target/arm: Fix vfp_gdb_get/set_reg vs FPSCR
[qemu/ar7.git] / target / arm / cpu.c
blobedf6e0e1f1c4af1a787ac66253b1c1ad6eea6d2d
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 ARMCPU *cpu = ARM_CPU(cs);
43 CPUARMState *env = &cpu->env;
45 if (is_a64(env)) {
46 env->pc = value;
47 env->thumb = 0;
48 } else {
49 env->regs[15] = value & ~1;
50 env->thumb = value & 1;
54 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
56 ARMCPU *cpu = ARM_CPU(cs);
57 CPUARMState *env = &cpu->env;
60 * It's OK to look at env for the current mode here, because it's
61 * never possible for an AArch64 TB to chain to an AArch32 TB.
63 if (is_a64(env)) {
64 env->pc = tb->pc;
65 } else {
66 env->regs[15] = tb->pc;
70 static bool arm_cpu_has_work(CPUState *cs)
72 ARMCPU *cpu = ARM_CPU(cs);
74 return (cpu->power_state != PSCI_OFF)
75 && cs->interrupt_request &
76 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
77 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
78 | CPU_INTERRUPT_EXITTB);
81 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
82 void *opaque)
84 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
86 entry->hook = hook;
87 entry->opaque = opaque;
89 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
92 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93 void *opaque)
95 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 entry->hook = hook;
98 entry->opaque = opaque;
100 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
103 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
105 /* Reset a single ARMCPRegInfo register */
106 ARMCPRegInfo *ri = value;
107 ARMCPU *cpu = opaque;
109 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
110 return;
113 if (ri->resetfn) {
114 ri->resetfn(&cpu->env, ri);
115 return;
118 /* A zero offset is never possible as it would be regs[0]
119 * so we use it to indicate that reset is being handled elsewhere.
120 * This is basically only used for fields in non-core coprocessors
121 * (like the pxa2xx ones).
123 if (!ri->fieldoffset) {
124 return;
127 if (cpreg_field_is_64bit(ri)) {
128 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
129 } else {
130 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
136 /* Purely an assertion check: we've already done reset once,
137 * so now check that running the reset for the cpreg doesn't
138 * change its value. This traps bugs where two different cpregs
139 * both try to reset the same state field but to different values.
141 ARMCPRegInfo *ri = value;
142 ARMCPU *cpu = opaque;
143 uint64_t oldvalue, newvalue;
145 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
146 return;
149 oldvalue = read_raw_cp_reg(&cpu->env, ri);
150 cp_reg_reset(key, value, opaque);
151 newvalue = read_raw_cp_reg(&cpu->env, ri);
152 assert(oldvalue == newvalue);
155 /* CPUClass::reset() */
156 static void arm_cpu_reset(CPUState *s)
158 ARMCPU *cpu = ARM_CPU(s);
159 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
160 CPUARMState *env = &cpu->env;
162 acc->parent_reset(s);
164 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
166 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
167 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
169 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
170 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
171 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
172 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
174 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
175 s->halted = cpu->start_powered_off;
177 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
178 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
181 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
182 /* 64 bit CPUs always start in 64 bit mode */
183 env->aarch64 = 1;
184 #if defined(CONFIG_USER_ONLY)
185 env->pstate = PSTATE_MODE_EL0t;
186 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
187 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
188 /* Enable all PAC keys. */
189 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
190 SCTLR_EnDA | SCTLR_EnDB);
191 /* Enable all PAC instructions */
192 env->cp15.hcr_el2 |= HCR_API;
193 env->cp15.scr_el3 |= SCR_API;
194 /* and to the FP/Neon instructions */
195 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196 /* and to the SVE instructions */
197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198 env->cp15.cptr_el[3] |= CPTR_EZ;
199 /* with maximum vector length */
200 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
201 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
202 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
204 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
205 * turning on both here will produce smaller code and otherwise
206 * make no difference to the user-level emulation.
208 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
209 #else
210 /* Reset into the highest available EL */
211 if (arm_feature(env, ARM_FEATURE_EL3)) {
212 env->pstate = PSTATE_MODE_EL3h;
213 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
214 env->pstate = PSTATE_MODE_EL2h;
215 } else {
216 env->pstate = PSTATE_MODE_EL1h;
218 env->pc = cpu->rvbar;
219 #endif
220 } else {
221 #if defined(CONFIG_USER_ONLY)
222 /* Userspace expects access to cp10 and cp11 for FP/Neon */
223 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
224 #endif
227 #if defined(CONFIG_USER_ONLY)
228 env->uncached_cpsr = ARM_CPU_MODE_USR;
229 /* For user mode we must enable access to coprocessors */
230 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
231 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
232 env->cp15.c15_cpar = 3;
233 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
234 env->cp15.c15_cpar = 1;
236 #else
239 * If the highest available EL is EL2, AArch32 will start in Hyp
240 * mode; otherwise it starts in SVC. Note that if we start in
241 * AArch64 then these values in the uncached_cpsr will be ignored.
243 if (arm_feature(env, ARM_FEATURE_EL2) &&
244 !arm_feature(env, ARM_FEATURE_EL3)) {
245 env->uncached_cpsr = ARM_CPU_MODE_HYP;
246 } else {
247 env->uncached_cpsr = ARM_CPU_MODE_SVC;
249 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251 if (arm_feature(env, ARM_FEATURE_M)) {
252 uint32_t initial_msp; /* Loaded from 0x0 */
253 uint32_t initial_pc; /* Loaded from 0x4 */
254 uint8_t *rom;
255 uint32_t vecbase;
257 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
258 env->v7m.secure = true;
259 } else {
260 /* This bit resets to 0 if security is supported, but 1 if
261 * it is not. The bit is not present in v7M, but we set it
262 * here so we can avoid having to make checks on it conditional
263 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
265 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
268 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
269 * that it resets to 1, so QEMU always does that rather than making
270 * it dependent on CPU model. In v8M it is RES1.
272 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
273 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
274 if (arm_feature(env, ARM_FEATURE_V8)) {
275 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
276 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
277 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
279 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
280 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
281 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
284 /* Unlike A/R profile, M profile defines the reset LR value */
285 env->regs[14] = 0xffffffff;
287 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
289 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
290 vecbase = env->v7m.vecbase[env->v7m.secure];
291 rom = rom_ptr(vecbase, 8);
292 if (rom) {
293 /* Address zero is covered by ROM which hasn't yet been
294 * copied into physical memory.
296 initial_msp = ldl_p(rom);
297 initial_pc = ldl_p(rom + 4);
298 } else {
299 /* Address zero not covered by a ROM blob, or the ROM blob
300 * is in non-modifiable memory and this is a second reset after
301 * it got copied into memory. In the latter case, rom_ptr
302 * will return a NULL pointer and we should use ldl_phys instead.
304 initial_msp = ldl_phys(s->as, vecbase);
305 initial_pc = ldl_phys(s->as, vecbase + 4);
308 env->regs[13] = initial_msp & 0xFFFFFFFC;
309 env->regs[15] = initial_pc & ~1;
310 env->thumb = initial_pc & 1;
313 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
314 * executing as AArch32 then check if highvecs are enabled and
315 * adjust the PC accordingly.
317 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
318 env->regs[15] = 0xFFFF0000;
321 /* M profile requires that reset clears the exclusive monitor;
322 * A profile does not, but clearing it makes more sense than having it
323 * set with an exclusive access on address zero.
325 arm_clear_exclusive(env);
327 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
328 #endif
330 if (arm_feature(env, ARM_FEATURE_PMSA)) {
331 if (cpu->pmsav7_dregion > 0) {
332 if (arm_feature(env, ARM_FEATURE_V8)) {
333 memset(env->pmsav8.rbar[M_REG_NS], 0,
334 sizeof(*env->pmsav8.rbar[M_REG_NS])
335 * cpu->pmsav7_dregion);
336 memset(env->pmsav8.rlar[M_REG_NS], 0,
337 sizeof(*env->pmsav8.rlar[M_REG_NS])
338 * cpu->pmsav7_dregion);
339 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
340 memset(env->pmsav8.rbar[M_REG_S], 0,
341 sizeof(*env->pmsav8.rbar[M_REG_S])
342 * cpu->pmsav7_dregion);
343 memset(env->pmsav8.rlar[M_REG_S], 0,
344 sizeof(*env->pmsav8.rlar[M_REG_S])
345 * cpu->pmsav7_dregion);
347 } else if (arm_feature(env, ARM_FEATURE_V7)) {
348 memset(env->pmsav7.drbar, 0,
349 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
350 memset(env->pmsav7.drsr, 0,
351 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
352 memset(env->pmsav7.dracr, 0,
353 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
356 env->pmsav7.rnr[M_REG_NS] = 0;
357 env->pmsav7.rnr[M_REG_S] = 0;
358 env->pmsav8.mair0[M_REG_NS] = 0;
359 env->pmsav8.mair0[M_REG_S] = 0;
360 env->pmsav8.mair1[M_REG_NS] = 0;
361 env->pmsav8.mair1[M_REG_S] = 0;
364 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
365 if (cpu->sau_sregion > 0) {
366 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
367 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
369 env->sau.rnr = 0;
370 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
371 * the Cortex-M33 does.
