15.c14_pmevcntr_delta[counter] -=
1457 env->cp15.c14_pmevcntr[counter];
1461 void pmu_op_start(CPUARMState *env)
1463 unsigned int i;
1464 pmccntr_op_start(env);
1465 for (i = 0; i < pmu_num_counters(env); i++) {
1466 pmevcntr_op_start(env, i);
1470 void pmu_op_finish(CPUARMState *env)
1472 unsigned int i;
1473 pmccntr_op_finish(env);
1474 for (i = 0; i < pmu_num_counters(env); i++) {
1475 pmevcntr_op_finish(env, i);
1479 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1481 pmu_op_start(&cpu->env);
1484 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1486 pmu_op_finish(&cpu->env);
1489 void arm_pmu_timer_cb(void *opaque)
1491 ARMCPU *cpu = opaque;
1494 * Update all the counter values based on the current underlying counts,
1495 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1496 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1497 * counter may expire.
1499 pmu_op_start(&cpu->env);
1500 pmu_op_finish(&cpu->env);
1503 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1504 uint64_t value)
1506 pmu_op_start(env);
1508 if (value & PMCRC) {
1509 /* The counter has been reset */
1510 env->cp15.c15_ccnt = 0;
1513 if (value & PMCRP) {
1514 unsigned int i;
1515 for (i = 0; i < pmu_num_counters(env); i++) {
1516 env->cp15.c14_pmevcntr[i] = 0;
1520 /* only the DP, X, D and E bits are writable */
1521 env->cp15.c9_pmcr &= ~0x39;
1522 env->cp15.c9_pmcr |= (value & 0x39);
1524 pmu_op_finish(env);
1527 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1528 uint64_t value)
1530 unsigned int i;
1531 for (i = 0; i < pmu_num_counters(env); i++) {
1532 /* Increment a counter's count iff: */
1533 if ((value & (1 << i)) && /* counter's bit is set */
1534 /* counter is enabled and not filtered */
1535 pmu_counter_enabled(env, i) &&
1536 /* counter is SW_INCR */
1537 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1538 pmevcntr_op_start(env, i);
1541 * Detect if this write causes an overflow since we can't predict
1542 * PMSWINC overflows like we can for other events
1544 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1546 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1547 env->cp15.c9_pmovsr |= (1 << i);
1548 pmu_update_irq(env);
1551 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1553 pmevcntr_op_finish(env, i);
1558 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1560 uint64_t ret;
1561 pmccntr_op_start(env);
1562 ret = env->cp15.c15_ccnt;
1563 pmccntr_op_finish(env);
1564 return ret;
1567 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1568 uint64_t value)
1570 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1571 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1572 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1573 * accessed.
1575 env->cp15.c9_pmselr = value & 0x1f;
1578 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1579 uint64_t value)
1581 pmccntr_op_start(env);
1582 env->cp15.c15_ccnt = value;
1583 pmccntr_op_finish(env);
1586 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
1589 uint64_t cur_val = pmccntr_read(env, NULL);
1591 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1594 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1595 uint64_t value)
1597 pmccntr_op_start(env);
1598 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1599 pmccntr_op_finish(env);
1602 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1603 uint64_t value)
1605 pmccntr_op_start(env);
1606 /* M is not accessible from AArch32 */
1607 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1608 (value & PMCCFILTR);
1609 pmccntr_op_finish(env);
1612 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1614 /* M is not visible in AArch32 */
1615 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1618 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1619 uint64_t value)
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmcnten |= value;
1625 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1626 uint64_t value)
1628 value &= pmu_counter_mask(env);
1629 env->cp15.c9_pmcnten &= ~value;
1632 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1633 uint64_t value)
1635 value &= pmu_counter_mask(env);
1636 env->cp15.c9_pmovsr &= ~value;
1637 pmu_update_irq(env);
1640 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1641 uint64_t value)
1643 value &= pmu_counter_mask(env);
1644 env->cp15.c9_pmovsr |= value;
1645 pmu_update_irq(env);
1648 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1649 uint64_t value, const uint8_t counter)
1651 if (counter == 31) {
1652 pmccfiltr_write(env, ri, value);
1653 } else if (counter < pmu_num_counters(env)) {
1654 pmevcntr_op_start(env, counter);
1657 * If this counter's event type is changing, store the current
1658 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1659 * pmevcntr_op_finish has the correct baseline when it converts back to
1660 * a delta.
1662 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1663 PMXEVTYPER_EVTCOUNT;
1664 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1665 if (old_event != new_event) {
1666 uint64_t count = 0;
1667 if (event_supported(new_event)) {
1668 uint16_t event_idx = supported_event_map[new_event];
1669 count = pm_events[event_idx].get_count(env);
1671 env->cp15.c14_pmevcntr_delta[counter] = count;
1674 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1675 pmevcntr_op_finish(env, counter);
1677 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1678 * PMSELR value is equal to or greater than the number of implemented
1679 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1683 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1684 const uint8_t counter)
1686 if (counter == 31) {
1687 return env->cp15.pmccfiltr_el0;
1688 } else if (counter < pmu_num_counters(env)) {
1689 return env->cp15.c14_pmevtyper[counter];
1690 } else {
1692 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1693 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1695 return 0;
1699 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1700 uint64_t value)
1702 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1703 pmevtyper_write(env, ri, value, counter);
1706 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1707 uint64_t value)
1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710 env->cp15.c14_pmevtyper[counter] = value;
1713 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1714 * pmu_op_finish calls when loading saved state for a migration. Because
1715 * we're potentially updating the type of event here, the value written to
1716 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1717 * different counter type. Therefore, we need to set this value to the
1718 * current count for the counter type we're writing so that pmu_op_finish
1719 * has the correct count for its calculation.
1721 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1722 if (event_supported(event)) {
1723 uint16_t event_idx = supported_event_map[event];
1724 env->cp15.c14_pmevcntr_delta[counter] =
1725 pm_events[event_idx].get_count(env);
1729 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1731 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1732 return pmevtyper_read(env, ri, counter);
1735 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736 uint64_t value)
1738 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1741 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1743 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1746 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1747 uint64_t value, uint8_t counter)
1749 if (counter < pmu_num_counters(env)) {
1750 pmevcntr_op_start(env, counter);
1751 env->cp15.c14_pmevcntr[counter] = value;
1752 pmevcntr_op_finish(env, counter);
1755 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1756 * are CONSTRAINED UNPREDICTABLE.
1760 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint8_t counter)
1763 if (counter < pmu_num_counters(env)) {
1764 uint64_t ret;
1765 pmevcntr_op_start(env, counter);
1766 ret = env->cp15.c14_pmevcntr[counter];
1767 pmevcntr_op_finish(env, counter);
1768 return ret;
1769 } else {
1770 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1771 * are CONSTRAINED UNPREDICTABLE. */
1772 return 0;
1776 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1777 uint64_t value)
1779 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1780 pmevcntr_write(env, ri, value, counter);
1783 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1785 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1786 return pmevcntr_read(env, ri, counter);
1789 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1790 uint64_t value)
1792 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1793 assert(counter < pmu_num_counters(env));
1794 env->cp15.c14_pmevcntr[counter] = value;
1795 pmevcntr_write(env, ri, value, counter);
1798 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1800 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1801 assert(counter < pmu_num_counters(env));
1802 return env->cp15.c14_pmevcntr[counter];
1805 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1806 uint64_t value)
1808 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1811 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1813 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1816 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1817 uint64_t value)
1819 if (arm_feature(env, ARM_FEATURE_V8)) {
1820 env->cp15.c9_pmuserenr = value & 0xf;
1821 } else {
1822 env->cp15.c9_pmuserenr = value & 1;
1826 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1827 uint64_t value)
1829 /* We have no event counters so only the C bit can be changed */
1830 value &= pmu_counter_mask(env);
1831 env->cp15.c9_pminten |= value;
1832 pmu_update_irq(env);
1835 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
1838 value &= pmu_counter_mask(env);
1839 env->cp15.c9_pminten &= ~value;
1840 pmu_update_irq(env);
1843 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844 uint64_t value)
1846 /* Note that even though the AArch64 view of this register has bits
1847 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1848 * architectural requirements for bits which are RES0 only in some
1849 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1850 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1852 raw_write(env, ri, value & ~0x1FULL);
1855 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1857 /* Begin with base v8.0 state. */
1858 uint32_t valid_mask = 0x3fff;
1859 ARMCPU *cpu = arm_env_get_cpu(env);
1861 if (arm_el_is_aa64(env, 3)) {
1862 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1863 valid_mask &= ~SCR_NET;
1864 } else {
1865 valid_mask &= ~(SCR_RW | SCR_ST);
1868 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1869 valid_mask &= ~SCR_HCE;
1871 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1872 * supported if EL2 exists. The bit is UNK/SBZP when
1873 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1874 * when EL2 is unavailable.
1875 * On ARMv8, this bit is always available.
1877 if (arm_feature(env, ARM_FEATURE_V7) &&
1878 !arm_feature(env, ARM_FEATURE_V8)) {
1879 valid_mask &= ~SCR_SMD;
1882 if (cpu_isar_feature(aa64_lor, cpu)) {
1883 valid_mask |= SCR_TLOR;
1885 if (cpu_isar_feature(aa64_pauth, cpu)) {
1886 valid_mask |= SCR_API | SCR_APK;
1889 /* Clear all-context RES0 bits. */
1890 value &= valid_mask;
1891 raw_write(env, ri, value);
1894 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1896 ARMCPU *cpu = arm_env_get_cpu(env);
1898 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1899 * bank
1901 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1902 ri->secure & ARM_CP_SECSTATE_S);
1904 return cpu->ccsidr[index];
1907 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1908 uint64_t value)
1910 raw_write(env, ri, value & 0xf);
1913 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1915 CPUState *cs = ENV_GET_CPU(env);
1916 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1917 uint64_t ret = 0;
1919 if (hcr_el2 & HCR_IMO) {
1920 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1921 ret |= CPSR_I;
1923 } else {
1924 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1925 ret |= CPSR_I;
1929 if (hcr_el2 & HCR_FMO) {
1930 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1931 ret |= CPSR_F;
1933 } else {
1934 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1935 ret |= CPSR_F;
1939 /* External aborts are not possible in QEMU so A bit is always clear */
1940 return ret;
1943 static const ARMCPRegInfo v7_cp_reginfo[] = {
1944 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1945 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1946 .access = PL1_W, .type = ARM_CP_NOP },
1947 /* Performance monitors are implementation defined in v7,
1948 * but with an ARM recommended set of registers, which we
1949 * follow.
1951 * Performance registers fall into three categories:
1952 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1953 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1954 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1955 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1956 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1958 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1959 .access = PL0_RW, .type = ARM_CP_ALIAS,
1960 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1961 .writefn = pmcntenset_write,
1962 .accessfn = pmreg_access,
1963 .raw_writefn = raw_write },
1964 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1966 .access = PL0_RW, .accessfn = pmreg_access,
1967 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1968 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1969 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1970 .access = PL0_RW,
1971 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1972 .accessfn = pmreg_access,
1973 .writefn = pmcntenclr_write,
1974 .type = ARM_CP_ALIAS },
1975 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1976 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1977 .access = PL0_RW, .accessfn = pmreg_access,
1978 .type = ARM_CP_ALIAS,
1979 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1980 .writefn = pmcntenclr_write },
1981 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1982 .access = PL0_RW, .type = ARM_CP_IO,
1983 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1984 .accessfn = pmreg_access,
1985 .writefn = pmovsr_write,
1986 .raw_writefn = raw_write },
1987 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1988 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1989 .access = PL0_RW, .accessfn = pmreg_access,
1990 .type = ARM_CP_ALIAS | ARM_CP_IO,
1991 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1992 .writefn = pmovsr_write,
1993 .raw_writefn = raw_write },
1994 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1995 .access = PL0_W, .accessfn = pmreg_access_swinc,
1996 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1997 .writefn = pmswinc_write },
1998 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2000 .access = PL0_W, .accessfn = pmreg_access_swinc,
2001 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2002 .writefn = pmswinc_write },
2003 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2004 .access = PL0_RW, .type = ARM_CP_ALIAS,
2005 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2006 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2007 .raw_writefn = raw_write},
2008 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2009 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2010 .access = PL0_RW, .accessfn = pmreg_access_selr,
2011 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2012 .writefn = pmselr_write, .raw_writefn = raw_write, },
2013 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2014 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2015 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2016 .accessfn = pmreg_access_ccntr },
2017 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2019 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2020 .type = ARM_CP_IO,
2021 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2022 .readfn = pmccntr_read, .writefn = pmccntr_write,
2023 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2024 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2025 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2026 .access = PL0_RW, .accessfn = pmreg_access,
2027 .type = ARM_CP_ALIAS | ARM_CP_IO,
2028 .resetvalue = 0, },
2029 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2031 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2032 .access = PL0_RW, .accessfn = pmreg_access,
2033 .type = ARM_CP_IO,
2034 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2035 .resetvalue = 0, },
2036 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2037 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2038 .accessfn = pmreg_access,
2039 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2040 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2042 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2043 .accessfn = pmreg_access,
2044 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2045 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2046 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2047 .accessfn = pmreg_access_xevcntr,
2048 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2049 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2050 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2051 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2052 .accessfn = pmreg_access_xevcntr,
2053 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2054 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2055 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2056 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2057 .resetvalue = 0,
2058 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2059 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2061 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2062 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2063 .resetvalue = 0,
2064 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2065 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2066 .access = PL1_RW, .accessfn = access_tpm,
2067 .type = ARM_CP_ALIAS | ARM_CP_IO,
2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2069 .resetvalue = 0,
2070 .writefn = pmintenset_write, .raw_writefn = raw_write },
2071 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2072 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2073 .access = PL1_RW, .accessfn = access_tpm,
2074 .type = ARM_CP_IO,
2075 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2076 .writefn = pmintenset_write, .raw_writefn = raw_write,
2077 .resetvalue = 0x0 },
2078 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2079 .access = PL1_RW, .accessfn = access_tpm,
2080 .type = ARM_CP_ALIAS | ARM_CP_IO,
2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2082 .writefn = pmintenclr_write, },
2083 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2085 .access = PL1_RW, .accessfn = access_tpm,
2086 .type = ARM_CP_ALIAS | ARM_CP_IO,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2088 .writefn = pmintenclr_write },
2089 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2090 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2091 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2092 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2093 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2094 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2095 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2096 offsetof(CPUARMState, cp15.csselr_ns) } },
2097 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2098 * just RAZ for all cores:
2100 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2101 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2102 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2103 /* Auxiliary fault status registers: these also are IMPDEF, and we
2104 * choose to RAZ/WI for all cores.
2106 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2107 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2108 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2109 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2110 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2111 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2112 /* MAIR can just read-as-written because we don't implement caches
2113 * and so don't need to care about memory attributes.
2115 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2116 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2117 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2118 .resetvalue = 0 },
2119 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2120 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2121 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2122 .resetvalue = 0 },
2123 /* For non-long-descriptor page tables these are PRRR and NMRR;
2124 * regardless they still act as reads-as-written for QEMU.
2126 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2127 * allows them to assign the correct fieldoffset based on the endianness
2128 * handled in the field definitions.
2130 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2131 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2132 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2133 offsetof(CPUARMState, cp15.mair0_ns) },
2134 .resetfn = arm_cp_reset_ignore },
2135 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2136 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2137 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2138 offsetof(CPUARMState, cp15.mair1_ns) },
2139 .resetfn = arm_cp_reset_ignore },
2140 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2141 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2142 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2143 /* 32 bit ITLB invalidates */
2144 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2145 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2146 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2148 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2150 /* 32 bit DTLB invalidates */
2151 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2153 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2154 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2155 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2157 /* 32 bit TLB invalidates */
2158 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2159 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2160 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2161 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2162 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2164 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2165 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2166 REGINFO_SENTINEL
2169 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2170 /* 32 bit TLB invalidates, Inner Shareable */
2171 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2173 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2174 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2175 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2176 .type = ARM_CP_NO_RAW, .access = PL1_W,
2177 .writefn = tlbiasid_is_write },
2178 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2179 .type = ARM_CP_NO_RAW, .access = PL1_W,
2180 .writefn = tlbimvaa_is_write },
2181 REGINFO_SENTINEL
2184 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2185 /* PMOVSSET is not implemented in v7 before v7ve */
2186 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2187 .access = PL0_RW, .accessfn = pmreg_access,
2188 .type = ARM_CP_ALIAS | ARM_CP_IO,
2189 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2190 .writefn = pmovsset_write,
2191 .raw_writefn = raw_write },
2192 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2194 .access = PL0_RW, .accessfn = pmreg_access,
2195 .type = ARM_CP_ALIAS | ARM_CP_IO,
2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2197 .writefn = pmovsset_write,
2198 .raw_writefn = raw_write },
2199 REGINFO_SENTINEL
2202 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2203 uint64_t value)
2205 value &= 1;
2206 env->teecr = value;
2209 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2210 bool isread)
2212 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2213 return CP_ACCESS_TRAP;
2215 return CP_ACCESS_OK;
2218 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2219 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2220 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2221 .resetvalue = 0,
2222 .writefn = teecr_write },
2223 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2224 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2225 .accessfn = teehbr_access, .resetvalue = 0 },
2226 REGINFO_SENTINEL
2229 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2230 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2231 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2232 .access = PL0_RW,
2233 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2234 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2235 .access = PL0_RW,
2236 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2237 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2238 .resetfn = arm_cp_reset_ignore },
2239 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2240 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2241 .access = PL0_R|PL1_W,
2242 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2243 .resetvalue = 0},
2244 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2245 .access = PL0_R|PL1_W,
2246 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2247 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2248 .resetfn = arm_cp_reset_ignore },
2249 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2250 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2251 .access = PL1_RW,
2252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2253 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2254 .access = PL1_RW,
2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2256 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2257 .resetvalue = 0 },
2258 REGINFO_SENTINEL
2261 #ifndef CONFIG_USER_ONLY
2263 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2264 bool isread)
2266 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2267 * Writable only at the highest implemented exception level.
2269 int el = arm_current_el(env);
2271 switch (el) {
2272 case 0:
2273 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2274 return CP_ACCESS_TRAP;
2276 break;
2277 case 1:
2278 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2279 arm_is_secure_below_el3(env)) {
2280 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2281 return CP_ACCESS_TRAP_UNCATEGORIZED;
2283 break;
2284 case 2:
2285 case 3:
2286 break;
2289 if (!isread && el < arm_highest_el(env)) {
2290 return CP_ACCESS_TRAP_UNCATEGORIZED;
2293 return CP_ACCESS_OK;
2296 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2297 bool isread)
2299 unsigned int cur_el = arm_current_el(env);
2300 bool secure = arm_is_secure(env);
2302 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2303 if (cur_el == 0 &&
2304 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2305 return CP_ACCESS_TRAP;
2308 if (arm_feature(env, ARM_FEATURE_EL2) &&
2309 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2310 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2311 return CP_ACCESS_TRAP_EL2;
2313 return CP_ACCESS_OK;
2316 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2317 bool isread)
2319 unsigned int cur_el = arm_current_el(env);
2320 bool secure = arm_is_secure(env);
2322 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2323 * EL0[PV]TEN is zero.
2325 if (cur_el == 0 &&
2326 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2327 return CP_ACCESS_TRAP;
2330 if (arm_feature(env, ARM_FEATURE_EL2) &&
2331 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2332 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2333 return CP_ACCESS_TRAP_EL2;
2335 return CP_ACCESS_OK;
2338 static CPAccessResult gt_pct_access(CPUARMState *env,
2339 const ARMCPRegInfo *ri,
2340 bool isread)
2342 return gt_counter_access(env, GTIMER_PHYS, isread);
2345 static CPAccessResult gt_vct_access(CPUARMState *env,
2346 const ARMCPRegInfo *ri,
2347 bool isread)
2349 return gt_counter_access(env, GTIMER_VIRT, isread);
2352 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2353 bool isread)
2355 return gt_timer_access(env, GTIMER_PHYS, isread);
2358 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2359 bool isread)
2361 return gt_timer_access(env, GTIMER_VIRT, isread);
2364 static CPAccessResult gt_stimer_access(CPUARMState *env,
2365 const ARMCPRegInfo *ri,
2366 bool isread)
2368 /* The AArch64 register view of the secure physical timer is
2369 * always accessible from EL3, and configurably accessible from
2370 * Secure EL1.
2372 switch (arm_current_el(env)) {
2373 case 1:
2374 if (!arm_is_secure(env)) {
2375 return CP_ACCESS_TRAP;
2377 if (!(env->cp15.scr_el3 & SCR_ST)) {
2378 return CP_ACCESS_TRAP_EL3;
2380 return CP_ACCESS_OK;
2381 case 0:
2382 case 2:
2383 return CP_ACCESS_TRAP;
2384 case 3:
2385 return CP_ACCESS_OK;
2386 default:
2387 g_assert_not_reached();
2391 static uint64_t gt_get_countervalue(CPUARMState *env)
2393 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2396 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2398 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2400 if (gt->ctl & 1) {
2401 /* Timer enabled: calculate and set current ISTATUS, irq, and
2402 * reset timer to when ISTATUS next has to change
2404 uint64_t offset = timeridx == GTIMER_VIRT ?
2405 cpu->env.cp15.cntvoff_el2 : 0;
2406 uint64_t count = gt_get_countervalue(&cpu->env);
2407 /* Note that this must be unsigned 64 bit arithmetic: */
2408 int istatus = count - offset >= gt->cval;
2409 uint64_t nexttick;
2410 int irqstate;
2412 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2414 irqstate = (istatus && !(gt->ctl & 2));
2415 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2417 if (istatus) {
2418 /* Next transition is when count rolls back over to zero */
2419 nexttick = UINT64_MAX;
2420 } else {
2421 /* Next transition is when we hit cval */
2422 nexttick = gt->cval + offset;
2424 /* Note that the desired next expiry time might be beyond the
2425 * signed-64-bit range of a QEMUTimer -- in this case we just
2426 * set the timer for as far in the future as possible. When the
2427 * timer expires we will reset the timer for any remaining period.
2429 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2430 nexttick = INT64_MAX / GTIMER_SCALE;
2432 timer_mod(cpu->gt_timer[timeridx], nexttick);
2433 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2434 } else {
2435 /* Timer disabled: ISTATUS and timer output always clear */
2436 gt->ctl &= ~4;
2437 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2438 timer_del(cpu->gt_timer[timeridx]);
2439 trace_arm_gt_recalc_disabled(timeridx);
2443 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2444 int timeridx)
2446 ARMCPU *cpu = arm_env_get_cpu(env);
2448 timer_del(cpu->gt_timer[timeridx]);
2451 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2453 return gt_get_countervalue(env);
2456 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2458 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2461 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2462 int timeridx,
2463 uint64_t value)
2465 trace_arm_gt_cval_write(timeridx, value);
2466 env->cp15.c14_timer[timeridx].cval = value;
2467 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2470 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2471 int timeridx)
2473 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2475 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2476 (gt_get_countervalue(env) - offset));
2479 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2480 int timeridx,
2481 uint64_t value)
2483 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2485 trace_arm_gt_tval_write(timeridx, value);
2486 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2487 sextract64(value, 0, 32);
2488 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2491 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2492 int timeridx,
2493 uint64_t value)
2495 ARMCPU *cpu = arm_env_get_cpu(env);
2496 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2498 trace_arm_gt_ctl_write(timeridx, value);
2499 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2500 if ((oldval ^ value) & 1) {
2501 /* Enable toggled */
2502 gt_recalc_timer(cpu, timeridx);
2503 } else if ((oldval ^ value) & 2) {
2504 /* IMASK toggled: don't need to recalculate,
2505 * just set the interrupt line based on ISTATUS
2507 int irqstate = (oldval & 4) && !(value & 2);
2509 trace_arm_gt_imask_toggle(timeridx, irqstate);
2510 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2514 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2516 gt_timer_reset(env, ri, GTIMER_PHYS);
2519 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2520 uint64_t value)
2522 gt_cval_write(env, ri, GTIMER_PHYS, value);
2525 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2527 return gt_tval_read(env, ri, GTIMER_PHYS);
2530 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531 uint64_t value)
2533 gt_tval_write(env, ri, GTIMER_PHYS, value);
2536 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2537 uint64_t value)
2539 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2542 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2544 gt_timer_reset(env, ri, GTIMER_VIRT);
2547 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548 uint64_t value)
2550 gt_cval_write(env, ri, GTIMER_VIRT, value);
2553 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2555 return gt_tval_read(env, ri, GTIMER_VIRT);
2558 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2559 uint64_t value)
2561 gt_tval_write(env, ri, GTIMER_VIRT, value);
2564 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2565 uint64_t value)
2567 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2570 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2571 uint64_t value)
2573 ARMCPU *cpu = arm_env_get_cpu(env);
2575 trace_arm_gt_cntvoff_write(value);
2576 raw_write(env, ri, value);
2577 gt_recalc_timer(cpu, GTIMER_VIRT);
2580 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2582 gt_timer_reset(env, ri, GTIMER_HYP);
2585 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586 uint64_t value)
2588 gt_cval_write(env, ri, GTIMER_HYP, value);
2591 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2593 return gt_tval_read(env, ri, GTIMER_HYP);
2596 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2597 uint64_t value)
2599 gt_tval_write(env, ri, GTIMER_HYP, value);
2602 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2603 uint64_t value)
2605 gt_ctl_write(env, ri, GTIMER_HYP, value);
2608 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2610 gt_timer_reset(env, ri, GTIMER_SEC);
2613 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614 uint64_t value)
2616 gt_cval_write(env, ri, GTIMER_SEC, value);
2619 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2621 return gt_tval_read(env, ri, GTIMER_SEC);
2624 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2625 uint64_t value)
2627 gt_tval_write(env, ri, GTIMER_SEC, value);
2630 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2631 uint64_t value)
2633 gt_ctl_write(env, ri, GTIMER_SEC, value);
2636 void arm_gt_ptimer_cb(void *opaque)
2638 ARMCPU *cpu = opaque;
2640 gt_recalc_timer(cpu, GTIMER_PHYS);
2643 void arm_gt_vtimer_cb(void *opaque)
2645 ARMCPU *cpu = opaque;
2647 gt_recalc_timer(cpu, GTIMER_VIRT);
2650 void arm_gt_htimer_cb(void *opaque)
2652 ARMCPU *cpu = opaque;
2654 gt_recalc_timer(cpu, GTIMER_HYP);
2657 void arm_gt_stimer_cb(void *opaque)
2659 ARMCPU *cpu = opaque;
2661 gt_recalc_timer(cpu, GTIMER_SEC);
2664 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2665 /* Note that CNTFRQ is purely reads-as-written for the benefit
2666 * of software; writing it doesn't actually change the timer frequency.
2667 * Our reset value matches the fixed frequency we implement the timer at.
2669 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2670 .type = ARM_CP_ALIAS,
2671 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2672 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2674 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2675 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2676 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2677 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2678 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2680 /* overall control: mostly access permissions */
2681 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2682 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2683 .access = PL1_RW,
2684 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2685 .resetvalue = 0,
2687 /* per-timer control */
2688 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2689 .secure = ARM_CP_SECSTATE_NS,
2690 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2691 .accessfn = gt_ptimer_access,
2692 .fieldoffset = offsetoflow32(CPUARMState,
2693 cp15.c14_timer[GTIMER_PHYS].ctl),
2694 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2696 { .name = "CNTP_CTL_S",
2697 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2698 .secure = ARM_CP_SECSTATE_S,
2699 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2700 .accessfn = gt_ptimer_access,
2701 .fieldoffset = offsetoflow32(CPUARMState,
2702 cp15.c14_timer[GTIMER_SEC].ctl),
2703 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2705 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2706 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2707 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2708 .accessfn = gt_ptimer_access,
2709 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2710 .resetvalue = 0,
2711 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2713 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2714 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2715 .accessfn = gt_vtimer_access,
2716 .fieldoffset = offsetoflow32(CPUARMState,
2717 cp15.c14_timer[GTIMER_VIRT].ctl),
2718 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2720 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2721 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2722 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2723 .accessfn = gt_vtimer_access,
2724 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2725 .resetvalue = 0,
2726 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2728 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2729 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2730 .secure = ARM_CP_SECSTATE_NS,
2731 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2732 .accessfn = gt_ptimer_access,
2733 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2735 { .name = "CNTP_TVAL_S",
2736 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2737 .secure = ARM_CP_SECSTATE_S,
2738 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2739 .accessfn = gt_ptimer_access,
2740 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2742 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2743 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2744 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2745 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2746 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2748 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2749 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2750 .accessfn = gt_vtimer_access,
2751 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2753 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2754 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2755 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2756 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2757 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2759 /* The counter itself */
2760 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2761 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2762 .accessfn = gt_pct_access,
2763 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2765 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2766 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2767 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2768 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2770 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2771 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2772 .accessfn = gt_vct_access,
2773 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2775 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2776 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2777 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2778 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2780 /* Comparison value, indicating when the timer goes off */
2781 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2782 .secure = ARM_CP_SECSTATE_NS,
2783 .access = PL1_RW | PL0_R,
2784 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2785 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2786 .accessfn = gt_ptimer_access,
2787 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2789 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2790 .secure = ARM_CP_SECSTATE_S,
2791 .access = PL1_RW | PL0_R,
2792 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2793 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2794 .accessfn = gt_ptimer_access,
2795 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2797 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2798 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2799 .access = PL1_RW | PL0_R,
2800 .type = ARM_CP_IO,
2801 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2802 .resetvalue = 0, .accessfn = gt_ptimer_access,
2803 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2805 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2806 .access = PL1_RW | PL0_R,
2807 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2808 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2809 .accessfn = gt_vtimer_access,
2810 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2812 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2813 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2814 .access = PL1_RW | PL0_R,
2815 .type = ARM_CP_IO,
2816 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2817 .resetvalue = 0, .accessfn = gt_vtimer_access,
2818 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2820 /* Secure timer -- this is actually restricted to only EL3
2821 * and configurably Secure-EL1 via the accessfn.
2823 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2824 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2825 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2826 .accessfn = gt_stimer_access,
2827 .readfn = gt_sec_tval_read,
2828 .writefn = gt_sec_tval_write,
2829 .resetfn = gt_sec_timer_reset,
2831 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2832 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2833 .type = ARM_CP_IO, .access = PL1_RW,
2834 .accessfn = gt_stimer_access,
2835 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2836 .resetvalue = 0,
2837 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2839 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2840 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2841 .type = ARM_CP_IO, .access = PL1_RW,
2842 .accessfn = gt_stimer_access,
2843 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2844 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2846 REGINFO_SENTINEL
2849 #else
2851 /* In user-mode most of the generic timer registers are inaccessible
2852 * however modern kernels (4.12+) allow access to cntvct_el0
2855 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2857 /* Currently we have no support for QEMUTimer in linux-user so we
2858 * can't call gt_get_countervalue(env), instead we directly
2859 * call the lower level functions.
2861 return cpu_get_clock() / GTIMER_SCALE;
2864 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2865 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2866 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2867 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2868 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2869 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2871 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2872 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2873 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2874 .readfn = gt_virt_cnt_read,
2876 REGINFO_SENTINEL
2879 #endif
2881 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2883 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2884 raw_write(env, ri, value);
2885 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2886 raw_write(env, ri, value & 0xfffff6ff);
2887 } else {
2888 raw_write(env, ri, value & 0xfffff1ff);
2892 #ifndef CONFIG_USER_ONLY
2893 /* get_phys_addr() isn't present for user-mode-only targets */
2895 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2896 bool isread)
2898 if (ri->opc2 & 4) {
2899 /* The ATS12NSO* operations must trap to EL3 if executed in
2900 * Secure EL1 (which can only happen if EL3 is AArch64).
2901 * They are simply UNDEF if executed from NS EL1.
2902 * They function normally from EL2 or EL3.
2904 if (arm_current_el(env) == 1) {
2905 if (arm_is_secure_below_el3(env)) {
2906 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2908 return CP_ACCESS_TRAP_UNCATEGORIZED;
2911 return CP_ACCESS_OK;
2914 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2915 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2917 hwaddr phys_addr;
2918 target_ulong page_size;
2919 int prot;
2920 bool ret;
2921 uint64_t par64;
2922 bool format64 = false;
2923 MemTxAttrs attrs = {};
2924 ARMMMUFaultInfo fi = {};
2925 ARMCacheAttrs cacheattrs = {};
2927 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2928 &prot, &page_size, &fi, &cacheattrs);
2930 if (is_a64(env)) {
2931 format64 = true;
2932 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2934 * ATS1Cxx:
2935 * * TTBCR.EAE determines whether the result is returned using the
2936 * 32-bit or the 64-bit PAR format
2937 * * Instructions executed in Hyp mode always use the 64bit format
2939 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2940 * * The Non-secure TTBCR.EAE bit is set to 1
2941 * * The implementation includes EL2, and the value of HCR.VM is 1
2943 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2945 * ATS1Hx always uses the 64bit format.
2947 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2949 if (arm_feature(env, ARM_FEATURE_EL2)) {
2950 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2951 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2952 } else {
2953 format64 |= arm_current_el(env) == 2;
2958 if (format64) {
2959 /* Create a 64-bit PAR */
2960 par64 = (1 << 11); /* LPAE bit always set */
2961 if (!ret) {
2962 par64 |= phys_addr & ~0xfffULL;
2963 if (!attrs.secure) {
2964 par64 |= (1 << 9); /* NS */
2966 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2967 par64 |= cacheattrs.shareability << 7; /* SH */
2968 } else {
2969 uint32_t fsr = arm_fi_to_lfsc(&fi);
2971 par64 |= 1; /* F */
2972 par64 |= (fsr & 0x3f) << 1; /* FS */
2973 if (fi.stage2) {
2974 par64 |= (1 << 9); /* S */
2976 if (fi.s1ptw) {
2977 par64 |= (1 << 8); /* PTW */
2980 } else {
2981 /* fsr is a DFSR/IFSR value for the short descriptor
2982 * translation table format (with WnR always clear).
2983 * Convert it to a 32-bit PAR.
2985 if (!ret) {
2986 /* We do not set any attribute bits in the PAR */
2987 if (page_size == (1 << 24)
2988 && arm_feature(env, ARM_FEATURE_V7)) {
2989 par64 = (phys_addr & 0xff000000) | (1 << 1);
2990 } else {
2991 par64 = phys_addr & 0xfffff000;
2993 if (!attrs.secure) {
2994 par64 |= (1 << 9); /* NS */
2996 } else {
2997 uint32_t fsr = arm_fi_to_sfsc(&fi);
2999 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3000 ((fsr & 0xf) << 1) | 1;
3003 return par64;
3006 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3008 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3009 uint64_t par64;
3010 ARMMMUIdx mmu_idx;
3011 int el = arm_current_el(env);
3012 bool secure = arm_is_secure_below_el3(env);
3014 switch (ri->opc2 & 6) {
3015 case 0:
3016 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3017 switch (el) {
3018 case 3:
3019 mmu_idx = ARMMMUIdx_S1E3;
3020 break;
3021 case 2:
3022 mmu_idx = ARMMMUIdx_S1NSE1;
3023 break;
3024 case 1:
3025 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3026 break;
3027 default:
3028 g_assert_not_reached();
3030 break;
3031 case 2:
3032 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3033 switch (el) {
3034 case 3:
3035 mmu_idx = ARMMMUIdx_S1SE0;
3036 break;
3037 case 2:
3038 mmu_idx = ARMMMUIdx_S1NSE0;
3039 break;
3040 case 1:
3041 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3042 break;
3043 default:
3044 g_assert_not_reached();
3046 break;
3047 case 4:
3048 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3049 mmu_idx = ARMMMUIdx_S12NSE1;
3050 break;
3051 case 6:
3052 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3053 mmu_idx = ARMMMUIdx_S12NSE0;
3054 break;
3055 default:
3056 g_assert_not_reached();
3059 par64 = do_ats_write(env, value, access_type, mmu_idx);
3061 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3064 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3065 uint64_t value)
3067 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3068 uint64_t par64;
3070 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3072 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3075 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3076 bool isread)
3078 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3079 return CP_ACCESS_TRAP;
3081 return CP_ACCESS_OK;
3084 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3085 uint64_t value)
3087 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3088 ARMMMUIdx mmu_idx;
3089 int secure = arm_is_secure_below_el3(env);
3091 switch (ri->opc2 & 6) {
3092 case 0:
3093 switch (ri->opc1) {
3094 case 0: /* AT S1E1R, AT S1E1W */
3095 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3096 break;
3097 case 4: /* AT S1E2R, AT S1E2W */
3098 mmu_idx = ARMMMUIdx_S1E2;
3099 break;
3100 case 6: /* AT S1E3R, AT S1E3W */
3101 mmu_idx = ARMMMUIdx_S1E3;
3102 break;
3103 default:
3104 g_assert_not_reached();
3106 break;
3107 case 2: /* AT S1E0R, AT S1E0W */
3108 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3109 break;
3110 case 4: /* AT S12E1R, AT S12E1W */
3111 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3112 break;
3113 case 6: /* AT S12E0R, AT S12E0W */
3114 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3115 break;
3116 default:
3117 g_assert_not_reached();
3120 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3122 #endif
3124 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3125 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3126 .access = PL1_RW, .resetvalue = 0,
3127 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3128 offsetoflow32(CPUARMState, cp15.par_ns) },
3129 .writefn = par_write },
3130 #ifndef CONFIG_USER_ONLY
3131 /* This underdecoding is safe because the reginfo is NO_RAW. */
3132 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3133 .access = PL1_W, .accessfn = ats_access,
3134 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3135 #endif
3136 REGINFO_SENTINEL
3139 /* Return basic MPU access permission bits. */
3140 static uint32_t simple_mpu_ap_bits(uint32_t val)
3142 uint32_t ret;
3143 uint32_t mask;
3144 int i;
3145 ret = 0;
3146 mask = 3;
3147 for (i = 0; i < 16; i += 2) {
3148 ret |= (val >> i) & mask;
3149 mask <<= 2;
3151 return ret;
3154 /* Pad basic MPU access permission bits to extended format. */
3155 static uint32_t extended_mpu_ap_bits(uint32_t val)
3157 uint32_t ret;
3158 uint32_t mask;
3159 int i;
3160 ret = 0;
3161 mask = 3;
3162 for (i = 0; i < 16; i += 2) {
3163 ret |= (val & mask) << i;
3164 mask <<= 2;
3166 return ret;
3169 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3170 uint64_t value)
3172 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3175 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3177 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3180 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181 uint64_t value)
3183 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3186 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3188 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3191 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3193 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3195 if (!u32p) {
3196 return 0;
3199 u32p += env->pmsav7.rnr[M_REG_NS];
3200 return *u32p;
3203 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3204 uint64_t value)
3206 ARMCPU *cpu = arm_env_get_cpu(env);
3207 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3209 if (!u32p) {
3210 return;
3213 u32p += env->pmsav7.rnr[M_REG_NS];
3214 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3215 *u32p = value;
3218 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3219 uint64_t value)
3221 ARMCPU *cpu = arm_env_get_cpu(env);
3222 uint32_t nrgs = cpu->pmsav7_dregion;
3224 if (value >= nrgs) {
3225 qemu_log_mask(LOG_GUEST_ERROR,
3226 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3227 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3228 return;
3231 raw_write(env, ri, value);
3234 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3235 /* Reset for all these registers is handled in arm_cpu_reset(),
3236 * because the PMSAv7 is also used by M-profile CPUs, which do
3237 * not register cpregs but still need the state to be reset.
3239 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3240 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3241 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3242 .readfn = pmsav7_read, .writefn = pmsav7_write,
3243 .resetfn = arm_cp_reset_ignore },
3244 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3245 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3246 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3247 .readfn = pmsav7_read, .writefn = pmsav7_write,
3248 .resetfn = arm_cp_reset_ignore },
3249 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3250 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3251 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3252 .readfn = pmsav7_read, .writefn = pmsav7_write,
3253 .resetfn = arm_cp_reset_ignore },
3254 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3255 .access = PL1_RW,
3256 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3257 .writefn = pmsav7_rgnr_write,
3258 .resetfn = arm_cp_reset_ignore },
3259 REGINFO_SENTINEL
3262 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3263 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3264 .access = PL1_RW, .type = ARM_CP_ALIAS,
3265 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3266 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3267 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3268 .access = PL1_RW, .type = ARM_CP_ALIAS,
3269 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3270 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3271 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3272 .access = PL1_RW,
3273 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3274 .resetvalue = 0, },
3275 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3276 .access = PL1_RW,
3277 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3278 .resetvalue = 0, },
3279 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3280 .access = PL1_RW,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3282 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3283 .access = PL1_RW,
3284 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3285 /* Protection region base and size registers */
3286 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3287 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3288 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3289 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3290 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3291 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3292 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3293 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3294 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3295 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3298 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3301 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3304 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3307 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3310 REGINFO_SENTINEL
3313 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3314 uint64_t value)
3316 TCR *tcr = raw_ptr(env, ri);
3317 int maskshift = extract32(value, 0, 3);
3319 if (!arm_feature(env, ARM_FEATURE_V8)) {
3320 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3321 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3322 * using Long-desciptor translation table format */
3323 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3324 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3325 /* In an implementation that includes the Security Extensions
3326 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3327 * Short-descriptor translation table format.
3329 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3330 } else {
3331 value &= TTBCR_N;
3335 /* Update the masks corresponding to the TCR bank being written
3336 * Note that we always calculate mask and base_mask, but
3337 * they are only used for short-descriptor tables (ie if EAE is 0);
3338 * for long-descriptor tables the TCR fields are used differently
3339 * and the mask and base_mask values are meaningless.
3341 tcr->raw_tcr = value;
3342 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3343 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3346 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3347 uint64_t value)
3349 ARMCPU *cpu = arm_env_get_cpu(env);
3350 TCR *tcr = raw_ptr(env, ri);
3352 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3353 /* With LPAE the TTBCR could result in a change of ASID
3354 * via the TTBCR.A1 bit, so do a TLB flush.
3356 tlb_flush(CPU(cpu));
3358 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3359 value = deposit64(tcr->raw_tcr, 0, 32, value);
3360 vmsa_ttbcr_raw_write(env, ri, value);
3363 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3365 TCR *tcr = raw_ptr(env, ri);
3367 /* Reset both the TCR as well as the masks corresponding to the bank of
3368 * the TCR being reset.
3370 tcr->raw_tcr = 0;
3371 tcr->mask = 0;
3372 tcr->base_mask = 0xffffc000u;
3375 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3376 uint64_t value)
3378 ARMCPU *cpu = arm_env_get_cpu(env);
3379 TCR *tcr = raw_ptr(env, ri);
3381 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3382 tlb_flush(CPU(cpu));
3383 tcr->raw_tcr = value;
3386 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3387 uint64_t value)
3389 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3390 if (cpreg_field_is_64bit(ri) &&
3391 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3392 ARMCPU *cpu = arm_env_get_cpu(env);
3393 tlb_flush(CPU(cpu));
3395 raw_write(env, ri, value);
3398 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3399 uint64_t value)
3401 ARMCPU *cpu = arm_env_get_cpu(env);
3402 CPUState *cs = CPU(cpu);
3404 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3405 if (raw_read(env, ri) != value) {
3406 tlb_flush_by_mmuidx(cs,
3407 ARMMMUIdxBit_S12NSE1 |
3408 ARMMMUIdxBit_S12NSE0 |
3409 ARMMMUIdxBit_S2NS);
3410 raw_write(env, ri, value);
3414 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3415 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3416 .access = PL1_RW, .type = ARM_CP_ALIAS,
3417 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3418 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3419 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3420 .access = PL1_RW, .resetvalue = 0,
3421 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3422 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3423 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3424 .access = PL1_RW, .resetvalue = 0,
3425 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3426 offsetof(CPUARMState, cp15.dfar_ns) } },
3427 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3429 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3430 .resetvalue = 0, },
3431 REGINFO_SENTINEL
3434 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3435 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3436 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3437 .access = PL1_RW,
3438 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3439 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3440 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3441 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3442 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3443 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3444 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3445 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3446 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3447 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3448 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3449 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3450 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3451 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3452 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3453 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3454 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3455 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3456 .raw_writefn = vmsa_ttbcr_raw_write,
3457 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3458 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3459 REGINFO_SENTINEL
3462 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3463 * qemu tlbs nor adjusting cached masks.
3465 static const ARMCPRegInfo ttbcr2_reginfo = {
3466 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3467 .access = PL1_RW, .type = ARM_CP_ALIAS,
3468 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3469 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3472 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3473 uint64_t value)
3475 env->cp15.c15_ticonfig = value & 0xe7;
3476 /* The OS_TYPE bit in this register changes the reported CPUID! */
3477 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3478 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3481 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3482 uint64_t value)
3484 env->cp15.c15_threadid = value & 0xffff;
3487 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3488 uint64_t value)
3490 /* Wait-for-interrupt (deprecated) */
3491 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3494 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3495 uint64_t value)
3497 /* On OMAP there are registers indicating the max/min index of dcache lines
3498 * containing a dirty line; cache flush operations have to reset these.
3500 env->cp15.c15_i_max = 0x000;
3501 env->cp15.c15_i_min = 0xff0;
3504 static const ARMCPRegInfo omap_cp_reginfo[] = {
3505 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3506 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3507 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3508 .resetvalue = 0, },
3509 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3510 .access = PL1_RW, .type = ARM_CP_NOP },
3511 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3512 .access = PL1_RW,
3513 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3514 .writefn = omap_ticonfig_write },
3515 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3516 .access = PL1_RW,
3517 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3518 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3519 .access = PL1_RW, .resetvalue = 0xff0,
3520 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3521 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3522 .access = PL1_RW,
3523 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3524 .writefn = omap_threadid_write },
3525 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3526 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3527 .type = ARM_CP_NO_RAW,
3528 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3529 /* TODO: Peripheral port remap register:
3530 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3531 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3532 * when MMU is off.
3534 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3535 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3536 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3537 .writefn = omap_cachemaint_write },
3538 { .name = "C9", .cp = 15, .crn = 9,
3539 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3540 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3541 REGINFO_SENTINEL
3544 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3545 uint64_t value)
3547 env->cp15.c15_cpar = value & 0x3fff;
3550 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3551 { .name = "XSCALE_CPAR",
3552 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3553 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3554 .writefn = xscale_cpar_write, },
3555 { .name = "XSCALE_AUXCR",
3556 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3557 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3558 .resetvalue = 0, },
3559 /* XScale specific cache-lockdown: since we have no cache we NOP these
3560 * and hope the guest does not really rely on cache behaviour.
3562 { .name = "XSCALE_LOCK_ICACHE_LINE",
3563 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3564 .access = PL1_W, .type = ARM_CP_NOP },
3565 { .name = "XSCALE_UNLOCK_ICACHE",
3566 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3567 .access = PL1_W, .type = ARM_CP_NOP },
3568 { .name = "XSCALE_DCACHE_LOCK",
3569 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3570 .access = PL1_RW, .type = ARM_CP_NOP },
3571 { .name = "XSCALE_UNLOCK_DCACHE",
3572 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3573 .access = PL1_W, .type = ARM_CP_NOP },
3574 REGINFO_SENTINEL
3577 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3578 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3579 * implementation of this implementation-defined space.
3580 * Ideally this should eventually disappear in favour of actually
3581 * implementing the correct behaviour for all cores.
3583 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3584 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3585 .access = PL1_RW,
3586 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3587 .resetvalue = 0 },
3588 REGINFO_SENTINEL
3591 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3592 /* Cache status: RAZ because we have no cache so it's always clean */
3593 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3594 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3595 .resetvalue = 0 },
3596 REGINFO_SENTINEL
3599 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3600 /* We never have a a block transfer operation in progress */
3601 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3602 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3603 .resetvalue = 0 },
3604 /* The cache ops themselves: these all NOP for QEMU */
3605 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3606 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3607 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3608 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3609 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3610 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3611 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3612 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3613 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3614 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3615 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3616 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3617 REGINFO_SENTINEL
3620 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3621 /* The cache test-and-clean instructions always return (1 << 30)
3622 * to indicate that there are no dirty cache lines.
3624 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3625 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3626 .resetvalue = (1 << 30) },
3627 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3628 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3629 .resetvalue = (1 << 30) },
3630 REGINFO_SENTINEL
3633 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3634 /* Ignore ReadBuffer accesses */
3635 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3636 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3637 .access = PL1_RW, .resetvalue = 0,
3638 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3639 REGINFO_SENTINEL
3642 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3644 ARMCPU *cpu = arm_env_get_cpu(env);
3645 unsigned int cur_el = arm_current_el(env);
3646 bool secure = arm_is_secure(env);
3648 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3649 return env->cp15.vpidr_el2;
3651 return raw_read(env, ri);
3654 static uint64_t mpidr_read_val(CPUARMState *env)
3656 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3657 uint64_t mpidr = cpu->mp_affinity;
3659 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3660 mpidr |= (1U << 31);
3661 /* Cores which are uniprocessor (non-coherent)
3662 * but still implement the MP extensions set
3663 * bit 30. (For instance, Cortex-R5).
3665 if (cpu->mp_is_up) {
3666 mpidr |= (1u << 30);
3669 return mpidr;
3672 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3674 unsigned int cur_el = arm_current_el(env);
3675 bool secure = arm_is_secure(env);
3677 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3678 return env->cp15.vmpidr_el2;
3680 return mpidr_read_val(env);
3683 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3684 /* NOP AMAIR0/1 */
3685 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3686 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3687 .access = PL1_RW, .type = ARM_CP_CONST,
3688 .resetvalue = 0 },
3689 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3690 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3691 .access = PL1_RW, .type = ARM_CP_CONST,
3692 .resetvalue = 0 },
3693 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3694 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3695 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3696 offsetof(CPUARMState, cp15.par_ns)} },
3697 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3698 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3699 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3700 offsetof(CPUARMState, cp15.ttbr0_ns) },
3701 .writefn = vmsa_ttbr_write, },
3702 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3703 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3704 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3705 offsetof(CPUARMState, cp15.ttbr1_ns) },
3706 .writefn = vmsa_ttbr_write, },
3707 REGINFO_SENTINEL
3710 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3712 return vfp_get_fpcr(env);
3715 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3716 uint64_t value)
3718 vfp_set_fpcr(env, value);
3721 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3723 return vfp_get_fpsr(env);
3726 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3727 uint64_t value)
3729 vfp_set_fpsr(env, value);
3732 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3733 bool isread)
3735 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3736 return CP_ACCESS_TRAP;
3738 return CP_ACCESS_OK;
3741 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3742 uint64_t value)
3744 env->daif = value & PSTATE_DAIF;
3747 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3748 const ARMCPRegInfo *ri,
3749 bool isread)
3751 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3752 * SCTLR_EL1.UCI is set.
3754 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3755 return CP_ACCESS_TRAP;
3757 return CP_ACCESS_OK;
3760 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3761 * Page D4-1736 (DDI0487A.b)
3764 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3765 uint64_t value)
3767 CPUState *cs = ENV_GET_CPU(env);
3768 bool sec = arm_is_secure_below_el3(env);
3770 if (sec) {
3771 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3772 ARMMMUIdxBit_S1SE1 |
3773 ARMMMUIdxBit_S1SE0);
3774 } else {
3775 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3776 ARMMMUIdxBit_S12NSE1 |
3777 ARMMMUIdxBit_S12NSE0);
3781 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3782 uint64_t value)
3784 CPUState *cs = ENV_GET_CPU(env);
3786 if (tlb_force_broadcast(env)) {
3787 tlbi_aa64_vmalle1is_write(env, NULL, value);
3788 return;
3791 if (arm_is_secure_below_el3(env)) {
3792 tlb_flush_by_mmuidx(cs,
3793 ARMMMUIdxBit_S1SE1 |
3794 ARMMMUIdxBit_S1SE0);
3795 } else {
3796 tlb_flush_by_mmuidx(cs,
3797 ARMMMUIdxBit_S12NSE1 |
3798 ARMMMUIdxBit_S12NSE0);
3802 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3803 uint64_t value)
3805 /* Note that the 'ALL' scope must invalidate both stage 1 and
3806 * stage 2 translations, whereas most other scopes only invalidate
3807 * stage 1 translations.
3809 ARMCPU *cpu = arm_env_get_cpu(env);
3810 CPUState *cs = CPU(cpu);
3812 if (arm_is_secure_below_el3(env)) {
3813 tlb_flush_by_mmuidx(cs,
3814 ARMMMUIdxBit_S1SE1 |
3815 ARMMMUIdxBit_S1SE0);
3816 } else {
3817 if (arm_feature(env, ARM_FEATURE_EL2)) {
3818 tlb_flush_by_mmuidx(cs,
3819 ARMMMUIdxBit_S12NSE1 |
3820 ARMMMUIdxBit_S12NSE0 |
3821 ARMMMUIdxBit_S2NS);
3822 } else {
3823 tlb_flush_by_mmuidx(cs,
3824 ARMMMUIdxBit_S12NSE1 |
3825 ARMMMUIdxBit_S12NSE0);
3830 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3831 uint64_t value)
3833 ARMCPU *cpu = arm_env_get_cpu(env);
3834 CPUState *cs = CPU(cpu);
3836 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3839 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3840 uint64_t value)
3842 ARMCPU *cpu = arm_env_get_cpu(env);
3843 CPUState *cs = CPU(cpu);
3845 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3848 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849 uint64_t value)
3851 /* Note that the 'ALL' scope must invalidate both stage 1 and
3852 * stage 2 translations, whereas most other scopes only invalidate
3853 * stage 1 translations.
3855 CPUState *cs = ENV_GET_CPU(env);
3856 bool sec = arm_is_secure_below_el3(env);
3857 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3859 if (sec) {
3860 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3861 ARMMMUIdxBit_S1SE1 |
3862 ARMMMUIdxBit_S1SE0);
3863 } else if (has_el2) {
3864 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3865 ARMMMUIdxBit_S12NSE1 |
3866 ARMMMUIdxBit_S12NSE0 |
3867 ARMMMUIdxBit_S2NS);
3868 } else {
3869 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3870 ARMMMUIdxBit_S12NSE1 |
3871 ARMMMUIdxBit_S12NSE0);
3875 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3876 uint64_t value)
3878 CPUState *cs = ENV_GET_CPU(env);
3880 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3883 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3884 uint64_t value)
3886 CPUState *cs = ENV_GET_CPU(env);
3888 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3891 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892 uint64_t value)
3894 /* Invalidate by VA, EL2
3895 * Currently handles both VAE2 and VALE2, since we don't support
3896 * flush-last-level-only.
3898 ARMCPU *cpu = arm_env_get_cpu(env);
3899 CPUState *cs = CPU(cpu);
3900 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3902 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3905 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3906 uint64_t value)
3908 /* Invalidate by VA, EL3
3909 * Currently handles both VAE3 and VALE3, since we don't support
3910 * flush-last-level-only.
3912 ARMCPU *cpu = arm_env_get_cpu(env);
3913 CPUState *cs = CPU(cpu);
3914 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3916 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3919 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3920 uint64_t value)
3922 ARMCPU *cpu = arm_env_get_cpu(env);
3923 CPUState *cs = CPU(cpu);
3924 bool sec = arm_is_secure_below_el3(env);
3925 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3927 if (sec) {
3928 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3929 ARMMMUIdxBit_S1SE1 |
3930 ARMMMUIdxBit_S1SE0);
3931 } else {
3932 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3933 ARMMMUIdxBit_S12NSE1 |
3934 ARMMMUIdxBit_S12NSE0);
3938 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3939 uint64_t value)
3941 /* Invalidate by VA, EL1&0 (AArch64 version).
3942 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3943 * since we don't support flush-for-specific-ASID-only or
3944 * flush-last-level-only.
3946 ARMCPU *cpu = arm_env_get_cpu(env);
3947 CPUState *cs = CPU(cpu);
3948 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3950 if (tlb_force_broadcast(env)) {
3951 tlbi_aa64_vae1is_write(env, NULL, value);
3952 return;
3955 if (arm_is_secure_below_el3(env)) {
3956 tlb_flush_page_by_mmuidx(cs, pageaddr,
3957 ARMMMUIdxBit_S1SE1 |
3958 ARMMMUIdxBit_S1SE0);
3959 } else {
3960 tlb_flush_page_by_mmuidx(cs, pageaddr,
3961 ARMMMUIdxBit_S12NSE1 |
3962 ARMMMUIdxBit_S12NSE0);
3966 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3967 uint64_t value)
3969 CPUState *cs = ENV_GET_CPU(env);
3970 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3972 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3973 ARMMMUIdxBit_S1E2);
3976 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3977 uint64_t value)
3979 CPUState *cs = ENV_GET_CPU(env);
3980 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3982 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3983 ARMMMUIdxBit_S1E3);
3986 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3989 /* Invalidate by IPA. This has to invalidate any structures that
3990 * contain only stage 2 translation information, but does not need
3991 * to apply to structures that contain combined stage 1 and stage 2
3992 * translation information.
3993 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3995 ARMCPU *cpu = arm_env_get_cpu(env);
3996 CPUState *cs = CPU(cpu);
3997 uint64_t pageaddr;
3999 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4000 return;
4003 pageaddr = sextract64(value << 12, 0, 48);
4005 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4008 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4009 uint64_t value)
4011 CPUState *cs = ENV_GET_CPU(env);
4012 uint64_t pageaddr;
4014 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4015 return;
4018 pageaddr = sextract64(value << 12, 0, 48);
4020 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4021 ARMMMUIdxBit_S2NS);
4024 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4025 bool isread)
4027 /* We don't implement EL2, so the only control on DC ZVA is the
4028 * bit in the SCTLR which can prohibit access for EL0.
4030 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4031 return CP_ACCESS_TRAP;
4033 return CP_ACCESS_OK;
4036 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4038 ARMCPU *cpu = arm_env_get_cpu(env);
4039 int dzp_bit = 1 << 4;
4041 /* DZP indicates whether DC ZVA access is allowed */
4042 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4043 dzp_bit = 0;
4045 return cpu->dcz_blocksize | dzp_bit;
4048 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4049 bool isread)
4051 if (!(env->pstate & PSTATE_SP)) {
4052 /* Access to SP_EL0 is undefined if it's being used as
4053 * the stack pointer.
4055 return CP_ACCESS_TRAP_UNCATEGORIZED;
4057 return CP_ACCESS_OK;
4060 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4062 return env->pstate & PSTATE_SP;
4065 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4067 update_spsel(env, val);
4070 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4071 uint64_t value)
4073 ARMCPU *cpu = arm_env_get_cpu(env);
4075 if (raw_read(env, ri) == value) {
4076 /* Skip the TLB flush if nothing actually changed; Linux likes
4077 * to do a lot of pointless SCTLR writes.
4079 return;
4082 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4083 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4084 value &= ~SCTLR_M;
4087 raw_write(env, ri, value);
4088 /* ??? Lots of these bits are not implemented. */
4089 /* This may enable/disable the MMU, so do a TLB flush. */
4090 tlb_flush(CPU(cpu));
4093 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4094 bool isread)
4096 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4097 return CP_ACCESS_TRAP_FP_EL2;
4099 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4100 return CP_ACCESS_TRAP_FP_EL3;
4102 return CP_ACCESS_OK;
4105 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4106 uint64_t value)
4108 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4111 static const ARMCPRegInfo v8_cp_reginfo[] = {
4112 /* Minimal set of EL0-visible registers. This will need to be expanded
4113 * significantly for system emulation of AArch64 CPUs.
4115 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4116 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4117 .access = PL0_RW, .type = ARM_CP_NZCV },
4118 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4119 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4120 .type = ARM_CP_NO_RAW,
4121 .access = PL0_RW, .accessfn = aa64_daif_access,
4122 .fieldoffset = offsetof(CPUARMState, daif),
4123 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4124 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4125 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4126 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4127 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4128 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4129 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4130 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4131 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4132 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4133 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4134 .access = PL0_R, .type = ARM_CP_NO_RAW,
4135 .readfn = aa64_dczid_read },
4136 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4138 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4139 #ifndef CONFIG_USER_ONLY
4140 /* Avoid overhead of an access check that always passes in user-mode */
4141 .accessfn = aa64_zva_access,
4142 #endif
4144 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4145 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4146 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4147 /* Cache ops: all NOPs since we don't emulate caches */
4148 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4149 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4150 .access = PL1_W, .type = ARM_CP_NOP },
4151 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4152 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4153 .access = PL1_W, .type = ARM_CP_NOP },
4154 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4155 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4156 .access = PL0_W, .type = ARM_CP_NOP,
4157 .accessfn = aa64_cacheop_access },
4158 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4159 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4160 .access = PL1_W, .type = ARM_CP_NOP },
4161 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4162 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4163 .access = PL1_W, .type = ARM_CP_NOP },
4164 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4165 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4166 .access = PL0_W, .type = ARM_CP_NOP,
4167 .accessfn = aa64_cacheop_access },
4168 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4169 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4170 .access = PL1_W, .type = ARM_CP_NOP },
4171 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4172 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4173 .access = PL0_W, .type = ARM_CP_NOP,
4174 .accessfn = aa64_cacheop_access },
4175 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4176 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4177 .access = PL0_W, .type = ARM_CP_NOP,
4178 .accessfn = aa64_cacheop_access },
4179 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4180 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4181 .access = PL1_W, .type = ARM_CP_NOP },
4182 /* TLBI operations */
4183 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4184 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4185 .access = PL1_W, .type = ARM_CP_NO_RAW,
4186 .writefn = tlbi_aa64_vmalle1is_write },
4187 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4188 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4189 .access = PL1_W, .type = ARM_CP_NO_RAW,
4190 .writefn = tlbi_aa64_vae1is_write },
4191 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4192 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4193 .access = PL1_W, .type = ARM_CP_NO_RAW,
4194 .writefn = tlbi_aa64_vmalle1is_write },
4195 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4196 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4197 .access = PL1_W, .type = ARM_CP_NO_RAW,
4198 .writefn = tlbi_aa64_vae1is_write },
4199 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4200 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4201 .access = PL1_W, .type = ARM_CP_NO_RAW,
4202 .writefn = tlbi_aa64_vae1is_write },
4203 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4204 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4205 .access = PL1_W, .type = ARM_CP_NO_RAW,
4206 .writefn = tlbi_aa64_vae1is_write },
4207 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4208 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4209 .access = PL1_W, .type = ARM_CP_NO_RAW,
4210 .writefn = tlbi_aa64_vmalle1_write },
4211 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4212 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4213 .access = PL1_W, .type = ARM_CP_NO_RAW,
4214 .writefn = tlbi_aa64_vae1_write },
4215 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4216 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4217 .access = PL1_W, .type = ARM_CP_NO_RAW,
4218 .writefn = tlbi_aa64_vmalle1_write },
4219 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4220 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4221 .access = PL1_W, .type = ARM_CP_NO_RAW,
4222 .writefn = tlbi_aa64_vae1_write },
4223 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4224 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4225 .access = PL1_W, .type = ARM_CP_NO_RAW,
4226 .writefn = tlbi_aa64_vae1_write },
4227 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4228 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4229 .access = PL1_W, .type = ARM_CP_NO_RAW,
4230 .writefn = tlbi_aa64_vae1_write },
4231 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4232 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4233 .access = PL2_W, .type = ARM_CP_NO_RAW,
4234 .writefn = tlbi_aa64_ipas2e1is_write },
4235 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4236 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4237 .access = PL2_W, .type = ARM_CP_NO_RAW,
4238 .writefn = tlbi_aa64_ipas2e1is_write },
4239 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4240 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4241 .access = PL2_W, .type = ARM_CP_NO_RAW,
4242 .writefn = tlbi_aa64_alle1is_write },
4243 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4244 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4245 .access = PL2_W, .type = ARM_CP_NO_RAW,
4246 .writefn = tlbi_aa64_alle1is_write },
4247 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4248 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4249 .access = PL2_W, .type = ARM_CP_NO_RAW,
4250 .writefn = tlbi_aa64_ipas2e1_write },
4251 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4252 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4253 .access = PL2_W, .type = ARM_CP_NO_RAW,
4254 .writefn = tlbi_aa64_ipas2e1_write },
4255 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4256 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4257 .access = PL2_W, .type = ARM_CP_NO_RAW,
4258 .writefn = tlbi_aa64_alle1_write },
4259 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4260 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4261 .access = PL2_W, .type = ARM_CP_NO_RAW,
4262 .writefn = tlbi_aa64_alle1is_write },
4263 #ifndef CONFIG_USER_ONLY
4264 /* 64 bit address translation operations */
4265 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4266 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4267 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4268 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4270 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4271 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4272 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4273 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4274 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4275 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4276 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4277 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4278 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4279 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4280 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4281 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4282 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4283 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4284 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4285 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4286 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4287 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4288 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4289 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4290 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4291 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4292 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4293 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4294 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4295 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4296 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4297 .type = ARM_CP_ALIAS,
4298 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4299 .access = PL1_RW, .resetvalue = 0,
4300 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4301 .writefn = par_write },
4302 #endif
4303 /* TLB invalidate last level of translation table walk */
4304 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4305 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4306 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4307 .type = ARM_CP_NO_RAW, .access = PL1_W,
4308 .writefn = tlbimvaa_is_write },
4309 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4310 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4311 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4312 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4313 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4314 .type = ARM_CP_NO_RAW, .access = PL2_W,
4315 .writefn = tlbimva_hyp_write },
4316 { .name = "TLBIMVALHIS",
4317 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4318 .type = ARM_CP_NO_RAW, .access = PL2_W,
4319 .writefn = tlbimva_hyp_is_write },
4320 { .name = "TLBIIPAS2",
4321 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4322 .type = ARM_CP_NO_RAW, .access = PL2_W,
4323 .writefn = tlbiipas2_write },
4324 { .name = "TLBIIPAS2IS",
4325 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4326 .type = ARM_CP_NO_RAW, .access = PL2_W,
4327 .writefn = tlbiipas2_is_write },
4328 { .name = "TLBIIPAS2L",
4329 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4330 .type = ARM_CP_NO_RAW, .access = PL2_W,
4331 .writefn = tlbiipas2_write },
4332 { .name = "TLBIIPAS2LIS",
4333 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4334 .type = ARM_CP_NO_RAW, .access = PL2_W,
4335 .writefn = tlbiipas2_is_write },
4336 /* 32 bit cache operations */
4337 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4338 .type = ARM_CP_NOP, .access = PL1_W },
4339 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4340 .type = ARM_CP_NOP, .access = PL1_W },
4341 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4342 .type = ARM_CP_NOP, .access = PL1_W },
4343 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4344 .type = ARM_CP_NOP, .access = PL1_W },
4345 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4346 .type = ARM_CP_NOP, .access = PL1_W },
4347 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4348 .type = ARM_CP_NOP, .access = PL1_W },
4349 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4350 .type = ARM_CP_NOP, .access = PL1_W },
4351 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4352 .type = ARM_CP_NOP, .access = PL1_W },
4353 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4354 .type = ARM_CP_NOP, .access = PL1_W },
4355 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4356 .type = ARM_CP_NOP, .access = PL1_W },
4357 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4358 .type = ARM_CP_NOP, .access = PL1_W },
4359 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4360 .type = ARM_CP_NOP, .access = PL1_W },
4361 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4362 .type = ARM_CP_NOP, .access = PL1_W },
4363 /* MMU Domain access control / MPU write buffer control */
4364 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4365 .access = PL1_RW, .resetvalue = 0,
4366 .writefn = dacr_write, .raw_writefn = raw_write,
4367 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4368 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4369 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4370 .type = ARM_CP_ALIAS,
4371 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4372 .access = PL1_RW,
4373 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4374 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4375 .type = ARM_CP_ALIAS,
4376 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4377 .access = PL1_RW,
4378 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4379 /* We rely on the access checks not allowing the guest to write to the
4380 * state field when SPSel indicates that it's being used as the stack
4381 * pointer.
4383 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4384 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4385 .access = PL1_RW, .accessfn = sp_el0_access,
4386 .type = ARM_CP_ALIAS,
4387 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4388 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4389 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4390 .access = PL2_RW, .type = ARM_CP_ALIAS,
4391 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4392 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4393 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4394 .type = ARM_CP_NO_RAW,
4395 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4396 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4397 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4398 .type = ARM_CP_ALIAS,
4399 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4400 .access = PL2_RW, .accessfn = fpexc32_access },
4401 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4402 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4403 .access = PL2_RW, .resetvalue = 0,
4404 .writefn = dacr_write, .raw_writefn = raw_write,
4405 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4406 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4407 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4408 .access = PL2_RW, .resetvalue = 0,
4409 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4410 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4411 .type = ARM_CP_ALIAS,
4412 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4413 .access = PL2_RW,
4414 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4415 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4416 .type = ARM_CP_ALIAS,
4417 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4418 .access = PL2_RW,
4419 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4420 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4421 .type = ARM_CP_ALIAS,
4422 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4423 .access = PL2_RW,
4424 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4425 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4426 .type = ARM_CP_ALIAS,
4427 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4428 .access = PL2_RW,
4429 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4430 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4431 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4432 .resetvalue = 0,
4433 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4434 { .name = "SDCR", .type = ARM_CP_ALIAS,
4435 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4436 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4437 .writefn = sdcr_write,
4438 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4439 REGINFO_SENTINEL
4442 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4443 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4444 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4445 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4446 .access = PL2_RW,
4447 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4448 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4449 .type = ARM_CP_NO_RAW,
4450 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4451 .access = PL2_RW,
4452 .type = ARM_CP_CONST, .resetvalue = 0 },
4453 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4455 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4456 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4457 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4458 .access = PL2_RW,
4459 .type = ARM_CP_CONST, .resetvalue = 0 },
4460 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4461 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4462 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4463 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4464 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4465 .access = PL2_RW, .type = ARM_CP_CONST,
4466 .resetvalue = 0 },
4467 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4468 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4469 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4470 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4471 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4472 .access = PL2_RW, .type = ARM_CP_CONST,
4473 .resetvalue = 0 },
4474 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4475 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4476 .access = PL2_RW, .type = ARM_CP_CONST,
4477 .resetvalue = 0 },
4478 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4479 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4480 .access = PL2_RW, .type = ARM_CP_CONST,
4481 .resetvalue = 0 },
4482 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4483 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4484 .access = PL2_RW, .type = ARM_CP_CONST,
4485 .resetvalue = 0 },
4486 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4487 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4488 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4489 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4490 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4491 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4492 .type = ARM_CP_CONST, .resetvalue = 0 },
4493 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4494 .cp = 15, .opc1 = 6, .crm = 2,
4495 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4496 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4497 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4498 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4499 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4500 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4501 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4502 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4503 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4504 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4505 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4506 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4508 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4509 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4510 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4511 .resetvalue = 0 },
4512 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4513 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4514 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4515 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4516 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4517 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4518 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4519 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4520 .resetvalue = 0 },
4521 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4523 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4524 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4525 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4526 .resetvalue = 0 },
4527 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4528 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4529 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4530 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4532 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4533 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4534 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4535 .access = PL2_RW, .accessfn = access_tda,
4536 .type = ARM_CP_CONST, .resetvalue = 0 },
4537 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4538 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4539 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4540 .type = ARM_CP_CONST, .resetvalue = 0 },
4541 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4542 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4543 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4544 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4545 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4547 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4548 .type = ARM_CP_CONST,
4549 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4550 .access = PL2_RW, .resetvalue = 0 },
4551 REGINFO_SENTINEL
4554 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4555 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4556 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4557 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4558 .access = PL2_RW,
4559 .type = ARM_CP_CONST, .resetvalue = 0 },
4560 REGINFO_SENTINEL
4563 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4565 ARMCPU *cpu = arm_env_get_cpu(env);
4566 uint64_t valid_mask = HCR_MASK;
4568 if (arm_feature(env, ARM_FEATURE_EL3)) {
4569 valid_mask &= ~HCR_HCD;
4570 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4571 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4572 * However, if we're using the SMC PSCI conduit then QEMU is
4573 * effectively acting like EL3 firmware and so the guest at
4574 * EL2 should retain the ability to prevent EL1 from being
4575 * able to make SMC calls into the ersatz firmware, so in
4576 * that case HCR.TSC should be read/write.
4578 valid_mask &= ~HCR_TSC;
4580 if (cpu_isar_feature(aa64_lor, cpu)) {
4581 valid_mask |= HCR_TLOR;
4583 if (cpu_isar_feature(aa64_pauth, cpu)) {
4584 valid_mask |= HCR_API | HCR_APK;
4587 /* Clear RES0 bits. */
4588 value &= valid_mask;
4590 /* These bits change the MMU setup:
4591 * HCR_VM enables stage 2 translation
4592 * HCR_PTW forbids certain page-table setups
4593 * HCR_DC Disables stage1 and enables stage2 translation
4595 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4596 tlb_flush(CPU(cpu));
4598 env->cp15.hcr_el2 = value;
4601 * Updates to VI and VF require us to update the status of
4602 * virtual interrupts, which are the logical OR of these bits
4603 * and the state of the input lines from the GIC. (This requires
4604 * that we have the iothread lock, which is done by marking the
4605 * reginfo structs as ARM_CP_IO.)
4606 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4607 * possible for it to be taken immediately, because VIRQ and
4608 * VFIQ are masked unless running at EL0 or EL1, and HCR
4609 * can only be written at EL2.
4611 g_assert(qemu_mutex_iothread_locked());
4612 arm_cpu_update_virq(cpu);
4613 arm_cpu_update_vfiq(cpu);
4616 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4617 uint64_t value)
4619 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4620 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4621 hcr_write(env, NULL, value);
4624 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4625 uint64_t value)
4627 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4628 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4629 hcr_write(env, NULL, value);
4633 * Return the effective value of HCR_EL2.
4634 * Bits that are not included here:
4635 * RW (read from SCR_EL3.RW as needed)
4637 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4639 uint64_t ret = env->cp15.hcr_el2;
4641 if (arm_is_secure_below_el3(env)) {
4643 * "This register has no effect if EL2 is not enabled in the
4644 * current Security state". This is ARMv8.4-SecEL2 speak for
4645 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4647 * Prior to that, the language was "In an implementation that
4648 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4649 * as if this field is 0 for all purposes other than a direct
4650 * read or write access of HCR_EL2". With lots of enumeration
4651 * on a per-field basis. In current QEMU, this is condition
4652 * is arm_is_secure_below_el3.
4654 * Since the v8.4 language applies to the entire register, and
4655 * appears to be backward compatible, use that.
4657 ret = 0;
4658 } else if (ret & HCR_TGE) {
4659 /* These bits are up-to-date as of ARMv8.4. */
4660 if (ret & HCR_E2H) {
4661 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4662 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4663 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4664 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4665 } else {
4666 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4668 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4669 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4670 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4671 HCR_TLOR);
4674 return ret;
4677 static const ARMCPRegInfo el2_cp_reginfo[] = {
4678 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4679 .type = ARM_CP_IO,
4680 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4681 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4682 .writefn = hcr_write },
4683 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4684 .type = ARM_CP_ALIAS | ARM_CP_IO,
4685 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4686 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4687 .writefn = hcr_writelow },
4688 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4691 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4692 .type = ARM_CP_ALIAS,
4693 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4694 .access = PL2_RW,
4695 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4696 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4697 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4698 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4699 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4700 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4701 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4702 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4703 .type = ARM_CP_ALIAS,
4704 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4705 .access = PL2_RW,
4706 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4707 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4708 .type = ARM_CP_ALIAS,
4709 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4710 .access = PL2_RW,
4711 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4712 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4713 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4714 .access = PL2_RW, .writefn = vbar_write,
4715 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4716 .resetvalue = 0 },
4717 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4718 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4719 .access = PL3_RW, .type = ARM_CP_ALIAS,
4720 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4721 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4723 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4724 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4725 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4726 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4727 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4728 .resetvalue = 0 },
4729 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4730 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4731 .access = PL2_RW, .type = ARM_CP_ALIAS,
4732 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4733 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4734 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4735 .access = PL2_RW, .type = ARM_CP_CONST,
4736 .resetvalue = 0 },
4737 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4738 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4739 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4740 .access = PL2_RW, .type = ARM_CP_CONST,
4741 .resetvalue = 0 },
4742 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4743 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4744 .access = PL2_RW, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4747 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4748 .access = PL2_RW, .type = ARM_CP_CONST,
4749 .resetvalue = 0 },
4750 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4751 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4752 .access = PL2_RW,
4753 /* no .writefn needed as this can't cause an ASID change;
4754 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4756 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4757 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4758 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4759 .type = ARM_CP_ALIAS,
4760 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4761 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4762 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4764 .access = PL2_RW,
4765 /* no .writefn needed as this can't cause an ASID change;
4766 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4768 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4769 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4770 .cp = 15, .opc1 = 6, .crm = 2,
4771 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4772 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4773 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4774 .writefn = vttbr_write },
4775 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4776 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4777 .access = PL2_RW, .writefn = vttbr_write,
4778 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4779 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4780 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4781 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4782 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4783 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4784 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4785 .access = PL2_RW, .resetvalue = 0,
4786 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4787 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4789 .access = PL2_RW, .resetvalue = 0,
4790 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4791 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4792 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4793 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4794 { .name = "TLBIALLNSNH",
4795 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4796 .type = ARM_CP_NO_RAW, .access = PL2_W,
4797 .writefn = tlbiall_nsnh_write },
4798 { .name = "TLBIALLNSNHIS",
4799 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4800 .type = ARM_CP_NO_RAW, .access = PL2_W,
4801 .writefn = tlbiall_nsnh_is_write },
4802 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4803 .type = ARM_CP_NO_RAW, .access = PL2_W,
4804 .writefn = tlbiall_hyp_write },
4805 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4806 .type = ARM_CP_NO_RAW, .access = PL2_W,
4807 .writefn = tlbiall_hyp_is_write },
4808 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4809 .type = ARM_CP_NO_RAW, .access = PL2_W,
4810 .writefn = tlbimva_hyp_write },
4811 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4812 .type = ARM_CP_NO_RAW, .access = PL2_W,
4813 .writefn = tlbimva_hyp_is_write },
4814 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4816 .type = ARM_CP_NO_RAW, .access = PL2_W,
4817 .writefn = tlbi_aa64_alle2_write },
4818 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4820 .type = ARM_CP_NO_RAW, .access = PL2_W,
4821 .writefn = tlbi_aa64_vae2_write },
4822 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4824 .access = PL2_W, .type = ARM_CP_NO_RAW,
4825 .writefn = tlbi_aa64_vae2_write },
4826 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4827 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4828 .access = PL2_W, .type = ARM_CP_NO_RAW,
4829 .writefn = tlbi_aa64_alle2is_write },
4830 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4832 .type = ARM_CP_NO_RAW, .access = PL2_W,
4833 .writefn = tlbi_aa64_vae2is_write },
4834 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4835 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4836 .access = PL2_W, .type = ARM_CP_NO_RAW,
4837 .writefn = tlbi_aa64_vae2is_write },
4838 #ifndef CONFIG_USER_ONLY
4839 /* Unlike the other EL2-related AT operations, these must
4840 * UNDEF from EL3 if EL2 is not implemented, which is why we
4841 * define them here rather than with the rest of the AT ops.
4843 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4845 .access = PL2_W, .accessfn = at_s1e2_access,
4846 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4847 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4849 .access = PL2_W, .accessfn = at_s1e2_access,
4850 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4851 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4852 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4853 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4854 * to behave as if SCR.NS was 1.
4856 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4857 .access = PL2_W,
4858 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4859 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4860 .access = PL2_W,
4861 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4862 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4863 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4864 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4865 * reset values as IMPDEF. We choose to reset to 3 to comply with
4866 * both ARMv7 and ARMv8.
4868 .access = PL2_RW, .resetvalue = 3,
4869 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4870 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4872 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4873 .writefn = gt_cntvoff_write,
4874 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4875 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4876 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4877 .writefn = gt_cntvoff_write,
4878 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4879 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4881 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4882 .type = ARM_CP_IO, .access = PL2_RW,
4883 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4884 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4885 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4886 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4887 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4888 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4889 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4890 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4891 .resetfn = gt_hyp_timer_reset,
4892 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4893 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4894 .type = ARM_CP_IO,
4895 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4896 .access = PL2_RW,
4897 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4898 .resetvalue = 0,
4899 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4900 #endif
4901 /* The only field of MDCR_EL2 that has a defined architectural reset value
4902 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4903 * don't implement any PMU event counters, so using zero as a reset
4904 * value for MDCR_EL2 is okay
4906 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4907 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4908 .access = PL2_RW, .resetvalue = 0,
4909 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4910 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4911 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4912 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4913 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4914 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4915 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4916 .access = PL2_RW,
4917 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4918 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4919 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4920 .access = PL2_RW,
4921 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4922 REGINFO_SENTINEL
4925 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4926 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4927 .type = ARM_CP_ALIAS | ARM_CP_IO,
4928 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4929 .access = PL2_RW,
4930 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4931 .writefn = hcr_writehigh },
4932 REGINFO_SENTINEL
4935 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4936 bool isread)
4938 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4939 * At Secure EL1 it traps to EL3.
4941 if (arm_current_el(env) == 3) {
4942 return CP_ACCESS_OK;
4944 if (arm_is_secure_below_el3(env)) {
4945 return CP_ACCESS_TRAP_EL3;
4947 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4948 if (isread) {
4949 return CP_ACCESS_OK;
4951 return CP_ACCESS_TRAP_UNCATEGORIZED;
4954 static const ARMCPRegInfo el3_cp_reginfo[] = {
4955 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4956 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4957 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4958 .resetvalue = 0, .writefn = scr_write },
4959 { .name = "SCR", .type = ARM_CP_ALIAS,
4960 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4961 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4962 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4963 .writefn = scr_write },
4964 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4965 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4966 .access = PL3_RW, .resetvalue = 0,
4967 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4968 { .name = "SDER",
4969 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4970 .access = PL3_RW, .resetvalue = 0,
4971 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4972 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4973 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4974 .writefn = vbar_write, .resetvalue = 0,
4975 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4976 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4977 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4978 .access = PL3_RW, .resetvalue = 0,
4979 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4980 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4981 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4982 .access = PL3_RW,
4983 /* no .writefn needed as this can't cause an ASID change;
4984 * we must provide a .raw_writefn and .resetfn because we handle
4985 * reset and migration for the AArch32 TTBCR(S), which might be
4986 * using mask and base_mask.