373 env->sau.ctrl = 0;
376 set_flush_to_zero(1, &env->vfp.standard_fp_status);
377 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
378 set_default_nan_mode(1, &env->vfp.standard_fp_status);
379 set_float_detect_tininess(float_tininess_before_rounding,
380 &env->vfp.fp_status);
381 set_float_detect_tininess(float_tininess_before_rounding,
382 &env->vfp.standard_fp_status);
383 set_float_detect_tininess(float_tininess_before_rounding,
384 &env->vfp.fp_status_f16);
385 #ifndef CONFIG_USER_ONLY
386 if (kvm_enabled()) {
387 kvm_arm_reset_vcpu(cpu);
389 #endif
391 hw_breakpoint_update_all(cpu);
392 hw_watchpoint_update_all(cpu);
395 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
397 CPUClass *cc = CPU_GET_CLASS(cs);
398 CPUARMState *env = cs->env_ptr;
399 uint32_t cur_el = arm_current_el(env);
400 bool secure = arm_is_secure(env);
401 uint32_t target_el;
402 uint32_t excp_idx;
403 bool ret = false;
405 if (interrupt_request & CPU_INTERRUPT_FIQ) {
406 excp_idx = EXCP_FIQ;
407 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
408 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
409 cs->exception_index = excp_idx;
410 env->exception.target_el = target_el;
411 cc->do_interrupt(cs);
412 ret = true;
415 if (interrupt_request & CPU_INTERRUPT_HARD) {
416 excp_idx = EXCP_IRQ;
417 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
418 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
419 cs->exception_index = excp_idx;
420 env->exception.target_el = target_el;
421 cc->do_interrupt(cs);
422 ret = true;
425 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
426 excp_idx = EXCP_VIRQ;
427 target_el = 1;
428 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
429 cs->exception_index = excp_idx;
430 env->exception.target_el = target_el;
431 cc->do_interrupt(cs);
432 ret = true;
435 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
436 excp_idx = EXCP_VFIQ;
437 target_el = 1;
438 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
439 cs->exception_index = excp_idx;
440 env->exception.target_el = target_el;
441 cc->do_interrupt(cs);
442 ret = true;
446 return ret;
449 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
450 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
452 CPUClass *cc = CPU_GET_CLASS(cs);
453 ARMCPU *cpu = ARM_CPU(cs);
454 CPUARMState *env = &cpu->env;
455 bool ret = false;
457 /* ARMv7-M interrupt masking works differently than -A or -R.
458 * There is no FIQ/IRQ distinction. Instead of I and F bits
459 * masking FIQ and IRQ interrupts, an exception is taken only
460 * if it is higher priority than the current execution priority
461 * (which depends on state like BASEPRI, FAULTMASK and the
462 * currently active exception).
464 if (interrupt_request & CPU_INTERRUPT_HARD
465 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
466 cs->exception_index = EXCP_IRQ;
467 cc->do_interrupt(cs);
468 ret = true;
470 return ret;
472 #endif
474 void arm_cpu_update_virq(ARMCPU *cpu)
477 * Update the interrupt level for VIRQ, which is the logical OR of
478 * the HCR_EL2.VI bit and the input line level from the GIC.
480 CPUARMState *env = &cpu->env;
481 CPUState *cs = CPU(cpu);
483 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
484 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
486 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
487 if (new_state) {
488 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
489 } else {
490 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
495 void arm_cpu_update_vfiq(ARMCPU *cpu)
498 * Update the interrupt level for VFIQ, which is the logical OR of
499 * the HCR_EL2.VF bit and the input line level from the GIC.
501 CPUARMState *env = &cpu->env;
502 CPUState *cs = CPU(cpu);
504 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
505 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
507 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
508 if (new_state) {
509 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
510 } else {
511 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
516 #ifndef CONFIG_USER_ONLY
517 static void arm_cpu_set_irq(void *opaque, int irq, int level)
519 ARMCPU *cpu = opaque;
520 CPUARMState *env = &cpu->env;
521 CPUState *cs = CPU(cpu);
522 static const int mask[] = {
523 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
524 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
525 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
526 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
529 if (level) {
530 env->irq_line_state |= mask[irq];
531 } else {
532 env->irq_line_state &= ~mask[irq];
535 switch (irq) {
536 case ARM_CPU_VIRQ:
537 assert(arm_feature(env, ARM_FEATURE_EL2));
538 arm_cpu_update_virq(cpu);
539 break;
540 case ARM_CPU_VFIQ:
541 assert(arm_feature(env, ARM_FEATURE_EL2));
542 arm_cpu_update_vfiq(cpu);
543 break;
544 case ARM_CPU_IRQ:
545 case ARM_CPU_FIQ:
546 if (level) {
547 cpu_interrupt(cs, mask[irq]);
548 } else {
549 cpu_reset_interrupt(cs, mask[irq]);
551 break;
552 default:
553 g_assert_not_reached();
557 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
559 #ifdef CONFIG_KVM
560 ARMCPU *cpu = opaque;
561 CPUARMState *env = &cpu->env;
562 CPUState *cs = CPU(cpu);
563 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
564 uint32_t linestate_bit;
566 switch (irq) {
567 case ARM_CPU_IRQ:
568 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
569 linestate_bit = CPU_INTERRUPT_HARD;
570 break;
571 case ARM_CPU_FIQ:
572 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
573 linestate_bit = CPU_INTERRUPT_FIQ;
574 break;
575 default:
576 g_assert_not_reached();
579 if (level) {
580 env->irq_line_state |= linestate_bit;
581 } else {
582 env->irq_line_state &= ~linestate_bit;
585 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
586 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
587 #endif
590 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
592 ARMCPU *cpu = ARM_CPU(cs);
593 CPUARMState *env = &cpu->env;
595 cpu_synchronize_state(cs);
596 return arm_cpu_data_is_big_endian(env);
599 #endif
601 static inline void set_feature(CPUARMState *env, int feature)
603 env->features |= 1ULL << feature;
606 static inline void unset_feature(CPUARMState *env, int feature)
608 env->features &= ~(1ULL << feature);
611 static int
612 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
614 return print_insn_arm(pc | 1, info);
617 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
619 ARMCPU *ac = ARM_CPU(cpu);
620 CPUARMState *env = &ac->env;
621 bool sctlr_b;
623 if (is_a64(env)) {
624 /* We might not be compiled with the A64 disassembler
625 * because it needs a C++ compiler. Leave print_insn
626 * unset in this case to use the caller default behaviour.
628 #if defined(CONFIG_ARM_A64_DIS)
629 info->print_insn = print_insn_arm_a64;
630 #endif
631 info->cap_arch = CS_ARCH_ARM64;
632 info->cap_insn_unit = 4;
633 info->cap_insn_split = 4;
634 } else {
635 int cap_mode;
636 if (env->thumb) {
637 info->print_insn = print_insn_thumb1;
638 info->cap_insn_unit = 2;
639 info->cap_insn_split = 4;
640 cap_mode = CS_MODE_THUMB;
641 } else {
642 info->print_insn = print_insn_arm;
643 info->cap_insn_unit = 4;
644 info->cap_insn_split = 4;
645 cap_mode = CS_MODE_ARM;
647 if (arm_feature(env, ARM_FEATURE_V8)) {
648 cap_mode |= CS_MODE_V8;
650 if (arm_feature(env, ARM_FEATURE_M)) {
651 cap_mode |= CS_MODE_MCLASS;
653 info->cap_arch = CS_ARCH_ARM;
654 info->cap_mode = cap_mode;
657 sctlr_b = arm_sctlr_b(env);
658 if (bswap_code(sctlr_b)) {
659 #ifdef TARGET_WORDS_BIGENDIAN
660 info->endian = BFD_ENDIAN_LITTLE;
661 #else
662 info->endian = BFD_ENDIAN_BIG;
663 #endif
665 info->flags &= ~INSN_ARM_BE32;
666 #ifndef CONFIG_USER_ONLY
667 if (sctlr_b) {
668 info->flags |= INSN_ARM_BE32;
670 #endif
673 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
675 uint32_t Aff1 = idx / clustersz;
676 uint32_t Aff0 = idx % clustersz;
677 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
680 static void cpreg_hashtable_data_destroy(gpointer data)
683 * Destroy function for cpu->cp_regs hashtable data entries.
684 * We must free the name string because it was g_strdup()ed in
685 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
686 * from r->name because we know we definitely allocated it.
688 ARMCPRegInfo *r = data;
690 g_free((void *)r->name);
691 g_free(r);
694 static void arm_cpu_initfn(Object *obj)
696 CPUState *cs = CPU(obj);
697 ARMCPU *cpu = ARM_CPU(obj);
699 cs->env_ptr = &cpu->env;
700 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
701 g_free, cpreg_hashtable_data_destroy);
703 QLIST_INIT(&cpu->pre_el_change_hooks);
704 QLIST_INIT(&cpu->el_change_hooks);
706 #ifndef CONFIG_USER_ONLY
707 /* Our inbound IRQ and FIQ lines */
708 if (kvm_enabled()) {
709 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
710 * the same interface as non-KVM CPUs.
712 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
713 } else {
714 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
717 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
718 ARRAY_SIZE(cpu->gt_timer_outputs));
720 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
721 "gicv3-maintenance-interrupt", 1);
722 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
723 "pmu-interrupt", 1);
724 #endif
726 /* DTB consumers generally don't in fact care what the 'compatible'
727 * string is, so always provide some string and trust that a hypothetical
728 * picky DTB consumer will also provide a helpful error message.
730 cpu->dtb_compatible = "qemu,unknown";
731 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
732 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
734 if (tcg_enabled()) {
735 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
739 static Property arm_cpu_reset_cbar_property =
740 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
742 static Property arm_cpu_reset_hivecs_property =
743 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
745 static Property arm_cpu_rvbar_property =
746 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
748 static Property arm_cpu_has_el2_property =
749 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
751 static Property arm_cpu_has_el3_property =
752 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
754 static Property arm_cpu_cfgend_property =
755 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
757 /* use property name "pmu" to match other archs and virt tools */
758 static Property arm_cpu_has_pmu_property =
759 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
761 static Property arm_cpu_has_mpu_property =
762 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
764 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
765 * because the CPU initfn will have already set cpu->pmsav7_dregion to
766 * the right value for that particular CPU type, and we don't want
767 * to override that with an incorrect constant value.
769 static Property arm_cpu_pmsav7_dregion_property =
770 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
771 pmsav7_dregion,
772 qdev_prop_uint32, uint32_t);
774 /* M profile: initial value of the Secure VTOR */
775 static Property arm_cpu_initsvtor_property =
776 DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
778 void arm_cpu_post_init(Object *obj)
780 ARMCPU *cpu = ARM_CPU(obj);
782 /* M profile implies PMSA. We have to do this here rather than
783 * in realize with the other feature-implication checks because
784 * we look at the PMSA bit to see if we should add some properties.
786 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
787 set_feature(&cpu->env, ARM_FEATURE_PMSA);
790 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
791 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
792 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
793 &error_abort);
796 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
797 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
798 &error_abort);
801 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
802 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
803 &error_abort);
806 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
807 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
808 * prevent "has_el3" from existing on CPUs which cannot support EL3.
810 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
811 &error_abort);
813 #ifndef CONFIG_USER_ONLY
814 object_property_add_link(obj, "secure-memory",
815 TYPE_MEMORY_REGION,
816 (Object **)&cpu->secure_memory,
817 qdev_prop_allow_set_link_before_realize,
818 OBJ_PROP_LINK_STRONG,
819 &error_abort);
820 #endif
823 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
824 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
825 &error_abort);
828 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
829 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
830 &error_abort);
833 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
834 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
835 &error_abort);
836 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
837 qdev_property_add_static(DEVICE(obj),
838 &arm_cpu_pmsav7_dregion_property,
839 &error_abort);
843 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
844 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
845 qdev_prop_allow_set_link_before_realize,
846 OBJ_PROP_LINK_STRONG,
847 &error_abort);
848 qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
849 &error_abort);
852 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
853 &error_abort);
856 static void arm_cpu_finalizefn(Object *obj)
858 ARMCPU *cpu = ARM_CPU(obj);
859 ARMELChangeHook *hook, *next;
861 g_hash_table_destroy(cpu->cp_regs);
863 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
864 QLIST_REMOVE(hook, node);
865 g_free(hook);
867 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
868 QLIST_REMOVE(hook, node);
869 g_free(hook);
871 #ifndef CONFIG_USER_ONLY
872 if (cpu->pmu_timer) {
873 timer_del(cpu->pmu_timer);
874 timer_deinit(cpu->pmu_timer);
875 timer_free(cpu->pmu_timer);
877 #endif
880 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
882 CPUState *cs = CPU(dev);
883 ARMCPU *cpu = ARM_CPU(dev);
884 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
885 CPUARMState *env = &cpu->env;
886 int pagebits;
887 Error *local_err = NULL;
888 bool no_aa32 = false;
890 /* If we needed to query the host kernel for the CPU features
891 * then it's possible that might have failed in the initfn, but
892 * this is the first point where we can report it.
894 if (cpu->host_cpu_probe_failed) {
895 if (!kvm_enabled()) {
896 error_setg(errp, "The 'host' CPU type can only be used with KVM");
897 } else {
898 error_setg(errp, "Failed to retrieve host CPU features");
900 return;
903 #ifndef CONFIG_USER_ONLY
904 /* The NVIC and M-profile CPU are two halves of a single piece of
905 * hardware; trying to use one without the other is a command line
906 * error and will result in segfaults if not caught here.
908 if (arm_feature(env, ARM_FEATURE_M)) {
909 if (!env->nvic) {
910 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
911 return;
913 } else {
914 if (env->nvic) {
915 error_setg(errp, "This board can only be used with Cortex-M CPUs");
916 return;
920 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
921 arm_gt_ptimer_cb, cpu);
922 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
923 arm_gt_vtimer_cb, cpu);
924 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
925 arm_gt_htimer_cb, cpu);
926 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
927 arm_gt_stimer_cb, cpu);
928 #endif
930 cpu_exec_realizefn(cs, &local_err);
931 if (local_err != NULL) {
932 error_propagate(errp, local_err);
933 return;
936 /* Some features automatically imply others: */
937 if (arm_feature(env, ARM_FEATURE_V8)) {
938 if (arm_feature(env, ARM_FEATURE_M)) {
939 set_feature(env, ARM_FEATURE_V7);
940 } else {
941 set_feature(env, ARM_FEATURE_V7VE);
946 * There exist AArch64 cpus without AArch32 support. When KVM
947 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
948 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
950 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
951 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
954 if (arm_feature(env, ARM_FEATURE_V7VE)) {
955 /* v7 Virtualization Extensions. In real hardware this implies
956 * EL2 and also the presence of the Security Extensions.
957 * For QEMU, for backwards-compatibility we implement some
958 * CPUs or CPU configs which have no actual EL2 or EL3 but do
959 * include the various other features that V7VE implies.
960 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
961 * Security Extensions is ARM_FEATURE_EL3.
963 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
964 set_feature(env, ARM_FEATURE_LPAE);
965 set_feature(env, ARM_FEATURE_V7);
967 if (arm_feature(env, ARM_FEATURE_V7)) {
968 set_feature(env, ARM_FEATURE_VAPA);
969 set_feature(env, ARM_FEATURE_THUMB2);
970 set_feature(env, ARM_FEATURE_MPIDR);
971 if (!arm_feature(env, ARM_FEATURE_M)) {
972 set_feature(env, ARM_FEATURE_V6K);
973 } else {
974 set_feature(env, ARM_FEATURE_V6);
977 /* Always define VBAR for V7 CPUs even if it doesn't exist in
978 * non-EL3 configs. This is needed by some legacy boards.