4988 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4989 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4990 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4991 .type = ARM_CP_ALIAS,
4992 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4993 .access = PL3_RW,
4994 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4995 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4996 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4997 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4998 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4999 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5000 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5001 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5002 .type = ARM_CP_ALIAS,
5003 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5004 .access = PL3_RW,
5005 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5006 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5007 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5008 .access = PL3_RW, .writefn = vbar_write,
5009 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5010 .resetvalue = 0 },
5011 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5012 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5013 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5014 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5015 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5016 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5017 .access = PL3_RW, .resetvalue = 0,
5018 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5019 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5020 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5021 .access = PL3_RW, .type = ARM_CP_CONST,
5022 .resetvalue = 0 },
5023 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5024 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5025 .access = PL3_RW, .type = ARM_CP_CONST,
5026 .resetvalue = 0 },
5027 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5028 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5029 .access = PL3_RW, .type = ARM_CP_CONST,
5030 .resetvalue = 0 },
5031 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5032 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5033 .access = PL3_W, .type = ARM_CP_NO_RAW,
5034 .writefn = tlbi_aa64_alle3is_write },
5035 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5036 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5037 .access = PL3_W, .type = ARM_CP_NO_RAW,
5038 .writefn = tlbi_aa64_vae3is_write },
5039 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5040 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5041 .access = PL3_W, .type = ARM_CP_NO_RAW,
5042 .writefn = tlbi_aa64_vae3is_write },
5043 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5044 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5045 .access = PL3_W, .type = ARM_CP_NO_RAW,
5046 .writefn = tlbi_aa64_alle3_write },
5047 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5048 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5049 .access = PL3_W, .type = ARM_CP_NO_RAW,
5050 .writefn = tlbi_aa64_vae3_write },
5051 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5052 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5053 .access = PL3_W, .type = ARM_CP_NO_RAW,
5054 .writefn = tlbi_aa64_vae3_write },
5055 REGINFO_SENTINEL
5058 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5059 bool isread)
5061 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5062 * but the AArch32 CTR has its own reginfo struct)
5064 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5065 return CP_ACCESS_TRAP;
5067 return CP_ACCESS_OK;
5070 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5071 uint64_t value)
5073 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5074 * read via a bit in OSLSR_EL1.
5076 int oslock;
5078 if (ri->state == ARM_CP_STATE_AA32) {
5079 oslock = (value == 0xC5ACCE55);
5080 } else {
5081 oslock = value & 1;
5084 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5087 static const ARMCPRegInfo debug_cp_reginfo[] = {
5088 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5089 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5090 * unlike DBGDRAR it is never accessible from EL0.
5091 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5092 * accessor.
5094 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5095 .access = PL0_R, .accessfn = access_tdra,
5096 .type = ARM_CP_CONST, .resetvalue = 0 },
5097 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5098 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5099 .access = PL1_R, .accessfn = access_tdra,
5100 .type = ARM_CP_CONST, .resetvalue = 0 },
5101 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5102 .access = PL0_R, .accessfn = access_tdra,
5103 .type = ARM_CP_CONST, .resetvalue = 0 },
5104 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5105 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5106 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5107 .access = PL1_RW, .accessfn = access_tda,
5108 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5109 .resetvalue = 0 },
5110 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5111 * We don't implement the configurable EL0 access.
5113 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5114 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5115 .type = ARM_CP_ALIAS,
5116 .access = PL1_R, .accessfn = access_tda,
5117 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5118 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5119 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5120 .access = PL1_W, .type = ARM_CP_NO_RAW,
5121 .accessfn = access_tdosa,
5122 .writefn = oslar_write },
5123 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5124 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5125 .access = PL1_R, .resetvalue = 10,
5126 .accessfn = access_tdosa,
5127 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5128 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5129 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5130 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5131 .access = PL1_RW, .accessfn = access_tdosa,
5132 .type = ARM_CP_NOP },
5133 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5134 * implement vector catch debug events yet.
5136 { .name = "DBGVCR",
5137 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5138 .access = PL1_RW, .accessfn = access_tda,
5139 .type = ARM_CP_NOP },
5140 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5141 * to save and restore a 32-bit guest's DBGVCR)
5143 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5144 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5145 .access = PL2_RW, .accessfn = access_tda,
5146 .type = ARM_CP_NOP },
5147 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5148 * Channel but Linux may try to access this register. The 32-bit
5149 * alias is DBGDCCINT.
5151 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5152 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5153 .access = PL1_RW, .accessfn = access_tda,
5154 .type = ARM_CP_NOP },
5155 REGINFO_SENTINEL
5158 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5159 /* 64 bit access versions of the (dummy) debug registers */
5160 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5161 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5162 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5163 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5164 REGINFO_SENTINEL
5167 /* Return the exception level to which exceptions should be taken
5168 * via SVEAccessTrap. If an exception should be routed through
5169 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5170 * take care of raising that exception.
5171 * C.f. the ARM pseudocode function CheckSVEEnabled.
5173 int sve_exception_el(CPUARMState *env, int el)
5175 #ifndef CONFIG_USER_ONLY
5176 if (el <= 1) {
5177 bool disabled = false;
5179 /* The CPACR.ZEN controls traps to EL1:
5180 * 0, 2 : trap EL0 and EL1 accesses
5181 * 1 : trap only EL0 accesses
5182 * 3 : trap no accesses
5184 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5185 disabled = true;
5186 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5187 disabled = el == 0;
5189 if (disabled) {
5190 /* route_to_el2 */
5191 return (arm_feature(env, ARM_FEATURE_EL2)
5192 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5195 /* Check CPACR.FPEN. */
5196 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5197 disabled = true;
5198 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5199 disabled = el == 0;
5201 if (disabled) {
5202 return 0;
5206 /* CPTR_EL2. Since TZ and TFP are positive,
5207 * they will be zero when EL2 is not present.
5209 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5210 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5211 return 2;
5213 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5214 return 0;
5218 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5219 if (arm_feature(env, ARM_FEATURE_EL3)
5220 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5221 return 3;
5223 #endif
5224 return 0;
5228 * Given that SVE is enabled, return the vector length for EL.
5230 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5232 ARMCPU *cpu = arm_env_get_cpu(env);
5233 uint32_t zcr_len = cpu->sve_max_vq - 1;
5235 if (el <= 1) {
5236 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5238 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5239 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5241 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5242 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5244 return zcr_len;
5247 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5248 uint64_t value)
5250 int cur_el = arm_current_el(env);
5251 int old_len = sve_zcr_len_for_el(env, cur_el);
5252 int new_len;
5254 /* Bits other than [3:0] are RAZ/WI. */
5255 raw_write(env, ri, value & 0xf);
5258 * Because we arrived here, we know both FP and SVE are enabled;
5259 * otherwise we would have trapped access to the ZCR_ELn register.
5261 new_len = sve_zcr_len_for_el(env, cur_el);
5262 if (new_len < old_len) {
5263 aarch64_sve_narrow_vq(env, new_len + 1);
5267 static const ARMCPRegInfo zcr_el1_reginfo = {
5268 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5269 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5270 .access = PL1_RW, .type = ARM_CP_SVE,
5271 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5272 .writefn = zcr_write, .raw_writefn = raw_write
5275 static const ARMCPRegInfo zcr_el2_reginfo = {
5276 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5277 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5278 .access = PL2_RW, .type = ARM_CP_SVE,
5279 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5280 .writefn = zcr_write, .raw_writefn = raw_write
5283 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5284 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5285 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5286 .access = PL2_RW, .type = ARM_CP_SVE,
5287 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5290 static const ARMCPRegInfo zcr_el3_reginfo = {
5291 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5292 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5293 .access = PL3_RW, .type = ARM_CP_SVE,
5294 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5295 .writefn = zcr_write, .raw_writefn = raw_write
5298 void hw_watchpoint_update(ARMCPU *cpu, int n)
5300 CPUARMState *env = &cpu->env;
5301 vaddr len = 0;
5302 vaddr wvr = env->cp15.dbgwvr[n];
5303 uint64_t wcr = env->cp15.dbgwcr[n];
5304 int mask;
5305 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5307 if (env->cpu_watchpoint[n]) {
5308 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5309 env->cpu_watchpoint[n] = NULL;
5312 if (!extract64(wcr, 0, 1)) {
5313 /* E bit clear : watchpoint disabled */
5314 return;
5317 switch (extract64(wcr, 3, 2)) {
5318 case 0:
5319 /* LSC 00 is reserved and must behave as if the wp is disabled */
5320 return;
5321 case 1:
5322 flags |= BP_MEM_READ;
5323 break;
5324 case 2:
5325 flags |= BP_MEM_WRITE;
5326 break;
5327 case 3:
5328 flags |= BP_MEM_ACCESS;
5329 break;
5332 /* Attempts to use both MASK and BAS fields simultaneously are
5333 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5334 * thus generating a watchpoint for every byte in the masked region.
5336 mask = extract64(wcr, 24, 4);
5337 if (mask == 1 || mask == 2) {
5338 /* Reserved values of MASK; we must act as if the mask value was
5339 * some non-reserved value, or as if the watchpoint were disabled.
5340 * We choose the latter.
5342 return;
5343 } else if (mask) {
5344 /* Watchpoint covers an aligned area up to 2GB in size */
5345 len = 1ULL << mask;
5346 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5347 * whether the watchpoint fires when the unmasked bits match; we opt
5348 * to generate the exceptions.
5350 wvr &= ~(len - 1);
5351 } else {
5352 /* Watchpoint covers bytes defined by the byte address select bits */
5353 int bas = extract64(wcr, 5, 8);
5354 int basstart;
5356 if (bas == 0) {
5357 /* This must act as if the watchpoint is disabled */
5358 return;
5361 if (extract64(wvr, 2, 1)) {
5362 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5363 * ignored, and BAS[3:0] define which bytes to watch.
5365 bas &= 0xf;
5367 /* The BAS bits are supposed to be programmed to indicate a contiguous
5368 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5369 * we fire for each byte in the word/doubleword addressed by the WVR.
5370 * We choose to ignore any non-zero bits after the first range of 1s.
5372 basstart = ctz32(bas);
5373 len = cto32(bas >> basstart);
5374 wvr += basstart;
5377 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5378 &env->cpu_watchpoint[n]);
5381 void hw_watchpoint_update_all(ARMCPU *cpu)
5383 int i;
5384 CPUARMState *env = &cpu->env;
5386 /* Completely clear out existing QEMU watchpoints and our array, to
5387 * avoid possible stale entries following migration load.
5389 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5390 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5392 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5393 hw_watchpoint_update(cpu, i);
5397 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5398 uint64_t value)
5400 ARMCPU *cpu = arm_env_get_cpu(env);
5401 int i = ri->crm;
5403 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5404 * register reads and behaves as if values written are sign extended.
5405 * Bits [1:0] are RES0.
5407 value = sextract64(value, 0, 49) & ~3ULL;
5409 raw_write(env, ri, value);
5410 hw_watchpoint_update(cpu, i);
5413 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5414 uint64_t value)
5416 ARMCPU *cpu = arm_env_get_cpu(env);
5417 int i = ri->crm;
5419 raw_write(env, ri, value);
5420 hw_watchpoint_update(cpu, i);
5423 void hw_breakpoint_update(ARMCPU *cpu, int n)
5425 CPUARMState *env = &cpu->env;
5426 uint64_t bvr = env->cp15.dbgbvr[n];
5427 uint64_t bcr = env->cp15.dbgbcr[n];
5428 vaddr addr;
5429 int bt;
5430 int flags = BP_CPU;
5432 if (env->cpu_breakpoint[n]) {
5433 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5434 env->cpu_breakpoint[n] = NULL;
5437 if (!extract64(bcr, 0, 1)) {
5438 /* E bit clear : watchpoint disabled */
5439 return;
5442 bt = extract64(bcr, 20, 4);
5444 switch (bt) {
5445 case 4: /* unlinked address mismatch (reserved if AArch64) */
5446 case 5: /* linked address mismatch (reserved if AArch64) */
5447 qemu_log_mask(LOG_UNIMP,
5448 "arm: address mismatch breakpoint types not implemented\n");
5449 return;
5450 case 0: /* unlinked address match */
5451 case 1: /* linked address match */
5453 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5454 * we behave as if the register was sign extended. Bits [1:0] are
5455 * RES0. The BAS field is used to allow setting breakpoints on 16
5456 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5457 * a bp will fire if the addresses covered by the bp and the addresses
5458 * covered by the insn overlap but the insn doesn't start at the
5459 * start of the bp address range. We choose to require the insn and
5460 * the bp to have the same address. The constraints on writing to
5461 * BAS enforced in dbgbcr_write mean we have only four cases:
5462 * 0b0000 => no breakpoint
5463 * 0b0011 => breakpoint on addr
5464 * 0b1100 => breakpoint on addr + 2
5465 * 0b1111 => breakpoint on addr
5466 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5468 int bas = extract64(bcr, 5, 4);
5469 addr = sextract64(bvr, 0, 49) & ~3ULL;
5470 if (bas == 0) {
5471 return;
5473 if (bas == 0xc) {
5474 addr += 2;
5476 break;
5478 case 2: /* unlinked context ID match */
5479 case 8: /* unlinked VMID match (reserved if no EL2) */
5480 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5481 qemu_log_mask(LOG_UNIMP,
5482 "arm: unlinked context breakpoint types not implemented\n");
5483 return;
5484 case 9: /* linked VMID match (reserved if no EL2) */
5485 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5486 case 3: /* linked context ID match */
5487 default:
5488 /* We must generate no events for Linked context matches (unless
5489 * they are linked to by some other bp/wp, which is handled in
5490 * updates for the linking bp/wp). We choose to also generate no events
5491 * for reserved values.
5493 return;
5496 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5499 void hw_breakpoint_update_all(ARMCPU *cpu)
5501 int i;
5502 CPUARMState *env = &cpu->env;
5504 /* Completely clear out existing QEMU breakpoints and our array, to
5505 * avoid possible stale entries following migration load.
5507 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5508 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5510 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5511 hw_breakpoint_update(cpu, i);
5515 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5516 uint64_t value)
5518 ARMCPU *cpu = arm_env_get_cpu(env);
5519 int i = ri->crm;
5521 raw_write(env, ri, value);
5522 hw_breakpoint_update(cpu, i);
5525 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5526 uint64_t value)
5528 ARMCPU *cpu = arm_env_get_cpu(env);
5529 int i = ri->crm;
5531 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5532 * copy of BAS[0].
5534 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5535 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5537 raw_write(env, ri, value);
5538 hw_breakpoint_update(cpu, i);
5541 static void define_debug_regs(ARMCPU *cpu)
5543 /* Define v7 and v8 architectural debug registers.
5544 * These are just dummy implementations for now.
5546 int i;
5547 int wrps, brps, ctx_cmps;
5548 ARMCPRegInfo dbgdidr = {
5549 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5550 .access = PL0_R, .accessfn = access_tda,
5551 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5554 /* Note that all these register fields hold "number of Xs minus 1". */
5555 brps = extract32(cpu->dbgdidr, 24, 4);
5556 wrps = extract32(cpu->dbgdidr, 28, 4);
5557 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5559 assert(ctx_cmps <= brps);
5561 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5562 * of the debug registers such as number of breakpoints;
5563 * check that if they both exist then they agree.
5565 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5566 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5567 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5568 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5571 define_one_arm_cp_reg(cpu, &dbgdidr);
5572 define_arm_cp_regs(cpu, debug_cp_reginfo);
5574 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5575 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5578 for (i = 0; i < brps + 1; i++) {
5579 ARMCPRegInfo dbgregs[] = {
5580 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5581 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5582 .access = PL1_RW, .accessfn = access_tda,
5583 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5584 .writefn = dbgbvr_write, .raw_writefn = raw_write
5586 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5587 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5588 .access = PL1_RW, .accessfn = access_tda,
5589 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5590 .writefn = dbgbcr_write, .raw_writefn = raw_write
5592 REGINFO_SENTINEL
5594 define_arm_cp_regs(cpu, dbgregs);
5597 for (i = 0; i < wrps + 1; i++) {
5598 ARMCPRegInfo dbgregs[] = {
5599 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5600 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5601 .access = PL1_RW, .accessfn = access_tda,
5602 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5603 .writefn = dbgwvr_write, .raw_writefn = raw_write
5605 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5606 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5607 .access = PL1_RW, .accessfn = access_tda,
5608 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5609 .writefn = dbgwcr_write, .raw_writefn = raw_write
5611 REGINFO_SENTINEL
5613 define_arm_cp_regs(cpu, dbgregs);
5617 /* We don't know until after realize whether there's a GICv3
5618 * attached, and that is what registers the gicv3 sysregs.
5619 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5620 * at runtime.
5622 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5624 ARMCPU *cpu = arm_env_get_cpu(env);
5625 uint64_t pfr1 = cpu->id_pfr1;
5627 if (env->gicv3state) {
5628 pfr1 |= 1 << 28;
5630 return pfr1;
5633 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5635 ARMCPU *cpu = arm_env_get_cpu(env);
5636 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5638 if (env->gicv3state) {
5639 pfr0 |= 1 << 24;
5641 return pfr0;
5644 /* Shared logic between LORID and the rest of the LOR* registers.
5645 * Secure state has already been delt with.
5647 static CPAccessResult access_lor_ns(CPUARMState *env)
5649 int el = arm_current_el(env);
5651 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5652 return CP_ACCESS_TRAP_EL2;
5654 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5655 return CP_ACCESS_TRAP_EL3;
5657 return CP_ACCESS_OK;
5660 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5661 bool isread)
5663 if (arm_is_secure_below_el3(env)) {
5664 /* Access ok in secure mode. */
5665 return CP_ACCESS_OK;
5667 return access_lor_ns(env);
5670 static CPAccessResult access_lor_other(CPUARMState *env,
5671 const ARMCPRegInfo *ri, bool isread)
5673 if (arm_is_secure_below_el3(env)) {
5674 /* Access denied in secure mode. */
5675 return CP_ACCESS_TRAP;
5677 return access_lor_ns(env);
5680 #ifdef TARGET_AARCH64
5681 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5682 bool isread)
5684 int el = arm_current_el(env);
5686 if (el < 2 &&
5687 arm_feature(env, ARM_FEATURE_EL2) &&
5688 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5689 return CP_ACCESS_TRAP_EL2;
5691 if (el < 3 &&
5692 arm_feature(env, ARM_FEATURE_EL3) &&
5693 !(env->cp15.scr_el3 & SCR_APK)) {
5694 return CP_ACCESS_TRAP_EL3;
5696 return CP_ACCESS_OK;
5699 static const ARMCPRegInfo pauth_reginfo[] = {
5700 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5701 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5702 .access = PL1_RW, .accessfn = access_pauth,
5703 .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5704 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5705 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5706 .access = PL1_RW, .accessfn = access_pauth,
5707 .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5708 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5709 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5710 .access = PL1_RW, .accessfn = access_pauth,
5711 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5712 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5713 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5714 .access = PL1_RW, .accessfn = access_pauth,
5715 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5716 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5717 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5718 .access = PL1_RW, .accessfn = access_pauth,
5719 .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5720 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5721 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5722 .access = PL1_RW, .accessfn = access_pauth,
5723 .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5724 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5725 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5726 .access = PL1_RW, .accessfn = access_pauth,
5727 .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5728 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5729 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5730 .access = PL1_RW, .accessfn = access_pauth,
5731 .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5732 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5733 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5734 .access = PL1_RW, .accessfn = access_pauth,
5735 .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5736 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5737 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5738 .access = PL1_RW, .accessfn = access_pauth,
5739 .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5740 REGINFO_SENTINEL
5742 #endif
5744 void register_cp_regs_for_features(ARMCPU *cpu)
5746 /* Register all the coprocessor registers based on feature bits */
5747 CPUARMState *env = &cpu->env;
5748 if (arm_feature(env, ARM_FEATURE_M)) {
5749 /* M profile has no coprocessor registers */
5750 return;
5753 define_arm_cp_regs(cpu, cp_reginfo);
5754 if (!arm_feature(env, ARM_FEATURE_V8)) {
5755 /* Must go early as it is full of wildcards that may be
5756 * overridden by later definitions.
5758 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5761 if (arm_feature(env, ARM_FEATURE_V6)) {
5762 /* The ID registers all have impdef reset values */
5763 ARMCPRegInfo v6_idregs[] = {
5764 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5766 .access = PL1_R, .type = ARM_CP_CONST,
5767 .resetvalue = cpu->id_pfr0 },
5768 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5769 * the value of the GIC field until after we define these regs.
5771 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5773 .access = PL1_R, .type = ARM_CP_NO_RAW,
5774 .readfn = id_pfr1_read,
5775 .writefn = arm_cp_write_ignore },
5776 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5778 .access = PL1_R, .type = ARM_CP_CONST,
5779 .resetvalue = cpu->id_dfr0 },
5780 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5782 .access = PL1_R, .type = ARM_CP_CONST,
5783 .resetvalue = cpu->id_afr0 },
5784 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5786 .access = PL1_R, .type = ARM_CP_CONST,
5787 .resetvalue = cpu->id_mmfr0 },
5788 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5790 .access = PL1_R, .type = ARM_CP_CONST,
5791 .resetvalue = cpu->id_mmfr1 },
5792 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5794 .access = PL1_R, .type = ARM_CP_CONST,
5795 .resetvalue = cpu->id_mmfr2 },
5796 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5798 .access = PL1_R, .type = ARM_CP_CONST,
5799 .resetvalue = cpu->id_mmfr3 },
5800 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5802 .access = PL1_R, .type = ARM_CP_CONST,
5803 .resetvalue = cpu->isar.id_isar0 },
5804 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5806 .access = PL1_R, .type = ARM_CP_CONST,
5807 .resetvalue = cpu->isar.id_isar1 },
5808 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5810 .access = PL1_R, .type = ARM_CP_CONST,
5811 .resetvalue = cpu->isar.id_isar2 },
5812 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5814 .access = PL1_R, .type = ARM_CP_CONST,
5815 .resetvalue = cpu->isar.id_isar3 },
5816 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5818 .access = PL1_R, .type = ARM_CP_CONST,
5819 .resetvalue = cpu->isar.id_isar4 },
5820 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5822 .access = PL1_R, .type = ARM_CP_CONST,
5823 .resetvalue = cpu->isar.id_isar5 },
5824 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5825 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5826 .access = PL1_R, .type = ARM_CP_CONST,
5827 .resetvalue = cpu->id_mmfr4 },
5828 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5830 .access = PL1_R, .type = ARM_CP_CONST,
5831 .resetvalue = cpu->isar.id_isar6 },
5832 REGINFO_SENTINEL
5834 define_arm_cp_regs(cpu, v6_idregs);
5835 define_arm_cp_regs(cpu, v6_cp_reginfo);
5836 } else {
5837 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5839 if (arm_feature(env, ARM_FEATURE_V6K)) {
5840 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5842 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5843 !arm_feature(env, ARM_FEATURE_PMSA)) {
5844 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5846 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5847 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5849 if (arm_feature(env, ARM_FEATURE_V7)) {
5850 /* v7 performance monitor control register: same implementor
5851 * field as main ID register, and we implement four counters in
5852 * addition to the cycle count register.
5854 unsigned int i, pmcrn = 4;
5855 ARMCPRegInfo pmcr = {
5856 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5857 .access = PL0_RW,
5858 .type = ARM_CP_IO | ARM_CP_ALIAS,
5859 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5860 .accessfn = pmreg_access, .writefn = pmcr_write,
5861 .raw_writefn = raw_write,
5863 ARMCPRegInfo pmcr64 = {
5864 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5865 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5866 .access = PL0_RW, .accessfn = pmreg_access,
5867 .type = ARM_CP_IO,
5868 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5869 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5870 .writefn = pmcr_write, .raw_writefn = raw_write,
5872 define_one_arm_cp_reg(cpu, &pmcr);
5873 define_one_arm_cp_reg(cpu, &pmcr64);
5874 for (i = 0; i < pmcrn; i++) {
5875 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5876 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5877 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5878 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5879 ARMCPRegInfo pmev_regs[] = {
5880 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5881 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5882 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5883 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5884 .accessfn = pmreg_access },
5885 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5886 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5887 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5888 .type = ARM_CP_IO,
5889 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5890 .raw_readfn = pmevcntr_rawread,
5891 .raw_writefn = pmevcntr_rawwrite },
5892 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5893 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5894 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5895 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5896 .accessfn = pmreg_access },
5897 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5898 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5899 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5900 .type = ARM_CP_IO,
5901 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5902 .raw_writefn = pmevtyper_rawwrite },
5903 REGINFO_SENTINEL
5905 define_arm_cp_regs(cpu, pmev_regs);
5906 g_free(pmevcntr_name);
5907 g_free(pmevcntr_el0_name);
5908 g_free(pmevtyper_name);
5909 g_free(pmevtyper_el0_name);
5911 ARMCPRegInfo clidr = {
5912 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5913 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5914 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5916 define_one_arm_cp_reg(cpu, &clidr);
5917 define_arm_cp_regs(cpu, v7_cp_reginfo);
5918 define_debug_regs(cpu);
5919 } else {
5920 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5922 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5923 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5924 ARMCPRegInfo v81_pmu_regs[] = {
5925 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5926 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5927 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5928 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5929 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5930 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5931 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5932 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5933 REGINFO_SENTINEL
5935 define_arm_cp_regs(cpu, v81_pmu_regs);
5937 if (arm_feature(env, ARM_FEATURE_V8)) {
5938 /* AArch64 ID registers, which all have impdef reset values.
5939 * Note that within the ID register ranges the unused slots
5940 * must all RAZ, not UNDEF; future architecture versions may
5941 * define new registers here.
5943 ARMCPRegInfo v8_idregs[] = {
5944 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5945 * know the right value for the GIC field until after we
5946 * define these regs.
5948 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5950 .access = PL1_R, .type = ARM_CP_NO_RAW,
5951 .readfn = id_aa64pfr0_read,
5952 .writefn = arm_cp_write_ignore },
5953 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5955 .access = PL1_R, .type = ARM_CP_CONST,
5956 .resetvalue = cpu->isar.id_aa64pfr1},
5957 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5959 .access = PL1_R, .type = ARM_CP_CONST,
5960 .resetvalue = 0 },
5961 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5963 .access = PL1_R, .type = ARM_CP_CONST,
5964 .resetvalue = 0 },
5965 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5967 .access = PL1_R, .type = ARM_CP_CONST,
5968 /* At present, only SVEver == 0 is defined anyway. */
5969 .resetvalue = 0 },
5970 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5972 .access = PL1_R, .type = ARM_CP_CONST,
5973 .resetvalue = 0 },
5974 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5976 .access = PL1_R, .type = ARM_CP_CONST,
5977 .resetvalue = 0 },
5978 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5980 .access = PL1_R, .type = ARM_CP_CONST,
5981 .resetvalue = 0 },
5982 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5984 .access = PL1_R, .type = ARM_CP_CONST,
5985 .resetvalue = cpu->id_aa64dfr0 },
5986 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5988 .access = PL1_R, .type = ARM_CP_CONST,
5989 .resetvalue = cpu->id_aa64dfr1 },
5990 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5992 .access = PL1_R, .type = ARM_CP_CONST,
5993 .resetvalue = 0 },
5994 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5996 .access = PL1_R, .type = ARM_CP_CONST,
5997 .resetvalue = 0 },
5998 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6000 .access = PL1_R, .type = ARM_CP_CONST,
6001 .resetvalue = cpu->id_aa64afr0 },
6002 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6004 .access = PL1_R, .type = ARM_CP_CONST,
6005 .resetvalue = cpu->id_aa64afr1 },
6006 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6008 .access = PL1_R, .type = ARM_CP_CONST,
6009 .resetvalue = 0 },
6010 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6012 .access = PL1_R, .type = ARM_CP_CONST,
6013 .resetvalue = 0 },
6014 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6016 .access = PL1_R, .type = ARM_CP_CONST,
6017 .resetvalue = cpu->isar.id_aa64isar0 },
6018 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6020 .access = PL1_R, .type = ARM_CP_CONST,
6021 .resetvalue = cpu->isar.id_aa64isar1 },
6022 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6024 .access = PL1_R, .type = ARM_CP_CONST,
6025 .resetvalue = 0 },
6026 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6028 .access = PL1_R, .type = ARM_CP_CONST,
6029 .resetvalue = 0 },
6030 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6032 .access = PL1_R, .type = ARM_CP_CONST,
6033 .resetvalue = 0 },
6034 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6036 .access = PL1_R, .type = ARM_CP_CONST,
6037 .resetvalue = 0 },
6038 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6040 .access = PL1_R, .type = ARM_CP_CONST,
6041 .resetvalue = 0 },
6042 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6044 .access = PL1_R, .type = ARM_CP_CONST,
6045 .resetvalue = 0 },
6046 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6048 .access = PL1_R, .type = ARM_CP_CONST,
6049 .resetvalue = cpu->isar.id_aa64mmfr0 },
6050 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6052 .access = PL1_R, .type = ARM_CP_CONST,
6053 .resetvalue = cpu->isar.id_aa64mmfr1 },
6054 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6056 .access = PL1_R, .type = ARM_CP_CONST,
6057 .resetvalue = 0 },
6058 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6059 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6060 .access = PL1_R, .type = ARM_CP_CONST,
6061 .resetvalue = 0 },
6062 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6064 .access = PL1_R, .type = ARM_CP_CONST,
6065 .resetvalue = 0 },
6066 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6068 .access = PL1_R, .type = ARM_CP_CONST,
6069 .resetvalue = 0 },
6070 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6072 .access = PL1_R, .type = ARM_CP_CONST,
6073 .resetvalue = 0 },
6074 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6076 .access = PL1_R, .type = ARM_CP_CONST,
6077 .resetvalue = 0 },
6078 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6080 .access = PL1_R, .type = ARM_CP_CONST,
6081 .resetvalue = cpu->isar.mvfr0 },
6082 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6084 .access = PL1_R, .type = ARM_CP_CONST,
6085 .resetvalue = cpu->isar.mvfr1 },
6086 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6088 .access = PL1_R, .type = ARM_CP_CONST,
6089 .resetvalue = cpu->isar.mvfr2 },
6090 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6092 .access = PL1_R, .type = ARM_CP_CONST,
6093 .resetvalue = 0 },
6094 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6096 .access = PL1_R, .type = ARM_CP_CONST,
6097 .resetvalue = 0 },
6098 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6099 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6100 .access = PL1_R, .type = ARM_CP_CONST,
6101 .resetvalue = 0 },
6102 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6103 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6104 .access = PL1_R, .type = ARM_CP_CONST,
6105 .resetvalue = 0 },
6106 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6108 .access = PL1_R, .type = ARM_CP_CONST,
6109 .resetvalue = 0 },
6110 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6111 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6112 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6113 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6114 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6115 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6116 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6117 .resetvalue = cpu->pmceid0 },
6118 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6119 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6120 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6121 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6122 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6123 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6124 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6125 .resetvalue = cpu->pmceid1 },
6126 REGINFO_SENTINEL
6128 #ifdef CONFIG_USER_ONLY
6129 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6130 { .name = "ID_AA64PFR0_EL1",
6131 .exported_bits = 0x000f000f00ff0000,
6132 .fixed_bits = 0x0000000000000011 },
6133 { .name = "ID_AA64PFR1_EL1",
6134 .exported_bits = 0x00000000000000f0 },
6135 { .name = "ID_AA64PFR*_EL1_RESERVED",
6136 .is_glob = true },
6137 { .name = "ID_AA64ZFR0_EL1" },
6138 { .name = "ID_AA64MMFR0_EL1",
6139 .fixed_bits = 0x00000000ff000000 },
6140 { .name = "ID_AA64MMFR1_EL1" },
6141 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6142 .is_glob = true },
6143 { .name = "ID_AA64DFR0_EL1",
6144 .fixed_bits = 0x0000000000000006 },
6145 { .name = "ID_AA64DFR1_EL1" },
6146 { .name = "ID_AA64DFR*_EL1_RESERVED",
6147 .is_glob = true },
6148 { .name = "ID_AA64AFR*",
6149 .is_glob = true },
6150 { .name = "ID_AA64ISAR0_EL1",
6151 .exported_bits = 0x00fffffff0fffff0 },
6152 { .name = "ID_AA64ISAR1_EL1",
6153 .exported_bits = 0x000000f0ffffffff },
6154 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6155 .is_glob = true },
6156 REGUSERINFO_SENTINEL
6158 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6159 #endif
6160 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6161 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6162 !arm_feature(env, ARM_FEATURE_EL2)) {
6163 ARMCPRegInfo rvbar = {
6164 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6165 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6166 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6168 define_one_arm_cp_reg(cpu, &rvbar);
6170 define_arm_cp_regs(cpu, v8_idregs);
6171 define_arm_cp_regs(cpu, v8_cp_reginfo);
6173 if (arm_feature(env, ARM_FEATURE_EL2)) {
6174 uint64_t vmpidr_def = mpidr_read_val(env);
6175 ARMCPRegInfo vpidr_regs[] = {
6176 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6177 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6178 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6179 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6180 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6181 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6182 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6183 .access = PL2_RW, .resetvalue = cpu->midr,
6184 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6185 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6186 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6187 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6188 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6189 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6190 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6191 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6192 .access = PL2_RW,
6193 .resetvalue = vmpidr_def,
6194 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6195 REGINFO_SENTINEL
6197 define_arm_cp_regs(cpu, vpidr_regs);
6198 define_arm_cp_regs(cpu, el2_cp_reginfo);
6199 if (arm_feature(env, ARM_FEATURE_V8)) {
6200 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6202 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6203 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6204 ARMCPRegInfo rvbar = {
6205 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6206 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6207 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6209 define_one_arm_cp_reg(cpu, &rvbar);
6211 } else {
6212 /* If EL2 is missing but higher ELs are enabled, we need to
6213 * register the no_el2 reginfos.
6215 if (arm_feature(env, ARM_FEATURE_EL3)) {
6216 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6217 * of MIDR_EL1 and MPIDR_EL1.
6219 ARMCPRegInfo vpidr_regs[] = {
6220 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6221 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6222 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6223 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6224 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6225 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6226 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6227 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6228 .type = ARM_CP_NO_RAW,
6229 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6230 REGINFO_SENTINEL
6232 define_arm_cp_regs(cpu, vpidr_regs);
6233 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6234 if (arm_feature(env, ARM_FEATURE_V8)) {
6235 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6239 if (arm_feature(env, ARM_FEATURE_EL3)) {
6240 define_arm_cp_regs(cpu, el3_cp_reginfo);
6241 ARMCPRegInfo el3_regs[] = {
6242 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6243 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6244 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6245 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6246 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6247 .access = PL3_RW,
6248 .raw_writefn = raw_write, .writefn = sctlr_write,
6249 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6250 .resetvalue = cpu->reset_sctlr },
6251 REGINFO_SENTINEL
6254 define_arm_cp_regs(cpu, el3_regs);
6256 /* The behaviour of NSACR is sufficiently various that we don't
6257 * try to describe it in a single reginfo:
6258 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6259 * reads as constant 0xc00 from NS EL1 and NS EL2
6260 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6261 * if v7 without EL3, register doesn't exist
6262 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6264 if (arm_feature(env, ARM_FEATURE_EL3)) {
6265 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6266 ARMCPRegInfo nsacr = {
6267 .name = "NSACR", .type = ARM_CP_CONST,
6268 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6269 .access = PL1_RW, .accessfn = nsacr_access,
6270 .resetvalue = 0xc00
6272 define_one_arm_cp_reg(cpu, &nsacr);
6273 } else {
6274 ARMCPRegInfo nsacr = {
6275 .name = "NSACR",
6276 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6277 .access = PL3_RW | PL1_R,
6278 .resetvalue = 0,
6279 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6281 define_one_arm_cp_reg(cpu, &nsacr);
6283 } else {
6284 if (arm_feature(env, ARM_FEATURE_V8)) {
6285 ARMCPRegInfo nsacr = {
6286 .name = "NSACR", .type = ARM_CP_CONST,
6287 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6288 .access = PL1_R,
6289 .resetvalue = 0xc00
6291 define_one_arm_cp_reg(cpu, &nsacr);
6295 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6296 if (arm_feature(env, ARM_FEATURE_V6)) {
6297 /* PMSAv6 not implemented */
6298 assert(arm_feature(env, ARM_FEATURE_V7));
6299 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6300 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6301 } else {
6302 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6304 } else {
6305 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6306 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6307 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6308 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6309 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6312 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6313 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6315 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6316 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6318 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6319 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6321 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6322 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6324 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6325 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6327 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6328 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6330 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6331 define_arm_cp_regs(cpu, omap_cp_reginfo);
6333 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6334 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6336 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6337 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6339 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6340 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6342 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6343 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6345 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6346 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6347 * be read-only (ie write causes UNDEF exception).
6350 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6351 /* Pre-v8 MIDR space.
6352 * Note that the MIDR isn't a simple constant register because
6353 * of the TI925 behaviour where writes to another register can
6354 * cause the MIDR value to change.
6356 * Unimplemented registers in the c15 0 0 0 space default to
6357 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6358 * and friends override accordingly.
6360 { .name = "MIDR",
6361 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6362 .access = PL1_R, .resetvalue = cpu->midr,
6363 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6364 .readfn = midr_read,
6365 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6366 .type = ARM_CP_OVERRIDE },
6367 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6368 { .name = "DUMMY",
6369 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6370 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6371 { .name = "DUMMY",
6372 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6373 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6374 { .name = "DUMMY",
6375 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6376 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6377 { .name = "DUMMY",
6378 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6379 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6380 { .name = "DUMMY",
6381 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6382 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6383 REGINFO_SENTINEL
6385 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6386 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6388 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6389 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6390 .readfn = midr_read },
6391 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6392 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6393 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6394 .access = PL1_R, .resetvalue = cpu->midr },
6395 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6396 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6397 .access = PL1_R, .resetvalue = cpu->midr },
6398 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6400 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6401 REGINFO_SENTINEL
6403 ARMCPRegInfo id_cp_reginfo[] = {
6404 /* These are common to v8 and pre-v8 */
6405 { .name = "CTR",
6406 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6407 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6408 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6409 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6410 .access = PL0_R, .accessfn = ctr_el0_access,
6411 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6412 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6413 { .name = "TCMTR",
6414 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6415 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6416 REGINFO_SENTINEL
6418 /* TLBTR is specific to VMSA */
6419 ARMCPRegInfo id_tlbtr_reginfo = {
6420 .name = "TLBTR",
6421 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6424 /* MPUIR is specific to PMSA V6+ */
6425 ARMCPRegInfo id_mpuir_reginfo = {
6426 .name = "MPUIR",
6427 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6428 .access = PL1_R, .type = ARM_CP_CONST,
6429 .resetvalue = cpu->pmsav7_dregion << 8
6431 ARMCPRegInfo crn0_wi_reginfo = {
6432 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6433 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6434 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6436 #ifdef CONFIG_USER_ONLY
6437 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6438 { .name = "MIDR_EL1",
6439 .exported_bits = 0x00000000ffffffff },
6440 { .name = "REVIDR_EL1" },
6441 REGUSERINFO_SENTINEL
6443 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6444 #endif
6445 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6446 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6447 ARMCPRegInfo *r;
6448 /* Register the blanket "writes ignored" value first to cover the
6449 * whole space. Then update the specific ID registers to allow write
6450 * access, so that they ignore writes rather than causing them to
6451 * UNDEF.
6453 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6454 for (r = id_pre_v8_midr_cp_reginfo;
6455 r->type != ARM_CP_SENTINEL; r++) {
6456 r->access = PL1_RW;
6458 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6459 r->access = PL1_RW;
6461 id_mpuir_reginfo.access = PL1_RW;
6462 id_tlbtr_reginfo.access = PL1_RW;
6464 if (arm_feature(env, ARM_FEATURE_V8)) {
6465 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6466 } else {
6467 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6469 define_arm_cp_regs(cpu, id_cp_reginfo);
6470 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6471 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6472 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6473 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6477 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6478 ARMCPRegInfo mpidr_cp_reginfo[] = {
6479 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6480 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6481 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6482 REGINFO_SENTINEL
6484 #ifdef CONFIG_USER_ONLY
6485 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6486 { .name = "MPIDR_EL1",
6487 .fixed_bits = 0x0000000080000000 },
6488 REGUSERINFO_SENTINEL
6490 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6491 #endif
6492 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6495 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6496 ARMCPRegInfo auxcr_reginfo[] = {
6497 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6498 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6499 .access = PL1_RW, .type = ARM_CP_CONST,
6500 .resetvalue = cpu->reset_auxcr },
6501 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6502 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6503 .access = PL2_RW, .type = ARM_CP_CONST,
6504 .resetvalue = 0 },
6505 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6506 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6507 .access = PL3_RW, .type = ARM_CP_CONST,
6508 .resetvalue = 0 },
6509 REGINFO_SENTINEL
6511 define_arm_cp_regs(cpu, auxcr_reginfo);
6512 if (arm_feature(env, ARM_FEATURE_V8)) {
6513 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6514 ARMCPRegInfo hactlr2_reginfo = {
6515 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6516 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6517 .access = PL2_RW, .type = ARM_CP_CONST,
6518 .resetvalue = 0
6520 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6524 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6525 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6526 /* 32 bit view is [31:18] 0...0 [43:32]. */
6527 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6528 | extract64(cpu->reset_cbar, 32, 12);
6529 ARMCPRegInfo cbar_reginfo[] = {
6530 { .name = "CBAR",
6531 .type = ARM_CP_CONST,
6532 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6533 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6534 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6535 .type = ARM_CP_CONST,
6536 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6537 .access = PL1_R, .resetvalue = cbar32 },
6538 REGINFO_SENTINEL
6540 /* We don't implement a r/w 64 bit CBAR currently */
6541 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6542 define_arm_cp_regs(cpu, cbar_reginfo);
6543 } else {
6544 ARMCPRegInfo cbar = {
6545 .name = "CBAR",
6546 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6547 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6548 .fieldoffset = offsetof(CPUARMState,
6549 cp15.c15_config_base_address)
6551 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6552 cbar.access = PL1_R;
6553 cbar.fieldoffset = 0;
6554 cbar.type = ARM_CP_CONST;
6556 define_one_arm_cp_reg(cpu, &cbar);
6560 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6561 ARMCPRegInfo vbar_cp_reginfo[] = {
6562 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6563 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6564 .access = PL1_RW, .writefn = vbar_write,
6565 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6566 offsetof(CPUARMState, cp15.vbar_ns) },
6567 .resetvalue = 0 },
6568 REGINFO_SENTINEL
6570 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6573 /* Generic registers whose values depend on the implementation */
6575 ARMCPRegInfo sctlr = {
6576 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6577 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6578 .access = PL1_RW,
6579 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6580 offsetof(CPUARMState, cp15.sctlr_ns) },
6581 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6582 .raw_writefn = raw_write,
6584 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6585 /* Normally we would always end the TB on an SCTLR write, but Linux
6586 * arch/arm/mach-pxa/sleep.S expects two instructions following
6587 * an MMU enable to execute from cache. Imitate this behaviour.