980 set_feature(env, ARM_FEATURE_VBAR);
982 if (arm_feature(env, ARM_FEATURE_V6K)) {
983 set_feature(env, ARM_FEATURE_V6);
984 set_feature(env, ARM_FEATURE_MVFR);
986 if (arm_feature(env, ARM_FEATURE_V6)) {
987 set_feature(env, ARM_FEATURE_V5);
988 if (!arm_feature(env, ARM_FEATURE_M)) {
989 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
990 set_feature(env, ARM_FEATURE_AUXCR);
993 if (arm_feature(env, ARM_FEATURE_V5)) {
994 set_feature(env, ARM_FEATURE_V4T);
996 if (arm_feature(env, ARM_FEATURE_VFP4)) {
997 set_feature(env, ARM_FEATURE_VFP3);
998 set_feature(env, ARM_FEATURE_VFP_FP16);
1000 if (arm_feature(env, ARM_FEATURE_VFP3)) {
1001 set_feature(env, ARM_FEATURE_VFP);
1003 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1004 set_feature(env, ARM_FEATURE_V7MP);
1005 set_feature(env, ARM_FEATURE_PXN);
1007 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1008 set_feature(env, ARM_FEATURE_CBAR);
1010 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1011 !arm_feature(env, ARM_FEATURE_M)) {
1012 set_feature(env, ARM_FEATURE_THUMB_DSP);
1015 if (arm_feature(env, ARM_FEATURE_V7) &&
1016 !arm_feature(env, ARM_FEATURE_M) &&
1017 !arm_feature(env, ARM_FEATURE_PMSA)) {
1018 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1019 * can use 4K pages.
1021 pagebits = 12;
1022 } else {
1023 /* For CPUs which might have tiny 1K pages, or which have an
1024 * MPU and might have small region sizes, stick with 1K pages.
1026 pagebits = 10;
1028 if (!set_preferred_target_page_bits(pagebits)) {
1029 /* This can only ever happen for hotplugging a CPU, or if
1030 * the board code incorrectly creates a CPU which it has
1031 * promised via minimum_page_size that it will not.
1033 error_setg(errp, "This CPU requires a smaller page size than the "
1034 "system is using");
1035 return;
1038 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1039 * We don't support setting cluster ID ([16..23]) (known as Aff2
1040 * in later ARM ARM versions), or any of the higher affinity level fields,
1041 * so these bits always RAZ.
1043 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1044 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1045 ARM_DEFAULT_CPUS_PER_CLUSTER);
1048 if (cpu->reset_hivecs) {
1049 cpu->reset_sctlr |= (1 << 13);
1052 if (cpu->cfgend) {
1053 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1054 cpu->reset_sctlr |= SCTLR_EE;
1055 } else {
1056 cpu->reset_sctlr |= SCTLR_B;
1060 if (!cpu->has_el3) {
1061 /* If the has_el3 CPU property is disabled then we need to disable the
1062 * feature.
1064 unset_feature(env, ARM_FEATURE_EL3);
1066 /* Disable the security extension feature bits in the processor feature
1067 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1069 cpu->id_pfr1 &= ~0xf0;
1070 cpu->isar.id_aa64pfr0 &= ~0xf000;
1073 if (!cpu->has_el2) {
1074 unset_feature(env, ARM_FEATURE_EL2);
1077 if (!cpu->has_pmu) {
1078 unset_feature(env, ARM_FEATURE_PMU);
1080 if (arm_feature(env, ARM_FEATURE_PMU)) {
1081 pmu_init(cpu);
1083 if (!kvm_enabled()) {
1084 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1085 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1088 #ifndef CONFIG_USER_ONLY
1089 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1090 cpu);
1091 #endif
1092 } else {
1093 cpu->id_aa64dfr0 &= ~0xf00;
1094 cpu->pmceid0 = 0;
1095 cpu->pmceid1 = 0;
1098 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1099 /* Disable the hypervisor feature bits in the processor feature
1100 * registers if we don't have EL2. These are id_pfr1[15:12] and
1101 * id_aa64pfr0_el1[11:8].
1103 cpu->isar.id_aa64pfr0 &= ~0xf00;
1104 cpu->id_pfr1 &= ~0xf000;
1107 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1108 * to false or by setting pmsav7-dregion to 0.
1110 if (!cpu->has_mpu) {
1111 cpu->pmsav7_dregion = 0;
1113 if (cpu->pmsav7_dregion == 0) {
1114 cpu->has_mpu = false;
1117 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1118 arm_feature(env, ARM_FEATURE_V7)) {
1119 uint32_t nr = cpu->pmsav7_dregion;
1121 if (nr > 0xff) {
1122 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1123 return;
1126 if (nr) {
1127 if (arm_feature(env, ARM_FEATURE_V8)) {
1128 /* PMSAv8 */
1129 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1130 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1131 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1132 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1133 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1135 } else {
1136 env->pmsav7.drbar = g_new0(uint32_t, nr);
1137 env->pmsav7.drsr = g_new0(uint32_t, nr);
1138 env->pmsav7.dracr = g_new0(uint32_t, nr);
1143 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1144 uint32_t nr = cpu->sau_sregion;
1146 if (nr > 0xff) {
1147 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1148 return;
1151 if (nr) {
1152 env->sau.rbar = g_new0(uint32_t, nr);
1153 env->sau.rlar = g_new0(uint32_t, nr);
1157 if (arm_feature(env, ARM_FEATURE_EL3)) {
1158 set_feature(env, ARM_FEATURE_VBAR);
1161 register_cp_regs_for_features(cpu);
1162 arm_cpu_register_gdb_regs_for_features(cpu);
1164 init_cpreg_list(cpu);
1166 #ifndef CONFIG_USER_ONLY
1167 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1168 cs->num_ases = 2;
1170 if (!cpu->secure_memory) {
1171 cpu->secure_memory = cs->memory;
1173 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1174 cpu->secure_memory);
1175 } else {
1176 cs->num_ases = 1;
1178 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1180 /* No core_count specified, default to smp_cpus. */
1181 if (cpu->core_count == -1) {
1182 cpu->core_count = smp_cpus;
1184 #endif
1186 qemu_init_vcpu(cs);
1187 cpu_reset(cs);
1189 acc->parent_realize(dev, errp);
1192 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1194 ObjectClass *oc;
1195 char *typename;
1196 char **cpuname;
1197 const char *cpunamestr;
1199 cpuname = g_strsplit(cpu_model, ",", 1);
1200 cpunamestr = cpuname[0];
1201 #ifdef CONFIG_USER_ONLY
1202 /* For backwards compatibility usermode emulation allows "-cpu any",
1203 * which has the same semantics as "-cpu max".
1205 if (!strcmp(cpunamestr, "any")) {
1206 cpunamestr = "max";
1208 #endif
1209 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1210 oc = object_class_by_name(typename);
1211 g_strfreev(cpuname);
1212 g_free(typename);
1213 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1214 object_class_is_abstract(oc)) {
1215 return NULL;
1217 return oc;
1220 /* CPU models. These are not needed for the AArch64 linux-user build. */
1221 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1223 static void arm926_initfn(Object *obj)
1225 ARMCPU *cpu = ARM_CPU(obj);
1227 cpu->dtb_compatible = "arm,arm926";
1228 set_feature(&cpu->env, ARM_FEATURE_V5);
1229 set_feature(&cpu->env, ARM_FEATURE_VFP);
1230 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1231 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1232 cpu->midr = 0x41069265;
1233 cpu->reset_fpsid = 0x41011090;
1234 cpu->ctr = 0x1dd20d2;
1235 cpu->reset_sctlr = 0x00090078;
1238 * ARMv5 does not have the ID_ISAR registers, but we can still
1239 * set the field to indicate Jazelle support within QEMU.
1241 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1244 static void arm946_initfn(Object *obj)
1246 ARMCPU *cpu = ARM_CPU(obj);
1248 cpu->dtb_compatible = "arm,arm946";
1249 set_feature(&cpu->env, ARM_FEATURE_V5);
1250 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1251 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1252 cpu->midr = 0x41059461;
1253 cpu->ctr = 0x0f004006;
1254 cpu->reset_sctlr = 0x00000078;
1257 static void arm1026_initfn(Object *obj)
1259 ARMCPU *cpu = ARM_CPU(obj);
1261 cpu->dtb_compatible = "arm,arm1026";
1262 set_feature(&cpu->env, ARM_FEATURE_V5);
1263 set_feature(&cpu->env, ARM_FEATURE_VFP);
1264 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1265 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1266 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1267 cpu->midr = 0x4106a262;
1268 cpu->reset_fpsid = 0x410110a0;
1269 cpu->ctr = 0x1dd20d2;
1270 cpu->reset_sctlr = 0x00090078;
1271 cpu->reset_auxcr = 1;
1274 * ARMv5 does not have the ID_ISAR registers, but we can still
1275 * set the field to indicate Jazelle support within QEMU.
1277 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1280 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1281 ARMCPRegInfo ifar = {
1282 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1283 .access = PL1_RW,
1284 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1285 .resetvalue = 0
1287 define_one_arm_cp_reg(cpu, &ifar);
1291 static void arm1136_r2_initfn(Object *obj)
1293 ARMCPU *cpu = ARM_CPU(obj);
1294 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1295 * older core than plain "arm1136". In particular this does not
1296 * have the v6K features.
1297 * These ID register values are correct for 1136 but may be wrong
1298 * for 1136_r2 (in particular r0p2 does not actually implement most
1299 * of the ID registers).
1302 cpu->dtb_compatible = "arm,arm1136";
1303 set_feature(&cpu->env, ARM_FEATURE_V6);
1304 set_feature(&cpu->env, ARM_FEATURE_VFP);
1305 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1306 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1307 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1308 cpu->midr = 0x4107b362;
1309 cpu->reset_fpsid = 0x410120b4;
1310 cpu->isar.mvfr0 = 0x11111111;
1311 cpu->isar.mvfr1 = 0x00000000;
1312 cpu->ctr = 0x1dd20d2;
1313 cpu->reset_sctlr = 0x00050078;
1314 cpu->id_pfr0 = 0x111;
1315 cpu->id_pfr1 = 0x1;
1316 cpu->id_dfr0 = 0x2;
1317 cpu->id_afr0 = 0x3;
1318 cpu->id_mmfr0 = 0x01130003;
1319 cpu->id_mmfr1 = 0x10030302;
1320 cpu->id_mmfr2 = 0x01222110;
1321 cpu->isar.id_isar0 = 0x00140011;
1322 cpu->isar.id_isar1 = 0x12002111;
1323 cpu->isar.id_isar2 = 0x11231111;
1324 cpu->isar.id_isar3 = 0x01102131;
1325 cpu->isar.id_isar4 = 0x141;
1326 cpu->reset_auxcr = 7;
1329 static void arm1136_initfn(Object *obj)
1331 ARMCPU *cpu = ARM_CPU(obj);
1333 cpu->dtb_compatible = "arm,arm1136";
1334 set_feature(&cpu->env, ARM_FEATURE_V6K);
1335 set_feature(&cpu->env, ARM_FEATURE_V6);
1336 set_feature(&cpu->env, ARM_FEATURE_VFP);
1337 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1338 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1339 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1340 cpu->midr = 0x4117b363;
1341 cpu->reset_fpsid = 0x410120b4;
1342 cpu->isar.mvfr0 = 0x11111111;
1343 cpu->isar.mvfr1 = 0x00000000;
1344 cpu->ctr = 0x1dd20d2;
1345 cpu->reset_sctlr = 0x00050078;
1346 cpu->id_pfr0 = 0x111;
1347 cpu->id_pfr1 = 0x1;
1348 cpu->id_dfr0 = 0x2;
1349 cpu->id_afr0 = 0x3;
1350 cpu->id_mmfr0 = 0x01130003;
1351 cpu->id_mmfr1 = 0x10030302;
1352 cpu->id_mmfr2 = 0x01222110;
1353 cpu->isar.id_isar0 = 0x00140011;
1354 cpu->isar.id_isar1 = 0x12002111;
1355 cpu->isar.id_isar2 = 0x11231111;
1356 cpu->isar.id_isar3 = 0x01102131;
1357 cpu->isar.id_isar4 = 0x141;
1358 cpu->reset_auxcr = 7;
1361 static void arm1176_initfn(Object *obj)
1363 ARMCPU *cpu = ARM_CPU(obj);
1365 cpu->dtb_compatible = "arm,arm1176";
1366 set_feature(&cpu->env, ARM_FEATURE_V6K);
1367 set_feature(&cpu->env, ARM_FEATURE_VFP);
1368 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1369 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1370 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1371 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1372 set_feature(&cpu->env, ARM_FEATURE_EL3);
1373 cpu->midr = 0x410fb767;
1374 cpu->reset_fpsid = 0x410120b5;
1375 cpu->isar.mvfr0 = 0x11111111;
1376 cpu->isar.mvfr1 = 0x00000000;
1377 cpu->ctr = 0x1dd20d2;
1378 cpu->reset_sctlr = 0x00050078;
1379 cpu->id_pfr0 = 0x111;
1380 cpu->id_pfr1 = 0x11;
1381 cpu->id_dfr0 = 0x33;
1382 cpu->id_afr0 = 0;
1383 cpu->id_mmfr0 = 0x01130003;
1384 cpu->id_mmfr1 = 0x10030302;
1385 cpu->id_mmfr2 = 0x01222100;
1386 cpu->isar.id_isar0 = 0x0140011;
1387 cpu->isar.id_isar1 = 0x12002111;
1388 cpu->isar.id_isar2 = 0x11231121;
1389 cpu->isar.id_isar3 = 0x01102131;
1390 cpu->isar.id_isar4 = 0x01141;
1391 cpu->reset_auxcr = 7;
1394 static void arm11mpcore_initfn(Object *obj)
1396 ARMCPU *cpu = ARM_CPU(obj);
1398 cpu->dtb_compatible = "arm,arm11mpcore";
1399 set_feature(&cpu->env, ARM_FEATURE_V6K);
1400 set_feature(&cpu->env, ARM_FEATURE_VFP);
1401 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1402 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1403 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1404 cpu->midr = 0x410fb022;
1405 cpu->reset_fpsid = 0x410120b4;
1406 cpu->isar.mvfr0 = 0x11111111;
1407 cpu->isar.mvfr1 = 0x00000000;
1408 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1409 cpu->id_pfr0 = 0x111;
1410 cpu->id_pfr1 = 0x1;
1411 cpu->id_dfr0 = 0;
1412 cpu->id_afr0 = 0x2;
1413 cpu->id_mmfr0 = 0x01100103;
1414 cpu->id_mmfr1 = 0x10020302;
1415 cpu->id_mmfr2 = 0x01222000;
1416 cpu->isar.id_isar0 = 0x00100011;
1417 cpu->isar.id_isar1 = 0x12002111;
1418 cpu->isar.id_isar2 = 0x11221011;
1419 cpu->isar.id_isar3 = 0x01102131;
1420 cpu->isar.id_isar4 = 0x141;
1421 cpu->reset_auxcr = 1;
1424 static void cortex_m0_initfn(Object *obj)
1426 ARMCPU *cpu = ARM_CPU(obj);
1427 set_feature(&cpu->env, ARM_FEATURE_V6);
1428 set_feature(&cpu->env, ARM_FEATURE_M);
1430 cpu->midr = 0x410cc200;
1433 static void cortex_m3_initfn(Object *obj)
1435 ARMCPU *cpu = ARM_CPU(obj);
1436 set_feature(&cpu->env, ARM_FEATURE_V7);
1437 set_feature(&cpu->env, ARM_FEATURE_M);
1438 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1439 cpu->midr = 0x410fc231;
1440 cpu->pmsav7_dregion = 8;
1441 cpu->id_pfr0 = 0x00000030;
1442 cpu->id_pfr1 = 0x00000200;
1443 cpu->id_dfr0 = 0x00100000;
1444 cpu->id_afr0 = 0x00000000;
1445 cpu->id_mmfr0 = 0x00000030;
1446 cpu->id_mmfr1 = 0x00000000;
1447 cpu->id_mmfr2 = 0x00000000;
1448 cpu->id_mmfr3 = 0x00000000;
1449 cpu->isar.id_isar0 = 0x01141110;
1450 cpu->isar.id_isar1 = 0x02111000;
1451 cpu->isar.id_isar2 = 0x21112231;
1452 cpu->isar.id_isar3 = 0x01111110;
1453 cpu->isar.id_isar4 = 0x01310102;
1454 cpu->isar.id_isar5 = 0x00000000;
1455 cpu->isar.id_isar6 = 0x00000000;
1458 static void cortex_m4_initfn(Object *obj)
1460 ARMCPU *cpu = ARM_CPU(obj);
1462 set_feature(&cpu->env, ARM_FEATURE_V7);
1463 set_feature(&cpu->env, ARM_FEATURE_M);
1464 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1465 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1466 cpu->midr = 0x410fc240; /* r0p0 */
1467 cpu->pmsav7_dregion = 8;
1468 cpu->id_pfr0 = 0x00000030;
1469 cpu->id_pfr1 = 0x00000200;
1470 cpu->id_dfr0 = 0x00100000;
1471 cpu->id_afr0 = 0x00000000;
1472 cpu->id_mmfr0 = 0x00000030;
1473 cpu->id_mmfr1 = 0x00000000;
1474 cpu->id_mmfr2 = 0x00000000;
1475 cpu->id_mmfr3 = 0x00000000;
1476 cpu->isar.id_isar0 = 0x01141110;
1477 cpu->isar.id_isar1 = 0x02111000;
1478 cpu->isar.id_isar2 = 0x21112231;
1479 cpu->isar.id_isar3 = 0x01111110;
1480 cpu->isar.id_isar4 = 0x01310102;
1481 cpu->isar.id_isar5 = 0x00000000;
1482 cpu->isar.id_isar6 = 0x00000000;
1485 static void cortex_m33_initfn(Object *obj)
1487 ARMCPU *cpu = ARM_CPU(obj);
1489 set_feature(&cpu->env, ARM_FEATURE_V8);
1490 set_feature(&cpu->env, ARM_FEATURE_M);
1491 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1492 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1493 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1494 cpu->midr = 0x410fd213; /* r0p3 */
1495 cpu->pmsav7_dregion = 16;
1496 cpu->sau_sregion = 8;
1497 cpu->id_pfr0 = 0x00000030;
1498 cpu->id_pfr1 = 0x00000210;
1499 cpu->id_dfr0 = 0x00200000;
1500 cpu->id_afr0 = 0x00000000;
1501 cpu->id_mmfr0 = 0x00101F40;
1502 cpu->id_mmfr1 = 0x00000000;
1503 cpu->id_mmfr2 = 0x01000000;
1504 cpu->id_mmfr3 = 0x00000000;
1505 cpu->isar.id_isar0 = 0x01101110;
1506 cpu->isar.id_isar1 = 0x02212000;
1507 cpu->isar.id_isar2 = 0x20232232;