6589 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6591 define_one_arm_cp_reg(cpu, &sctlr);
6594 if (cpu_isar_feature(aa64_lor, cpu)) {
6596 * A trivial implementation of ARMv8.1-LOR leaves all of these
6597 * registers fixed at 0, which indicates that there are zero
6598 * supported Limited Ordering regions.
6600 static const ARMCPRegInfo lor_reginfo[] = {
6601 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6602 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6603 .access = PL1_RW, .accessfn = access_lor_other,
6604 .type = ARM_CP_CONST, .resetvalue = 0 },
6605 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6606 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6607 .access = PL1_RW, .accessfn = access_lor_other,
6608 .type = ARM_CP_CONST, .resetvalue = 0 },
6609 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6610 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6611 .access = PL1_RW, .accessfn = access_lor_other,
6612 .type = ARM_CP_CONST, .resetvalue = 0 },
6613 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6614 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6615 .access = PL1_RW, .accessfn = access_lor_other,
6616 .type = ARM_CP_CONST, .resetvalue = 0 },
6617 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6618 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6619 .access = PL1_R, .accessfn = access_lorid,
6620 .type = ARM_CP_CONST, .resetvalue = 0 },
6621 REGINFO_SENTINEL
6623 define_arm_cp_regs(cpu, lor_reginfo);
6626 if (cpu_isar_feature(aa64_sve, cpu)) {
6627 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6628 if (arm_feature(env, ARM_FEATURE_EL2)) {
6629 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6630 } else {
6631 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6633 if (arm_feature(env, ARM_FEATURE_EL3)) {
6634 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6638 #ifdef TARGET_AARCH64
6639 if (cpu_isar_feature(aa64_pauth, cpu)) {
6640 define_arm_cp_regs(cpu, pauth_reginfo);
6642 #endif
6645 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6647 CPUState *cs = CPU(cpu);
6648 CPUARMState *env = &cpu->env;
6650 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6651 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6652 aarch64_fpu_gdb_set_reg,
6653 34, "aarch64-fpu.xml", 0);
6654 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6655 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6656 51, "arm-neon.xml", 0);
6657 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6658 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6659 35, "arm-vfp3.xml", 0);
6660 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6661 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6662 19, "arm-vfp.xml", 0);
6664 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6665 arm_gen_dynamic_xml(cs),
6666 "system-registers.xml", 0);
6669 /* Sort alphabetically by type name, except for "any". */
6670 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6672 ObjectClass *class_a = (ObjectClass *)a;
6673 ObjectClass *class_b = (ObjectClass *)b;
6674 const char *name_a, *name_b;
6676 name_a = object_class_get_name(class_a);
6677 name_b = object_class_get_name(class_b);
6678 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6679 return 1;
6680 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6681 return -1;
6682 } else {
6683 return strcmp(name_a, name_b);
6687 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6689 ObjectClass *oc = data;
6690 CPUListState *s = user_data;
6691 const char *typename;
6692 char *name;
6694 typename = object_class_get_name(oc);
6695 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6696 (*s->cpu_fprintf)(s->file, " %s\n",
6697 name);
6698 g_free(name);
6701 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
6703 CPUListState s = {
6704 .file = f,
6705 .cpu_fprintf = cpu_fprintf,
6707 GSList *list;
6709 list = object_class_get_list(TYPE_ARM_CPU, false);
6710 list = g_slist_sort(list, arm_cpu_list_compare);
6711 (*cpu_fprintf)(f, "Available CPUs:\n");
6712 g_slist_foreach(list, arm_cpu_list_entry, &s);
6713 g_slist_free(list);
6716 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6718 ObjectClass *oc = data;
6719 CpuDefinitionInfoList **cpu_list = user_data;
6720 CpuDefinitionInfoList *entry;
6721 CpuDefinitionInfo *info;
6722 const char *typename;
6724 typename = object_class_get_name(oc);
6725 info = g_malloc0(sizeof(*info));
6726 info->name = g_strndup(typename,
6727 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6728 info->q_typename = g_strdup(typename);
6730 entry = g_malloc0(sizeof(*entry));
6731 entry->value = info;
6732 entry->next = *cpu_list;
6733 *cpu_list = entry;
6736 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
6738 CpuDefinitionInfoList *cpu_list = NULL;
6739 GSList *list;
6741 list = object_class_get_list(TYPE_ARM_CPU, false);
6742 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6743 g_slist_free(list);
6745 return cpu_list;
6748 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6749 void *opaque, int state, int secstate,
6750 int crm, int opc1, int opc2,
6751 const char *name)
6753 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6754 * add a single reginfo struct to the hash table.
6756 uint32_t *key = g_new(uint32_t, 1);
6757 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6758 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6759 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6761 r2->name = g_strdup(name);
6762 /* Reset the secure state to the specific incoming state. This is
6763 * necessary as the register may have been defined with both states.
6765 r2->secure = secstate;
6767 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6768 /* Register is banked (using both entries in array).
6769 * Overwriting fieldoffset as the array is only used to define
6770 * banked registers but later only fieldoffset is used.
6772 r2->fieldoffset = r->bank_fieldoffsets[ns];
6775 if (state == ARM_CP_STATE_AA32) {
6776 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6777 /* If the register is banked then we don't need to migrate or
6778 * reset the 32-bit instance in certain cases:
6780 * 1) If the register has both 32-bit and 64-bit instances then we
6781 * can count on the 64-bit instance taking care of the
6782 * non-secure bank.
6783 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6784 * taking care of the secure bank. This requires that separate
6785 * 32 and 64-bit definitions are provided.
6787 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6788 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6789 r2->type |= ARM_CP_ALIAS;
6791 } else if ((secstate != r->secure) && !ns) {
6792 /* The register is not banked so we only want to allow migration of
6793 * the non-secure instance.
6795 r2->type |= ARM_CP_ALIAS;
6798 if (r->state == ARM_CP_STATE_BOTH) {
6799 /* We assume it is a cp15 register if the .cp field is left unset.
6801 if (r2->cp == 0) {
6802 r2->cp = 15;
6805 #ifdef HOST_WORDS_BIGENDIAN
6806 if (r2->fieldoffset) {
6807 r2->fieldoffset += sizeof(uint32_t);
6809 #endif
6812 if (state == ARM_CP_STATE_AA64) {
6813 /* To allow abbreviation of ARMCPRegInfo
6814 * definitions, we treat cp == 0 as equivalent to
6815 * the value for "standard guest-visible sysreg".
6816 * STATE_BOTH definitions are also always "standard
6817 * sysreg" in their AArch64 view (the .cp value may
6818 * be non-zero for the benefit of the AArch32 view).
6820 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6821 r2->cp = CP_REG_ARM64_SYSREG_CP;
6823 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6824 r2->opc0, opc1, opc2);
6825 } else {
6826 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6828 if (opaque) {
6829 r2->opaque = opaque;
6831 /* reginfo passed to helpers is correct for the actual access,
6832 * and is never ARM_CP_STATE_BOTH:
6834 r2->state = state;
6835 /* Make sure reginfo passed to helpers for wildcarded regs
6836 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6838 r2->crm = crm;
6839 r2->opc1 = opc1;
6840 r2->opc2 = opc2;
6841 /* By convention, for wildcarded registers only the first
6842 * entry is used for migration; the others are marked as
6843 * ALIAS so we don't try to transfer the register
6844 * multiple times. Special registers (ie NOP/WFI) are
6845 * never migratable and not even raw-accessible.
6847 if ((r->type & ARM_CP_SPECIAL)) {
6848 r2->type |= ARM_CP_NO_RAW;
6850 if (((r->crm == CP_ANY) && crm != 0) ||
6851 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6852 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6853 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6856 /* Check that raw accesses are either forbidden or handled. Note that
6857 * we can't assert this earlier because the setup of fieldoffset for
6858 * banked registers has to be done first.
6860 if (!(r2->type & ARM_CP_NO_RAW)) {
6861 assert(!raw_accessors_invalid(r2));
6864 /* Overriding of an existing definition must be explicitly
6865 * requested.
6867 if (!(r->type & ARM_CP_OVERRIDE)) {
6868 ARMCPRegInfo *oldreg;
6869 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6870 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6871 fprintf(stderr, "Register redefined: cp=%d %d bit "
6872 "crn=%d crm=%d opc1=%d opc2=%d, "
6873 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6874 r2->crn, r2->crm, r2->opc1, r2->opc2,
6875 oldreg->name, r2->name);
6876 g_assert_not_reached();
6879 g_hash_table_insert(cpu->cp_regs, key, r2);
6883 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6884 const ARMCPRegInfo *r, void *opaque)
6886 /* Define implementations of coprocessor registers.
6887 * We store these in a hashtable because typically
6888 * there are less than 150 registers in a space which
6889 * is 16*16*16*8*8 = 262144 in size.
6890 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6891 * If a register is defined twice then the second definition is
6892 * used, so this can be used to define some generic registers and
6893 * then override them with implementation specific variations.
6894 * At least one of the original and the second definition should
6895 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6896 * against accidental use.
6898 * The state field defines whether the register is to be
6899 * visible in the AArch32 or AArch64 execution state. If the
6900 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6901 * reginfo structure for the AArch32 view, which sees the lower
6902 * 32 bits of the 64 bit register.
6904 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6905 * be wildcarded. AArch64 registers are always considered to be 64
6906 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6907 * the register, if any.
6909 int crm, opc1, opc2, state;
6910 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6911 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6912 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6913 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6914 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6915 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6916 /* 64 bit registers have only CRm and Opc1 fields */
6917 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6918 /* op0 only exists in the AArch64 encodings */
6919 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6920 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6921 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6922 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6923 * encodes a minimum access level for the register. We roll this
6924 * runtime check into our general permission check code, so check
6925 * here that the reginfo's specified permissions are strict enough
6926 * to encompass the generic architectural permission check.
6928 if (r->state != ARM_CP_STATE_AA32) {
6929 int mask = 0;
6930 switch (r->opc1) {
6931 case 0:
6932 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6933 mask = PL0U_R | PL1_RW;
6934 break;
6935 case 1: case 2:
6936 /* min_EL EL1 */
6937 mask = PL1_RW;
6938 break;
6939 case 3:
6940 /* min_EL EL0 */
6941 mask = PL0_RW;
6942 break;
6943 case 4:
6944 /* min_EL EL2 */
6945 mask = PL2_RW;
6946 break;
6947 case 5:
6948 /* unallocated encoding, so not possible */
6949 assert(false);
6950 break;
6951 case 6:
6952 /* min_EL EL3 */
6953 mask = PL3_RW;
6954 break;
6955 case 7:
6956 /* min_EL EL1, secure mode only (we don't check the latter) */
6957 mask = PL1_RW;
6958 break;
6959 default:
6960 /* broken reginfo with out-of-range opc1 */
6961 assert(false);
6962 break;
6964 /* assert our permissions are not too lax (stricter is fine) */
6965 assert((r->access & ~mask) == 0);
6968 /* Check that the register definition has enough info to handle
6969 * reads and writes if they are permitted.
6971 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6972 if (r->access & PL3_R) {
6973 assert((r->fieldoffset ||
6974 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6975 r->readfn);
6977 if (r->access & PL3_W) {
6978 assert((r->fieldoffset ||
6979 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6980 r->writefn);
6983 /* Bad type field probably means missing sentinel at end of reg list */
6984 assert(cptype_valid(r->type));
6985 for (crm = crmmin; crm <= crmmax; crm++) {
6986 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6987 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6988 for (state = ARM_CP_STATE_AA32;
6989 state <= ARM_CP_STATE_AA64; state++) {
6990 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6991 continue;
6993 if (state == ARM_CP_STATE_AA32) {
6994 /* Under AArch32 CP registers can be common
6995 * (same for secure and non-secure world) or banked.
6997 char *name;
6999 switch (r->secure) {
7000 case ARM_CP_SECSTATE_S:
7001 case ARM_CP_SECSTATE_NS:
7002 add_cpreg_to_hashtable(cpu, r, opaque, state,
7003 r->secure, crm, opc1, opc2,
7004 r->name);
7005 break;
7006 default:
7007 name = g_strdup_printf("%s_S", r->name);
7008 add_cpreg_to_hashtable(cpu, r, opaque, state,
7009 ARM_CP_SECSTATE_S,
7010 crm, opc1, opc2, name);
7011 g_free(name);
7012 add_cpreg_to_hashtable(cpu, r, opaque, state,
7013 ARM_CP_SECSTATE_NS,
7014 crm, opc1, opc2, r->name);
7015 break;
7017 } else {
7018 /* AArch64 registers get mapped to non-secure instance
7019 * of AArch32 */
7020 add_cpreg_to_hashtable(cpu, r, opaque, state,
7021 ARM_CP_SECSTATE_NS,
7022 crm, opc1, opc2, r->name);
7030 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7031 const ARMCPRegInfo *regs, void *opaque)
7033 /* Define a whole list of registers */
7034 const ARMCPRegInfo *r;
7035 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7036 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7041 * Modify ARMCPRegInfo for access from userspace.
7043 * This is a data driven modification directed by
7044 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7045 * user-space cannot alter any values and dynamic values pertaining to
7046 * execution state are hidden from user space view anyway.
7048 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7050 const ARMCPRegUserSpaceInfo *m;
7051 ARMCPRegInfo *r;
7053 for (m = mods; m->name; m++) {
7054 GPatternSpec *pat = NULL;
7055 if (m->is_glob) {
7056 pat = g_pattern_spec_new(m->name);
7058 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7059 if (pat && g_pattern_match_string(pat, r->name)) {
7060 r->type = ARM_CP_CONST;
7061 r->access = PL0U_R;
7062 r->resetvalue = 0;
7063 /* continue */
7064 } else if (strcmp(r->name, m->name) == 0) {
7065 r->type = ARM_CP_CONST;
7066 r->access = PL0U_R;
7067 r->resetvalue &= m->exported_bits;
7068 r->resetvalue |= m->fixed_bits;
7069 break;
7072 if (pat) {
7073 g_pattern_spec_free(pat);
7078 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7080 return g_hash_table_lookup(cpregs, &encoded_cp);
7083 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7084 uint64_t value)
7086 /* Helper coprocessor write function for write-ignore registers */
7089 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7091 /* Helper coprocessor write function for read-as-zero registers */
7092 return 0;
7095 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7097 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7100 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7102 /* Return true if it is not valid for us to switch to
7103 * this CPU mode (ie all the UNPREDICTABLE cases in
7104 * the ARM ARM CPSRWriteByInstr pseudocode).
7107 /* Changes to or from Hyp via MSR and CPS are illegal. */
7108 if (write_type == CPSRWriteByInstr &&
7109 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7110 mode == ARM_CPU_MODE_HYP)) {
7111 return 1;
7114 switch (mode) {
7115 case ARM_CPU_MODE_USR:
7116 return 0;
7117 case ARM_CPU_MODE_SYS:
7118 case ARM_CPU_MODE_SVC:
7119 case ARM_CPU_MODE_ABT:
7120 case ARM_CPU_MODE_UND:
7121 case ARM_CPU_MODE_IRQ:
7122 case ARM_CPU_MODE_FIQ:
7123 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7124 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7126 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7127 * and CPS are treated as illegal mode changes.
7129 if (write_type == CPSRWriteByInstr &&
7130 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7131 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7132 return 1;
7134 return 0;
7135 case ARM_CPU_MODE_HYP:
7136 return !arm_feature(env, ARM_FEATURE_EL2)
7137 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7138 case ARM_CPU_MODE_MON:
7139 return arm_current_el(env) < 3;
7140 default:
7141 return 1;
7145 uint32_t cpsr_read(CPUARMState *env)
7147 int ZF;
7148 ZF = (env->ZF == 0);
7149 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7150 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7151 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7152 | ((env->condexec_bits & 0xfc) << 8)
7153 | (env->GE << 16) | (env->daif & CPSR_AIF);
7156 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7157 CPSRWriteType write_type)
7159 uint32_t changed_daif;
7161 if (mask & CPSR_NZCV) {
7162 env->ZF = (~val) & CPSR_Z;
7163 env->NF = val;
7164 env->CF = (val >> 29) & 1;
7165 env->VF = (val << 3) & 0x80000000;
7167 if (mask & CPSR_Q)
7168 env->QF = ((val & CPSR_Q) != 0);
7169 if (mask & CPSR_T)
7170 env->thumb = ((val & CPSR_T) != 0);
7171 if (mask & CPSR_IT_0_1) {
7172 env->condexec_bits &= ~3;
7173 env->condexec_bits |= (val >> 25) & 3;
7175 if (mask & CPSR_IT_2_7) {
7176 env->condexec_bits &= 3;
7177 env->condexec_bits |= (val >> 8) & 0xfc;
7179 if (mask & CPSR_GE) {
7180 env->GE = (val >> 16) & 0xf;
7183 /* In a V7 implementation that includes the security extensions but does
7184 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7185 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7186 * bits respectively.
7188 * In a V8 implementation, it is permitted for privileged software to
7189 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7191 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7192 arm_feature(env, ARM_FEATURE_EL3) &&
7193 !arm_feature(env, ARM_FEATURE_EL2) &&
7194 !arm_is_secure(env)) {
7196 changed_daif = (env->daif ^ val) & mask;
7198 if (changed_daif & CPSR_A) {
7199 /* Check to see if we are allowed to change the masking of async
7200 * abort exceptions from a non-secure state.
7202 if (!(env->cp15.scr_el3 & SCR_AW)) {
7203 qemu_log_mask(LOG_GUEST_ERROR,
7204 "Ignoring attempt to switch CPSR_A flag from "
7205 "non-secure world with SCR.AW bit clear\n");
7206 mask &= ~CPSR_A;
7210 if (changed_daif & CPSR_F) {
7211 /* Check to see if we are allowed to change the masking of FIQ
7212 * exceptions from a non-secure state.
7214 if (!(env->cp15.scr_el3 & SCR_FW)) {
7215 qemu_log_mask(LOG_GUEST_ERROR,
7216 "Ignoring attempt to switch CPSR_F flag from "
7217 "non-secure world with SCR.FW bit clear\n");
7218 mask &= ~CPSR_F;
7221 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7222 * If this bit is set software is not allowed to mask
7223 * FIQs, but is allowed to set CPSR_F to 0.
7225 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7226 (val & CPSR_F)) {
7227 qemu_log_mask(LOG_GUEST_ERROR,
7228 "Ignoring attempt to enable CPSR_F flag "
7229 "(non-maskable FIQ [NMFI] support enabled)\n");
7230 mask &= ~CPSR_F;
7235 env->daif &= ~(CPSR_AIF & mask);
7236 env->daif |= val & CPSR_AIF & mask;
7238 if (write_type != CPSRWriteRaw &&
7239 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7240 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7241 /* Note that we can only get here in USR mode if this is a
7242 * gdb stub write; for this case we follow the architectural
7243 * behaviour for guest writes in USR mode of ignoring an attempt
7244 * to switch mode. (Those are caught by translate.c for writes
7245 * triggered by guest instructions.)
7247 mask &= ~CPSR_M;
7248 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7249 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7250 * v7, and has defined behaviour in v8:
7251 * + leave CPSR.M untouched
7252 * + allow changes to the other CPSR fields
7253 * + set PSTATE.IL
7254 * For user changes via the GDB stub, we don't set PSTATE.IL,
7255 * as this would be unnecessarily harsh for a user error.
7257 mask &= ~CPSR_M;
7258 if (write_type != CPSRWriteByGDBStub &&
7259 arm_feature(env, ARM_FEATURE_V8)) {
7260 mask |= CPSR_IL;
7261 val |= CPSR_IL;
7263 qemu_log_mask(LOG_GUEST_ERROR,
7264 "Illegal AArch32 mode switch attempt from %s to %s\n",
7265 aarch32_mode_name(env->uncached_cpsr),
7266 aarch32_mode_name(val));
7267 } else {
7268 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7269 write_type == CPSRWriteExceptionReturn ?
7270 "Exception return from AArch32" :
7271 "AArch32 mode switch from",
7272 aarch32_mode_name(env->uncached_cpsr),
7273 aarch32_mode_name(val), env->regs[15]);
7274 switch_mode(env, val & CPSR_M);
7277 mask &= ~CACHED_CPSR_BITS;
7278 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7281 /* Sign/zero extend */
7282 uint32_t HELPER(sxtb16)(uint32_t x)
7284 uint32_t res;
7285 res = (uint16_t)(int8_t)x;
7286 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7287 return res;
7290 uint32_t HELPER(uxtb16)(uint32_t x)
7292 uint32_t res;
7293 res = (uint16_t)(uint8_t)x;
7294 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7295 return res;
7298 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7300 if (den == 0)
7301 return 0;
7302 if (num == INT_MIN && den == -1)
7303 return INT_MIN;
7304 return num / den;
7307 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7309 if (den == 0)
7310 return 0;
7311 return num / den;
7314 uint32_t HELPER(rbit)(uint32_t x)
7316 return revbit32(x);
7319 #ifdef CONFIG_USER_ONLY
7321 /* These should probably raise undefined insn exceptions. */
7322 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7324 ARMCPU *cpu = arm_env_get_cpu(env);
7326 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7329 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7331 ARMCPU *cpu = arm_env_get_cpu(env);
7333 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7334 return 0;
7337 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7339 /* translate.c should never generate calls here in user-only mode */
7340 g_assert_not_reached();
7343 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7345 /* translate.c should never generate calls here in user-only mode */
7346 g_assert_not_reached();
7349 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7351 /* The TT instructions can be used by unprivileged code, but in
7352 * user-only emulation we don't have the MPU.
7353 * Luckily since we know we are NonSecure unprivileged (and that in
7354 * turn means that the A flag wasn't specified), all the bits in the
7355 * register must be zero:
7356 * IREGION: 0 because IRVALID is 0
7357 * IRVALID: 0 because NS
7358 * S: 0 because NS
7359 * NSRW: 0 because NS
7360 * NSR: 0 because NS
7361 * RW: 0 because unpriv and A flag not set
7362 * R: 0 because unpriv and A flag not set
7363 * SRVALID: 0 because NS
7364 * MRVALID: 0 because unpriv and A flag not set
7365 * SREGION: 0 becaus SRVALID is 0
7366 * MREGION: 0 because MRVALID is 0
7368 return 0;
7371 static void switch_mode(CPUARMState *env, int mode)
7373 ARMCPU *cpu = arm_env_get_cpu(env);
7375 if (mode != ARM_CPU_MODE_USR) {
7376 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7380 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7381 uint32_t cur_el, bool secure)
7383 return 1;
7386 void aarch64_sync_64_to_32(CPUARMState *env)
7388 g_assert_not_reached();
7391 #else
7393 static void switch_mode(CPUARMState *env, int mode)
7395 int old_mode;
7396 int i;
7398 old_mode = env->uncached_cpsr & CPSR_M;
7399 if (mode == old_mode)
7400 return;
7402 if (old_mode == ARM_CPU_MODE_FIQ) {
7403 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7404 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7405 } else if (mode == ARM_CPU_MODE_FIQ) {
7406 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7407 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7410 i = bank_number(old_mode);
7411 env->banked_r13[i] = env->regs[13];
7412 env->banked_spsr[i] = env->spsr;
7414 i = bank_number(mode);
7415 env->regs[13] = env->banked_r13[i];
7416 env->spsr = env->banked_spsr[i];
7418 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7419 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7422 /* Physical Interrupt Target EL Lookup Table
7424 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7426 * The below multi-dimensional table is used for looking up the target
7427 * exception level given numerous condition criteria. Specifically, the
7428 * target EL is based on SCR and HCR routing controls as well as the
7429 * currently executing EL and secure state.
7431 * Dimensions:
7432 * target_el_table[2][2][2][2][2][4]
7433 * | | | | | +--- Current EL
7434 * | | | | +------ Non-secure(0)/Secure(1)
7435 * | | | +--------- HCR mask override
7436 * | | +------------ SCR exec state control
7437 * | +--------------- SCR mask override
7438 * +------------------ 32-bit(0)/64-bit(1) EL3
7440 * The table values are as such:
7441 * 0-3 = EL0-EL3
7442 * -1 = Cannot occur
7444 * The ARM ARM target EL table includes entries indicating that an "exception
7445 * is not taken". The two cases where this is applicable are:
7446 * 1) An exception is taken from EL3 but the SCR does not have the exception
7447 * routed to EL3.
7448 * 2) An exception is taken from EL2 but the HCR does not have the exception
7449 * routed to EL2.
7450 * In these two cases, the below table contain a target of EL1. This value is
7451 * returned as it is expected that the consumer of the table data will check
7452 * for "target EL >= current EL" to ensure the exception is not taken.
7454 * SCR HCR
7455 * 64 EA AMO From
7456 * BIT IRQ IMO Non-secure Secure
7457 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7459 static const int8_t target_el_table[2][2][2][2][2][4] = {
7460 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7461 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7462 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7463 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7464 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7465 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7466 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7467 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7468 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7469 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7470 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7471 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7472 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7473 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7474 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7475 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7479 * Determine the target EL for physical exceptions
7481 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7482 uint32_t cur_el, bool secure)
7484 CPUARMState *env = cs->env_ptr;
7485 bool rw;
7486 bool scr;
7487 bool hcr;
7488 int target_el;
7489 /* Is the highest EL AArch64? */
7490 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7491 uint64_t hcr_el2;
7493 if (arm_feature(env, ARM_FEATURE_EL3)) {
7494 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7495 } else {
7496 /* Either EL2 is the highest EL (and so the EL2 register width
7497 * is given by is64); or there is no EL2 or EL3, in which case
7498 * the value of 'rw' does not affect the table lookup anyway.
7500 rw = is64;
7503 hcr_el2 = arm_hcr_el2_eff(env);
7504 switch (excp_idx) {
7505 case EXCP_IRQ:
7506 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7507 hcr = hcr_el2 & HCR_IMO;
7508 break;
7509 case EXCP_FIQ:
7510 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7511 hcr = hcr_el2 & HCR_FMO;
7512 break;
7513 default:
7514 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7515 hcr = hcr_el2 & HCR_AMO;
7516 break;
7519 /* Perform a table-lookup for the target EL given the current state */
7520 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7522 assert(target_el > 0);
7524 return target_el;
7527 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7528 ARMMMUIdx mmu_idx, bool ignfault)
7530 CPUState *cs = CPU(cpu);
7531 CPUARMState *env = &cpu->env;
7532 MemTxAttrs attrs = {};
7533 MemTxResult txres;
7534 target_ulong page_size;
7535 hwaddr physaddr;
7536 int prot;
7537 ARMMMUFaultInfo fi = {};
7538 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7539 int exc;
7540 bool exc_secure;
7542 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7543 &attrs, &prot, &page_size, &fi, NULL)) {
7544 /* MPU/SAU lookup failed */
7545 if (fi.type == ARMFault_QEMU_SFault) {
7546 qemu_log_mask(CPU_LOG_INT,
7547 "...SecureFault with SFSR.AUVIOL during stacking\n");
7548 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7549 env->v7m.sfar = addr;
7550 exc = ARMV7M_EXCP_SECURE;
7551 exc_secure = false;
7552 } else {
7553 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7554 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7555 exc = ARMV7M_EXCP_MEM;
7556 exc_secure = secure;
7558 goto pend_fault;
7560 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7561 attrs, &txres);
7562 if (txres != MEMTX_OK) {
7563 /* BusFault trying to write the data */
7564 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7565 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7566 exc = ARMV7M_EXCP_BUS;
7567 exc_secure = false;
7568 goto pend_fault;
7570 return true;
7572 pend_fault:
7573 /* By pending the exception at this point we are making
7574 * the IMPDEF choice "overridden exceptions pended" (see the
7575 * MergeExcInfo() pseudocode). The other choice would be to not
7576 * pend them now and then make a choice about which to throw away
7577 * later if we have two derived exceptions.
7578 * The only case when we must not pend the exception but instead
7579 * throw it away is if we are doing the push of the callee registers
7580 * and we've already generated a derived exception. Even in this
7581 * case we will still update the fault status registers.
7583 if (!ignfault) {
7584 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7586 return false;
7589 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7590 ARMMMUIdx mmu_idx)
7592 CPUState *cs = CPU(cpu);
7593 CPUARMState *env = &cpu->env;
7594 MemTxAttrs attrs = {};
7595 MemTxResult txres;
7596 target_ulong page_size;
7597 hwaddr physaddr;
7598 int prot;
7599 ARMMMUFaultInfo fi = {};
7600 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7601 int exc;
7602 bool exc_secure;
7603 uint32_t value;
7605 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7606 &attrs, &prot, &page_size, &fi, NULL)) {
7607 /* MPU/SAU lookup failed */
7608 if (fi.type == ARMFault_QEMU_SFault) {
7609 qemu_log_mask(CPU_LOG_INT,
7610 "...SecureFault with SFSR.AUVIOL during unstack\n");
7611 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7612 env->v7m.sfar = addr;
7613 exc = ARMV7M_EXCP_SECURE;
7614 exc_secure = false;
7615 } else {
7616 qemu_log_mask(CPU_LOG_INT,
7617 "...MemManageFault with CFSR.MUNSTKERR\n");
7618 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7619 exc = ARMV7M_EXCP_MEM;
7620 exc_secure = secure;
7622 goto pend_fault;
7625 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7626 attrs, &txres);
7627 if (txres != MEMTX_OK) {
7628 /* BusFault trying to read the data */
7629 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7630 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7631 exc = ARMV7M_EXCP_BUS;
7632 exc_secure = false;
7633 goto pend_fault;
7636 *dest = value;
7637 return true;
7639 pend_fault:
7640 /* By pending the exception at this point we are making
7641 * the IMPDEF choice "overridden exceptions pended" (see the
7642 * MergeExcInfo() pseudocode). The other choice would be to not
7643 * pend them now and then make a choice about which to throw away
7644 * later if we have two derived exceptions.
7646 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7647 return false;
7650 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7651 * This may change the current stack pointer between Main and Process
7652 * stack pointers if it is done for the CONTROL register for the current
7653 * security state.
7655 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7656 bool new_spsel,
7657 bool secstate)
7659 bool old_is_psp = v7m_using_psp(env);
7661 env->v7m.control[secstate] =
7662 deposit32(env->v7m.control[secstate],
7663 R_V7M_CONTROL_SPSEL_SHIFT,
7664 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7666 if (secstate == env->v7m.secure) {
7667 bool new_is_psp = v7m_using_psp(env);
7668 uint32_t tmp;
7670 if (old_is_psp != new_is_psp) {
7671 tmp = env->v7m.other_sp;
7672 env->v7m.other_sp = env->regs[13];
7673 env->regs[13] = tmp;
7678 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7679 * stack pointer between Main and Process stack pointers.
7681 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7683 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7686 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7688 /* Write a new value to v7m.exception, thus transitioning into or out
7689 * of Handler mode; this may result in a change of active stack pointer.
7691 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7692 uint32_t tmp;
7694 env->v7m.exception = new_exc;
7696 new_is_psp = v7m_using_psp(env);
7698 if (old_is_psp != new_is_psp) {
7699 tmp = env->v7m.other_sp;
7700 env->v7m.other_sp = env->regs[13];
7701 env->regs[13] = tmp;
7705 /* Switch M profile security state between NS and S */
7706 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7708 uint32_t new_ss_msp, new_ss_psp;
7710 if (env->v7m.secure == new_secstate) {
7711 return;
7714 /* All the banked state is accessed by looking at env->v7m.secure
7715 * except for the stack pointer; rearrange the SP appropriately.
7717 new_ss_msp = env->v7m.other_ss_msp;
7718 new_ss_psp = env->v7m.other_ss_psp;
7720 if (v7m_using_psp(env)) {
7721 env->v7m.other_ss_psp = env->regs[13];
7722 env->v7m.other_ss_msp = env->v7m.other_sp;
7723 } else {
7724 env->v7m.other_ss_msp = env->regs[13];
7725 env->v7m.other_ss_psp = env->v7m.other_sp;
7728 env->v7m.secure = new_secstate;
7730 if (v7m_using_psp(env)) {
7731 env->regs[13] = new_ss_psp;
7732 env->v7m.other_sp = new_ss_msp;
7733 } else {
7734 env->regs[13] = new_ss_msp;
7735 env->v7m.other_sp = new_ss_psp;
7739 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7741 /* Handle v7M BXNS:
7742 * - if the return value is a magic value, do exception return (like BX)
7743 * - otherwise bit 0 of the return value is the target security state
7745 uint32_t min_magic;
7747 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7748 /* Covers FNC_RETURN and EXC_RETURN magic */
7749 min_magic = FNC_RETURN_MIN_MAGIC;
7750 } else {
7751 /* EXC_RETURN magic only */
7752 min_magic = EXC_RETURN_MIN_MAGIC;
7755 if (dest >= min_magic) {
7756 /* This is an exception return magic value; put it where
7757 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7758 * Note that if we ever add gen_ss_advance() singlestep support to
7759 * M profile this should count as an "instruction execution complete"
7760 * event (compare gen_bx_excret_final_code()).
7762 env->regs[15] = dest & ~1;
7763 env->thumb = dest & 1;
7764 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7765 /* notreached */
7768 /* translate.c should have made BXNS UNDEF unless we're secure */
7769 assert(env->v7m.secure);
7771 switch_v7m_security_state(env, dest & 1);
7772 env->thumb = 1;
7773 env->regs[15] = dest & ~1;
7776 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7778 /* Handle v7M BLXNS:
7779 * - bit 0 of the destination address is the target security state
7782 /* At this point regs[15] is the address just after the BLXNS */
7783 uint32_t nextinst = env->regs[15] | 1;
7784 uint32_t sp = env->regs[13] - 8;
7785 uint32_t saved_psr;
7787 /* translate.c will have made BLXNS UNDEF unless we're secure */
7788 assert(env->v7m.secure);
7790 if (dest & 1) {
7791 /* target is Secure, so this is just a normal BLX,
7792 * except that the low bit doesn't indicate Thumb/not.
7794 env->regs[14] = nextinst;
7795 env->thumb = 1;
7796 env->regs[15] = dest & ~1;
7797 return;
7800 /* Target is non-secure: first push a stack frame */
7801 if (!QEMU_IS_ALIGNED(sp, 8)) {
7802 qemu_log_mask(LOG_GUEST_ERROR,
7803 "BLXNS with misaligned SP is UNPREDICTABLE\n");
7806 if (sp < v7m_sp_limit(env)) {
7807 raise_exception(env, EXCP_STKOF, 0, 1);
7810 saved_psr = env->v7m.exception;
7811 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7812 saved_psr |= XPSR_SFPA;
7815 /* Note that these stores can throw exceptions on MPU faults */
7816 cpu_stl_data(env, sp, nextinst);
7817 cpu_stl_data(env, sp + 4, saved_psr);
7819 env->regs[13] = sp;
7820 env->regs[14] = 0xfeffffff;
7821 if (arm_v7m_is_handler_mode(env)) {
7822 /* Write a dummy value to IPSR, to avoid leaking the current secure
7823 * exception number to non-secure code. This is guaranteed not
7824 * to cause write_v7m_exception() to actually change stacks.
7826 write_v7m_exception(env, 1);
7828 switch_v7m_security_state(env, 0);
7829 env->thumb = 1;
7830 env->regs[15] = dest;
7833 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7834 bool spsel)
7836 /* Return a pointer to the location where we currently store the
7837 * stack pointer for the requested security state and thread mode.
7838 * This pointer will become invalid if the CPU state is updated
7839 * such that the stack pointers are switched around (eg changing
7840 * the SPSEL control bit).
7841 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7842 * Unlike that pseudocode, we require the caller to pass us in the
7843 * SPSEL control bit value; this is because we also use this
7844 * function in handling of pushing of the callee-saves registers
7845 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7846 * and in the tailchain codepath the SPSEL bit comes from the exception
7847 * return magic LR value from the previous exception. The pseudocode
7848 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7849 * to make this utility function generic enough to do the job.
7851 bool want_psp = threadmode && spsel;
7853 if (secure == env->v7m.secure) {
7854 if (want_psp == v7m_using_psp(env)) {
7855 return &env->regs[13];
7856 } else {
7857 return &env->v7m.other_sp;
7859 } else {
7860 if (want_psp) {
7861 return &env->v7m.other_ss_psp;
7862 } else {
7863 return &env->v7m.other_ss_msp;
7868 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7869 uint32_t *pvec)
7871 CPUState *cs = CPU(cpu);
7872 CPUARMState *env = &cpu->env;
7873 MemTxResult result;
7874 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7875 uint32_t vector_entry;
7876 MemTxAttrs attrs = {};
7877 ARMMMUIdx mmu_idx;
7878 bool exc_secure;
7880 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7882 /* We don't do a get_phys_addr() here because the rules for vector
7883 * loads are special: they always use the default memory map, and
7884 * the default memory map permits reads from all addresses.
7885 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7886 * that we want this special case which would always say "yes",
7887 * we just do the SAU lookup here followed by a direct physical load.
7889 attrs.secure = targets_secure;
7890 attrs.user = false;
7892 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7893 V8M_SAttributes sattrs = {};
7895 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7896 if (sattrs.ns) {
7897 attrs.secure = false;
7898 } else if (!targets_secure) {
7899 /* NS access to S memory */
7900 goto load_fail;
7904 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7905 attrs, &result);
7906 if (result != MEMTX_OK) {
7907 goto load_fail;
7909 *pvec = vector_entry;
7910 return true;
7912 load_fail:
7913 /* All vector table fetch fails are reported as HardFault, with
7914 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7915 * technically the underlying exception is a MemManage or BusFault
7916 * that is escalated to HardFault.) This is a terminal exception,
7917 * so we will either take the HardFault immediately or else enter
7918 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7920 exc_secure = targets_secure ||
7921 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7922 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7923 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7924 return false;
7927 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7928 bool ignore_faults)
7930 /* For v8M, push the callee-saves register part of the stack frame.
7931 * Compare the v8M pseudocode PushCalleeStack().
7932 * In the tailchaining case this may not be the current stack.
7934 CPUARMState *env = &cpu->env;
7935 uint32_t *frame_sp_p;
7936 uint32_t frameptr;
7937 ARMMMUIdx mmu_idx;
7938 bool stacked_ok;
7939 uint32_t limit;
7940 bool want_psp;
7942 if (dotailchain) {
7943 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7944 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7945 !mode;
7947 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7948 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7949 lr & R_V7M_EXCRET_SPSEL_MASK);
7950 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7951 if (want_psp) {
7952 limit = env->v7m.psplim[M_REG_S];
7953 } else {
7954 limit = env->v7m.msplim[M_REG_S];
7956 } else {
7957 mmu_idx = arm_mmu_idx(env);
7958 frame_sp_p = &env->regs[13];
7959 limit = v7m_sp_limit(env);
7962 frameptr = *frame_sp_p - 0x28;
7963 if (frameptr < limit) {
7965 * Stack limit failure: set SP to the limit value, and generate
7966 * STKOF UsageFault. Stack pushes below the limit must not be
7967 * performed. It is IMPDEF whether pushes above the limit are
7968 * performed; we choose not to.
7970 qemu_log_mask(CPU_LOG_INT,
7971 "...STKOF during callee-saves register stacking\n");
7972 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7973 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7974 env->v7m.secure);
7975 *frame_sp_p = limit;
7976 return true;
7979 /* Write as much of the stack frame as we can. A write failure may
7980 * cause us to pend a derived exception.
7982 stacked_ok =
7983 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7984 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7985 ignore_faults) &&
7986 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7987 ignore_faults) &&
7988 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7989 ignore_faults) &&
7990 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7991 ignore_faults) &&
7992 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7993 ignore_faults) &&
7994 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7995 ignore_faults) &&
7996 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7997 ignore_faults) &&
7998 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
7999 ignore_faults);
8001 /* Update SP regardless of whether any of the stack accesses failed. */
8002 *frame_sp_p = frameptr;
8004 return !stacked_ok;
8007 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8008 bool ignore_stackfaults)
8010 /* Do the "take the exception" parts of exception entry,
8011 * but not the pushing of state to the stack. This is
8012 * similar to the pseudocode ExceptionTaken() function.
8014 CPUARMState *env = &cpu->env;
8015 uint32_t addr;
8016 bool targets_secure;
8017 int exc;
8018 bool push_failed = false;
8020 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8021 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8022 targets_secure ? "secure" : "nonsecure", exc);
8024 if (arm_feature(env, ARM_FEATURE_V8)) {
8025 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8026 (lr & R_V7M_EXCRET_S_MASK)) {
8027 /* The background code (the owner of the registers in the
8028 * exception frame) is Secure. This means it may either already
8029 * have or now needs to push callee-saves registers.
8031 if (targets_secure) {
8032 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8033 /* We took an exception from Secure to NonSecure
8034 * (which means the callee-saved registers got stacked)
8035 * and are now tailchaining to a Secure exception.
8036 * Clear DCRS so eventual return from this Secure
8037 * exception unstacks the callee-saved registers.
8039 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8041 } else {
8042 /* We're going to a non-secure exception; push the
8043 * callee-saves registers to the stack now, if they're
8044 * not already saved.
8046 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8047 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8048 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8049 ignore_stackfaults);
8051 lr |= R_V7M_EXCRET_DCRS_MASK;
8055 lr &= ~R_V7M_EXCRET_ES_MASK;
8056 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8057 lr |= R_V7M_EXCRET_ES_MASK;
8059 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8060 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8061 lr |= R_V7M_EXCRET_SPSEL_MASK;
8064 /* Clear registers if necessary to prevent non-secure exception
8065 * code being able to see register values from secure code.
8066 * Where register values become architecturally UNKNOWN we leave
8067 * them with their previous values.
8069 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8070 if (!targets_secure) {
8071 /* Always clear the caller-saved registers (they have been
8072 * pushed to the stack earlier in v7m_push_stack()).
8073 * Clear callee-saved registers if the background code is
8074 * Secure (in which case these regs were saved in
8075 * v7m_push_callee_stack()).
8077 int i;
8079 for (i = 0; i < 13; i++) {
8080 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8081 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8082 env->regs[i] = 0;
8085 /* Clear EAPSR */
8086 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8091 if (push_failed && !ignore_stackfaults) {
8092 /* Derived exception on callee-saves register stacking:
8093 * we might now want to take a different exception which
8094 * targets a different security state, so try again from the top.
8096 qemu_log_mask(CPU_LOG_INT,
8097 "...derived exception on callee-saves register stacking");
8098 v7m_exception_taken(cpu, lr, true, true);
8099 return;
8102 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8103 /* Vector load failed: derived exception */
8104 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8105 v7m_exception_taken(cpu, lr, true, true);
8106 return;
8109 /* Now we've done everything that might cause a derived exception
8110 * we can go ahead and activate whichever exception we're going to
8111 * take (which might now be the derived exception).
8113 armv7m_nvic_acknowledge_irq(env->nvic);
8115 /* Switch to target security state -- must do this before writing SPSEL */
8116 switch_v7m_security_state(env, targets_secure);
8117 write_v7m_control_spsel(env, 0);
8118 arm_clear_exclusive(env);
8119 /* Clear IT bits */
8120 env->condexec_bits = 0;
8121 env->regs[14] = lr;
8122 env->regs[15] = addr & 0xfffffffe;
8123 env->thumb = addr & 1;
8126 static bool v7m_push_stack(ARMCPU *cpu)
8128 /* Do the "set up stack frame" part of exception entry,
8129 * similar to pseudocode PushStack().
8130 * Return true if we generate a derived exception (and so
8131 * should ignore further stack faults trying to process
8132 * that derived exception.)
8134 bool stacked_ok;
8135 CPUARMState *env = &cpu->env;
8136 uint32_t xpsr = xpsr_read(env);
8137 uint32_t frameptr = env->regs[13];
8138 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8140 /* Align stack pointer if the guest wants that */
8141 if ((frameptr & 4) &&
8142 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8143 frameptr -= 4;
8144 xpsr |= XPSR_SPREALIGN;
8147 frameptr -= 0x20;
8149 if (arm_feature(env, ARM_FEATURE_V8)) {
8150 uint32_t limit = v7m_sp_limit(env);
8152 if (frameptr < limit) {
8154 * Stack limit failure: set SP to the limit value, and generate
8155 * STKOF UsageFault. Stack pushes below the limit must not be
8156 * performed. It is IMPDEF whether pushes above the limit are
8157 * performed; we choose not to.
8159 qemu_log_mask(CPU_LOG_INT,
8160 "...STKOF during stacking\n");
8161 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8162 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8163 env->v7m.secure);
8164 env->regs[13] = limit;
8165 return true;
8169 /* Write as much of the stack frame as we can. If we fail a stack
8170 * write this will result in a derived exception being pended
8171 * (which may be taken in preference to the one we started with
8172 * if it has higher priority).
8174 stacked_ok =
8175 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8176 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8177 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8178 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8179 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8180 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8181 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8182 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8184 /* Update SP regardless of whether any of the stack accesses failed. */
8185 env->regs[13] = frameptr;
8187 return !stacked_ok;
8190 static void do_v7m_exception_exit(ARMCPU *cpu)
8192 CPUARMState *env = &cpu->env;
8193 uint32_t excret;
8194 uint32_t xpsr;
8195 bool ufault = false;
8196 bool sfault = false;
8197 bool return_to_sp_process;
8198 bool return_to_handler;
8199 bool rettobase = false;
8200 bool exc_secure = false;
8201 bool return_to_secure;
8203 /* If we're not in Handler mode then jumps to magic exception-exit
8204 * addresses don't have magic behaviour. However for the v8M
8205 * security extensions the magic secure-function-return has to
8206 * work in thread mode too, so to avoid doing an extra check in
8207 * the generated code we allow exception-exit magic to also cause the
8208 * internal exception and bring us here in thread mode. Correct code
8209 * will never try to do this (the following insn fetch will always
8210 * fault) so we the overhead of having taken an unnecessary exception
8211 * doesn't matter.
8213 if (!arm_v7m_is_handler_mode(env)) {
8214 return;
8217 /* In the spec pseudocode ExceptionReturn() is called directly
8218 * from BXWritePC() and gets the full target PC value including
8219 * bit zero. In QEMU's implementation we treat it as a normal
8220 * jump-to-register (which is then caught later on), and so split
8221 * the target value up between env->regs[15] and env->thumb in
8222 * gen_bx(). Reconstitute it.
8224 excret = env->regs[15];
8225 if (env->thumb) {
8226 excret |= 1;
8229 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8230 " previous exception %d\n",
8231 excret, env->v7m.exception);
8233 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8234 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8235 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8236 excret);
8239 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8240 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8241 * we pick which FAULTMASK to clear.
8243 if (!env->v7m.secure &&
8244 ((excret & R_V7M_EXCRET_ES_MASK) ||
8245 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8246 sfault = 1;
8247 /* For all other purposes, treat ES as 0 (R_HXSR) */
8248 excret &= ~R_V7M_EXCRET_ES_MASK;
8250 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8253 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8254 /* Auto-clear FAULTMASK on return from other than NMI.
8255 * If the security extension is implemented then this only
8256 * happens if the raw execution priority is >= 0; the
8257 * value of the ES bit in the exception return value indicates
8258 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8260 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8261 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8262 env->v7m.faultmask[exc_secure] = 0;
8264 } else {
8265 env->v7m.faultmask[M_REG_NS] = 0;
8269 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8270 exc_secure)) {
8271 case -1:
8272 /* attempt to exit an exception that isn't active */
8273 ufault = true;
8274 break;
8275 case 0:
8276 /* still an irq active now */
8277 break;
8278 case 1:
8279 /* we returned to base exception level, no nesting.
8280 * (In the pseudocode this is written using "NestedActivation != 1"
8281 * where we have 'rettobase == false'.)
8283 rettobase = true;
8284 break;
8285 default:
8286 g_assert_not_reached();
8289 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8290 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8291 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8292 (excret & R_V7M_EXCRET_S_MASK);
8294 if (arm_feature(env, ARM_FEATURE_V8)) {
8295 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8296 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8297 * we choose to take the UsageFault.
8299 if ((excret & R_V7M_EXCRET_S_MASK) ||
8300 (excret & R_V7M_EXCRET_ES_MASK) ||
8301 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8302 ufault = true;
8305 if (excret & R_V7M_EXCRET_RES0_MASK) {
8306 ufault = true;
8308 } else {
8309 /* For v7M we only recognize certain combinations of the low bits */
8310 switch (excret & 0xf) {
8311 case 1: /* Return to Handler */
8312 break;
8313 case 13: /* Return to Thread using Process stack */
8314 case 9: /* Return to Thread using Main stack */
8315 /* We only need to check NONBASETHRDENA for v7M, because in
8316 * v8M this bit does not exist (it is RES1).
8318 if (!rettobase &&
8319 !(env->v7m.ccr[env->v7m.secure] &
8320 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8321 ufault = true;
8323 break;
8324 default:
8325 ufault = true;
8330 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8331 * Handler mode (and will be until we write the new XPSR.Interrupt
8332 * field) this does not switch around the current stack pointer.
8333 * We must do this before we do any kind of tailchaining, including
8334 * for the derived exceptions on integrity check failures, or we will
8335 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8337 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8339 if (sfault) {
8340 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8341 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8342 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8343 "stackframe: failed EXC_RETURN.ES validity check\n");
8344 v7m_exception_taken(cpu, excret, true, false);
8345 return;
8348 if (ufault) {
8349 /* Bad exception return: instead of popping the exception
8350 * stack, directly take a usage fault on the current stack.
8352 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8353 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8354 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8355 "stackframe: failed exception return integrity check\n");
8356 v7m_exception_taken(cpu, excret, true, false);
8357 return;
8361 * Tailchaining: if there is currently a pending exception that
8362 * is high enough priority to preempt execution at the level we're
8363 * about to return to, then just directly take that exception now,
8364 * avoiding an unstack-and-then-stack. Note that now we have
8365 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8366 * our current execution priority is already the execution priority we are
8367 * returning to -- none of the state we would unstack or set based on
8368 * the EXCRET value affects it.
8370 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8371 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8372 v7m_exception_taken(cpu, excret, true, false);
8373 return;
8376 switch_v7m_security_state(env, return_to_secure);
8379 /* The stack pointer we should be reading the exception frame from
8380 * depends on bits in the magic exception return type value (and
8381 * for v8M isn't necessarily the stack pointer we will eventually
8382 * end up resuming execution with). Get a pointer to the location
8383 * in the CPU state struct where the SP we need is currently being
8384 * stored; we will use and modify it in place.
8385 * We use this limited C variable scope so we don't accidentally
8386 * use 'frame_sp_p' after we do something that makes it invalid.
8388 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8389 return_to_secure,
8390 !return_to_handler,
8391 return_to_sp_process);
8392 uint32_t frameptr = *frame_sp_p;
8393 bool pop_ok = true;
8394 ARMMMUIdx mmu_idx;
8395 bool return_to_priv = return_to_handler ||
8396 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8398 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8399 return_to_priv);
8401 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8402 arm_feature(env, ARM_FEATURE_V8)) {
8403 qemu_log_mask(LOG_GUEST_ERROR,
8404 "M profile exception return with non-8-aligned SP "
8405 "for destination state is UNPREDICTABLE\n");
8408 /* Do we need to pop callee-saved registers? */
8409 if (return_to_secure &&
8410 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8411 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8412 uint32_t expected_sig = 0xfefa125b;
8413 uint32_t actual_sig;
8415 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8417 if (pop_ok && expected_sig != actual_sig) {
8418 /* Take a SecureFault on the current stack */
8419 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8420 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8421 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8422 "stackframe: failed exception return integrity "
8423 "signature check\n");
8424 v7m_exception_taken(cpu, excret, true, false);
8425 return;
8428 pop_ok = pop_ok &&
8429 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8430 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8431 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8432 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8433 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8434 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8435 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8436 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8438 frameptr += 0x28;
8441 /* Pop registers */
8442 pop_ok = pop_ok &&
8443 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8444 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8445 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8446 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8447 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8448 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8449 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8450 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8452 if (!pop_ok) {
8453 /* v7m_stack_read() pended a fault, so take it (as a tail
8454 * chained exception on the same stack frame)
8456 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8457 v7m_exception_taken(cpu, excret, true, false);
8458 return;
8461 /* Returning from an exception with a PC with bit 0 set is defined
8462 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8463 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8464 * the lsbit, and there are several RTOSes out there which incorrectly
8465 * assume the r15 in the stack frame should be a Thumb-style "lsbit
8466 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8467 * complain about the badly behaved guest.
8469 if (env->regs[15] & 1) {
8470 env->regs[15] &= ~1U;
8471 if (!arm_feature(env, ARM_FEATURE_V8)) {
8472 qemu_log_mask(LOG_GUEST_ERROR,
8473 "M profile return from interrupt with misaligned "
8474 "PC is UNPREDICTABLE on v7M\n");
8478 if (arm_feature(env, ARM_FEATURE_V8)) {
8479 /* For v8M we have to check whether the xPSR exception field
8480 * matches the EXCRET value for return to handler/thread
8481 * before we commit to changing the SP and xPSR.
8483 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8484 if (return_to_handler != will_be_handler) {
8485 /* Take an INVPC UsageFault on the current stack.
8486 * By this point we will have switched to the security state
8487 * for the background state, so this UsageFault will target
8488 * that state.
8490 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8491 env->v7m.secure);
8492 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8493 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8494 "stackframe: failed exception return integrity "
8495 "check\n");
8496 v7m_exception_taken(cpu, excret, true, false);
8497 return;
8501 /* Commit to consuming the stack frame */
8502 frameptr += 0x20;
8503 /* Undo stack alignment (the SPREALIGN bit indicates that the original
8504 * pre-exception SP was not 8-aligned and we added a padding word to
8505 * align it, so we undo this by ORing in the bit that increases it
8506 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8507 * would work too but a logical OR is how the pseudocode specifies it.)
8509 if (xpsr & XPSR_SPREALIGN) {
8510 frameptr |= 4;
8512 *frame_sp_p = frameptr;
8514 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8515 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8517 /* The restored xPSR exception field will be zero if we're
8518 * resuming in Thread mode. If that doesn't match what the
8519 * exception return excret specified then this is a UsageFault.
8520 * v7M requires we make this check here; v8M did it earlier.
8522 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8523 /* Take an INVPC UsageFault by pushing the stack again;
8524 * we know we're v7M so this is never a Secure UsageFault.
8526 bool ignore_stackfaults;
8528 assert(!arm_feature(env, ARM_FEATURE_V8));
8529 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8530 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8531 ignore_stackfaults = v7m_push_stack(cpu);
8532 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8533 "failed exception return integrity check\n");
8534 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8535 return;
8538 /* Otherwise, we have a successful exception exit. */
8539 arm_clear_exclusive(env);
8540 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8543 static bool do_v7m_function_return(ARMCPU *cpu)
8545 /* v8M security extensions magic function return.
8546 * We may either:
8547 * (1) throw an exception (longjump)
8548 * (2) return true if we successfully handled the function return
8549 * (3) return false if we failed a consistency check and have
8550 * pended a UsageFault that needs to be taken now
8552 * At this point the magic return value is split between env->regs[15]
8553 * and env->thumb. We don't bother to reconstitute it because we don't
8554 * need it (all values are handled the same way).
8556 CPUARMState *env = &cpu->env;
8557 uint32_t newpc, newpsr, newpsr_exc;
8559 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8562 bool threadmode, spsel;
8563 TCGMemOpIdx oi;
8564 ARMMMUIdx mmu_idx;
8565 uint32_t *frame_sp_p;
8566 uint32_t frameptr;
8568 /* Pull the return address and IPSR from the Secure stack */
8569 threadmode = !arm_v7m_is_handler_mode(env);
8570 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8572 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8573 frameptr = *frame_sp_p;
8575 /* These loads may throw an exception (for MPU faults). We want to
8576 * do them as secure, so work out what MMU index that is.
8578 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8579 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8580 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8581 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8583 /* Consistency checks on new IPSR */
8584 newpsr_exc = newpsr & XPSR_EXCP;
8585 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8586 (env->v7m.exception == 1 && newpsr_exc != 0))) {
8587 /* Pend the fault and tell our caller to take it */
8588 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8589 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8590 env->v7m.secure);
8591 qemu_log_mask(CPU_LOG_INT,
8592 "...taking INVPC UsageFault: "
8593 "IPSR consistency check failed\n");
8594 return false;
8597 *frame_sp_p = frameptr + 8;
8600 /* This invalidates frame_sp_p */
8601 switch_v7m_security_state(env, true);
8602 env->v7m.exception = newpsr_exc;
8603 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8604 if (newpsr & XPSR_SFPA) {
8605 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8607 xpsr_write(env, 0, XPSR_IT);
8608 env->thumb = newpc & 1;
8609 env->regs[15] = newpc & ~1;
8611 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8612 return true;
8615 static void arm_log_exception(int idx)
8617 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8618 const char *exc = NULL;
8619 static const char * const excnames[] = {
8620 [EXCP_UDEF] = "Undefined Instruction",
8621 [EXCP_SWI] = "SVC",
8622 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8623 [EXCP_DATA_ABORT] = "Data Abort",
8624 [EXCP_IRQ] = "IRQ",
8625 [EXCP_FIQ] = "FIQ",
8626 [EXCP_BKPT] = "Breakpoint",
8627 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8628 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8629 [EXCP_HVC] = "Hypervisor Call",
8630 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8631 [EXCP_SMC] = "Secure Monitor Call",
8632 [EXCP_VIRQ] = "Virtual IRQ",
8633 [EXCP_VFIQ] = "Virtual FIQ",
8634 [EXCP_SEMIHOST] = "Semihosting call",
8635 [EXCP_NOCP] = "v7M NOCP UsageFault",
8636 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8637 [EXCP_STKOF] = "v8M STKOF UsageFault",
8640 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8641 exc = excnames[idx];
8643 if (!exc) {
8644 exc = "unknown";
8646 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8650 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8651 uint32_t addr, uint16_t *insn)
8653 /* Load a 16-bit portion of a v7M instruction, returning true on success,
8654 * or false on failure (in which case we will have pended the appropriate
8655 * exception).
8656 * We need to do the instruction fetch's MPU and SAU checks
8657 * like this because there is no MMU index that would allow
8658 * doing the load with a single function call. Instead we must
8659 * first check that the security attributes permit the load
8660 * and that they don't mismatch on the two halves of the instruction,
8661 * and then we do the load as a secure load (ie using the security
8662 * attributes of the address, not the CPU, as architecturally required).
8664 CPUState *cs = CPU(cpu);
8665 CPUARMState *env = &cpu->env;
8666 V8M_SAttributes sattrs = {};
8667 MemTxAttrs attrs = {};
8668 ARMMMUFaultInfo fi = {};
8669 MemTxResult txres;
8670 target_ulong page_size;
8671 hwaddr physaddr;
8672 int prot;
8674 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8675 if (!sattrs.nsc || sattrs.ns) {
8676 /* This must be the second half of the insn, and it straddles a
8677 * region boundary with the second half not being S&NSC.
8679 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8680 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8681 qemu_log_mask(CPU_LOG_INT,
8682 "...really SecureFault with SFSR.INVEP\n");
8683 return false;
8685 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8686 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8687 /* the MPU lookup failed */
8688 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8689 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8690 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8691 return false;
8693 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8694 attrs, &txres);
8695 if (txres != MEMTX_OK) {
8696 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8697 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8698 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8699 return false;
8701 return true;
8704 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8706 /* Check whether this attempt to execute code in a Secure & NS-Callable
8707 * memory region is for an SG instruction; if so, then emulate the
8708 * effect of the SG instruction and return true. Otherwise pend
8709 * the correct kind of exception and return false.
8711 CPUARMState *env = &cpu->env;
8712 ARMMMUIdx mmu_idx;
8713 uint16_t insn;
8715 /* We should never get here unless get_phys_addr_pmsav8() caused
8716 * an exception for NS executing in S&NSC memory.
8718 assert(!env->v7m.secure);
8719 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8721 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8722 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8724 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8725 return false;
8728 if (!env->thumb) {
8729 goto gen_invep;
8732 if (insn != 0xe97f) {
8733 /* Not an SG instruction first half (we choose the IMPDEF
8734 * early-SG-check option).
8736 goto gen_invep;
8739 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8740 return false;
8743 if (insn != 0xe97f) {
8744 /* Not an SG instruction second half (yes, both halves of the SG
8745 * insn have the same hex value)
8747 goto gen_invep;
8750 /* OK, we have confirmed that we really have an SG instruction.
8751 * We know we're NS in S memory so don't need to repeat those checks.
8753 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8754 ", executing it\n", env->regs[15]);
8755 env->regs[14] &= ~1;
8756 switch_v7m_security_state(env, true);
8757 xpsr_write(env, 0, XPSR_IT);
8758 env->regs[15] += 4;
8759 return true;
8761 gen_invep:
8762 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8763 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8764 qemu_log_mask(CPU_LOG_INT,
8765 "...really SecureFault with SFSR.INVEP\n");
8766 return false;
8769 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8771 ARMCPU *cpu = ARM_CPU(cs);
8772 CPUARMState *env = &cpu->env;
8773 uint32_t lr;
8774 bool ignore_stackfaults;
8776 arm_log_exception(cs->exception_index);
8778 /* For exceptions we just mark as pending on the NVIC, and let that
8779 handle it. */
8780 switch (cs->exception_index) {
8781 case EXCP_UDEF:
8782 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8783 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
8784 break;
8785 case EXCP_NOCP:
8786 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8787 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8788 break;
8789 case EXCP_INVSTATE:
8790 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8791 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
8792 break;
8793 case EXCP_STKOF:
8794 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8795 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8796 break;
8797 case EXCP_SWI:
8798 /* The PC already points to the next instruction. */
8799 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
8800 break;
8801 case EXCP_PREFETCH_ABORT:
8802 case EXCP_DATA_ABORT:
8803 /* Note that for M profile we don't have a guest facing FSR, but
8804 * the env->exception.fsr will be populated by the code that
8805 * raises the fault, in the A profile short-descriptor format.
8807 switch (env->exception.fsr & 0xf) {
8808 case M_FAKE_FSR_NSC_EXEC:
8809 /* Exception generated when we try to execute code at an address
8810 * which is marked as Secure & Non-Secure Callable and the CPU
8811 * is in the Non-Secure state. The only instruction which can
8812 * be executed like this is SG (and that only if both halves of
8813 * the SG instruction have the same security attributes.)
8814 * Everything else must generate an INVEP SecureFault, so we
8815 * emulate the SG instruction here.
8817 if (v7m_handle_execute_nsc(cpu)) {
8818 return;
8820 break;
8821 case M_FAKE_FSR_SFAULT:
8822 /* Various flavours of SecureFault for attempts to execute or
8823 * access data in the wrong security state.
8825 switch (cs->exception_index) {
8826 case EXCP_PREFETCH_ABORT:
8827 if (env->v7m.secure) {
8828 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8829 qemu_log_mask(CPU_LOG_INT,
8830 "...really SecureFault with SFSR.INVTRAN\n");
8831 } else {
8832 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8833 qemu_log_mask(CPU_LOG_INT,
8834 "...really SecureFault with SFSR.INVEP\n");
8836 break;
8837 case EXCP_DATA_ABORT:
8838 /* This must be an NS access to S memory */
8839 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8840 qemu_log_mask(CPU_LOG_INT,
8841 "...really SecureFault with SFSR.AUVIOL\n");
8842 break;
8844 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8845 break;
8846 case 0x8: /* External Abort */
8847 switch (cs->exception_index) {
8848 case EXCP_PREFETCH_ABORT:
8849 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8850 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8851 break;
8852 case EXCP_DATA_ABORT:
8853 env->v7m.cfsr[M_REG_NS] |=
8854 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8855 env->v7m.bfar = env->exception.vaddress;
8856 qemu_log_mask(CPU_LOG_INT,
8857 "...with CFSR.PRECISERR and BFAR 0x%x\n",
8858 env->v7m.bfar);
8859 break;
8861 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8862 break;
8863 default:
8864 /* All other FSR values are either MPU faults or "can't happen
8865 * for M profile" cases.
8867 switch (cs->exception_index) {
8868 case EXCP_PREFETCH_ABORT:
8869 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8870 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8871 break;
8872 case EXCP_DATA_ABORT:
8873 env->v7m.cfsr[env->v7m.secure] |=
8874 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8875 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8876 qemu_log_mask(CPU_LOG_INT,
8877 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8878 env->v7m.mmfar[env->v7m.secure]);
8879 break;
8881 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8882 env->v7m.secure);
8883 break;
8885 break;
8886 case EXCP_BKPT:
8887 if (semihosting_enabled()) {
8888 int nr;
8889 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8890 if (nr == 0xab) {
8891 env->regs[15] += 2;
8892 qemu_log_mask(CPU_LOG_INT,
8893 "...handling as semihosting call 0x%x\n",
8894 env->regs[0]);
8895 env->regs[0] = do_arm_semihosting(env);
8896 return;
8899 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8900 break;
8901 case EXCP_IRQ:
8902 break;
8903 case EXCP_EXCEPTION_EXIT:
8904 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8905 /* Must be v8M security extension function return */
8906 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8907 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8908 if (do_v7m_function_return(cpu)) {
8909 return;
8911 } else {
8912 do_v7m_exception_exit(cpu);
8913 return;
8915 break;
8916 default:
8917 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8918 return; /* Never happens. Keep compiler happy. */
8921 if (arm_feature(env, ARM_FEATURE_V8)) {
8922 lr = R_V7M_EXCRET_RES1_MASK |
8923 R_V7M_EXCRET_DCRS_MASK |
8924 R_V7M_EXCRET_FTYPE_MASK;
8925 /* The S bit indicates whether we should return to Secure
8926 * or NonSecure (ie our current state).
8927 * The ES bit indicates whether we're taking this exception
8928 * to Secure or NonSecure (ie our target state). We set it
8929 * later, in v7m_exception_taken().
8930 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8931 * This corresponds to the ARM ARM pseudocode for v8M setting
8932 * some LR bits in PushStack() and some in ExceptionTaken();
8933 * the distinction matters for the tailchain cases where we
8934 * can take an exception without pushing the stack.
8936 if (env->v7m.secure) {
8937 lr |= R_V7M_EXCRET_S_MASK;
8939 } else {
8940 lr = R_V7M_EXCRET_RES1_MASK |
8941 R_V7M_EXCRET_S_MASK |
8942 R_V7M_EXCRET_DCRS_MASK |
8943 R_V7M_EXCRET_FTYPE_MASK |
8944 R_V7M_EXCRET_ES_MASK;
8945 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8946 lr |= R_V7M_EXCRET_SPSEL_MASK;
8949 if (!arm_v7m_is_handler_mode(env)) {
8950 lr |= R_V7M_EXCRET_MODE_MASK;
8953 ignore_stackfaults = v7m_push_stack(cpu);
8954 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8957 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8958 * register set. This is necessary when switching between AArch32 and AArch64
8959 * execution state.
8961 void aarch64_sync_32_to_64(CPUARMState *env)
8963 int i;
8964 uint32_t mode = env->uncached_cpsr & CPSR_M;
8966 /* We can blanket copy R[0:7] to X[0:7] */
8967 for (i = 0; i < 8; i++) {
8968 env->xregs[i] = env->regs[i];
8971 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8972 * Otherwise, they come from the banked user regs.
8974 if (mode == ARM_CPU_MODE_FIQ) {
8975 for (i = 8; i < 13; i++) {
8976 env->xregs[i] = env->usr_regs[i - 8];
8978 } else {
8979 for (i = 8; i < 13; i++) {
8980 env->xregs[i] = env->regs[i];
8984 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8985 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8986 * from the mode banked register.
8988 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8989 env->xregs[13] = env->regs[13];
8990 env->xregs[14] = env->regs[14];
8991 } else {
8992 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8993 /* HYP is an exception in that it is copied from r14 */
8994 if (mode == ARM_CPU_MODE_HYP) {
8995 env->xregs[14] = env->regs[14];
8996 } else {
8997 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9001 if (mode == ARM_CPU_MODE_HYP) {
9002 env->xregs[15] = env->regs[13];
9003 } else {
9004 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9007 if (mode == ARM_CPU_MODE_IRQ) {
9008 env->xregs[16] = env->regs[14];
9009 env->xregs[17] = env->regs[13];
9010 } else {
9011 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9012 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9015 if (mode == ARM_CPU_MODE_SVC) {
9016 env->xregs[18] = env->regs[14];
9017 env->xregs[19] = env->regs[13];
9018 } else {
9019 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9020 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9023 if (mode == ARM_CPU_MODE_ABT) {
9024 env->xregs[20] = env->regs[14];
9025 env->xregs[21] = env->regs[13];
9026 } else {
9027 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9028 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9031 if (mode == ARM_CPU_MODE_UND) {
9032 env->xregs[22] = env->regs[14];
9033 env->xregs[23] = env->regs[13];
9034 } else {
9035 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9036 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9039 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9040 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9041 * FIQ bank for r8-r14.
9043 if (mode == ARM_CPU_MODE_FIQ) {
9044 for (i = 24; i < 31; i++) {
9045 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9047 } else {
9048 for (i = 24; i < 29; i++) {
9049 env->xregs[i] = env->fiq_regs[i - 24];
9051 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9052 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9055 env->pc = env->regs[15];
9058 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9059 * register set. This is necessary when switching between AArch32 and AArch64
9060 * execution state.
9062 void aarch64_sync_64_to_32(CPUARMState *env)
9064 int i;
9065 uint32_t mode = env->uncached_cpsr & CPSR_M;
9067 /* We can blanket copy X[0:7] to R[0:7] */
9068 for (i = 0; i < 8; i++) {
9069 env->regs[i] = env->xregs[i];
9072 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9073 * Otherwise, we copy x8-x12 into the banked user regs.
9075 if (mode == ARM_CPU_MODE_FIQ) {
9076 for (i = 8; i < 13; i++) {
9077 env->usr_regs[i - 8] = env->xregs[i];
9079 } else {
9080 for (i = 8; i < 13; i++) {
9081 env->regs[i] = env->xregs[i];
9085 /* Registers r13 & r14 depend on the current mode.
9086 * If we are in a given mode, we copy the corresponding x registers to r13
9087 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9088 * for the mode.
9090 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9091 env->regs[13] = env->xregs[13];
9092 env->regs[14] = env->xregs[14];
9093 } else {
9094 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9096 /* HYP is an exception in that it does not have its own banked r14 but
9097 * shares the USR r14
9099 if (mode == ARM_CPU_MODE_HYP) {
9100 env->regs[14] = env->xregs[14];
9101 } else {
9102 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9106 if (mode == ARM_CPU_MODE_HYP) {
9107 env->regs[13] = env->xregs[15];
9108 } else {
9109 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9112 if (mode == ARM_CPU_MODE_IRQ) {
9113 env->regs[14] = env->xregs[16];
9114 env->regs[13] = env->xregs[17];
9115 } else {
9116 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9117 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9120 if (mode == ARM_CPU_MODE_SVC) {
9121 env->regs[14] = env->xregs[18];
9122 env->regs[13] = env->xregs[19];
9123 } else {
9124 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9125 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9128 if (mode == ARM_CPU_MODE_ABT) {
9129 env->regs[14] = env->xregs[20];
9130 env->regs[13] = env->xregs[21];
9131 } else {
9132 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9133 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9136 if (mode == ARM_CPU_MODE_UND) {
9137 env->regs[14] = env->xregs[22];
9138 env->regs[13] = env->xregs[23];
9139 } else {
9140 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9141 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9144 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9145 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9146 * FIQ bank for r8-r14.
9148 if (mode == ARM_CPU_MODE_FIQ) {
9149 for (i = 24; i < 31; i++) {
9150 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9152 } else {
9153 for (i = 24; i < 29; i++) {
9154 env->fiq_regs[i - 24] = env->xregs[i];
9156 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9157 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9160 env->regs[15] = env->pc;
9163 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9164 uint32_t mask, uint32_t offset,
9165 uint32_t newpc)
9167 /* Change the CPU state so as to actually take the exception. */
9168 switch_mode(env, new_mode);
9170 * For exceptions taken to AArch32 we must clear the SS bit in both
9171 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9173 env->uncached_cpsr &= ~PSTATE_SS;
9174 env->spsr = cpsr_read(env);
9175 /* Clear IT bits. */
9176 env->condexec_bits = 0;
9177 /* Switch to the new mode, and to the correct instruction set. */
9178 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9179 /* Set new mode endianness */
9180 env->uncached_cpsr &= ~CPSR_E;
9181 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9182 env->uncached_cpsr |= CPSR_E;
9184 /* J and IL must always be cleared for exception entry */
9185 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9186 env->daif |= mask;
9188 if (new_mode == ARM_CPU_MODE_HYP) {
9189 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9190 env->elr_el[2] = env->regs[15];
9191 } else {
9193 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9194 * and we should just guard the thumb mode on V4
9196 if (arm_feature(env, ARM_FEATURE_V4T)) {
9197 env->thumb =
9198 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9200 env->regs[14] = env->regs[15] + offset;
9202 env->regs[15] = newpc;
9205 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9208 * Handle exception entry to Hyp mode; this is sufficiently
9209 * different to entry to other AArch32 modes that we handle it
9210 * separately here.
9212 * The vector table entry used is always the 0x14 Hyp mode entry point,
9213 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9214 * The offset applied to the preferred return address is always zero
9215 * (see DDI0487C.a section G1.12.3).
9216 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9218 uint32_t addr, mask;
9219 ARMCPU *cpu = ARM_CPU(cs);
9220 CPUARMState *env = &cpu->env;
9222 switch (cs->exception_index) {
9223 case EXCP_UDEF:
9224 addr = 0x04;
9225 break;
9226 case EXCP_SWI:
9227 addr = 0x14;
9228 break;
9229 case EXCP_BKPT:
9230 /* Fall through to prefetch abort. */
9231 case EXCP_PREFETCH_ABORT:
9232 env->cp15.ifar_s = env->exception.vaddress;
9233 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9234 (uint32_t)env->exception.vaddress);
9235 addr = 0x0c;
9236 break;
9237 case EXCP_DATA_ABORT:
9238 env->cp15.dfar_s = env->exception.vaddress;
9239 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9240 (uint32_t)env->exception.vaddress);
9241 addr = 0x10;
9242 break;
9243 case EXCP_IRQ:
9244 addr = 0x18;
9245 break;
9246 case EXCP_FIQ:
9247 addr = 0x1c;
9248 break;
9249 case EXCP_HVC:
9250 addr = 0x08;
9251 break;
9252 case EXCP_HYP_TRAP:
9253 addr = 0x14;
9254 default:
9255 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9258 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9259 if (!arm_feature(env, ARM_FEATURE_V8)) {
9261 * QEMU syndrome values are v8-style. v7 has the IL bit
9262 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9263 * If this is a v7 CPU, squash the IL bit in those cases.
9265 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9266 (cs->exception_index == EXCP_DATA_ABORT &&
9267 !(env->exception.syndrome & ARM_EL_ISV)) ||
9268 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9269 env->exception.syndrome &= ~ARM_EL_IL;
9272 env->cp15.esr_el[2] = env->exception.syndrome;
9275 if (arm_current_el(env) != 2 && addr < 0x14) {
9276 addr = 0x14;
9279 mask = 0;
9280 if (!(env->cp15.scr_el3 & SCR_EA)) {
9281 mask |= CPSR_A;
9283 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9284 mask |= CPSR_I;
9286 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9287 mask |= CPSR_F;
9290 addr += env->cp15.hvbar;
9292 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9295 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9297 ARMCPU *cpu = ARM_CPU(cs);
9298 CPUARMState *env = &cpu->env;
9299 uint32_t addr;
9300 uint32_t mask;
9301 int new_mode;
9302 uint32_t offset;
9303 uint32_t moe;
9305 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9306 switch (syn_get_ec(env->exception.syndrome)) {
9307 case EC_BREAKPOINT:
9308 case EC_BREAKPOINT_SAME_EL:
9309 moe = 1;
9310 break;
9311 case EC_WATCHPOINT:
9312 case EC_WATCHPOINT_SAME_EL:
9313 moe = 10;
9314 break;
9315 case EC_AA32_BKPT:
9316 moe = 3;
9317 break;
9318 case EC_VECTORCATCH:
9319 moe = 5;
9320 break;
9321 default:
9322 moe = 0;
9323 break;
9326 if (moe) {
9327 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9330 if (env->exception.target_el == 2) {
9331 arm_cpu_do_interrupt_aarch32_hyp(cs);
9332 return;
9335 switch (cs->exception_index) {
9336 case EXCP_UDEF:
9337 new_mode = ARM_CPU_MODE_UND;
9338 addr = 0x04;
9339 mask = CPSR_I;
9340 if (env->thumb)
9341 offset = 2;
9342 else
9343 offset = 4;
9344 break;
9345 case EXCP_SWI:
9346 new_mode = ARM_CPU_MODE_SVC;
9347 addr = 0x08;
9348 mask = CPSR_I;
9349 /* The PC already points to the next instruction. */
9350 offset = 0;
9351 break;
9352 case EXCP_BKPT:
9353 /* Fall through to prefetch abort. */
9354 case EXCP_PREFETCH_ABORT:
9355 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9356 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9357 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9358 env->exception.fsr, (uint32_t)env->exception.vaddress);
9359 new_mode = ARM_CPU_MODE_ABT;
9360 addr = 0x0c;
9361 mask = CPSR_A | CPSR_I;
9362 offset = 4;
9363 break;
9364 case EXCP_DATA_ABORT:
9365 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9366 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9367 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9368 env->exception.fsr,
9369 (uint32_t)env->exception.vaddress);
9370 new_mode = ARM_CPU_MODE_ABT;
9371 addr = 0x10;
9372 mask = CPSR_A | CPSR_I;
9373 offset = 8;
9374 break;
9375 case EXCP_IRQ:
9376 new_mode = ARM_CPU_MODE_IRQ;
9377 addr = 0x18;
9378 /* Disable IRQ and imprecise data aborts. */
9379 mask = CPSR_A | CPSR_I;
9380 offset = 4;
9381 if (env->cp15.scr_el3 & SCR_IRQ) {
9382 /* IRQ routed to monitor mode */
9383 new_mode = ARM_CPU_MODE_MON;
9384 mask |= CPSR_F;
9386 break;
9387 case EXCP_FIQ:
9388 new_mode = ARM_CPU_MODE_FIQ;
9389 addr = 0x1c;
9390 /* Disable FIQ, IRQ and imprecise data aborts. */
9391 mask = CPSR_A | CPSR_I | CPSR_F;
9392 if (env->cp15.scr_el3 & SCR_FIQ) {
9393 /* FIQ routed to monitor mode */
9394 new_mode = ARM_CPU_MODE_MON;
9396 offset = 4;
9397 break;
9398 case EXCP_VIRQ:
9399 new_mode = ARM_CPU_MODE_IRQ;
9400 addr = 0x18;
9401 /* Disable IRQ and imprecise data aborts. */
9402 mask = CPSR_A | CPSR_I;
9403 offset = 4;
9404 break;
9405 case EXCP_VFIQ:
9406 new_mode = ARM_CPU_MODE_FIQ;
9407 addr = 0x1c;
9408 /* Disable FIQ, IRQ and imprecise data aborts. */
9409 mask = CPSR_A | CPSR_I | CPSR_F;
9410 offset = 4;
9411 break;
9412 case EXCP_SMC:
9413 new_mode = ARM_CPU_MODE_MON;
9414 addr = 0x08;
9415 mask = CPSR_A | CPSR_I | CPSR_F;
9416 offset = 0;
9417 break;
9418 default:
9419 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9420 return; /* Never happens. Keep compiler happy. */
9423 if (new_mode == ARM_CPU_MODE_MON) {
9424 addr += env->cp15.mvbar;
9425 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9426 /* High vectors. When enabled, base address cannot be remapped. */
9427 addr += 0xffff0000;
9428 } else {
9429 /* ARM v7 architectures provide a vector base address register to remap
9430 * the interrupt vector table.
9431 * This register is only followed in non-monitor mode, and is banked.
9432 * Note: only bits 31:5 are valid.
9434 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9437 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9438 env->cp15.scr_el3 &= ~SCR_NS;
9441 take_aarch32_exception(env, new_mode, mask, offset, addr);
9444 /* Handle exception entry to a target EL which is using AArch64 */
9445 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9447 ARMCPU *cpu = ARM_CPU(cs);
9448 CPUARMState *env = &cpu->env;
9449 unsigned int new_el = env->exception.target_el;
9450 target_ulong addr = env->cp15.vbar_el[new_el];
9451 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9452 unsigned int cur_el = arm_current_el(env);
9455 * Note that new_el can never be 0. If cur_el is 0, then
9456 * el0_a64 is is_a64(), else el0_a64 is ignored.
9458 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9460 if (cur_el < new_el) {
9461 /* Entry vector offset depends on whether the implemented EL
9462 * immediately lower than the target level is using AArch32 or AArch64
9464 bool is_aa64;
9466 switch (new_el) {
9467 case 3:
9468 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9469 break;
9470 case 2:
9471 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9472 break;
9473 case 1:
9474 is_aa64 = is_a64(env);
9475 break;
9476 default:
9477 g_assert_not_reached();
9480 if (is_aa64) {
9481 addr += 0x400;
9482 } else {
9483 addr += 0x600;
9485 } else if (pstate_read(env) & PSTATE_SP) {
9486 addr += 0x200;
9489 switch (cs->exception_index) {
9490 case EXCP_PREFETCH_ABORT:
9491 case EXCP_DATA_ABORT:
9492 env->cp15.far_el[new_el] = env->exception.vaddress;
9493 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9494 env->cp15.far_el[new_el]);
9495 /* fall through */
9496 case EXCP_BKPT:
9497 case EXCP_UDEF:
9498 case EXCP_SWI:
9499 case EXCP_HVC:
9500 case EXCP_HYP_TRAP:
9501 case EXCP_SMC:
9502 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9504 * QEMU internal FP/SIMD syndromes from AArch32 include the
9505 * TA and coproc fields which are only exposed if the exception
9506 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9507 * AArch64 format syndrome.