1508 cpu->isar.id_isar3 = 0x01111131;
1509 cpu->isar.id_isar4 = 0x01310132;
1510 cpu->isar.id_isar5 = 0x00000000;
1511 cpu->isar.id_isar6 = 0x00000000;
1512 cpu->clidr = 0x00000000;
1513 cpu->ctr = 0x8000c000;
1516 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1518 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1519 CPUClass *cc = CPU_CLASS(oc);
1521 acc->info = data;
1522 #ifndef CONFIG_USER_ONLY
1523 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1524 #endif
1526 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1529 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1530 /* Dummy the TCM region regs for the moment */
1531 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1532 .access = PL1_RW, .type = ARM_CP_CONST },
1533 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1534 .access = PL1_RW, .type = ARM_CP_CONST },
1535 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1536 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1537 REGINFO_SENTINEL
1540 static void cortex_r5_initfn(Object *obj)
1542 ARMCPU *cpu = ARM_CPU(obj);
1544 set_feature(&cpu->env, ARM_FEATURE_V7);
1545 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1546 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1547 cpu->midr = 0x411fc153; /* r1p3 */
1548 cpu->id_pfr0 = 0x0131;
1549 cpu->id_pfr1 = 0x001;
1550 cpu->id_dfr0 = 0x010400;
1551 cpu->id_afr0 = 0x0;
1552 cpu->id_mmfr0 = 0x0210030;
1553 cpu->id_mmfr1 = 0x00000000;
1554 cpu->id_mmfr2 = 0x01200000;
1555 cpu->id_mmfr3 = 0x0211;
1556 cpu->isar.id_isar0 = 0x02101111;
1557 cpu->isar.id_isar1 = 0x13112111;
1558 cpu->isar.id_isar2 = 0x21232141;
1559 cpu->isar.id_isar3 = 0x01112131;
1560 cpu->isar.id_isar4 = 0x0010142;
1561 cpu->isar.id_isar5 = 0x0;
1562 cpu->isar.id_isar6 = 0x0;
1563 cpu->mp_is_up = true;
1564 cpu->pmsav7_dregion = 16;
1565 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1568 static void cortex_r5f_initfn(Object *obj)
1570 ARMCPU *cpu = ARM_CPU(obj);
1572 cortex_r5_initfn(obj);
1573 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1576 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1577 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1578 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1579 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1580 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1581 REGINFO_SENTINEL
1584 static void cortex_a8_initfn(Object *obj)
1586 ARMCPU *cpu = ARM_CPU(obj);
1588 cpu->dtb_compatible = "arm,cortex-a8";
1589 set_feature(&cpu->env, ARM_FEATURE_V7);
1590 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1591 set_feature(&cpu->env, ARM_FEATURE_NEON);
1592 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1593 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1594 set_feature(&cpu->env, ARM_FEATURE_EL3);
1595 cpu->midr = 0x410fc080;
1596 cpu->reset_fpsid = 0x410330c0;
1597 cpu->isar.mvfr0 = 0x11110222;
1598 cpu->isar.mvfr1 = 0x00011111;
1599 cpu->ctr = 0x82048004;
1600 cpu->reset_sctlr = 0x00c50078;
1601 cpu->id_pfr0 = 0x1031;
1602 cpu->id_pfr1 = 0x11;
1603 cpu->id_dfr0 = 0x400;
1604 cpu->id_afr0 = 0;
1605 cpu->id_mmfr0 = 0x31100003;
1606 cpu->id_mmfr1 = 0x20000000;
1607 cpu->id_mmfr2 = 0x01202000;
1608 cpu->id_mmfr3 = 0x11;
1609 cpu->isar.id_isar0 = 0x00101111;
1610 cpu->isar.id_isar1 = 0x12112111;
1611 cpu->isar.id_isar2 = 0x21232031;
1612 cpu->isar.id_isar3 = 0x11112131;
1613 cpu->isar.id_isar4 = 0x00111142;
1614 cpu->dbgdidr = 0x15141000;
1615 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1616 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1617 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1618 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1619 cpu->reset_auxcr = 2;
1620 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1623 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1624 /* power_control should be set to maximum latency. Again,
1625 * default to 0 and set by private hook
1627 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1628 .access = PL1_RW, .resetvalue = 0,
1629 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1630 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1631 .access = PL1_RW, .resetvalue = 0,
1632 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1633 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1634 .access = PL1_RW, .resetvalue = 0,
1635 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1636 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1637 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1638 /* TLB lockdown control */
1639 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1640 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1641 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1642 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1643 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1644 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1645 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1646 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1647 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1648 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1649 REGINFO_SENTINEL
1652 static void cortex_a9_initfn(Object *obj)
1654 ARMCPU *cpu = ARM_CPU(obj);
1656 cpu->dtb_compatible = "arm,cortex-a9";
1657 set_feature(&cpu->env, ARM_FEATURE_V7);
1658 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1659 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1660 set_feature(&cpu->env, ARM_FEATURE_NEON);
1661 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1662 set_feature(&cpu->env, ARM_FEATURE_EL3);
1663 /* Note that A9 supports the MP extensions even for
1664 * A9UP and single-core A9MP (which are both different
1665 * and valid configurations; we don't model A9UP).
1667 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1668 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1669 cpu->midr = 0x410fc090;
1670 cpu->reset_fpsid = 0x41033090;
1671 cpu->isar.mvfr0 = 0x11110222;
1672 cpu->isar.mvfr1 = 0x01111111;
1673 cpu->ctr = 0x80038003;
1674 cpu->reset_sctlr = 0x00c50078;
1675 cpu->id_pfr0 = 0x1031;
1676 cpu->id_pfr1 = 0x11;
1677 cpu->id_dfr0 = 0x000;
1678 cpu->id_afr0 = 0;
1679 cpu->id_mmfr0 = 0x00100103;
1680 cpu->id_mmfr1 = 0x20000000;
1681 cpu->id_mmfr2 = 0x01230000;
1682 cpu->id_mmfr3 = 0x00002111;
1683 cpu->isar.id_isar0 = 0x00101111;
1684 cpu->isar.id_isar1 = 0x13112111;
1685 cpu->isar.id_isar2 = 0x21232041;
1686 cpu->isar.id_isar3 = 0x11112131;
1687 cpu->isar.id_isar4 = 0x00111142;
1688 cpu->dbgdidr = 0x35141000;
1689 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1690 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1691 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1692 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1695 #ifndef CONFIG_USER_ONLY
1696 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1698 /* Linux wants the number of processors from here.
1699 * Might as well set the interrupt-controller bit too.