9509 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9511 env->cp15.esr_el[new_el] = env->exception.syndrome;
9512 break;
9513 case EXCP_IRQ:
9514 case EXCP_VIRQ:
9515 addr += 0x80;
9516 break;
9517 case EXCP_FIQ:
9518 case EXCP_VFIQ:
9519 addr += 0x100;
9520 break;
9521 case EXCP_SEMIHOST:
9522 qemu_log_mask(CPU_LOG_INT,
9523 "...handling as semihosting call 0x%" PRIx64 "\n",
9524 env->xregs[0]);
9525 env->xregs[0] = do_arm_semihosting(env);
9526 return;
9527 default:
9528 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9531 if (is_a64(env)) {
9532 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9533 aarch64_save_sp(env, arm_current_el(env));
9534 env->elr_el[new_el] = env->pc;
9535 } else {
9536 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9537 env->elr_el[new_el] = env->regs[15];
9539 aarch64_sync_32_to_64(env);
9541 env->condexec_bits = 0;
9543 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9544 env->elr_el[new_el]);
9546 pstate_write(env, PSTATE_DAIF | new_mode);
9547 env->aarch64 = 1;
9548 aarch64_restore_sp(env, new_el);
9550 env->pc = addr;
9552 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9553 new_el, env->pc, pstate_read(env));
9556 static inline bool check_for_semihosting(CPUState *cs)
9558 /* Check whether this exception is a semihosting call; if so
9559 * then handle it and return true; otherwise return false.
9561 ARMCPU *cpu = ARM_CPU(cs);
9562 CPUARMState *env = &cpu->env;
9564 if (is_a64(env)) {
9565 if (cs->exception_index == EXCP_SEMIHOST) {
9566 /* This is always the 64-bit semihosting exception.
9567 * The "is this usermode" and "is semihosting enabled"
9568 * checks have been done at translate time.
9570 qemu_log_mask(CPU_LOG_INT,
9571 "...handling as semihosting call 0x%" PRIx64 "\n",
9572 env->xregs[0]);
9573 env->xregs[0] = do_arm_semihosting(env);
9574 return true;
9576 return false;
9577 } else {
9578 uint32_t imm;
9580 /* Only intercept calls from privileged modes, to provide some
9581 * semblance of security.
9583 if (cs->exception_index != EXCP_SEMIHOST &&
9584 (!semihosting_enabled() ||
9585 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9586 return false;
9589 switch (cs->exception_index) {
9590 case EXCP_SEMIHOST:
9591 /* This is always a semihosting call; the "is this usermode"
9592 * and "is semihosting enabled" checks have been done at
9593 * translate time.
9595 break;
9596 case EXCP_SWI:
9597 /* Check for semihosting interrupt. */
9598 if (env->thumb) {
9599 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9600 & 0xff;
9601 if (imm == 0xab) {
9602 break;
9604 } else {
9605 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9606 & 0xffffff;
9607 if (imm == 0x123456) {
9608 break;
9611 return false;
9612 case EXCP_BKPT:
9613 /* See if this is a semihosting syscall. */
9614 if (env->thumb) {
9615 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9616 & 0xff;
9617 if (imm == 0xab) {
9618 env->regs[15] += 2;
9619 break;
9622 return false;
9623 default:
9624 return false;
9627 qemu_log_mask(CPU_LOG_INT,
9628 "...handling as semihosting call 0x%x\n",
9629 env->regs[0]);
9630 env->regs[0] = do_arm_semihosting(env);
9631 return true;
9635 /* Handle a CPU exception for A and R profile CPUs.
9636 * Do any appropriate logging, handle PSCI calls, and then hand off
9637 * to the AArch64-entry or AArch32-entry function depending on the
9638 * target exception level's register width.
9640 void arm_cpu_do_interrupt(CPUState *cs)
9642 ARMCPU *cpu = ARM_CPU(cs);
9643 CPUARMState *env = &cpu->env;
9644 unsigned int new_el = env->exception.target_el;
9646 assert(!arm_feature(env, ARM_FEATURE_M));
9648 arm_log_exception(cs->exception_index);
9649 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9650 new_el);
9651 if (qemu_loglevel_mask(CPU_LOG_INT)
9652 && !excp_is_internal(cs->exception_index)) {
9653 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9654 syn_get_ec(env->exception.syndrome),
9655 env->exception.syndrome);
9658 if (arm_is_psci_call(cpu, cs->exception_index)) {
9659 arm_handle_psci_call(cpu);
9660 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9661 return;
9664 /* Semihosting semantics depend on the register width of the
9665 * code that caused the exception, not the target exception level,
9666 * so must be handled here.
9668 if (check_for_semihosting(cs)) {
9669 return;
9672 /* Hooks may change global state so BQL should be held, also the
9673 * BQL needs to be held for any modification of
9674 * cs->interrupt_request.
9676 g_assert(qemu_mutex_iothread_locked());
9678 arm_call_pre_el_change_hook(cpu);
9680 assert(!excp_is_internal(cs->exception_index));
9681 if (arm_el_is_aa64(env, new_el)) {
9682 arm_cpu_do_interrupt_aarch64(cs);
9683 } else {
9684 arm_cpu_do_interrupt_aarch32(cs);
9687 arm_call_el_change_hook(cpu);
9689 if (!kvm_enabled()) {
9690 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9693 #endif /* !CONFIG_USER_ONLY */
9695 /* Return the exception level which controls this address translation regime */
9696 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9698 switch (mmu_idx) {
9699 case ARMMMUIdx_S2NS:
9700 case ARMMMUIdx_S1E2:
9701 return 2;
9702 case ARMMMUIdx_S1E3:
9703 return 3;
9704 case ARMMMUIdx_S1SE0:
9705 return arm_el_is_aa64(env, 3) ? 1 : 3;
9706 case ARMMMUIdx_S1SE1:
9707 case ARMMMUIdx_S1NSE0:
9708 case ARMMMUIdx_S1NSE1:
9709 case ARMMMUIdx_MPrivNegPri:
9710 case ARMMMUIdx_MUserNegPri:
9711 case ARMMMUIdx_MPriv:
9712 case ARMMMUIdx_MUser:
9713 case ARMMMUIdx_MSPrivNegPri:
9714 case ARMMMUIdx_MSUserNegPri:
9715 case ARMMMUIdx_MSPriv:
9716 case ARMMMUIdx_MSUser:
9717 return 1;
9718 default:
9719 g_assert_not_reached();
9723 #ifndef CONFIG_USER_ONLY
9725 /* Return the SCTLR value which controls this address translation regime */
9726 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9728 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9731 /* Return true if the specified stage of address translation is disabled */
9732 static inline bool regime_translation_disabled(CPUARMState *env,
9733 ARMMMUIdx mmu_idx)
9735 if (arm_feature(env, ARM_FEATURE_M)) {
9736 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9737 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9738 case R_V7M_MPU_CTRL_ENABLE_MASK:
9739 /* Enabled, but not for HardFault and NMI */
9740 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9741 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9742 /* Enabled for all cases */
9743 return false;
9744 case 0:
9745 default:
9746 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9747 * we warned about that in armv7m_nvic.c when the guest set it.
9749 return true;
9753 if (mmu_idx == ARMMMUIdx_S2NS) {
9754 /* HCR.DC means HCR.VM behaves as 1 */
9755 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9758 if (env->cp15.hcr_el2 & HCR_TGE) {
9759 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9760 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9761 return true;
9765 if ((env->cp15.hcr_el2 & HCR_DC) &&
9766 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9767 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9768 return true;
9771 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9774 static inline bool regime_translation_big_endian(CPUARMState *env,
9775 ARMMMUIdx mmu_idx)
9777 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9780 /* Return the TTBR associated with this translation regime */
9781 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9782 int ttbrn)
9784 if (mmu_idx == ARMMMUIdx_S2NS) {
9785 return env->cp15.vttbr_el2;
9787 if (ttbrn == 0) {
9788 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9789 } else {
9790 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9794 #endif /* !CONFIG_USER_ONLY */
9796 /* Return the TCR controlling this translation regime */
9797 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9799 if (mmu_idx == ARMMMUIdx_S2NS) {
9800 return &env->cp15.vtcr_el2;
9802 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9805 /* Convert a possible stage1+2 MMU index into the appropriate
9806 * stage 1 MMU index
9808 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9810 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9811 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9813 return mmu_idx;
9816 /* Return true if the translation regime is using LPAE format page tables */
9817 static inline bool regime_using_lpae_format(CPUARMState *env,
9818 ARMMMUIdx mmu_idx)
9820 int el = regime_el(env, mmu_idx);
9821 if (el == 2 || arm_el_is_aa64(env, el)) {
9822 return true;
9824 if (arm_feature(env, ARM_FEATURE_LPAE)
9825 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9826 return true;
9828 return false;
9831 /* Returns true if the stage 1 translation regime is using LPAE format page
9832 * tables. Used when raising alignment exceptions, whose FSR changes depending
9833 * on whether the long or short descriptor format is in use. */
9834 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9836 mmu_idx = stage_1_mmu_idx(mmu_idx);
9838 return regime_using_lpae_format(env, mmu_idx);
9841 #ifndef CONFIG_USER_ONLY
9842 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9844 switch (mmu_idx) {
9845 case ARMMMUIdx_S1SE0:
9846 case ARMMMUIdx_S1NSE0:
9847 case ARMMMUIdx_MUser:
9848 case ARMMMUIdx_MSUser:
9849 case ARMMMUIdx_MUserNegPri:
9850 case ARMMMUIdx_MSUserNegPri:
9851 return true;
9852 default:
9853 return false;
9854 case ARMMMUIdx_S12NSE0:
9855 case ARMMMUIdx_S12NSE1:
9856 g_assert_not_reached();
9860 /* Translate section/page access permissions to page
9861 * R/W protection flags
9863 * @env: CPUARMState
9864 * @mmu_idx: MMU index indicating required translation regime
9865 * @ap: The 3-bit access permissions (AP[2:0])
9866 * @domain_prot: The 2-bit domain access permissions
9868 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9869 int ap, int domain_prot)
9871 bool is_user = regime_is_user(env, mmu_idx);
9873 if (domain_prot == 3) {
9874 return PAGE_READ | PAGE_WRITE;
9877 switch (ap) {
9878 case 0:
9879 if (arm_feature(env, ARM_FEATURE_V7)) {
9880 return 0;
9882 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9883 case SCTLR_S:
9884 return is_user ? 0 : PAGE_READ;
9885 case SCTLR_R:
9886 return PAGE_READ;
9887 default:
9888 return 0;
9890 case 1:
9891 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9892 case 2:
9893 if (is_user) {
9894 return PAGE_READ;
9895 } else {
9896 return PAGE_READ | PAGE_WRITE;
9898 case 3:
9899 return PAGE_READ | PAGE_WRITE;
9900 case 4: /* Reserved. */
9901 return 0;
9902 case 5:
9903 return is_user ? 0 : PAGE_READ;
9904 case 6:
9905 return PAGE_READ;
9906 case 7:
9907 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9908 return 0;
9910 return PAGE_READ;
9911 default:
9912 g_assert_not_reached();
9916 /* Translate section/page access permissions to page
9917 * R/W protection flags.
9919 * @ap: The 2-bit simple AP (AP[2:1])
9920 * @is_user: TRUE if accessing from PL0
9922 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9924 switch (ap) {
9925 case 0:
9926 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9927 case 1:
9928 return PAGE_READ | PAGE_WRITE;
9929 case 2:
9930 return is_user ? 0 : PAGE_READ;
9931 case 3:
9932 return PAGE_READ;
9933 default:
9934 g_assert_not_reached();
9938 static inline int
9939 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9941 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9944 /* Translate S2 section/page access permissions to protection flags
9946 * @env: CPUARMState
9947 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9948 * @xn: XN (execute-never) bit
9950 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9952 int prot = 0;
9954 if (s2ap & 1) {
9955 prot |= PAGE_READ;
9957 if (s2ap & 2) {
9958 prot |= PAGE_WRITE;
9960 if (!xn) {
9961 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9962 prot |= PAGE_EXEC;
9965 return prot;
9968 /* Translate section/page access permissions to protection flags
9970 * @env: CPUARMState
9971 * @mmu_idx: MMU index indicating required translation regime
9972 * @is_aa64: TRUE if AArch64
9973 * @ap: The 2-bit simple AP (AP[2:1])
9974 * @ns: NS (non-secure) bit
9975 * @xn: XN (execute-never) bit
9976 * @pxn: PXN (privileged execute-never) bit
9978 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9979 int ap, int ns, int xn, int pxn)
9981 bool is_user = regime_is_user(env, mmu_idx);
9982 int prot_rw, user_rw;
9983 bool have_wxn;
9984 int wxn = 0;
9986 assert(mmu_idx != ARMMMUIdx_S2NS);
9988 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9989 if (is_user) {
9990 prot_rw = user_rw;
9991 } else {
9992 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9995 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9996 return prot_rw;
9999 /* TODO have_wxn should be replaced with
10000 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10001 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10002 * compatible processors have EL2, which is required for [U]WXN.
10004 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10006 if (have_wxn) {
10007 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10010 if (is_aa64) {
10011 switch (regime_el(env, mmu_idx)) {
10012 case 1:
10013 if (!is_user) {
10014 xn = pxn || (user_rw & PAGE_WRITE);
10016 break;
10017 case 2:
10018 case 3:
10019 break;
10021 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10022 switch (regime_el(env, mmu_idx)) {
10023 case 1:
10024 case 3:
10025 if (is_user) {
10026 xn = xn || !(user_rw & PAGE_READ);
10027 } else {
10028 int uwxn = 0;
10029 if (have_wxn) {
10030 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10032 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10033 (uwxn && (user_rw & PAGE_WRITE));
10035 break;
10036 case 2:
10037 break;
10039 } else {
10040 xn = wxn = 0;
10043 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10044 return prot_rw;
10046 return prot_rw | PAGE_EXEC;
10049 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10050 uint32_t *table, uint32_t address)
10052 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10053 TCR *tcr = regime_tcr(env, mmu_idx);
10055 if (address & tcr->mask) {
10056 if (tcr->raw_tcr & TTBCR_PD1) {
10057 /* Translation table walk disabled for TTBR1 */
10058 return false;
10060 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10061 } else {
10062 if (tcr->raw_tcr & TTBCR_PD0) {
10063 /* Translation table walk disabled for TTBR0 */
10064 return false;
10066 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10068 *table |= (address >> 18) & 0x3ffc;
10069 return true;
10072 /* Translate a S1 pagetable walk through S2 if needed. */
10073 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10074 hwaddr addr, MemTxAttrs txattrs,
10075 ARMMMUFaultInfo *fi)
10077 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10078 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10079 target_ulong s2size;
10080 hwaddr s2pa;
10081 int s2prot;
10082 int ret;
10083 ARMCacheAttrs cacheattrs = {};
10084 ARMCacheAttrs *pcacheattrs = NULL;
10086 if (env->cp15.hcr_el2 & HCR_PTW) {
10088 * PTW means we must fault if this S1 walk touches S2 Device
10089 * memory; otherwise we don't care about the attributes and can
10090 * save the S2 translation the effort of computing them.
10092 pcacheattrs = &cacheattrs;
10095 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10096 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10097 if (ret) {
10098 assert(fi->type != ARMFault_None);
10099 fi->s2addr = addr;
10100 fi->stage2 = true;
10101 fi->s1ptw = true;
10102 return ~0;
10104 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10105 /* Access was to Device memory: generate Permission fault */
10106 fi->type = ARMFault_Permission;
10107 fi->s2addr = addr;
10108 fi->stage2 = true;
10109 fi->s1ptw = true;
10110 return ~0;
10112 addr = s2pa;
10114 return addr;
10117 /* All loads done in the course of a page table walk go through here. */
10118 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10119 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10121 ARMCPU *cpu = ARM_CPU(cs);
10122 CPUARMState *env = &cpu->env;
10123 MemTxAttrs attrs = {};
10124 MemTxResult result = MEMTX_OK;
10125 AddressSpace *as;
10126 uint32_t data;
10128 attrs.secure = is_secure;
10129 as = arm_addressspace(cs, attrs);
10130 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10131 if (fi->s1ptw) {
10132 return 0;
10134 if (regime_translation_big_endian(env, mmu_idx)) {
10135 data = address_space_ldl_be(as, addr, attrs, &result);
10136 } else {
10137 data = address_space_ldl_le(as, addr, attrs, &result);
10139 if (result == MEMTX_OK) {
10140 return data;
10142 fi->type = ARMFault_SyncExternalOnWalk;
10143 fi->ea = arm_extabort_type(result);
10144 return 0;
10147 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10148 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10150 ARMCPU *cpu = ARM_CPU(cs);
10151 CPUARMState *env = &cpu->env;
10152 MemTxAttrs attrs = {};
10153 MemTxResult result = MEMTX_OK;
10154 AddressSpace *as;
10155 uint64_t data;
10157 attrs.secure = is_secure;
10158 as = arm_addressspace(cs, attrs);
10159 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10160 if (fi->s1ptw) {
10161 return 0;
10163 if (regime_translation_big_endian(env, mmu_idx)) {
10164 data = address_space_ldq_be(as, addr, attrs, &result);
10165 } else {
10166 data = address_space_ldq_le(as, addr, attrs, &result);
10168 if (result == MEMTX_OK) {
10169 return data;
10171 fi->type = ARMFault_SyncExternalOnWalk;
10172 fi->ea = arm_extabort_type(result);
10173 return 0;
10176 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10177 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10178 hwaddr *phys_ptr, int *prot,
10179 target_ulong *page_size,
10180 ARMMMUFaultInfo *fi)
10182 CPUState *cs = CPU(arm_env_get_cpu(env));
10183 int level = 1;
10184 uint32_t table;
10185 uint32_t desc;
10186 int type;
10187 int ap;
10188 int domain = 0;
10189 int domain_prot;
10190 hwaddr phys_addr;
10191 uint32_t dacr;
10193 /* Pagetable walk. */
10194 /* Lookup l1 descriptor. */
10195 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10196 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10197 fi->type = ARMFault_Translation;
10198 goto do_fault;
10200 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10201 mmu_idx, fi);
10202 if (fi->type != ARMFault_None) {
10203 goto do_fault;
10205 type = (desc & 3);
10206 domain = (desc >> 5) & 0x0f;
10207 if (regime_el(env, mmu_idx) == 1) {
10208 dacr = env->cp15.dacr_ns;
10209 } else {
10210 dacr = env->cp15.dacr_s;
10212 domain_prot = (dacr >> (domain * 2)) & 3;
10213 if (type == 0) {
10214 /* Section translation fault. */
10215 fi->type = ARMFault_Translation;
10216 goto do_fault;
10218 if (type != 2) {
10219 level = 2;
10221 if (domain_prot == 0 || domain_prot == 2) {
10222 fi->type = ARMFault_Domain;
10223 goto do_fault;
10225 if (type == 2) {
10226 /* 1Mb section. */
10227 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10228 ap = (desc >> 10) & 3;
10229 *page_size = 1024 * 1024;
10230 } else {
10231 /* Lookup l2 entry. */
10232 if (type == 1) {
10233 /* Coarse pagetable. */
10234 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10235 } else {
10236 /* Fine pagetable. */
10237 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10239 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10240 mmu_idx, fi);
10241 if (fi->type != ARMFault_None) {
10242 goto do_fault;
10244 switch (desc & 3) {
10245 case 0: /* Page translation fault. */
10246 fi->type = ARMFault_Translation;
10247 goto do_fault;
10248 case 1: /* 64k page. */
10249 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10250 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10251 *page_size = 0x10000;
10252 break;
10253 case 2: /* 4k page. */
10254 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10255 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10256 *page_size = 0x1000;
10257 break;
10258 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10259 if (type == 1) {
10260 /* ARMv6/XScale extended small page format */
10261 if (arm_feature(env, ARM_FEATURE_XSCALE)
10262 || arm_feature(env, ARM_FEATURE_V6)) {
10263 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10264 *page_size = 0x1000;
10265 } else {
10266 /* UNPREDICTABLE in ARMv5; we choose to take a
10267 * page translation fault.
10269 fi->type = ARMFault_Translation;
10270 goto do_fault;
10272 } else {
10273 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10274 *page_size = 0x400;
10276 ap = (desc >> 4) & 3;
10277 break;
10278 default:
10279 /* Never happens, but compiler isn't smart enough to tell. */
10280 abort();
10283 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10284 *prot |= *prot ? PAGE_EXEC : 0;
10285 if (!(*prot & (1 << access_type))) {
10286 /* Access permission fault. */
10287 fi->type = ARMFault_Permission;
10288 goto do_fault;
10290 *phys_ptr = phys_addr;
10291 return false;
10292 do_fault:
10293 fi->domain = domain;
10294 fi->level = level;
10295 return true;
10298 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10299 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10300 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10301 target_ulong *page_size, ARMMMUFaultInfo *fi)
10303 CPUState *cs = CPU(arm_env_get_cpu(env));
10304 int level = 1;
10305 uint32_t table;
10306 uint32_t desc;
10307 uint32_t xn;
10308 uint32_t pxn = 0;
10309 int type;
10310 int ap;
10311 int domain = 0;
10312 int domain_prot;
10313 hwaddr phys_addr;
10314 uint32_t dacr;
10315 bool ns;
10317 /* Pagetable walk. */
10318 /* Lookup l1 descriptor. */
10319 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10320 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10321 fi->type = ARMFault_Translation;
10322 goto do_fault;
10324 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10325 mmu_idx, fi);
10326 if (fi->type != ARMFault_None) {
10327 goto do_fault;
10329 type = (desc & 3);
10330 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10331 /* Section translation fault, or attempt to use the encoding
10332 * which is Reserved on implementations without PXN.
10334 fi->type = ARMFault_Translation;
10335 goto do_fault;
10337 if ((type == 1) || !(desc & (1 << 18))) {
10338 /* Page or Section. */
10339 domain = (desc >> 5) & 0x0f;
10341 if (regime_el(env, mmu_idx) == 1) {
10342 dacr = env->cp15.dacr_ns;
10343 } else {
10344 dacr = env->cp15.dacr_s;
10346 if (type == 1) {
10347 level = 2;
10349 domain_prot = (dacr >> (domain * 2)) & 3;
10350 if (domain_prot == 0 || domain_prot == 2) {
10351 /* Section or Page domain fault */
10352 fi->type = ARMFault_Domain;
10353 goto do_fault;
10355 if (type != 1) {
10356 if (desc & (1 << 18)) {
10357 /* Supersection. */
10358 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10359 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10360 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10361 *page_size = 0x1000000;
10362 } else {
10363 /* Section. */
10364 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10365 *page_size = 0x100000;
10367 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10368 xn = desc & (1 << 4);
10369 pxn = desc & 1;
10370 ns = extract32(desc, 19, 1);
10371 } else {
10372 if (arm_feature(env, ARM_FEATURE_PXN)) {
10373 pxn = (desc >> 2) & 1;
10375 ns = extract32(desc, 3, 1);
10376 /* Lookup l2 entry. */
10377 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10378 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10379 mmu_idx, fi);
10380 if (fi->type != ARMFault_None) {
10381 goto do_fault;
10383 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10384 switch (desc & 3) {
10385 case 0: /* Page translation fault. */
10386 fi->type = ARMFault_Translation;
10387 goto do_fault;
10388 case 1: /* 64k page. */
10389 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10390 xn = desc & (1 << 15);
10391 *page_size = 0x10000;
10392 break;
10393 case 2: case 3: /* 4k page. */
10394 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10395 xn = desc & 1;
10396 *page_size = 0x1000;
10397 break;
10398 default:
10399 /* Never happens, but compiler isn't smart enough to tell. */
10400 abort();
10403 if (domain_prot == 3) {
10404 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10405 } else {
10406 if (pxn && !regime_is_user(env, mmu_idx)) {
10407 xn = 1;
10409 if (xn && access_type == MMU_INST_FETCH) {
10410 fi->type = ARMFault_Permission;
10411 goto do_fault;
10414 if (arm_feature(env, ARM_FEATURE_V6K) &&
10415 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10416 /* The simplified model uses AP[0] as an access control bit. */
10417 if ((ap & 1) == 0) {
10418 /* Access flag fault. */
10419 fi->type = ARMFault_AccessFlag;
10420 goto do_fault;
10422 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10423 } else {
10424 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10426 if (*prot && !xn) {
10427 *prot |= PAGE_EXEC;
10429 if (!(*prot & (1 << access_type))) {
10430 /* Access permission fault. */
10431 fi->type = ARMFault_Permission;
10432 goto do_fault;
10435 if (ns) {
10436 /* The NS bit will (as required by the architecture) have no effect if
10437 * the CPU doesn't support TZ or this is a non-secure translation
10438 * regime, because the attribute will already be non-secure.
10440 attrs->secure = false;
10442 *phys_ptr = phys_addr;
10443 return false;
10444 do_fault:
10445 fi->domain = domain;
10446 fi->level = level;
10447 return true;
10451 * check_s2_mmu_setup
10452 * @cpu: ARMCPU
10453 * @is_aa64: True if the translation regime is in AArch64 state
10454 * @startlevel: Suggested starting level
10455 * @inputsize: Bitsize of IPAs
10456 * @stride: Page-table stride (See the ARM ARM)
10458 * Returns true if the suggested S2 translation parameters are OK and
10459 * false otherwise.
10461 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10462 int inputsize, int stride)
10464 const int grainsize = stride + 3;
10465 int startsizecheck;
10467 /* Negative levels are never allowed. */
10468 if (level < 0) {
10469 return false;
10472 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10473 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10474 return false;
10477 if (is_aa64) {
10478 CPUARMState *env = &cpu->env;
10479 unsigned int pamax = arm_pamax(cpu);
10481 switch (stride) {
10482 case 13: /* 64KB Pages. */
10483 if (level == 0 || (level == 1 && pamax <= 42)) {
10484 return false;
10486 break;
10487 case 11: /* 16KB Pages. */
10488 if (level == 0 || (level == 1 && pamax <= 40)) {
10489 return false;
10491 break;
10492 case 9: /* 4KB Pages. */
10493 if (level == 0 && pamax <= 42) {
10494 return false;
10496 break;
10497 default:
10498 g_assert_not_reached();
10501 /* Inputsize checks. */
10502 if (inputsize > pamax &&
10503 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10504 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10505 return false;
10507 } else {
10508 /* AArch32 only supports 4KB pages. Assert on that. */
10509 assert(stride == 9);
10511 if (level == 0) {
10512 return false;
10515 return true;
10518 /* Translate from the 4-bit stage 2 representation of
10519 * memory attributes (without cache-allocation hints) to
10520 * the 8-bit representation of the stage 1 MAIR registers
10521 * (which includes allocation hints).
10523 * ref: shared/translation/attrs/S2AttrDecode()
10524 * .../S2ConvertAttrsHints()
10526 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10528 uint8_t hiattr = extract32(s2attrs, 2, 2);
10529 uint8_t loattr = extract32(s2attrs, 0, 2);
10530 uint8_t hihint = 0, lohint = 0;
10532 if (hiattr != 0) { /* normal memory */
10533 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10534 hiattr = loattr = 1; /* non-cacheable */
10535 } else {
10536 if (hiattr != 1) { /* Write-through or write-back */
10537 hihint = 3; /* RW allocate */
10539 if (loattr != 1) { /* Write-through or write-back */
10540 lohint = 3; /* RW allocate */
10545 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10547 #endif /* !CONFIG_USER_ONLY */
10549 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10550 ARMMMUIdx mmu_idx)
10552 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10553 uint32_t el = regime_el(env, mmu_idx);
10554 bool tbi, tbid, epd, hpd, using16k, using64k;
10555 int select, tsz;
10558 * Bit 55 is always between the two regions, and is canonical for
10559 * determining if address tagging is enabled.
10561 select = extract64(va, 55, 1);
10563 if (el > 1) {
10564 tsz = extract32(tcr, 0, 6);
10565 using64k = extract32(tcr, 14, 1);
10566 using16k = extract32(tcr, 15, 1);
10567 if (mmu_idx == ARMMMUIdx_S2NS) {
10568 /* VTCR_EL2 */
10569 tbi = tbid = hpd = false;
10570 } else {
10571 tbi = extract32(tcr, 20, 1);
10572 hpd = extract32(tcr, 24, 1);
10573 tbid = extract32(tcr, 29, 1);
10575 epd = false;
10576 } else if (!select) {
10577 tsz = extract32(tcr, 0, 6);
10578 epd = extract32(tcr, 7, 1);
10579 using64k = extract32(tcr, 14, 1);
10580 using16k = extract32(tcr, 15, 1);
10581 tbi = extract64(tcr, 37, 1);
10582 hpd = extract64(tcr, 41, 1);
10583 tbid = extract64(tcr, 51, 1);
10584 } else {
10585 int tg = extract32(tcr, 30, 2);
10586 using16k = tg == 1;
10587 using64k = tg == 3;
10588 tsz = extract32(tcr, 16, 6);
10589 epd = extract32(tcr, 23, 1);
10590 tbi = extract64(tcr, 38, 1);
10591 hpd = extract64(tcr, 42, 1);
10592 tbid = extract64(tcr, 52, 1);
10594 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10595 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10597 return (ARMVAParameters) {
10598 .tsz = tsz,
10599 .select = select,
10600 .tbi = tbi,
10601 .tbid = tbid,
10602 .epd = epd,
10603 .hpd = hpd,
10604 .using16k = using16k,
10605 .using64k = using64k,
10609 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10610 ARMMMUIdx mmu_idx, bool data)
10612 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10614 /* Present TBI as a composite with TBID. */
10615 ret.tbi &= (data || !ret.tbid);
10616 return ret;
10619 #ifndef CONFIG_USER_ONLY
10620 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10621 ARMMMUIdx mmu_idx)
10623 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10624 uint32_t el = regime_el(env, mmu_idx);
10625 int select, tsz;
10626 bool epd, hpd;
10628 if (mmu_idx == ARMMMUIdx_S2NS) {
10629 /* VTCR */
10630 bool sext = extract32(tcr, 4, 1);
10631 bool sign = extract32(tcr, 3, 1);
10634 * If the sign-extend bit is not the same as t0sz[3], the result
10635 * is unpredictable. Flag this as a guest error.
10637 if (sign != sext) {
10638 qemu_log_mask(LOG_GUEST_ERROR,
10639 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10641 tsz = sextract32(tcr, 0, 4) + 8;
10642 select = 0;
10643 hpd = false;
10644 epd = false;
10645 } else if (el == 2) {
10646 /* HTCR */
10647 tsz = extract32(tcr, 0, 3);
10648 select = 0;
10649 hpd = extract64(tcr, 24, 1);
10650 epd = false;
10651 } else {
10652 int t0sz = extract32(tcr, 0, 3);
10653 int t1sz = extract32(tcr, 16, 3);
10655 if (t1sz == 0) {
10656 select = va > (0xffffffffu >> t0sz);
10657 } else {
10658 /* Note that we will detect errors later. */
10659 select = va >= ~(0xffffffffu >> t1sz);
10661 if (!select) {
10662 tsz = t0sz;
10663 epd = extract32(tcr, 7, 1);
10664 hpd = extract64(tcr, 41, 1);
10665 } else {
10666 tsz = t1sz;
10667 epd = extract32(tcr, 23, 1);
10668 hpd = extract64(tcr, 42, 1);
10670 /* For aarch32, hpd0 is not enabled without t2e as well. */
10671 hpd &= extract32(tcr, 6, 1);
10674 return (ARMVAParameters) {
10675 .tsz = tsz,
10676 .select = select,
10677 .epd = epd,
10678 .hpd = hpd,
10682 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10683 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10684 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10685 target_ulong *page_size_ptr,
10686 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10688 ARMCPU *cpu = arm_env_get_cpu(env);
10689 CPUState *cs = CPU(cpu);
10690 /* Read an LPAE long-descriptor translation table. */
10691 ARMFaultType fault_type = ARMFault_Translation;
10692 uint32_t level;
10693 ARMVAParameters param;
10694 uint64_t ttbr;
10695 hwaddr descaddr, indexmask, indexmask_grainsize;
10696 uint32_t tableattrs;
10697 target_ulong page_size;
10698 uint32_t attrs;
10699 int32_t stride;
10700 int addrsize, inputsize;
10701 TCR *tcr = regime_tcr(env, mmu_idx);
10702 int ap, ns, xn, pxn;
10703 uint32_t el = regime_el(env, mmu_idx);
10704 bool ttbr1_valid;
10705 uint64_t descaddrmask;
10706 bool aarch64 = arm_el_is_aa64(env, el);
10707 bool guarded = false;
10709 /* TODO:
10710 * This code does not handle the different format TCR for VTCR_EL2.
10711 * This code also does not support shareability levels.
10712 * Attribute and permission bit handling should also be checked when adding
10713 * support for those page table walks.
10715 if (aarch64) {
10716 param = aa64_va_parameters(env, address, mmu_idx,
10717 access_type != MMU_INST_FETCH);
10718 level = 0;
10719 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10720 * invalid.
10722 ttbr1_valid = (el < 2);
10723 addrsize = 64 - 8 * param.tbi;
10724 inputsize = 64 - param.tsz;
10725 } else {
10726 param = aa32_va_parameters(env, address, mmu_idx);
10727 level = 1;
10728 /* There is no TTBR1 for EL2 */
10729 ttbr1_valid = (el != 2);
10730 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10731 inputsize = addrsize - param.tsz;
10735 * We determined the region when collecting the parameters, but we
10736 * have not yet validated that the address is valid for the region.
10737 * Extract the top bits and verify that they all match select.
10739 * For aa32, if inputsize == addrsize, then we have selected the
10740 * region by exclusion in aa32_va_parameters and there is no more
10741 * validation to do here.
10743 if (inputsize < addrsize) {
10744 target_ulong top_bits = sextract64(address, inputsize,
10745 addrsize - inputsize);
10746 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10747 /* The gap between the two regions is a Translation fault */
10748 fault_type = ARMFault_Translation;
10749 goto do_fault;
10753 if (param.using64k) {
10754 stride = 13;
10755 } else if (param.using16k) {
10756 stride = 11;
10757 } else {
10758 stride = 9;
10761 /* Note that QEMU ignores shareability and cacheability attributes,
10762 * so we don't need to do anything with the SH, ORGN, IRGN fields
10763 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10764 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10765 * implement any ASID-like capability so we can ignore it (instead
10766 * we will always flush the TLB any time the ASID is changed).
10768 ttbr = regime_ttbr(env, mmu_idx, param.select);
10770 /* Here we should have set up all the parameters for the translation:
10771 * inputsize, ttbr, epd, stride, tbi
10774 if (param.epd) {
10775 /* Translation table walk disabled => Translation fault on TLB miss
10776 * Note: This is always 0 on 64-bit EL2 and EL3.
10778 goto do_fault;
10781 if (mmu_idx != ARMMMUIdx_S2NS) {
10782 /* The starting level depends on the virtual address size (which can
10783 * be up to 48 bits) and the translation granule size. It indicates
10784 * the number of strides (stride bits at a time) needed to
10785 * consume the bits of the input address. In the pseudocode this is:
10786 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10787 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10788 * our 'stride + 3' and 'stride' is our 'stride'.
10789 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10790 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10791 * = 4 - (inputsize - 4) / stride;
10793 level = 4 - (inputsize - 4) / stride;
10794 } else {
10795 /* For stage 2 translations the starting level is specified by the
10796 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10798 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10799 uint32_t startlevel;
10800 bool ok;
10802 if (!aarch64 || stride == 9) {
10803 /* AArch32 or 4KB pages */
10804 startlevel = 2 - sl0;
10805 } else {
10806 /* 16KB or 64KB pages */
10807 startlevel = 3 - sl0;
10810 /* Check that the starting level is valid. */
10811 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10812 inputsize, stride);
10813 if (!ok) {
10814 fault_type = ARMFault_Translation;
10815 goto do_fault;
10817 level = startlevel;
10820 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10821 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10823 /* Now we can extract the actual base address from the TTBR */
10824 descaddr = extract64(ttbr, 0, 48);
10825 descaddr &= ~indexmask;
10827 /* The address field in the descriptor goes up to bit 39 for ARMv7
10828 * but up to bit 47 for ARMv8, but we use the descaddrmask
10829 * up to bit 39 for AArch32, because we don't need other bits in that case
10830 * to construct next descriptor address (anyway they should be all zeroes).
10832 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10833 ~indexmask_grainsize;
10835 /* Secure accesses start with the page table in secure memory and
10836 * can be downgraded to non-secure at any step. Non-secure accesses
10837 * remain non-secure. We implement this by just ORing in the NSTable/NS
10838 * bits at each step.
10840 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10841 for (;;) {
10842 uint64_t descriptor;
10843 bool nstable;
10845 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10846 descaddr &= ~7ULL;
10847 nstable = extract32(tableattrs, 4, 1);
10848 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10849 if (fi->type != ARMFault_None) {
10850 goto do_fault;
10853 if (!(descriptor & 1) ||
10854 (!(descriptor & 2) && (level == 3))) {
10855 /* Invalid, or the Reserved level 3 encoding */
10856 goto do_fault;
10858 descaddr = descriptor & descaddrmask;
10860 if ((descriptor & 2) && (level < 3)) {
10861 /* Table entry. The top five bits are attributes which may
10862 * propagate down through lower levels of the table (and
10863 * which are all arranged so that 0 means "no effect", so
10864 * we can gather them up by ORing in the bits at each level).
10866 tableattrs |= extract64(descriptor, 59, 5);
10867 level++;
10868 indexmask = indexmask_grainsize;
10869 continue;
10871 /* Block entry at level 1 or 2, or page entry at level 3.
10872 * These are basically the same thing, although the number
10873 * of bits we pull in from the vaddr varies.
10875 page_size = (1ULL << ((stride * (4 - level)) + 3));
10876 descaddr |= (address & (page_size - 1));
10877 /* Extract attributes from the descriptor */
10878 attrs = extract64(descriptor, 2, 10)
10879 | (extract64(descriptor, 52, 12) << 10);
10881 if (mmu_idx == ARMMMUIdx_S2NS) {
10882 /* Stage 2 table descriptors do not include any attribute fields */
10883 break;
10885 /* Merge in attributes from table descriptors */
10886 attrs |= nstable << 3; /* NS */
10887 guarded = extract64(descriptor, 50, 1); /* GP */
10888 if (param.hpd) {
10889 /* HPD disables all the table attributes except NSTable. */
10890 break;
10892 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10893 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10894 * means "force PL1 access only", which means forcing AP[1] to 0.
10896 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10897 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10898 break;
10900 /* Here descaddr is the final physical address, and attributes
10901 * are all in attrs.
10903 fault_type = ARMFault_AccessFlag;
10904 if ((attrs & (1 << 8)) == 0) {
10905 /* Access flag */
10906 goto do_fault;
10909 ap = extract32(attrs, 4, 2);
10910 xn = extract32(attrs, 12, 1);
10912 if (mmu_idx == ARMMMUIdx_S2NS) {
10913 ns = true;
10914 *prot = get_S2prot(env, ap, xn);
10915 } else {
10916 ns = extract32(attrs, 3, 1);
10917 pxn = extract32(attrs, 11, 1);
10918 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10921 fault_type = ARMFault_Permission;
10922 if (!(*prot & (1 << access_type))) {
10923 goto do_fault;
10926 if (ns) {
10927 /* The NS bit will (as required by the architecture) have no effect if
10928 * the CPU doesn't support TZ or this is a non-secure translation
10929 * regime, because the attribute will already be non-secure.
10931 txattrs->secure = false;
10933 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10934 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10935 txattrs->target_tlb_bit0 = true;
10938 if (cacheattrs != NULL) {
10939 if (mmu_idx == ARMMMUIdx_S2NS) {
10940 cacheattrs->attrs = convert_stage2_attrs(env,
10941 extract32(attrs, 0, 4));
10942 } else {
10943 /* Index into MAIR registers for cache attributes */
10944 uint8_t attrindx = extract32(attrs, 0, 3);
10945 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10946 assert(attrindx <= 7);
10947 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10949 cacheattrs->shareability = extract32(attrs, 6, 2);
10952 *phys_ptr = descaddr;
10953 *page_size_ptr = page_size;
10954 return false;
10956 do_fault:
10957 fi->type = fault_type;
10958 fi->level = level;
10959 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10960 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10961 return true;
10964 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10965 ARMMMUIdx mmu_idx,
10966 int32_t address, int *prot)
10968 if (!arm_feature(env, ARM_FEATURE_M)) {
10969 *prot = PAGE_READ | PAGE_WRITE;
10970 switch (address) {
10971 case 0xF0000000 ... 0xFFFFFFFF:
10972 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10973 /* hivecs execing is ok */
10974 *prot |= PAGE_EXEC;
10976 break;
10977 case 0x00000000 ... 0x7FFFFFFF:
10978 *prot |= PAGE_EXEC;
10979 break;
10981 } else {
10982 /* Default system address map for M profile cores.
10983 * The architecture specifies which regions are execute-never;
10984 * at the MPU level no other checks are defined.
10986 switch (address) {
10987 case 0x00000000 ... 0x1fffffff: /* ROM */
10988 case 0x20000000 ... 0x3fffffff: /* SRAM */
10989 case 0x60000000 ... 0x7fffffff: /* RAM */
10990 case 0x80000000 ... 0x9fffffff: /* RAM */
10991 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10992 break;
10993 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10994 case 0xa0000000 ... 0xbfffffff: /* Device */
10995 case 0xc0000000 ... 0xdfffffff: /* Device */
10996 case 0xe0000000 ... 0xffffffff: /* System */
10997 *prot = PAGE_READ | PAGE_WRITE;
10998 break;
10999 default:
11000 g_assert_not_reached();
11005 static bool pmsav7_use_background_region(ARMCPU *cpu,
11006 ARMMMUIdx mmu_idx, bool is_user)
11008 /* Return true if we should use the default memory map as a
11009 * "background" region if there are no hits against any MPU regions.
11011 CPUARMState *env = &cpu->env;
11013 if (is_user) {
11014 return false;
11017 if (arm_feature(env, ARM_FEATURE_M)) {
11018 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11019 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11020 } else {
11021 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11025 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11027 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11028 return arm_feature(env, ARM_FEATURE_M) &&
11029 extract32(address, 20, 12) == 0xe00;
11032 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11034 /* True if address is in the M profile system region
11035 * 0xe0000000 - 0xffffffff
11037 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11040 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11041 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11042 hwaddr *phys_ptr, int *prot,
11043 target_ulong *page_size,
11044 ARMMMUFaultInfo *fi)
11046 ARMCPU *cpu = arm_env_get_cpu(env);
11047 int n;
11048 bool is_user = regime_is_user(env, mmu_idx);
11050 *phys_ptr = address;
11051 *page_size = TARGET_PAGE_SIZE;
11052 *prot = 0;
11054 if (regime_translation_disabled(env, mmu_idx) ||
11055 m_is_ppb_region(env, address)) {
11056 /* MPU disabled or M profile PPB access: use default memory map.
11057 * The other case which uses the default memory map in the
11058 * v7M ARM ARM pseudocode is exception vector reads from the vector
11059 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11060 * which always does a direct read using address_space_ldl(), rather
11061 * than going via this function, so we don't need to check that here.
11063 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11064 } else { /* MPU enabled */
11065 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11066 /* region search */
11067 uint32_t base = env->pmsav7.drbar[n];
11068 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11069 uint32_t rmask;
11070 bool srdis = false;
11072 if (!(env->pmsav7.drsr[n] & 0x1)) {
11073 continue;
11076 if (!rsize) {
11077 qemu_log_mask(LOG_GUEST_ERROR,
11078 "DRSR[%d]: Rsize field cannot be 0\n", n);
11079 continue;
11081 rsize++;
11082 rmask = (1ull << rsize) - 1;
11084 if (base & rmask) {
11085 qemu_log_mask(LOG_GUEST_ERROR,
11086 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11087 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11088 n, base, rmask);
11089 continue;
11092 if (address < base || address > base + rmask) {
11094 * Address not in this region. We must check whether the
11095 * region covers addresses in the same page as our address.
11096 * In that case we must not report a size that covers the
11097 * whole page for a subsequent hit against a different MPU
11098 * region or the background region, because it would result in
11099 * incorrect TLB hits for subsequent accesses to addresses that
11100 * are in this MPU region.
11102 if (ranges_overlap(base, rmask,
11103 address & TARGET_PAGE_MASK,
11104 TARGET_PAGE_SIZE)) {
11105 *page_size = 1;
11107 continue;
11110 /* Region matched */
11112 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11113 int i, snd;
11114 uint32_t srdis_mask;
11116 rsize -= 3; /* sub region size (power of 2) */
11117 snd = ((address - base) >> rsize) & 0x7;
11118 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11120 srdis_mask = srdis ? 0x3 : 0x0;
11121 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11122 /* This will check in groups of 2, 4 and then 8, whether
11123 * the subregion bits are consistent. rsize is incremented
11124 * back up to give the region size, considering consistent
11125 * adjacent subregions as one region. Stop testing if rsize
11126 * is already big enough for an entire QEMU page.
11128 int snd_rounded = snd & ~(i - 1);
11129 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11130 snd_rounded + 8, i);
11131 if (srdis_mask ^ srdis_multi) {
11132 break;
11134 srdis_mask = (srdis_mask << i) | srdis_mask;
11135 rsize++;
11138 if (srdis) {
11139 continue;
11141 if (rsize < TARGET_PAGE_BITS) {
11142 *page_size = 1 << rsize;
11144 break;
11147 if (n == -1) { /* no hits */
11148 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11149 /* background fault */
11150 fi->type = ARMFault_Background;
11151 return true;
11153 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11154 } else { /* a MPU hit! */
11155 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11156 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11158 if (m_is_system_region(env, address)) {
11159 /* System space is always execute never */
11160 xn = 1;
11163 if (is_user) { /* User mode AP bit decoding */
11164 switch (ap) {
11165 case 0:
11166 case 1:
11167 case 5:
11168 break; /* no access */
11169 case 3:
11170 *prot |= PAGE_WRITE;
11171 /* fall through */
11172 case 2:
11173 case 6:
11174 *prot |= PAGE_READ | PAGE_EXEC;
11175 break;
11176 case 7:
11177 /* for v7M, same as 6; for R profile a reserved value */
11178 if (arm_feature(env, ARM_FEATURE_M)) {
11179 *prot |= PAGE_READ | PAGE_EXEC;
11180 break;
11182 /* fall through */
11183 default:
11184 qemu_log_mask(LOG_GUEST_ERROR,
11185 "DRACR[%d]: Bad value for AP bits: 0x%"
11186 PRIx32 "\n", n, ap);
11188 } else { /* Priv. mode AP bits decoding */
11189 switch (ap) {
11190 case 0:
11191 break; /* no access */
11192 case 1:
11193 case 2:
11194 case 3:
11195 *prot |= PAGE_WRITE;
11196 /* fall through */
11197 case 5:
11198 case 6:
11199 *prot |= PAGE_READ | PAGE_EXEC;
11200 break;
11201 case 7:
11202 /* for v7M, same as 6; for R profile a reserved value */
11203 if (arm_feature(env, ARM_FEATURE_M)) {
11204 *prot |= PAGE_READ | PAGE_EXEC;
11205 break;
11207 /* fall through */
11208 default:
11209 qemu_log_mask(LOG_GUEST_ERROR,
11210 "DRACR[%d]: Bad value for AP bits: 0x%"
11211 PRIx32 "\n", n, ap);
11215 /* execute never */
11216 if (xn) {
11217 *prot &= ~PAGE_EXEC;
11222 fi->type = ARMFault_Permission;
11223 fi->level = 1;
11224 return !(*prot & (1 << access_type));
11227 static bool v8m_is_sau_exempt(CPUARMState *env,
11228 uint32_t address, MMUAccessType access_type)
11230 /* The architecture specifies that certain address ranges are
11231 * exempt from v8M SAU/IDAU checks.
11233 return
11234 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11235 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11236 (address >= 0xe000e000 && address <= 0xe000efff) ||
11237 (address >= 0xe002e000 && address <= 0xe002efff) ||
11238 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11239 (address >= 0xe00ff000 && address <= 0xe00fffff);
11242 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11243 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11244 V8M_SAttributes *sattrs)
11246 /* Look up the security attributes for this address. Compare the
11247 * pseudocode SecurityCheck() function.
11248 * We assume the caller has zero-initialized *sattrs.
11250 ARMCPU *cpu = arm_env_get_cpu(env);
11251 int r;
11252 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11253 int idau_region = IREGION_NOTVALID;
11254 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11255 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11257 if (cpu->idau) {
11258 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11259 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11261 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11262 &idau_nsc);
11265 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11266 /* 0xf0000000..0xffffffff is always S for insn fetches */
11267 return;
11270 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11271 sattrs->ns = !regime_is_secure(env, mmu_idx);
11272 return;
11275 if (idau_region != IREGION_NOTVALID) {
11276 sattrs->irvalid = true;
11277 sattrs->iregion = idau_region;
11280 switch (env->sau.ctrl & 3) {
11281 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11282 break;
11283 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11284 sattrs->ns = true;
11285 break;
11286 default: /* SAU.ENABLE == 1 */
11287 for (r = 0; r < cpu->sau_sregion; r++) {
11288 if (env->sau.rlar[r] & 1) {
11289 uint32_t base = env->sau.rbar[r] & ~0x1f;
11290 uint32_t limit = env->sau.rlar[r] | 0x1f;
11292 if (base <= address && limit >= address) {
11293 if (base > addr_page_base || limit < addr_page_limit) {
11294 sattrs->subpage = true;
11296 if (sattrs->srvalid) {
11297 /* If we hit in more than one region then we must report
11298 * as Secure, not NS-Callable, with no valid region
11299 * number info.
11301 sattrs->ns = false;
11302 sattrs->nsc = false;
11303 sattrs->sregion = 0;
11304 sattrs->srvalid = false;
11305 break;
11306 } else {
11307 if (env->sau.rlar[r] & 2) {
11308 sattrs->nsc = true;
11309 } else {
11310 sattrs->ns = true;
11312 sattrs->srvalid = true;
11313 sattrs->sregion = r;
11315 } else {
11317 * Address not in this region. We must check whether the
11318 * region covers addresses in the same page as our address.
11319 * In that case we must not report a size that covers the
11320 * whole page for a subsequent hit against a different MPU
11321 * region or the background region, because it would result
11322 * in incorrect TLB hits for subsequent accesses to
11323 * addresses that are in this MPU region.
11325 if (limit >= base &&
11326 ranges_overlap(base, limit - base + 1,
11327 addr_page_base,
11328 TARGET_PAGE_SIZE)) {
11329 sattrs->subpage = true;
11334 break;
11338 * The IDAU will override the SAU lookup results if it specifies
11339 * higher security than the SAU does.
11341 if (!idau_ns) {
11342 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11343 sattrs->ns = false;
11344 sattrs->nsc = idau_nsc;
11349 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11350 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11351 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11352 int *prot, bool *is_subpage,
11353 ARMMMUFaultInfo *fi, uint32_t *mregion)
11355 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11356 * that a full phys-to-virt translation does).
11357 * mregion is (if not NULL) set to the region number which matched,
11358 * or -1 if no region number is returned (MPU off, address did not
11359 * hit a region, address hit in multiple regions).
11360 * We set is_subpage to true if the region hit doesn't cover the
11361 * entire TARGET_PAGE the address is within.
11363 ARMCPU *cpu = arm_env_get_cpu(env);
11364 bool is_user = regime_is_user(env, mmu_idx);
11365 uint32_t secure = regime_is_secure(env, mmu_idx);
11366 int n;
11367 int matchregion = -1;
11368 bool hit = false;
11369 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11370 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11372 *is_subpage = false;
11373 *phys_ptr = address;
11374 *prot = 0;
11375 if (mregion) {
11376 *mregion = -1;
11379 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11380 * was an exception vector read from the vector table (which is always
11381 * done using the default system address map), because those accesses
11382 * are done in arm_v7m_load_vector(), which always does a direct
11383 * read using address_space_ldl(), rather than going via this function.
11385 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11386 hit = true;
11387 } else if (m_is_ppb_region(env, address)) {
11388 hit = true;
11389 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11390 hit = true;
11391 } else {
11392 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11393 /* region search */
11394 /* Note that the base address is bits [31:5] from the register
11395 * with bits [4:0] all zeroes, but the limit address is bits
11396 * [31:5] from the register with bits [4:0] all ones.
11398 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11399 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11401 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11402 /* Region disabled */
11403 continue;
11406 if (address < base || address > limit) {
11408 * Address not in this region. We must check whether the
11409 * region covers addresses in the same page as our address.
11410 * In that case we must not report a size that covers the
11411 * whole page for a subsequent hit against a different MPU
11412 * region or the background region, because it would result in
11413 * incorrect TLB hits for subsequent accesses to addresses that
11414 * are in this MPU region.
11416 if (limit >= base &&
11417 ranges_overlap(base, limit - base + 1,
11418 addr_page_base,
11419 TARGET_PAGE_SIZE)) {
11420 *is_subpage = true;
11422 continue;
11425 if (base > addr_page_base || limit < addr_page_limit) {
11426 *is_subpage = true;
11429 if (hit) {
11430 /* Multiple regions match -- always a failure (unlike
11431 * PMSAv7 where highest-numbered-region wins)
11433 fi->type = ARMFault_Permission;
11434 fi->level = 1;
11435 return true;
11438 matchregion = n;
11439 hit = true;
11443 if (!hit) {
11444 /* background fault */
11445 fi->type = ARMFault_Background;
11446 return true;
11449 if (matchregion == -1) {
11450 /* hit using the background region */
11451 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11452 } else {
11453 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11454 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11456 if (m_is_system_region(env, address)) {
11457 /* System space is always execute never */
11458 xn = 1;
11461 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11462 if (*prot && !xn) {
11463 *prot |= PAGE_EXEC;
11465 /* We don't need to look the attribute up in the MAIR0/MAIR1
11466 * registers because that only tells us about cacheability.
11468 if (mregion) {
11469 *mregion = matchregion;
11473 fi->type = ARMFault_Permission;
11474 fi->level = 1;
11475 return !(*prot & (1 << access_type));
11479 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11480 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11481 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11482 int *prot, target_ulong *page_size,
11483 ARMMMUFaultInfo *fi)
11485 uint32_t secure = regime_is_secure(env, mmu_idx);
11486 V8M_SAttributes sattrs = {};
11487 bool ret;
11488 bool mpu_is_subpage;
11490 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11491 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11492 if (access_type == MMU_INST_FETCH) {
11493 /* Instruction fetches always use the MMU bank and the
11494 * transaction attribute determined by the fetch address,
11495 * regardless of CPU state. This is painful for QEMU
11496 * to handle, because it would mean we need to encode
11497 * into the mmu_idx not just the (user, negpri) information
11498 * for the current security state but also that for the
11499 * other security state, which would balloon the number
11500 * of mmu_idx values needed alarmingly.
11501 * Fortunately we can avoid this because it's not actually
11502 * possible to arbitrarily execute code from memory with
11503 * the wrong security attribute: it will always generate
11504 * an exception of some kind or another, apart from the
11505 * special case of an NS CPU executing an SG instruction
11506 * in S&NSC memory. So we always just fail the translation
11507 * here and sort things out in the exception handler
11508 * (including possibly emulating an SG instruction).
11510 if (sattrs.ns != !secure) {
11511 if (sattrs.nsc) {
11512 fi->type = ARMFault_QEMU_NSCExec;
11513 } else {
11514 fi->type = ARMFault_QEMU_SFault;
11516 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11517 *phys_ptr = address;
11518 *prot = 0;
11519 return true;
11521 } else {
11522 /* For data accesses we always use the MMU bank indicated
11523 * by the current CPU state, but the security attributes
11524 * might downgrade a secure access to nonsecure.
11526 if (sattrs.ns) {
11527 txattrs->secure = false;
11528 } else if (!secure) {
11529 /* NS access to S memory must fault.
11530 * Architecturally we should first check whether the
11531 * MPU information for this address indicates that we
11532 * are doing an unaligned access to Device memory, which
11533 * should generate a UsageFault instead. QEMU does not
11534 * currently check for that kind of unaligned access though.
11535 * If we added it we would need to do so as a special case
11536 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11538 fi->type = ARMFault_QEMU_SFault;
11539 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11540 *phys_ptr = address;
11541 *prot = 0;
11542 return true;
11547 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11548 txattrs, prot, &mpu_is_subpage, fi, NULL);
11549 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11550 return ret;
11553 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11554 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11555 hwaddr *phys_ptr, int *prot,
11556 ARMMMUFaultInfo *fi)
11558 int n;
11559 uint32_t mask;
11560 uint32_t base;
11561 bool is_user = regime_is_user(env, mmu_idx);
11563 if (regime_translation_disabled(env, mmu_idx)) {
11564 /* MPU disabled. */
11565 *phys_ptr = address;
11566 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11567 return false;
11570 *phys_ptr = address;
11571 for (n = 7; n >= 0; n--) {
11572 base = env->cp15.c6_region[n];
11573 if ((base & 1) == 0) {
11574 continue;
11576 mask = 1 << ((base >> 1) & 0x1f);
11577 /* Keep this shift separate from the above to avoid an
11578 (undefined) << 32. */
11579 mask = (mask << 1) - 1;
11580 if (((base ^ address) & ~mask) == 0) {
11581 break;
11584 if (n < 0) {
11585 fi->type = ARMFault_Background;
11586 return true;
11589 if (access_type == MMU_INST_FETCH) {
11590 mask = env->cp15.pmsav5_insn_ap;
11591 } else {
11592 mask = env->cp15.pmsav5_data_ap;
11594 mask = (mask >> (n * 4)) & 0xf;
11595 switch (mask) {
11596 case 0:
11597 fi->type = ARMFault_Permission;
11598 fi->level = 1;
11599 return true;
11600 case 1:
11601 if (is_user) {
11602 fi->type = ARMFault_Permission;
11603 fi->level = 1;
11604 return true;
11606 *prot = PAGE_READ | PAGE_WRITE;
11607 break;
11608 case 2:
11609 *prot = PAGE_READ;
11610 if (!is_user) {
11611 *prot |= PAGE_WRITE;
11613 break;
11614 case 3:
11615 *prot = PAGE_READ | PAGE_WRITE;
11616 break;
11617 case 5:
11618 if (is_user) {
11619 fi->type = ARMFault_Permission;
11620 fi->level = 1;
11621 return true;
11623 *prot = PAGE_READ;
11624 break;
11625 case 6:
11626 *prot = PAGE_READ;
11627 break;
11628 default:
11629 /* Bad permission. */
11630 fi->type = ARMFault_Permission;
11631 fi->level = 1;
11632 return true;
11634 *prot |= PAGE_EXEC;
11635 return false;
11638 /* Combine either inner or outer cacheability attributes for normal
11639 * memory, according to table D4-42 and pseudocode procedure
11640 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11642 * NB: only stage 1 includes allocation hints (RW bits), leading to
11643 * some asymmetry.
11645 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11647 if (s1 == 4 || s2 == 4) {
11648 /* non-cacheable has precedence */
11649 return 4;
11650 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11651 /* stage 1 write-through takes precedence */
11652 return s1;
11653 } else if (extract32(s2, 2, 2) == 2) {
11654 /* stage 2 write-through takes precedence, but the allocation hint
11655 * is still taken from stage 1
11657 return (2 << 2) | extract32(s1, 0, 2);
11658 } else { /* write-back */
11659 return s1;
11663 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11664 * and CombineS1S2Desc()
11666 * @s1: Attributes from stage 1 walk
11667 * @s2: Attributes from stage 2 walk
11669 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11671 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11672 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11673 ARMCacheAttrs ret;
11675 /* Combine shareability attributes (table D4-43) */
11676 if (s1.shareability == 2 || s2.shareability == 2) {
11677 /* if either are outer-shareable, the result is outer-shareable */
11678 ret.shareability = 2;
11679 } else if (s1.shareability == 3 || s2.shareability == 3) {
11680 /* if either are inner-shareable, the result is inner-shareable */
11681 ret.shareability = 3;
11682 } else {
11683 /* both non-shareable */
11684 ret.shareability = 0;
11687 /* Combine memory type and cacheability attributes */
11688 if (s1hi == 0 || s2hi == 0) {
11689 /* Device has precedence over normal */
11690 if (s1lo == 0 || s2lo == 0) {
11691 /* nGnRnE has precedence over anything */
11692 ret.attrs = 0;
11693 } else if (s1lo == 4 || s2lo == 4) {
11694 /* non-Reordering has precedence over Reordering */
11695 ret.attrs = 4; /* nGnRE */
11696 } else if (s1lo == 8 || s2lo == 8) {
11697 /* non-Gathering has precedence over Gathering */
11698 ret.attrs = 8; /* nGRE */
11699 } else {
11700 ret.attrs = 0xc; /* GRE */
11703 /* Any location for which the resultant memory type is any
11704 * type of Device memory is always treated as Outer Shareable.
11706 ret.shareability = 2;
11707 } else { /* Normal memory */
11708 /* Outer/inner cacheability combine independently */
11709 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11710 | combine_cacheattr_nibble(s1lo, s2lo);
11712 if (ret.attrs == 0x44) {
11713 /* Any location for which the resultant memory type is Normal
11714 * Inner Non-cacheable, Outer Non-cacheable is always treated
11715 * as Outer Shareable.
11717 ret.shareability = 2;
11721 return ret;
11725 /* get_phys_addr - get the physical address for this virtual address
11727 * Find the physical address corresponding to the given virtual address,
11728 * by doing a translation table walk on MMU based systems or using the
11729 * MPU state on MPU based systems.
11731 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11732 * prot and page_size may not be filled in, and the populated fsr value provides
11733 * information on why the translation aborted, in the format of a
11734 * DFSR/IFSR fault register, with the following caveats:
11735 * * we honour the short vs long DFSR format differences.
11736 * * the WnR bit is never set (the caller must do this).
11737 * * for PSMAv5 based systems we don't bother to return a full FSR format
11738 * value.
11740 * @env: CPUARMState
11741 * @address: virtual address to get physical address for
11742 * @access_type: 0 for read, 1 for write, 2 for execute
11743 * @mmu_idx: MMU index indicating required translation regime
11744 * @phys_ptr: set to the physical address corresponding to the virtual address
11745 * @attrs: set to the memory transaction attributes to use
11746 * @prot: set to the permissions for the page containing phys_ptr
11747 * @page_size: set to the size of the page containing phys_ptr
11748 * @fi: set to fault info if the translation fails
11749 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11751 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11752 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11753 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11754 target_ulong *page_size,
11755 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11757 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
11758 /* Call ourselves recursively to do the stage 1 and then stage 2
11759 * translations.
11761 if (arm_feature(env, ARM_FEATURE_EL2)) {
11762 hwaddr ipa;
11763 int s2_prot;
11764 int ret;
11765 ARMCacheAttrs cacheattrs2 = {};
11767 ret = get_phys_addr(env, address, access_type,
11768 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11769 prot, page_size, fi, cacheattrs);
11771 /* If S1 fails or S2 is disabled, return early. */
11772 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11773 *phys_ptr = ipa;
11774 return ret;
11777 /* S1 is done. Now do S2 translation. */
11778 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11779 phys_ptr, attrs, &s2_prot,
11780 page_size, fi,
11781 cacheattrs != NULL ? &cacheattrs2 : NULL);
11782 fi->s2addr = ipa;
11783 /* Combine the S1 and S2 perms. */
11784 *prot &= s2_prot;
11786 /* Combine the S1 and S2 cache attributes, if needed */
11787 if (!ret && cacheattrs != NULL) {
11788 if (env->cp15.hcr_el2 & HCR_DC) {
11790 * HCR.DC forces the first stage attributes to
11791 * Normal Non-Shareable,
11792 * Inner Write-Back Read-Allocate Write-Allocate,
11793 * Outer Write-Back Read-Allocate Write-Allocate.
11795 cacheattrs->attrs = 0xff;
11796 cacheattrs->shareability = 0;
11798 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11801 return ret;
11802 } else {
11804 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11806 mmu_idx = stage_1_mmu_idx(mmu_idx);
11810 /* The page table entries may downgrade secure to non-secure, but
11811 * cannot upgrade an non-secure translation regime's attributes
11812 * to secure.
11814 attrs->secure = regime_is_secure(env, mmu_idx);
11815 attrs->user = regime_is_user(env, mmu_idx);
11817 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11818 * In v7 and earlier it affects all stage 1 translations.
11820 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11821 && !arm_feature(env, ARM_FEATURE_V8)) {
11822 if (regime_el(env, mmu_idx) == 3) {
11823 address += env->cp15.fcseidr_s;
11824 } else {
11825 address += env->cp15.fcseidr_ns;
11829 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11830 bool ret;
11831 *page_size = TARGET_PAGE_SIZE;
11833 if (arm_feature(env, ARM_FEATURE_V8)) {
11834 /* PMSAv8 */
11835 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11836 phys_ptr, attrs, prot, page_size, fi);
11837 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11838 /* PMSAv7 */
11839 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11840 phys_ptr, prot, page_size, fi);
11841 } else {
11842 /* Pre-v7 MPU */
11843 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11844 phys_ptr, prot, fi);
11846 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11847 " mmu_idx %u -> %s (prot %c%c%c)\n",
11848 access_type == MMU_DATA_LOAD ? "reading" :
11849 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11850 (uint32_t)address, mmu_idx,
11851 ret ? "Miss" : "Hit",
11852 *prot & PAGE_READ ? 'r' : '-',
11853 *prot & PAGE_WRITE ? 'w' : '-',
11854 *prot & PAGE_EXEC ? 'x' : '-');
11856 return ret;
11859 /* Definitely a real MMU, not an MPU */
11861 if (regime_translation_disabled(env, mmu_idx)) {
11862 /* MMU disabled. */
11863 *phys_ptr = address;
11864 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11865 *page_size = TARGET_PAGE_SIZE;
11866 return 0;
11869 if (regime_using_lpae_format(env, mmu_idx)) {
11870 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11871 phys_ptr, attrs, prot, page_size,
11872 fi, cacheattrs);
11873 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11874 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11875 phys_ptr, attrs, prot, page_size, fi);
11876 } else {
11877 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11878 phys_ptr, prot, page_size, fi);
11882 /* Walk the page table and (if the mapping exists) add the page
11883 * to the TLB. Return false on success, or true on failure. Populate
11884 * fsr with ARM DFSR/IFSR fault register format value on failure.
11886 bool arm_tlb_fill(CPUState *cs, vaddr address,
11887 MMUAccessType access_type, int mmu_idx,
11888 ARMMMUFaultInfo *fi)
11890 ARMCPU *cpu = ARM_CPU(cs);
11891 CPUARMState *env = &cpu->env;
11892 hwaddr phys_addr;
11893 target_ulong page_size;
11894 int prot;
11895 int ret;
11896 MemTxAttrs attrs = {};
11898 ret = get_phys_addr(env, address, access_type,
11899 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11900 &attrs, &prot, &page_size, fi, NULL);
11901 if (!ret) {
11903 * Map a single [sub]page. Regions smaller than our declared
11904 * target page size are handled specially, so for those we
11905 * pass in the exact addresses.
11907 if (page_size >= TARGET_PAGE_SIZE) {
11908 phys_addr &= TARGET_PAGE_MASK;
11909 address &= TARGET_PAGE_MASK;
11911 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11912 prot, mmu_idx, page_size);
11913 return 0;
11916 return ret;
11919 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11920 MemTxAttrs *attrs)
11922 ARMCPU *cpu = ARM_CPU(cs);
11923 CPUARMState *env = &cpu->env;
11924 hwaddr phys_addr;
11925 target_ulong page_size;
11926 int prot;
11927 bool ret;
11928 ARMMMUFaultInfo fi = {};
11929 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11931 *attrs = (MemTxAttrs) {};
11933 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11934 attrs, &prot, &page_size, &fi, NULL);
11936 if (ret) {
11937 return -1;
11939 return phys_addr;
11942 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11944 uint32_t mask;
11945 unsigned el = arm_current_el(env);
11947 /* First handle registers which unprivileged can read */
11949 switch (reg) {
11950 case 0 ... 7: /* xPSR sub-fields */
11951 mask = 0;
11952 if ((reg & 1) && el) {
11953 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11955 if (!(reg & 4)) {
11956 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11958 /* EPSR reads as zero */
11959 return xpsr_read(env) & mask;
11960 break;
11961 case 20: /* CONTROL */
11962 return env->v7m.control[env->v7m.secure];
11963 case 0x94: /* CONTROL_NS */
11964 /* We have to handle this here because unprivileged Secure code
11965 * can read the NS CONTROL register.
11967 if (!env->v7m.secure) {
11968 return 0;
11970 return env->v7m.control[M_REG_NS];
11973 if (el == 0) {
11974 return 0; /* unprivileged reads others as zero */
11977 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11978 switch (reg) {
11979 case 0x88: /* MSP_NS */
11980 if (!env->v7m.secure) {
11981 return 0;
11983 return env->v7m.other_ss_msp;
11984 case 0x89: /* PSP_NS */
11985 if (!env->v7m.secure) {
11986 return 0;
11988 return env->v7m.other_ss_psp;
11989 case 0x8a: /* MSPLIM_NS */
11990 if (!env->v7m.secure) {
11991 return 0;
11993 return env->v7m.msplim[M_REG_NS];
11994 case 0x8b: /* PSPLIM_NS */
11995 if (!env->v7m.secure) {
11996 return 0;
11998 return env->v7m.psplim[M_REG_NS];
11999 case 0x90: /* PRIMASK_NS */
12000 if (!env->v7m.secure) {
12001 return 0;
12003 return env->v7m.primask[M_REG_NS];
12004 case 0x91: /* BASEPRI_NS */
12005 if (!env->v7m.secure) {
12006 return 0;
12008 return env->v7m.basepri[M_REG_NS];
12009 case 0x93: /* FAULTMASK_NS */
12010 if (!env->v7m.secure) {
12011 return 0;
12013 return env->v7m.faultmask[M_REG_NS];
12014 case 0x98: /* SP_NS */
12016 /* This gives the non-secure SP selected based on whether we're
12017 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12019 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12021 if (!env->v7m.secure) {
12022 return 0;
12024 if (!arm_v7m_is_handler_mode(env) && spsel) {
12025 return env->v7m.other_ss_psp;
12026 } else {
12027 return env->v7m.other_ss_msp;
12030 default:
12031 break;
12035 switch (reg) {
12036 case 8: /* MSP */
12037 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12038 case 9: /* PSP */
12039 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12040 case 10: /* MSPLIM */
12041 if (!arm_feature(env, ARM_FEATURE_V8)) {
12042 goto bad_reg;
12044 return env->v7m.msplim[env->v7m.secure];
12045 case 11: /* PSPLIM */
12046 if (!arm_feature(env, ARM_FEATURE_V8)) {
12047 goto bad_reg;
12049 return env->v7m.psplim[env->v7m.secure];
12050 case 16: /* PRIMASK */
12051 return env->v7m.primask[env->v7m.secure];
12052 case 17: /* BASEPRI */
12053 case 18: /* BASEPRI_MAX */
12054 return env->v7m.basepri[env->v7m.secure];
12055 case 19: /* FAULTMASK */
12056 return env->v7m.faultmask[env->v7m.secure];
12057 default:
12058 bad_reg:
12059 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12060 " register %d\n", reg);
12061 return 0;
12065 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12067 /* We're passed bits [11..0] of the instruction; extract
12068 * SYSm and the mask bits.
12069 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12070 * we choose to treat them as if the mask bits were valid.
12071 * NB that the pseudocode 'mask' variable is bits [11..10],
12072 * whereas ours is [11..8].
12074 uint32_t mask = extract32(maskreg, 8, 4);
12075 uint32_t reg = extract32(maskreg, 0, 8);
12077 if (arm_current_el(env) == 0 && reg > 7) {
12078 /* only xPSR sub-fields may be written by unprivileged */
12079 return;
12082 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12083 switch (reg) {
12084 case 0x88: /* MSP_NS */
12085 if (!env->v7m.secure) {
12086 return;
12088 env->v7m.other_ss_msp = val;
12089 return;
12090 case 0x89: /* PSP_NS */
12091 if (!env->v7m.secure) {
12092 return;
12094 env->v7m.other_ss_psp = val;
12095 return;
12096 case 0x8a: /* MSPLIM_NS */
12097 if (!env->v7m.secure) {
12098 return;
12100 env->v7m.msplim[M_REG_NS] = val & ~7;
12101 return;
12102 case 0x8b: /* PSPLIM_NS */
12103 if (!env->v7m.secure) {
12104 return;
12106 env->v7m.psplim[M_REG_NS] = val & ~7;
12107 return;
12108 case 0x90: /* PRIMASK_NS */
12109 if (!env->v7m.secure) {
12110 return;
12112 env->v7m.primask[M_REG_NS] = val & 1;
12113 return;
12114 case 0x91: /* BASEPRI_NS */
12115 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12116 return;
12118 env->v7m.basepri[M_REG_NS] = val & 0xff;
12119 return;
12120 case 0x93: /* FAULTMASK_NS */
12121 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12122 return;
12124 env->v7m.faultmask[M_REG_NS] = val & 1;
12125 return;
12126 case 0x94: /* CONTROL_NS */
12127 if (!env->v7m.secure) {
12128 return;
12130 write_v7m_control_spsel_for_secstate(env,
12131 val & R_V7M_CONTROL_SPSEL_MASK,
12132 M_REG_NS);
12133 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12134 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12135 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12137 return;
12138 case 0x98: /* SP_NS */
12140 /* This gives the non-secure SP selected based on whether we're
12141 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12143 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12144 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12145 uint32_t limit;
12147 if (!env->v7m.secure) {
12148 return;
12151 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12153 if (val < limit) {
12154 CPUState *cs = CPU(arm_env_get_cpu(env));
12156 cpu_restore_state(cs, GETPC(), true);
12157 raise_exception(env, EXCP_STKOF, 0, 1);
12160 if (is_psp) {
12161 env->v7m.other_ss_psp = val;
12162 } else {
12163 env->v7m.other_ss_msp = val;
12165 return;
12167 default:
12168 break;
12172 switch (reg) {
12173 case 0 ... 7: /* xPSR sub-fields */
12174 /* only APSR is actually writable */
12175 if (!(reg & 4)) {
12176 uint32_t apsrmask = 0;
12178 if (mask & 8) {
12179 apsrmask |= XPSR_NZCV | XPSR_Q;
12181 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12182 apsrmask |= XPSR_GE;
12184 xpsr_write(env, val, apsrmask);
12186 break;
12187 case 8: /* MSP */
12188 if (v7m_using_psp(env)) {
12189 env->v7m.other_sp = val;
12190 } else {
12191 env->regs[13] = val;
12193 break;
12194 case 9: /* PSP */
12195 if (v7m_using_psp(env)) {
12196 env->regs[13] = val;
12197 } else {
12198 env->v7m.other_sp = val;
12200 break;
12201 case 10: /* MSPLIM */
12202 if (!arm_feature(env, ARM_FEATURE_V8)) {
12203 goto bad_reg;
12205 env->v7m.msplim[env->v7m.secure] = val & ~7;
12206 break;
12207 case 11: /* PSPLIM */
12208 if (!arm_feature(env, ARM_FEATURE_V8)) {
12209 goto bad_reg;
12211 env->v7m.psplim[env->v7m.secure] = val & ~7;
12212 break;
12213 case 16: /* PRIMASK */
12214 env->v7m.primask[env->v7m.secure] = val & 1;
12215 break;
12216 case 17: /* BASEPRI */
12217 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12218 goto bad_reg;
12220 env->v7m.basepri[env->v7m.secure] = val & 0xff;
12221 break;
12222 case 18: /* BASEPRI_MAX */
12223 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12224 goto bad_reg;
12226 val &= 0xff;
12227 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12228 || env->v7m.basepri[env->v7m.secure] == 0)) {
12229 env->v7m.basepri[env->v7m.secure] = val;
12231 break;
12232 case 19: /* FAULTMASK */
12233 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12234 goto bad_reg;
12236 env->v7m.faultmask[env->v7m.secure] = val & 1;
12237 break;
12238 case 20: /* CONTROL */
12239 /* Writing to the SPSEL bit only has an effect if we are in
12240 * thread mode; other bits can be updated by any privileged code.
12241 * write_v7m_control_spsel() deals with updating the SPSEL bit in
12242 * env->v7m.control, so we only need update the others.
12243 * For v7M, we must just ignore explicit writes to SPSEL in handler
12244 * mode; for v8M the write is permitted but will have no effect.
12246 if (arm_feature(env, ARM_FEATURE_V8) ||
12247 !arm_v7m_is_handler_mode(env)) {
12248 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12250 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12251 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12252 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12254 break;
12255 default:
12256 bad_reg:
12257 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12258 " register %d\n", reg);
12259 return;
12263 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12265 /* Implement the TT instruction. op is bits [7:6] of the insn. */
12266 bool forceunpriv = op & 1;
12267 bool alt = op & 2;
12268 V8M_SAttributes sattrs = {};
12269 uint32_t tt_resp;
12270 bool r, rw, nsr, nsrw, mrvalid;
12271 int prot;
12272 ARMMMUFaultInfo fi = {};
12273 MemTxAttrs attrs = {};
12274 hwaddr phys_addr;
12275 ARMMMUIdx mmu_idx;
12276 uint32_t mregion;
12277 bool targetpriv;
12278 bool targetsec = env->v7m.secure;
12279 bool is_subpage;
12281 /* Work out what the security state and privilege level we're
12282 * interested in is...
12284 if (alt) {
12285 targetsec = !targetsec;
12288 if (forceunpriv) {
12289 targetpriv = false;
12290 } else {
12291 targetpriv = arm_v7m_is_handler_mode(env) ||
12292 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12295 /* ...and then figure out which MMU index this is */
12296 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12298 /* We know that the MPU and SAU don't care about the access type
12299 * for our purposes beyond that we don't want to claim to be
12300 * an insn fetch, so we arbitrarily call this a read.
12303 /* MPU region info only available for privileged or if
12304 * inspecting the other MPU state.
12306 if (arm_current_el(env) != 0 || alt) {
12307 /* We can ignore the return value as prot is always set */
12308 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12309 &phys_addr, &attrs, &prot, &is_subpage,
12310 &fi, &mregion);
12311 if (mregion == -1) {
12312 mrvalid = false;
12313 mregion = 0;
12314 } else {
12315 mrvalid = true;
12317 r = prot & PAGE_READ;
12318 rw = prot & PAGE_WRITE;
12319 } else {
12320 r = false;
12321 rw = false;
12322 mrvalid = false;
12323 mregion = 0;
12326 if (env->v7m.secure) {
12327 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12328 nsr = sattrs.ns && r;
12329 nsrw = sattrs.ns && rw;
12330 } else {
12331 sattrs.ns = true;
12332 nsr = false;
12333 nsrw = false;
12336 tt_resp = (sattrs.iregion << 24) |
12337 (sattrs.irvalid << 23) |
12338 ((!sattrs.ns) << 22) |
12339 (nsrw << 21) |
12340 (nsr << 20) |
12341 (rw << 19) |
12342 (r << 18) |
12343 (sattrs.srvalid << 17) |
12344 (mrvalid << 16) |
12345 (sattrs.sregion << 8) |
12346 mregion;
12348 return tt_resp;
12351 #endif
12353 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12355 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12356 * Note that we do not implement the (architecturally mandated)
12357 * alignment fault for attempts to use this on Device memory
12358 * (which matches the usual QEMU behaviour of not implementing either
12359 * alignment faults or any memory attribute handling).
12362 ARMCPU *cpu = arm_env_get_cpu(env);
12363 uint64_t blocklen = 4 << cpu->dcz_blocksize;
12364 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12366 #ifndef CONFIG_USER_ONLY
12368 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12369 * the block size so we might have to do more than one TLB lookup.
12370 * We know that in fact for any v8 CPU the page size is at least 4K
12371 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12372 * 1K as an artefact of legacy v5 subpage support being present in the
12373 * same QEMU executable.
12375 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12376 void *hostaddr[maxidx];
12377 int try, i;
12378 unsigned mmu_idx = cpu_mmu_index(env, false);
12379 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12381 for (try = 0; try < 2; try++) {
12383 for (i = 0; i < maxidx; i++) {
12384 hostaddr[i] = tlb_vaddr_to_host(env,
12385 vaddr + TARGET_PAGE_SIZE * i,
12386 1, mmu_idx);
12387 if (!hostaddr[i]) {
12388 break;
12391 if (i == maxidx) {
12392 /* If it's all in the TLB it's fair game for just writing to;
12393 * we know we don't need to update dirty status, etc.
12395 for (i = 0; i < maxidx - 1; i++) {
12396 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12398 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12399 return;
12401 /* OK, try a store and see if we can populate the tlb. This
12402 * might cause an exception if the memory isn't writable,
12403 * in which case we will longjmp out of here. We must for
12404 * this purpose use the actual register value passed to us
12405 * so that we get the fault address right.
12407 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12408 /* Now we can populate the other TLB entries, if any */
12409 for (i = 0; i < maxidx; i++) {
12410 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12411 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12412 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12417 /* Slow path (probably attempt to do this to an I/O device or
12418 * similar, or clearing of a block of code we have translations
12419 * cached for). Just do a series of byte writes as the architecture
12420 * demands. It's not worth trying to use a cpu_physical_memory_map(),
12421 * memset(), unmap() sequence here because:
12422 * + we'd need to account for the blocksize being larger than a page
12423 * + the direct-RAM access case is almost always going to be dealt
12424 * with in the fastpath code above, so there's no speed benefit
12425 * + we would have to deal with the map returning NULL because the
12426 * bounce buffer was in use
12428 for (i = 0; i < blocklen; i++) {
12429 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12432 #else
12433 memset(g2h(vaddr), 0, blocklen);
12434 #endif
12437 /* Note that signed overflow is undefined in C. The following routines are
12438 careful to use unsigned types where modulo arithmetic is required.