1701 return ((smp_cpus - 1) << 24) | (1 << 23);
1703 #endif
1705 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1706 #ifndef CONFIG_USER_ONLY
1707 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1708 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1709 .writefn = arm_cp_write_ignore, },
1710 #endif
1711 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1712 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1713 REGINFO_SENTINEL
1716 static void cortex_a7_initfn(Object *obj)
1718 ARMCPU *cpu = ARM_CPU(obj);
1720 cpu->dtb_compatible = "arm,cortex-a7";
1721 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1722 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1723 set_feature(&cpu->env, ARM_FEATURE_NEON);
1724 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1725 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1726 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1727 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1728 set_feature(&cpu->env, ARM_FEATURE_EL2);
1729 set_feature(&cpu->env, ARM_FEATURE_EL3);
1730 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1731 cpu->midr = 0x410fc075;
1732 cpu->reset_fpsid = 0x41023075;
1733 cpu->isar.mvfr0 = 0x10110222;
1734 cpu->isar.mvfr1 = 0x11111111;
1735 cpu->ctr = 0x84448003;
1736 cpu->reset_sctlr = 0x00c50078;
1737 cpu->id_pfr0 = 0x00001131;
1738 cpu->id_pfr1 = 0x00011011;
1739 cpu->id_dfr0 = 0x02010555;
1740 cpu->id_afr0 = 0x00000000;
1741 cpu->id_mmfr0 = 0x10101105;
1742 cpu->id_mmfr1 = 0x40000000;
1743 cpu->id_mmfr2 = 0x01240000;
1744 cpu->id_mmfr3 = 0x02102211;
1745 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1746 * table 4-41 gives 0x02101110, which includes the arm div insns.
1748 cpu->isar.id_isar0 = 0x02101110;
1749 cpu->isar.id_isar1 = 0x13112111;
1750 cpu->isar.id_isar2 = 0x21232041;
1751 cpu->isar.id_isar3 = 0x11112131;
1752 cpu->isar.id_isar4 = 0x10011142;
1753 cpu->dbgdidr = 0x3515f005;
1754 cpu->clidr = 0x0a200023;
1755 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1756 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1757 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1758 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1761 static void cortex_a15_initfn(Object *obj)
1763 ARMCPU *cpu = ARM_CPU(obj);
1765 cpu->dtb_compatible = "arm,cortex-a15";
1766 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1767 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1768 set_feature(&cpu->env, ARM_FEATURE_NEON);
1769 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1770 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1771 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1772 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1773 set_feature(&cpu->env, ARM_FEATURE_EL2);
1774 set_feature(&cpu->env, ARM_FEATURE_EL3);
1775 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1776 cpu->midr = 0x412fc0f1;
1777 cpu->reset_fpsid = 0x410430f0;
1778 cpu->isar.mvfr0 = 0x10110222;
1779 cpu->isar.mvfr1 = 0x11111111;
1780 cpu->ctr = 0x8444c004;
1781 cpu->reset_sctlr = 0x00c50078;
1782 cpu->id_pfr0 = 0x00001131;
1783 cpu->id_pfr1 = 0x00011011;
1784 cpu->id_dfr0 = 0x02010555;
1785 cpu->id_afr0 = 0x00000000;
1786 cpu->id_mmfr0 = 0x10201105;
1787 cpu->id_mmfr1 = 0x20000000;
1788 cpu->id_mmfr2 = 0x01240000;
1789 cpu->id_mmfr3 = 0x02102211;
1790 cpu->isar.id_isar0 = 0x02101110;
1791 cpu->isar.id_isar1 = 0x13112111;
1792 cpu->isar.id_isar2 = 0x21232041;
1793 cpu->isar.id_isar3 = 0x11112131;
1794 cpu->isar.id_isar4 = 0x10011142;
1795 cpu->dbgdidr = 0x3515f021;
1796 cpu->clidr = 0x0a200023;
1797 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1798 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1799 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1800 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1803 static void ti925t_initfn(Object *obj)
1805 ARMCPU *cpu = ARM_CPU(obj);
1806 set_feature(&cpu->env, ARM_FEATURE_V4T);
1807 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1808 cpu->midr = ARM_CPUID_TI925T;
1809 cpu->ctr = 0x5109149;
1810 cpu->reset_sctlr = 0x00000070;
1813 static void sa1100_initfn(Object *obj)
1815 ARMCPU *cpu = ARM_CPU(obj);
1817 cpu->dtb_compatible = "intel,sa1100";
1818 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1819 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1820 cpu->midr = 0x4401A11B;
1821 cpu->reset_sctlr = 0x00000070;
1824 static void sa1110_initfn(Object *obj)
1826 ARMCPU *cpu = ARM_CPU(obj);
1827 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1828 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1829 cpu->midr = 0x6901B119;
1830 cpu->reset_sctlr = 0x00000070;
1833 static void pxa250_initfn(Object *obj)
1835 ARMCPU *cpu = ARM_CPU(obj);
1837 cpu->dtb_compatible = "marvell,xscale";
1838 set_feature(&cpu->env, ARM_FEATURE_V5);
1839 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1840 cpu->midr = 0x69052100;
1841 cpu->ctr = 0xd172172;
1842 cpu->reset_sctlr = 0x00000078;
1845 static void pxa255_initfn(Object *obj)
1847 ARMCPU *cpu = ARM_CPU(obj);
1849 cpu->dtb_compatible = "marvell,xscale";
1850 set_feature(&cpu->env, ARM_FEATURE_V5);
1851 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1852 cpu->midr = 0x69052d00;
1853 cpu->ctr = 0xd172172;
1854 cpu->reset_sctlr = 0x00000078;
1857 static void pxa260_initfn(Object *obj)
1859 ARMCPU *cpu = ARM_CPU(obj);
1861 cpu->dtb_compatible = "marvell,xscale";
1862 set_feature(&cpu->env, ARM_FEATURE_V5);
1863 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1864 cpu->midr = 0x69052903;
1865 cpu->ctr = 0xd172172;
1866 cpu->reset_sctlr = 0x00000078;
1869 static void pxa261_initfn(Object *obj)
1871 ARMCPU *cpu = ARM_CPU(obj);
1873 cpu->dtb_compatible = "marvell,xscale";
1874 set_feature(&cpu->env, ARM_FEATURE_V5);
1875 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1876 cpu->midr = 0x69052d05;
1877 cpu->ctr = 0xd172172;
1878 cpu->reset_sctlr = 0x00000078;
1881 static void pxa262_initfn(Object *obj)
1883 ARMCPU *cpu = ARM_CPU(obj);
1885 cpu->dtb_compatible = "marvell,xscale";
1886 set_feature(&cpu->env, ARM_FEATURE_V5);
1887 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1888 cpu->midr = 0x69052d06;
1889 cpu->ctr = 0xd172172;
1890 cpu->reset_sctlr = 0x00000078;
1893 static void pxa270a0_initfn(Object *obj)
1895 ARMCPU *cpu = ARM_CPU(obj);
1897 cpu->dtb_compatible = "marvell,xscale";
1898 set_feature(&cpu->env, ARM_FEATURE_V5);
1899 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1900 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1901 cpu->midr = 0x69054110;
1902 cpu->ctr = 0xd172172;
1903 cpu->reset_sctlr = 0x00000078;
1906 static void pxa270a1_initfn(Object *obj)
1908 ARMCPU *cpu = ARM_CPU(obj);
1910 cpu->dtb_compatible = "marvell,xscale";
1911 set_feature(&cpu->env, ARM_FEATURE_V5);
1912 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1913 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1914 cpu->midr = 0x69054111;
1915 cpu->ctr = 0xd172172;
1916 cpu->reset_sctlr = 0x00000078;
1919 static void pxa270b0_initfn(Object *obj)
1921 ARMCPU *cpu = ARM_CPU(obj);
1923 cpu->dtb_compatible = "marvell,xscale";
1924 set_feature(&cpu->env, ARM_FEATURE_V5);
1925 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1926 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1927 cpu->midr = 0x69054112;
1928 cpu->ctr = 0xd172172;
1929 cpu->reset_sctlr = 0x00000078;
1932 static void pxa270b1_initfn(Object *obj)
1934 ARMCPU *cpu = ARM_CPU(obj);
1936 cpu->dtb_compatible = "marvell,xscale";
1937 set_feature(&cpu->env, ARM_FEATURE_V5);
1938 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1939 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1940 cpu->midr = 0x69054113;
1941 cpu->ctr = 0xd172172;
1942 cpu->reset_sctlr = 0x00000078;
1945 static void pxa270c0_initfn(Object *obj)
1947 ARMCPU *cpu = ARM_CPU(obj);
1949 cpu->dtb_compatible = "marvell,xscale";
1950 set_feature(&cpu->env, ARM_FEATURE_V5);
1951 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1952 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1953 cpu->midr = 0x69054114;
1954 cpu->ctr = 0xd172172;
1955 cpu->reset_sctlr = 0x00000078;
1958 static void pxa270c5_initfn(Object *obj)
1960 ARMCPU *cpu = ARM_CPU(obj);
1962 cpu->dtb_compatible = "marvell,xscale";
1963 set_feature(&cpu->env, ARM_FEATURE_V5);
1964 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1965 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1966 cpu->midr = 0x69054117;
1967 cpu->ctr = 0xd172172;
1968 cpu->reset_sctlr = 0x00000078;
1971 #ifndef TARGET_AARCH64
1972 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1973 * otherwise, a CPU with as many features enabled as our emulation supports.