12439 Failure to do so _will_ break on newer gcc. */
12441 /* Signed saturating arithmetic. */
12443 /* Perform 16-bit signed saturating addition. */
12444 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12446 uint16_t res;
12448 res = a + b;
12449 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12450 if (a & 0x8000)
12451 res = 0x8000;
12452 else
12453 res = 0x7fff;
12455 return res;
12458 /* Perform 8-bit signed saturating addition. */
12459 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12461 uint8_t res;
12463 res = a + b;
12464 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12465 if (a & 0x80)
12466 res = 0x80;
12467 else
12468 res = 0x7f;
12470 return res;
12473 /* Perform 16-bit signed saturating subtraction. */
12474 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12476 uint16_t res;
12478 res = a - b;
12479 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12480 if (a & 0x8000)
12481 res = 0x8000;
12482 else
12483 res = 0x7fff;
12485 return res;
12488 /* Perform 8-bit signed saturating subtraction. */
12489 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12491 uint8_t res;
12493 res = a - b;
12494 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12495 if (a & 0x80)
12496 res = 0x80;
12497 else
12498 res = 0x7f;
12500 return res;
12503 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12504 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12505 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12506 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12507 #define PFX q
12509 #include "op_addsub.h"
12511 /* Unsigned saturating arithmetic. */
12512 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12514 uint16_t res;
12515 res = a + b;
12516 if (res < a)
12517 res = 0xffff;
12518 return res;
12521 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12523 if (a > b)
12524 return a - b;
12525 else
12526 return 0;
12529 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12531 uint8_t res;
12532 res = a + b;
12533 if (res < a)
12534 res = 0xff;
12535 return res;
12538 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12540 if (a > b)
12541 return a - b;
12542 else
12543 return 0;
12546 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12547 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12548 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12549 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12550 #define PFX uq
12552 #include "op_addsub.h"
12554 /* Signed modulo arithmetic. */
12555 #define SARITH16(a, b, n, op) do { \
12556 int32_t sum; \
12557 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12558 RESULT(sum, n, 16); \
12559 if (sum >= 0) \
12560 ge |= 3 << (n * 2); \
12561 } while(0)
12563 #define SARITH8(a, b, n, op) do { \
12564 int32_t sum; \
12565 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12566 RESULT(sum, n, 8); \
12567 if (sum >= 0) \
12568 ge |= 1 << n; \
12569 } while(0)
12572 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12573 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12574 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12575 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12576 #define PFX s
12577 #define ARITH_GE
12579 #include "op_addsub.h"
12581 /* Unsigned modulo arithmetic. */
12582 #define ADD16(a, b, n) do { \
12583 uint32_t sum; \
12584 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12585 RESULT(sum, n, 16); \
12586 if ((sum >> 16) == 1) \
12587 ge |= 3 << (n * 2); \
12588 } while(0)
12590 #define ADD8(a, b, n) do { \
12591 uint32_t sum; \
12592 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12593 RESULT(sum, n, 8); \
12594 if ((sum >> 8) == 1) \
12595 ge |= 1 << n; \
12596 } while(0)
12598 #define SUB16(a, b, n) do { \
12599 uint32_t sum; \
12600 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12601 RESULT(sum, n, 16); \
12602 if ((sum >> 16) == 0) \
12603 ge |= 3 << (n * 2); \
12604 } while(0)
12606 #define SUB8(a, b, n) do { \
12607 uint32_t sum; \
12608 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12609 RESULT(sum, n, 8); \
12610 if ((sum >> 8) == 0) \
12611 ge |= 1 << n; \
12612 } while(0)
12614 #define PFX u
12615 #define ARITH_GE
12617 #include "op_addsub.h"
12619 /* Halved signed arithmetic. */
12620 #define ADD16(a, b, n) \
12621 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12622 #define SUB16(a, b, n) \
12623 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12624 #define ADD8(a, b, n) \
12625 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12626 #define SUB8(a, b, n) \
12627 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12628 #define PFX sh
12630 #include "op_addsub.h"
12632 /* Halved unsigned arithmetic. */
12633 #define ADD16(a, b, n) \
12634 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12635 #define SUB16(a, b, n) \
12636 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12637 #define ADD8(a, b, n) \
12638 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12639 #define SUB8(a, b, n) \
12640 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12641 #define PFX uh
12643 #include "op_addsub.h"
12645 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12647 if (a > b)
12648 return a - b;
12649 else
12650 return b - a;
12653 /* Unsigned sum of absolute byte differences. */
12654 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12656 uint32_t sum;
12657 sum = do_usad(a, b);
12658 sum += do_usad(a >> 8, b >> 8);
12659 sum += do_usad(a >> 16, b >>16);
12660 sum += do_usad(a >> 24, b >> 24);
12661 return sum;
12664 /* For ARMv6 SEL instruction. */
12665 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12667 uint32_t mask;
12669 mask = 0;
12670 if (flags & 1)
12671 mask |= 0xff;
12672 if (flags & 2)
12673 mask |= 0xff00;
12674 if (flags & 4)
12675 mask |= 0xff0000;
12676 if (flags & 8)
12677 mask |= 0xff000000;
12678 return (a & mask) | (b & ~mask);
12681 /* VFP support. We follow the convention used for VFP instructions:
12682 Single precision routines have a "s" suffix, double precision a
12683 "d" suffix. */
12685 /* Convert host exception flags to vfp form. */
12686 static inline int vfp_exceptbits_from_host(int host_bits)
12688 int target_bits = 0;
12690 if (host_bits & float_flag_invalid)
12691 target_bits |= 1;
12692 if (host_bits & float_flag_divbyzero)
12693 target_bits |= 2;
12694 if (host_bits & float_flag_overflow)
12695 target_bits |= 4;
12696 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
12697 target_bits |= 8;
12698 if (host_bits & float_flag_inexact)
12699 target_bits |= 0x10;
12700 if (host_bits & float_flag_input_denormal)
12701 target_bits |= 0x80;
12702 return target_bits;
12705 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
12707 int i;
12708 uint32_t fpscr;
12710 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
12711 | (env->vfp.vec_len << 16)
12712 | (env->vfp.vec_stride << 20);
12714 i = get_float_exception_flags(&env->vfp.fp_status);
12715 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
12716 /* FZ16 does not generate an input denormal exception. */
12717 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
12718 & ~float_flag_input_denormal);
12720 fpscr |= vfp_exceptbits_from_host(i);
12721 return fpscr;
12724 uint32_t vfp_get_fpscr(CPUARMState *env)
12726 return HELPER(vfp_get_fpscr)(env);
12729 /* Convert vfp exception flags to target form. */
12730 static inline int vfp_exceptbits_to_host(int target_bits)
12732 int host_bits = 0;
12734 if (target_bits & 1)
12735 host_bits |= float_flag_invalid;
12736 if (target_bits & 2)
12737 host_bits |= float_flag_divbyzero;
12738 if (target_bits & 4)
12739 host_bits |= float_flag_overflow;
12740 if (target_bits & 8)
12741 host_bits |= float_flag_underflow;
12742 if (target_bits & 0x10)
12743 host_bits |= float_flag_inexact;
12744 if (target_bits & 0x80)
12745 host_bits |= float_flag_input_denormal;
12746 return host_bits;
12749 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
12751 int i;
12752 uint32_t changed;
12754 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
12755 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
12756 val &= ~FPCR_FZ16;
12760 * We don't implement trapped exception handling, so the
12761 * trap enable bits are all RAZ/WI (not RES0!)
12763 val &= ~(FPCR_IDE | FPCR_IXE | FPCR_UFE | FPCR_OFE | FPCR_DZE | FPCR_IOE);
12765 changed = env->vfp.xregs[ARM_VFP_FPSCR];
12766 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
12767 env->vfp.vec_len = (val >> 16) & 7;
12768 env->vfp.vec_stride = (val >> 20) & 3;
12770 changed ^= val;
12771 if (changed & (3 << 22)) {
12772 i = (val >> 22) & 3;
12773 switch (i) {
12774 case FPROUNDING_TIEEVEN:
12775 i = float_round_nearest_even;
12776 break;
12777 case FPROUNDING_POSINF:
12778 i = float_round_up;
12779 break;
12780 case FPROUNDING_NEGINF:
12781 i = float_round_down;
12782 break;
12783 case FPROUNDING_ZERO:
12784 i = float_round_to_zero;
12785 break;
12787 set_float_rounding_mode(i, &env->vfp.fp_status);
12788 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
12790 if (changed & FPCR_FZ16) {
12791 bool ftz_enabled = val & FPCR_FZ16;
12792 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12793 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12795 if (changed & FPCR_FZ) {
12796 bool ftz_enabled = val & FPCR_FZ;
12797 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
12798 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
12800 if (changed & FPCR_DN) {
12801 bool dnan_enabled = val & FPCR_DN;
12802 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
12803 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
12806 /* The exception flags are ORed together when we read fpscr so we
12807 * only need to preserve the current state in one of our
12808 * float_status values.
12810 i = vfp_exceptbits_to_host(val);
12811 set_float_exception_flags(i, &env->vfp.fp_status);
12812 set_float_exception_flags(0, &env->vfp.fp_status_f16);
12813 set_float_exception_flags(0, &env->vfp.standard_fp_status);
12816 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
12818 HELPER(vfp_set_fpscr)(env, val);
12821 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
12823 #define VFP_BINOP(name) \
12824 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
12826 float_status *fpst = fpstp; \
12827 return float32_ ## name(a, b, fpst); \
12829 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
12831 float_status *fpst = fpstp; \
12832 return float64_ ## name(a, b, fpst); \
12834 VFP_BINOP(add)
12835 VFP_BINOP(sub)
12836 VFP_BINOP(mul)
12837 VFP_BINOP(div)
12838 VFP_BINOP(min)
12839 VFP_BINOP(max)
12840 VFP_BINOP(minnum)
12841 VFP_BINOP(maxnum)
12842 #undef VFP_BINOP
12844 float32 VFP_HELPER(neg, s)(float32 a)
12846 return float32_chs(a);
12849 float64 VFP_HELPER(neg, d)(float64 a)
12851 return float64_chs(a);
12854 float32 VFP_HELPER(abs, s)(float32 a)
12856 return float32_abs(a);
12859 float64 VFP_HELPER(abs, d)(float64 a)
12861 return float64_abs(a);
12864 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
12866 return float32_sqrt(a, &env->vfp.fp_status);
12869 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
12871 return float64_sqrt(a, &env->vfp.fp_status);
12874 /* XXX: check quiet/signaling case */
12875 #define DO_VFP_cmp(p, type) \
12876 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
12878 uint32_t flags; \
12879 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
12880 case 0: flags = 0x6; break; \
12881 case -1: flags = 0x8; break; \
12882 case 1: flags = 0x2; break; \
12883 default: case 2: flags = 0x3; break; \
12885 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12886 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12888 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
12890 uint32_t flags; \
12891 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
12892 case 0: flags = 0x6; break; \
12893 case -1: flags = 0x8; break; \
12894 case 1: flags = 0x2; break; \
12895 default: case 2: flags = 0x3; break; \
12897 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12898 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12900 DO_VFP_cmp(s, float32)
12901 DO_VFP_cmp(d, float64)
12902 #undef DO_VFP_cmp
12904 /* Integer to float and float to integer conversions */
12906 #define CONV_ITOF(name, ftype, fsz, sign) \
12907 ftype HELPER(name)(uint32_t x, void *fpstp) \
12909 float_status *fpst = fpstp; \
12910 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
12913 #define CONV_FTOI(name, ftype, fsz, sign, round) \
12914 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
12916 float_status *fpst = fpstp; \
12917 if (float##fsz##_is_any_nan(x)) { \
12918 float_raise(float_flag_invalid, fpst); \
12919 return 0; \
12921 return float##fsz##_to_##sign##int32##round(x, fpst); \
12924 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
12925 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
12926 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
12927 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12929 FLOAT_CONVS(si, h, uint32_t, 16, )
12930 FLOAT_CONVS(si, s, float32, 32, )
12931 FLOAT_CONVS(si, d, float64, 64, )
12932 FLOAT_CONVS(ui, h, uint32_t, 16, u)
12933 FLOAT_CONVS(ui, s, float32, 32, u)
12934 FLOAT_CONVS(ui, d, float64, 64, u)
12936 #undef CONV_ITOF
12937 #undef CONV_FTOI
12938 #undef FLOAT_CONVS
12940 /* floating point conversion */
12941 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
12943 return float32_to_float64(x, &env->vfp.fp_status);
12946 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
12948 return float64_to_float32(x, &env->vfp.fp_status);
12951 /* VFP3 fixed point conversion. */
12952 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12953 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
12954 void *fpstp) \
12955 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
12957 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
12958 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12959 void *fpst) \
12961 if (unlikely(float##fsz##_is_any_nan(x))) { \
12962 float_raise(float_flag_invalid, fpst); \
12963 return 0; \
12965 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
12968 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
12969 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12970 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12971 float_round_to_zero, _round_to_zero) \
12972 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12973 get_float_rounding_mode(fpst), )
12975 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
12976 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12977 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12978 get_float_rounding_mode(fpst), )
12980 VFP_CONV_FIX(sh, d, 64, 64, int16)
12981 VFP_CONV_FIX(sl, d, 64, 64, int32)
12982 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
12983 VFP_CONV_FIX(uh, d, 64, 64, uint16)
12984 VFP_CONV_FIX(ul, d, 64, 64, uint32)
12985 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
12986 VFP_CONV_FIX(sh, s, 32, 32, int16)
12987 VFP_CONV_FIX(sl, s, 32, 32, int32)
12988 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
12989 VFP_CONV_FIX(uh, s, 32, 32, uint16)
12990 VFP_CONV_FIX(ul, s, 32, 32, uint32)
12991 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
12993 #undef VFP_CONV_FIX
12994 #undef VFP_CONV_FIX_FLOAT
12995 #undef VFP_CONV_FLOAT_FIX_ROUND
12996 #undef VFP_CONV_FIX_A64
12998 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
13000 return int32_to_float16_scalbn(x, -shift, fpst);
13003 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
13005 return uint32_to_float16_scalbn(x, -shift, fpst);
13008 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
13010 return int64_to_float16_scalbn(x, -shift, fpst);
13013 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
13015 return uint64_to_float16_scalbn(x, -shift, fpst);
13018 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
13020 if (unlikely(float16_is_any_nan(x))) {
13021 float_raise(float_flag_invalid, fpst);
13022 return 0;
13024 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
13025 shift, fpst);
13028 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
13030 if (unlikely(float16_is_any_nan(x))) {
13031 float_raise(float_flag_invalid, fpst);
13032 return 0;
13034 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
13035 shift, fpst);
13038 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
13040 if (unlikely(float16_is_any_nan(x))) {
13041 float_raise(float_flag_invalid, fpst);
13042 return 0;
13044 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
13045 shift, fpst);
13048 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
13050 if (unlikely(float16_is_any_nan(x))) {
13051 float_raise(float_flag_invalid, fpst);
13052 return 0;
13054 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
13055 shift, fpst);
13058 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
13060 if (unlikely(float16_is_any_nan(x))) {
13061 float_raise(float_flag_invalid, fpst);
13062 return 0;
13064 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
13065 shift, fpst);
13068 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
13070 if (unlikely(float16_is_any_nan(x))) {
13071 float_raise(float_flag_invalid, fpst);
13072 return 0;
13074 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
13075 shift, fpst);
13078 /* Set the current fp rounding mode and return the old one.
13079 * The argument is a softfloat float_round_ value.
13081 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
13083 float_status *fp_status = fpstp;
13085 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
13086 set_float_rounding_mode(rmode, fp_status);
13088 return prev_rmode;
13091 /* Set the current fp rounding mode in the standard fp status and return
13092 * the old one. This is for NEON instructions that need to change the
13093 * rounding mode but wish to use the standard FPSCR values for everything
13094 * else. Always set the rounding mode back to the correct value after
13095 * modifying it.
13096 * The argument is a softfloat float_round_ value.
13098 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
13100 float_status *fp_status = &env->vfp.standard_fp_status;
13102 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
13103 set_float_rounding_mode(rmode, fp_status);
13105 return prev_rmode;
13108 /* Half precision conversions. */
13109 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
13111 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13112 * it would affect flushing input denormals.
13114 float_status *fpst = fpstp;
13115 flag save = get_flush_inputs_to_zero(fpst);
13116 set_flush_inputs_to_zero(false, fpst);
13117 float32 r = float16_to_float32(a, !ahp_mode, fpst);
13118 set_flush_inputs_to_zero(save, fpst);
13119 return r;
13122 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
13124 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13125 * it would affect flushing output denormals.
13127 float_status *fpst = fpstp;
13128 flag save = get_flush_to_zero(fpst);
13129 set_flush_to_zero(false, fpst);
13130 float16 r = float32_to_float16(a, !ahp_mode, fpst);
13131 set_flush_to_zero(save, fpst);
13132 return r;
13135 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
13137 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13138 * it would affect flushing input denormals.
13140 float_status *fpst = fpstp;
13141 flag save = get_flush_inputs_to_zero(fpst);
13142 set_flush_inputs_to_zero(false, fpst);
13143 float64 r = float16_to_float64(a, !ahp_mode, fpst);
13144 set_flush_inputs_to_zero(save, fpst);
13145 return r;
13148 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
13150 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13151 * it would affect flushing output denormals.
13153 float_status *fpst = fpstp;
13154 flag save = get_flush_to_zero(fpst);
13155 set_flush_to_zero(false, fpst);
13156 float16 r = float64_to_float16(a, !ahp_mode, fpst);
13157 set_flush_to_zero(save, fpst);
13158 return r;
13161 #define float32_two make_float32(0x40000000)
13162 #define float32_three make_float32(0x40400000)
13163 #define float32_one_point_five make_float32(0x3fc00000)
13165 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
13167 float_status *s = &env->vfp.standard_fp_status;
13168 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13169 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13170 if (!(float32_is_zero(a) || float32_is_zero(b))) {
13171 float_raise(float_flag_input_denormal, s);
13173 return float32_two;
13175 return float32_sub(float32_two, float32_mul(a, b, s), s);
13178 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
13180 float_status *s = &env->vfp.standard_fp_status;
13181 float32 product;
13182 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13183 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13184 if (!(float32_is_zero(a) || float32_is_zero(b))) {
13185 float_raise(float_flag_input_denormal, s);
13187 return float32_one_point_five;
13189 product = float32_mul(a, b, s);
13190 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
13193 /* NEON helpers. */
13195 /* Constants 256 and 512 are used in some helpers; we avoid relying on
13196 * int->float conversions at run-time. */
13197 #define float64_256 make_float64(0x4070000000000000LL)
13198 #define float64_512 make_float64(0x4080000000000000LL)
13199 #define float16_maxnorm make_float16(0x7bff)
13200 #define float32_maxnorm make_float32(0x7f7fffff)
13201 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
13203 /* Reciprocal functions
13205 * The algorithm that must be used to calculate the estimate
13206 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
13209 /* See RecipEstimate()
13211 * input is a 9 bit fixed point number
13212 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
13213 * result range 256 .. 511 for a number from 1.0 to 511/256.
13216 static int recip_estimate(int input)
13218 int a, b, r;
13219 assert(256 <= input && input < 512);
13220 a = (input * 2) + 1;
13221 b = (1 << 19) / a;
13222 r = (b + 1) >> 1;
13223 assert(256 <= r && r < 512);
13224 return r;
13228 * Common wrapper to call recip_estimate
13230 * The parameters are exponent and 64 bit fraction (without implicit
13231 * bit) where the binary point is nominally at bit 52. Returns a
13232 * float64 which can then be rounded to the appropriate size by the
13233 * callee.
13236 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
13238 uint32_t scaled, estimate;
13239 uint64_t result_frac;
13240 int result_exp;
13242 /* Handle sub-normals */
13243 if (*exp == 0) {
13244 if (extract64(frac, 51, 1) == 0) {
13245 *exp = -1;
13246 frac <<= 2;
13247 } else {
13248 frac <<= 1;
13252 /* scaled = UInt('1':fraction<51:44>) */
13253 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13254 estimate = recip_estimate(scaled);
13256 result_exp = exp_off - *exp;
13257 result_frac = deposit64(0, 44, 8, estimate);
13258 if (result_exp == 0) {
13259 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
13260 } else if (result_exp == -1) {
13261 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
13262 result_exp = 0;
13265 *exp = result_exp;
13267 return result_frac;
13270 static bool round_to_inf(float_status *fpst, bool sign_bit)
13272 switch (fpst->float_rounding_mode) {
13273 case float_round_nearest_even: /* Round to Nearest */
13274 return true;
13275 case float_round_up: /* Round to +Inf */
13276 return !sign_bit;
13277 case float_round_down: /* Round to -Inf */
13278 return sign_bit;
13279 case float_round_to_zero: /* Round to Zero */
13280 return false;
13283 g_assert_not_reached();
13286 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
13288 float_status *fpst = fpstp;
13289 float16 f16 = float16_squash_input_denormal(input, fpst);
13290 uint32_t f16_val = float16_val(f16);
13291 uint32_t f16_sign = float16_is_neg(f16);
13292 int f16_exp = extract32(f16_val, 10, 5);
13293 uint32_t f16_frac = extract32(f16_val, 0, 10);
13294 uint64_t f64_frac;
13296 if (float16_is_any_nan(f16)) {
13297 float16 nan = f16;
13298 if (float16_is_signaling_nan(f16, fpst)) {
13299 float_raise(float_flag_invalid, fpst);
13300 nan = float16_silence_nan(f16, fpst);
13302 if (fpst->default_nan_mode) {
13303 nan = float16_default_nan(fpst);
13305 return nan;
13306 } else if (float16_is_infinity(f16)) {
13307 return float16_set_sign(float16_zero, float16_is_neg(f16));
13308 } else if (float16_is_zero(f16)) {
13309 float_raise(float_flag_divbyzero, fpst);
13310 return float16_set_sign(float16_infinity, float16_is_neg(f16));
13311 } else if (float16_abs(f16) < (1 << 8)) {
13312 /* Abs(value) < 2.0^-16 */
13313 float_raise(float_flag_overflow | float_flag_inexact, fpst);
13314 if (round_to_inf(fpst, f16_sign)) {
13315 return float16_set_sign(float16_infinity, f16_sign);
13316 } else {
13317 return float16_set_sign(float16_maxnorm, f16_sign);
13319 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
13320 float_raise(float_flag_underflow, fpst);
13321 return float16_set_sign(float16_zero, float16_is_neg(f16));
13324 f64_frac = call_recip_estimate(&f16_exp, 29,
13325 ((uint64_t) f16_frac) << (52 - 10));
13327 /* result = sign : result_exp<4:0> : fraction<51:42> */
13328 f16_val = deposit32(0, 15, 1, f16_sign);
13329 f16_val = deposit32(f16_val, 10, 5, f16_exp);
13330 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
13331 return make_float16(f16_val);
13334 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
13336 float_status *fpst = fpstp;
13337 float32 f32 = float32_squash_input_denormal(input, fpst);
13338 uint32_t f32_val = float32_val(f32);
13339 bool f32_sign = float32_is_neg(f32);
13340 int f32_exp = extract32(f32_val, 23, 8);
13341 uint32_t f32_frac = extract32(f32_val, 0, 23);
13342 uint64_t f64_frac;
13344 if (float32_is_any_nan(f32)) {
13345 float32 nan = f32;
13346 if (float32_is_signaling_nan(f32, fpst)) {
13347 float_raise(float_flag_invalid, fpst);
13348 nan = float32_silence_nan(f32, fpst);
13350 if (fpst->default_nan_mode) {
13351 nan = float32_default_nan(fpst);
13353 return nan;
13354 } else if (float32_is_infinity(f32)) {
13355 return float32_set_sign(float32_zero, float32_is_neg(f32));
13356 } else if (float32_is_zero(f32)) {
13357 float_raise(float_flag_divbyzero, fpst);
13358 return float32_set_sign(float32_infinity, float32_is_neg(f32));
13359 } else if (float32_abs(f32) < (1ULL << 21)) {
13360 /* Abs(value) < 2.0^-128 */
13361 float_raise(float_flag_overflow | float_flag_inexact, fpst);
13362 if (round_to_inf(fpst, f32_sign)) {
13363 return float32_set_sign(float32_infinity, f32_sign);
13364 } else {
13365 return float32_set_sign(float32_maxnorm, f32_sign);
13367 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
13368 float_raise(float_flag_underflow, fpst);
13369 return float32_set_sign(float32_zero, float32_is_neg(f32));
13372 f64_frac = call_recip_estimate(&f32_exp, 253,
13373 ((uint64_t) f32_frac) << (52 - 23));
13375 /* result = sign : result_exp<7:0> : fraction<51:29> */
13376 f32_val = deposit32(0, 31, 1, f32_sign);
13377 f32_val = deposit32(f32_val, 23, 8, f32_exp);
13378 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
13379 return make_float32(f32_val);
13382 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
13384 float_status *fpst = fpstp;
13385 float64 f64 = float64_squash_input_denormal(input, fpst);
13386 uint64_t f64_val = float64_val(f64);
13387 bool f64_sign = float64_is_neg(f64);
13388 int f64_exp = extract64(f64_val, 52, 11);
13389 uint64_t f64_frac = extract64(f64_val, 0, 52);
13391 /* Deal with any special cases */
13392 if (float64_is_any_nan(f64)) {
13393 float64 nan = f64;
13394 if (float64_is_signaling_nan(f64, fpst)) {
13395 float_raise(float_flag_invalid, fpst);
13396 nan = float64_silence_nan(f64, fpst);
13398 if (fpst->default_nan_mode) {
13399 nan = float64_default_nan(fpst);
13401 return nan;
13402 } else if (float64_is_infinity(f64)) {
13403 return float64_set_sign(float64_zero, float64_is_neg(f64));
13404 } else if (float64_is_zero(f64)) {
13405 float_raise(float_flag_divbyzero, fpst);
13406 return float64_set_sign(float64_infinity, float64_is_neg(f64));
13407 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
13408 /* Abs(value) < 2.0^-1024 */
13409 float_raise(float_flag_overflow | float_flag_inexact, fpst);
13410 if (round_to_inf(fpst, f64_sign)) {
13411 return float64_set_sign(float64_infinity, f64_sign);
13412 } else {
13413 return float64_set_sign(float64_maxnorm, f64_sign);
13415 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
13416 float_raise(float_flag_underflow, fpst);
13417 return float64_set_sign(float64_zero, float64_is_neg(f64));
13420 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
13422 /* result = sign : result_exp<10:0> : fraction<51:0>; */
13423 f64_val = deposit64(0, 63, 1, f64_sign);
13424 f64_val = deposit64(f64_val, 52, 11, f64_exp);
13425 f64_val = deposit64(f64_val, 0, 52, f64_frac);
13426 return make_float64(f64_val);
13429 /* The algorithm that must be used to calculate the estimate
13430 * is specified by the ARM ARM.
13433 static int do_recip_sqrt_estimate(int a)
13435 int b, estimate;
13437 assert(128 <= a && a < 512);
13438 if (a < 256) {
13439 a = a * 2 + 1;
13440 } else {
13441 a = (a >> 1) << 1;
13442 a = (a + 1) * 2;
13444 b = 512;
13445 while (a * (b + 1) * (b + 1) < (1 << 28)) {
13446 b += 1;
13448 estimate = (b + 1) / 2;
13449 assert(256 <= estimate && estimate < 512);
13451 return estimate;
13455 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
13457 int estimate;
13458 uint32_t scaled;
13460 if (*exp == 0) {
13461 while (extract64(frac, 51, 1) == 0) {
13462 frac = frac << 1;
13463 *exp -= 1;
13465 frac = extract64(frac, 0, 51) << 1;
13468 if (*exp & 1) {
13469 /* scaled = UInt('01':fraction<51:45>) */
13470 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
13471 } else {
13472 /* scaled = UInt('1':fraction<51:44>) */
13473 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13475 estimate = do_recip_sqrt_estimate(scaled);
13477 *exp = (exp_off - *exp) / 2;
13478 return extract64(estimate, 0, 8) << 44;
13481 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
13483 float_status *s = fpstp;
13484 float16 f16 = float16_squash_input_denormal(input, s);
13485 uint16_t val = float16_val(f16);
13486 bool f16_sign = float16_is_neg(f16);
13487 int f16_exp = extract32(val, 10, 5);
13488 uint16_t f16_frac = extract32(val, 0, 10);
13489 uint64_t f64_frac;
13491 if (float16_is_any_nan(f16)) {
13492 float16 nan = f16;
13493 if (float16_is_signaling_nan(f16, s)) {
13494 float_raise(float_flag_invalid, s);
13495 nan = float16_silence_nan(f16, s);
13497 if (s->default_nan_mode) {
13498 nan = float16_default_nan(s);
13500 return nan;
13501 } else if (float16_is_zero(f16)) {
13502 float_raise(float_flag_divbyzero, s);
13503 return float16_set_sign(float16_infinity, f16_sign);
13504 } else if (f16_sign) {
13505 float_raise(float_flag_invalid, s);
13506 return float16_default_nan(s);
13507 } else if (float16_is_infinity(f16)) {
13508 return float16_zero;
13511 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13512 * preserving the parity of the exponent. */
13514 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
13516 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
13518 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
13519 val = deposit32(0, 15, 1, f16_sign);
13520 val = deposit32(val, 10, 5, f16_exp);
13521 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
13522 return make_float16(val);
13525 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
13527 float_status *s = fpstp;
13528 float32 f32 = float32_squash_input_denormal(input, s);
13529 uint32_t val = float32_val(f32);
13530 uint32_t f32_sign = float32_is_neg(f32);
13531 int f32_exp = extract32(val, 23, 8);
13532 uint32_t f32_frac = extract32(val, 0, 23);
13533 uint64_t f64_frac;
13535 if (float32_is_any_nan(f32)) {
13536 float32 nan = f32;
13537 if (float32_is_signaling_nan(f32, s)) {
13538 float_raise(float_flag_invalid, s);
13539 nan = float32_silence_nan(f32, s);
13541 if (s->default_nan_mode) {
13542 nan = float32_default_nan(s);
13544 return nan;
13545 } else if (float32_is_zero(f32)) {
13546 float_raise(float_flag_divbyzero, s);
13547 return float32_set_sign(float32_infinity, float32_is_neg(f32));
13548 } else if (float32_is_neg(f32)) {
13549 float_raise(float_flag_invalid, s);
13550 return float32_default_nan(s);
13551 } else if (float32_is_infinity(f32)) {
13552 return float32_zero;
13555 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13556 * preserving the parity of the exponent. */
13558 f64_frac = ((uint64_t) f32_frac) << 29;
13560 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
13562 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
13563 val = deposit32(0, 31, 1, f32_sign);
13564 val = deposit32(val, 23, 8, f32_exp);
13565 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
13566 return make_float32(val);
13569 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
13571 float_status *s = fpstp;
13572 float64 f64 = float64_squash_input_denormal(input, s);
13573 uint64_t val = float64_val(f64);
13574 bool f64_sign = float64_is_neg(f64);
13575 int f64_exp = extract64(val, 52, 11);
13576 uint64_t f64_frac = extract64(val, 0, 52);
13578 if (float64_is_any_nan(f64)) {
13579 float64 nan = f64;
13580 if (float64_is_signaling_nan(f64, s)) {
13581 float_raise(float_flag_invalid, s);
13582 nan = float64_silence_nan(f64, s);
13584 if (s->default_nan_mode) {
13585 nan = float64_default_nan(s);
13587 return nan;
13588 } else if (float64_is_zero(f64)) {
13589 float_raise(float_flag_divbyzero, s);
13590 return float64_set_sign(float64_infinity, float64_is_neg(f64));
13591 } else if (float64_is_neg(f64)) {
13592 float_raise(float_flag_invalid, s);
13593 return float64_default_nan(s);
13594 } else if (float64_is_infinity(f64)) {
13595 return float64_zero;
13598 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
13600 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
13601 val = deposit64(0, 61, 1, f64_sign);
13602 val = deposit64(val, 52, 11, f64_exp);
13603 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
13604 return make_float64(val);
13607 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
13609 /* float_status *s = fpstp; */
13610 int input, estimate;
13612 if ((a & 0x80000000) == 0) {
13613 return 0xffffffff;
13616 input = extract32(a, 23, 9);
13617 estimate = recip_estimate(input);
13619 return deposit32(0, (32 - 9), 9, estimate);
13622 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
13624 int estimate;
13626 if ((a & 0xc0000000) == 0) {
13627 return 0xffffffff;
13630 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
13632 return deposit32(0, 23, 9, estimate);
13635 /* VFPv4 fused multiply-accumulate */
13636 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
13638 float_status *fpst = fpstp;
13639 return float32_muladd(a, b, c, 0, fpst);
13642 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
13644 float_status *fpst = fpstp;
13645 return float64_muladd(a, b, c, 0, fpst);
13648 /* ARMv8 round to integral */
13649 float32 HELPER(rints_exact)(float32 x, void *fp_status)
13651 return float32_round_to_int(x, fp_status);
13654 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
13656 return float64_round_to_int(x, fp_status);
13659 float32 HELPER(rints)(float32 x, void *fp_status)
13661 int old_flags = get_float_exception_flags(fp_status), new_flags;
13662 float32 ret;
13664 ret = float32_round_to_int(x, fp_status);
13666 /* Suppress any inexact exceptions the conversion produced */
13667 if (!(old_flags & float_flag_inexact)) {
13668 new_flags = get_float_exception_flags(fp_status);
13669 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13672 return ret;
13675 float64 HELPER(rintd)(float64 x, void *fp_status)
13677 int old_flags = get_float_exception_flags(fp_status), new_flags;
13678 float64 ret;
13680 ret = float64_round_to_int(x, fp_status);
13682 new_flags = get_float_exception_flags(fp_status);
13684 /* Suppress any inexact exceptions the conversion produced */
13685 if (!(old_flags & float_flag_inexact)) {
13686 new_flags = get_float_exception_flags(fp_status);
13687 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13690 return ret;
13693 /* Convert ARM rounding mode to softfloat */
13694 int arm_rmode_to_sf(int rmode)
13696 switch (rmode) {
13697 case FPROUNDING_TIEAWAY:
13698 rmode = float_round_ties_away;
13699 break;
13700 case FPROUNDING_ODD:
13701 /* FIXME: add support for TIEAWAY and ODD */
13702 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
13703 rmode);
13704 /* fall through for now */
13705 case FPROUNDING_TIEEVEN:
13706 default:
13707 rmode = float_round_nearest_even;
13708 break;
13709 case FPROUNDING_POSINF:
13710 rmode = float_round_up;
13711 break;
13712 case FPROUNDING_NEGINF:
13713 rmode = float_round_down;
13714 break;
13715 case FPROUNDING_ZERO:
13716 rmode = float_round_to_zero;
13717 break;
13719 return rmode;
13722 /* CRC helpers.
13723 * The upper bytes of val (above the number specified by 'bytes') must have
13724 * been zeroed out by the caller.
13726 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13728 uint8_t buf[4];
13730 stl_le_p(buf, val);
13732 /* zlib crc32 converts the accumulator and output to one's complement. */
13733 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13736 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13738 uint8_t buf[4];
13740 stl_le_p(buf, val);
13742 /* Linux crc32c converts the output to one's complement. */
13743 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13746 /* Return the exception level to which FP-disabled exceptions should
13747 * be taken, or 0 if FP is enabled.
13749 int fp_exception_el(CPUARMState *env, int cur_el)
13751 #ifndef CONFIG_USER_ONLY
13752 int fpen;
13754 /* CPACR and the CPTR registers don't exist before v6, so FP is
13755 * always accessible
13757 if (!arm_feature(env, ARM_FEATURE_V6)) {
13758 return 0;
13761 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13762 * 0, 2 : trap EL0 and EL1/PL1 accesses
13763 * 1 : trap only EL0 accesses
13764 * 3 : trap no accesses
13766 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13767 switch (fpen) {
13768 case 0:
13769 case 2:
13770 if (cur_el == 0 || cur_el == 1) {
13771 /* Trap to PL1, which might be EL1 or EL3 */
13772 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13773 return 3;
13775 return 1;
13777 if (cur_el == 3 && !is_a64(env)) {
13778 /* Secure PL1 running at EL3 */
13779 return 3;
13781 break;
13782 case 1:
13783 if (cur_el == 0) {
13784 return 1;
13786 break;
13787 case 3:
13788 break;
13791 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13792 * check because zero bits in the registers mean "don't trap".
13795 /* CPTR_EL2 : present in v7VE or v8 */
13796 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13797 && !arm_is_secure_below_el3(env)) {
13798 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13799 return 2;
13802 /* CPTR_EL3 : present in v8 */
13803 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13804 /* Trap all FP ops to EL3 */
13805 return 3;
13807 #endif
13808 return 0;
13811 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13812 bool secstate, bool priv)
13814 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13816 if (priv) {
13817 mmu_idx |= ARM_MMU_IDX_M_PRIV;
13820 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
13821 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13824 if (secstate) {
13825 mmu_idx |= ARM_MMU_IDX_M_S;
13828 return mmu_idx;
13831 /* Return the MMU index for a v7M CPU in the specified security state */
13832 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13834 bool priv = arm_current_el(env) != 0;
13836 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13839 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13841 int el;
13843 if (arm_feature(env, ARM_FEATURE_M)) {
13844 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13847 el = arm_current_el(env);
13848 if (el < 2 && arm_is_secure_below_el3(env)) {
13849 return ARMMMUIdx_S1SE0 + el;
13850 } else {
13851 return ARMMMUIdx_S12NSE0 + el;
13855 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13857 return arm_to_core_mmu_idx(arm_mmu_idx(env));
13860 #ifndef CONFIG_USER_ONLY
13861 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13863 return stage_1_mmu_idx(arm_mmu_idx(env));
13865 #endif
13867 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13868 target_ulong *cs_base, uint32_t *pflags)
13870 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13871 int current_el = arm_current_el(env);
13872 int fp_el = fp_exception_el(env, current_el);
13873 uint32_t flags = 0;
13875 if (is_a64(env)) {
13876 ARMCPU *cpu = arm_env_get_cpu(env);
13877 uint64_t sctlr;
13879 *pc = env->pc;
13880 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13882 /* Get control bits for tagged addresses. */
13884 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13885 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13886 int tbii, tbid;
13888 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13889 if (regime_el(env, stage1) < 2) {
13890 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13891 tbid = (p1.tbi << 1) | p0.tbi;
13892 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13893 } else {
13894 tbid = p0.tbi;
13895 tbii = tbid & !p0.tbid;
13898 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13899 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13902 if (cpu_isar_feature(aa64_sve, cpu)) {
13903 int sve_el = sve_exception_el(env, current_el);
13904 uint32_t zcr_len;
13906 /* If SVE is disabled, but FP is enabled,
13907 * then the effective len is 0.
13909 if (sve_el != 0 && fp_el == 0) {
13910 zcr_len = 0;
13911 } else {
13912 zcr_len = sve_zcr_len_for_el(env, current_el);
13914 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13915 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13918 if (current_el == 0) {
13919 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13920 sctlr = env->cp15.sctlr_el[1];
13921 } else {
13922 sctlr = env->cp15.sctlr_el[current_el];
13924 if (cpu_isar_feature(aa64_pauth, cpu)) {
13926 * In order to save space in flags, we record only whether
13927 * pauth is "inactive", meaning all insns are implemented as
13928 * a nop, or "active" when some action must be performed.
13929 * The decision of which action to take is left to a helper.
13931 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13932 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13936 if (cpu_isar_feature(aa64_bti, cpu)) {
13937 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13938 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13939 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13941 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13943 } else {
13944 *pc = env->regs[15];
13945 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13946 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13947 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13948 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13949 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13950 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13951 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13952 || arm_el_is_aa64(env, 1)) {
13953 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13955 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
13958 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13960 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13961 * states defined in the ARM ARM for software singlestep:
13962 * SS_ACTIVE PSTATE.SS State
13963 * 0 x Inactive (the TB flag for SS is always 0)
13964 * 1 0 Active-pending
13965 * 1 1 Active-not-pending
13967 if (arm_singlestep_active(env)) {
13968 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13969 if (is_a64(env)) {
13970 if (env->pstate & PSTATE_SS) {
13971 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13973 } else {
13974 if (env->uncached_cpsr & PSTATE_SS) {
13975 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13979 if (arm_cpu_data_is_big_endian(env)) {
13980 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13982 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13984 if (arm_v7m_is_handler_mode(env)) {
13985 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13988 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13989 * suppressing them because the requested execution priority is less than 0.
13991 if (arm_feature(env, ARM_FEATURE_V8) &&
13992 arm_feature(env, ARM_FEATURE_M) &&
13993 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13994 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13995 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13998 *pflags = flags;
13999 *cs_base = 0;
14002 #ifdef TARGET_AARCH64
14004 * The manual says that when SVE is enabled and VQ is widened the
14005 * implementation is allowed to zero the previously inaccessible
14006 * portion of the registers. The corollary to that is that when
14007 * SVE is enabled and VQ is narrowed we are also allowed to zero
14008 * the now inaccessible portion of the registers.
14010 * The intent of this is that no predicate bit beyond VQ is ever set.
14011 * Which means that some operations on predicate registers themselves
14012 * may operate on full uint64_t or even unrolled across the maximum
14013 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
14014 * may well be cheaper than conditionals to restrict the operation
14015 * to the relevant portion of a uint16_t[16].
14017 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
14019 int i, j;
14020 uint64_t pmask;
14022 assert(vq >= 1 && vq <= ARM_MAX_VQ);
14023 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
14025 /* Zap the high bits of the zregs. */
14026 for (i = 0; i < 32; i++) {
14027 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
14030 /* Zap the high bits of the pregs and ffr. */
14031 pmask = 0;
14032 if (vq & 3) {
14033 pmask = ~(-1ULL << (16 * (vq & 3)));
14035 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
14036 for (i = 0; i < 17; ++i) {
14037 env->vfp.pregs[i].p[j] &= pmask;
14039 pmask = 0;
14044 * Notice a change in SVE vector size when changing EL.
14046 void aarch64_sve_change_el(CPUARMState *env, int old_el,
14047 int new_el, bool el0_a64)
14049 ARMCPU *cpu = arm_env_get_cpu(env);
14050 int old_len, new_len;
14051 bool old_a64, new_a64;
14053 /* Nothing to do if no SVE. */
14054 if (!cpu_isar_feature(aa64_sve, cpu)) {
14055 return;
14058 /* Nothing to do if FP is disabled in either EL. */
14059 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
14060 return;
14064 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
14065 * at ELx, or not available because the EL is in AArch32 state, then
14066 * for all purposes other than a direct read, the ZCR_ELx.LEN field
14067 * has an effective value of 0".
14069 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
14070 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
14071 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
14072 * we already have the correct register contents when encountering the
14073 * vq0->vq0 transition between EL0->EL1.
14075 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
14076 old_len = (old_a64 && !sve_exception_el(env, old_el)
14077 ? sve_zcr_len_for_el(env, old_el) : 0);
14078 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
14079 new_len = (new_a64 && !sve_exception_el(env, new_el)
14080 ? sve_zcr_len_for_el(env, new_el) : 0);
14082 /* When changing vector length, clear inaccessible state. */
14083 if (new_len < old_len) {
14084 aarch64_sve_narrow_vq(env, new_len + 1);
14087 #endif