1974 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1975 * this only needs to handle 32 bits.
1977 static void arm_max_initfn(Object *obj)
1979 ARMCPU *cpu = ARM_CPU(obj);
1981 if (kvm_enabled()) {
1982 kvm_arm_set_cpu_features_from_host(cpu);
1983 } else {
1984 cortex_a15_initfn(obj);
1985 #ifdef CONFIG_USER_ONLY
1986 /* We don't set these in system emulation mode for the moment,
1987 * since we don't correctly set (all of) the ID registers to
1988 * advertise them.
1990 set_feature(&cpu->env, ARM_FEATURE_V8);
1992 uint32_t t;
1994 t = cpu->isar.id_isar5;
1995 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1996 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1997 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1998 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1999 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2000 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2001 cpu->isar.id_isar5 = t;
2003 t = cpu->isar.id_isar6;
2004 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2005 cpu->isar.id_isar6 = t;
2007 t = cpu->id_mmfr4;
2008 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2009 cpu->id_mmfr4 = t;
2011 #endif
2014 #endif
2016 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2018 struct ARMCPUInfo {
2019 const char *name;
2020 void (*initfn)(Object *obj);
2021 void (*class_init)(ObjectClass *oc, void *data);
2024 static const ARMCPUInfo arm_cpus[] = {
2025 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2026 { .name = "arm926", .initfn = arm926_initfn },
2027 { .name = "arm946", .initfn = arm946_initfn },
2028 { .name = "arm1026", .initfn = arm1026_initfn },
2029 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2030 * older core than plain "arm1136". In particular this does not
2031 * have the v6K features.
2033 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2034 { .name = "arm1136", .initfn = arm1136_initfn },
2035 { .name = "arm1176", .initfn = arm1176_initfn },
2036 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2037 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2038 .class_init = arm_v7m_class_init },
2039 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2040 .class_init = arm_v7m_class_init },
2041 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2042 .class_init = arm_v7m_class_init },
2043 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2044 .class_init = arm_v7m_class_init },
2045 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2046 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2047 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2048 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2049 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2050 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2051 { .name = "ti925t", .initfn = ti925t_initfn },
2052 { .name = "sa1100", .initfn = sa1100_initfn },
2053 { .name = "sa1110", .initfn = sa1110_initfn },
2054 { .name = "pxa250", .initfn = pxa250_initfn },
2055 { .name = "pxa255", .initfn = pxa255_initfn },
2056 { .name = "pxa260", .initfn = pxa260_initfn },
2057 { .name = "pxa261", .initfn = pxa261_initfn },
2058 { .name = "pxa262", .initfn = pxa262_initfn },
2059 /* "pxa270" is an alias for "pxa270-a0" */
2060 { .name = "pxa270", .initfn = pxa270a0_initfn },
2061 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2062 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2063 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2064 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2065 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2066 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2067 #ifndef TARGET_AARCH64
2068 { .name = "max", .initfn = arm_max_initfn },
2069 #endif
2070 #ifdef CONFIG_USER_ONLY
2071 { .name = "any", .initfn = arm_max_initfn },
2072 #endif
2073 #endif
2074 { .name = NULL }
2077 static Property arm_cpu_properties[] = {
2078 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2079 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2080 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2081 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2082 mp_affinity, ARM64_AFFINITY_INVALID),
2083 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2084 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2085 DEFINE_PROP_END_OF_LIST()
2088 #ifdef CONFIG_USER_ONLY
2089 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2090 int rw, int mmu_idx)
2092 ARMCPU *cpu = ARM_CPU(cs);
2093 CPUARMState *env = &cpu->env;
2095 env->exception.vaddress = address;
2096 if (rw == 2) {
2097 cs->exception_index = EXCP_PREFETCH_ABORT;
2098 } else {
2099 cs->exception_index = EXCP_DATA_ABORT;
2101 return 1;
2103 #endif
2105 static gchar *arm_gdb_arch_name(CPUState *cs)
2107 ARMCPU *cpu = ARM_CPU(cs);
2108 CPUARMState *env = &cpu->env;
2110 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2111 return g_strdup("iwmmxt");
2113 return g_strdup("arm");
2116 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2118 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2119 CPUClass *cc = CPU_CLASS(acc);
2120 DeviceClass *dc = DEVICE_CLASS(oc);
2122 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2123 &acc->parent_realize);
2124 dc->props = arm_cpu_properties;
2126 acc->parent_reset = cc->reset;
2127 cc->reset = arm_cpu_reset;
2129 cc->class_by_name = arm_cpu_class_by_name;
2130 cc->has_work = arm_cpu_has_work;
2131 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2132 cc->dump_state = arm_cpu_dump_state;
2133 cc->set_pc = arm_cpu_set_pc;
2134 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2135 cc->gdb_read_register = arm_cpu_gdb_read_register;
2136 cc->gdb_write_register = arm_cpu_gdb_write_register;
2137 #ifdef CONFIG_USER_ONLY
2138 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2139 #else
2140 cc->do_interrupt = arm_cpu_do_interrupt;
2141 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2142 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2143 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2144 cc->asidx_from_attrs = arm_asidx_from_attrs;
2145 cc->vmsd = &vmstate_arm_cpu;
2146 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2147 cc->write_elf64_note = arm_cpu_write_elf64_note;
2148 cc->write_elf32_note = arm_cpu_write_elf32_note;
2149 #endif
2150 cc->gdb_num_core_regs = 26;
2151 cc->gdb_core_xml_file = "arm-core.xml";
2152 cc->gdb_arch_name = arm_gdb_arch_name;
2153 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2154 cc->gdb_stop_before_watchpoint = true;
2155 cc->debug_excp_handler = arm_debug_excp_handler;
2156 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2157 #if !defined(CONFIG_USER_ONLY)
2158 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2159 #endif
2161 cc->disas_set_info = arm_disas_set_info;
2162 #ifdef CONFIG_TCG
2163 cc->tcg_initialize = arm_translate_init;
2164 #endif
2167 #ifdef CONFIG_KVM
2168 static void arm_host_initfn(Object *obj)
2170 ARMCPU *cpu = ARM_CPU(obj);
2172 kvm_arm_set_cpu_features_from_host(cpu);
2173 arm_cpu_post_init(obj);
2176 static const TypeInfo host_arm_cpu_type_info = {
2177 .name = TYPE_ARM_HOST_CPU,
2178 #ifdef TARGET_AARCH64
2179 .parent = TYPE_AARCH64_CPU,
2180 #else
2181 .parent = TYPE_ARM_CPU,
2182 #endif
2183 .instance_init = arm_host_initfn,
2186 #endif
2188 static void arm_cpu_instance_init(Object *obj)
2190 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2192 acc->info->initfn(obj);
2193 arm_cpu_post_init(obj);
2196 static void cpu_register_class_init(ObjectClass *oc, void *data)
2198 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2200 acc->info = data;
2203 static void cpu_register(const ARMCPUInfo *info)
2205 TypeInfo type_info = {
2206 .parent = TYPE_ARM_CPU,
2207 .instance_size = sizeof(ARMCPU),
2208 .instance_init = arm_cpu_instance_init,
2209 .class_size = sizeof(ARMCPUClass),
2210 .class_init = info->class_init ?: cpu_register_class_init,
2211 .class_data = (void *)info,
2214 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2215 type_register(&type_info);
2216 g_free((void *)type_info.name);
2219 static const TypeInfo arm_cpu_type_info = {
2220 .name = TYPE_ARM_CPU,
2221 .parent = TYPE_CPU,
2222 .instance_size = sizeof(ARMCPU),
2223 .instance_init = arm_cpu_initfn,
2224 .instance_finalize = arm_cpu_finalizefn,
2225 .abstract = true,
2226 .class_size = sizeof(ARMCPUClass),
2227 .class_init = arm_cpu_class_init,
2230 static const TypeInfo idau_interface_type_info = {
2231 .name = TYPE_IDAU_INTERFACE,
2232 .parent = TYPE_INTERFACE,
2233 .class_size = sizeof(IDAUInterfaceClass),
2236 static void arm_cpu_register_types(void)
2238 const ARMCPUInfo *info = arm_cpus;
2240 type_register_static(&arm_cpu_type_info);
2241 type_register_static(&idau_interface_type_info);
2243 while (info->name) {
2244 cpu_register(info);
2245 info++;
2248 #ifdef CONFIG_KVM
2249 type_register_static(&host_arm_cpu_type_info);
2250 #endif
2253 type_init(arm_cpu_register_types)