2 * ARM AdvSIMD / SVE Vector Operations
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x) ((x) ^ 7)
31 #define H2(x) ((x) ^ 3)
32 #define H4(x) ((x) ^ 1)
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t inl_qrdmlah_s16(int16_t src1
, int16_t src2
,
41 int16_t src3
, uint32_t *sat
)
44 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
45 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
47 int32_t ret
= (int32_t)src1
* src2
;
48 ret
= ((int32_t)src3
<< 15) + ret
+ (1 << 14);
50 if (ret
!= (int16_t)ret
) {
52 ret
= (ret
< 0 ? -0x8000 : 0x7fff);
57 uint32_t HELPER(neon_qrdmlah_s16
)(CPUARMState
*env
, uint32_t src1
,
58 uint32_t src2
, uint32_t src3
)
60 uint32_t *sat
= &env
->vfp
.qc
[0];
61 uint16_t e1
= inl_qrdmlah_s16(src1
, src2
, src3
, sat
);
62 uint16_t e2
= inl_qrdmlah_s16(src1
>> 16, src2
>> 16, src3
>> 16, sat
);
63 return deposit32(e1
, 16, 16, e2
);
66 void HELPER(gvec_qrdmlah_s16
)(void *vd
, void *vn
, void *vm
,
67 void *vq
, uint32_t desc
)
69 uintptr_t opr_sz
= simd_oprsz(desc
);
75 for (i
= 0; i
< opr_sz
/ 2; ++i
) {
76 d
[i
] = inl_qrdmlah_s16(n
[i
], m
[i
], d
[i
], vq
);
78 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
81 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
82 static int16_t inl_qrdmlsh_s16(int16_t src1
, int16_t src2
,
83 int16_t src3
, uint32_t *sat
)
85 /* Similarly, using subtraction:
86 * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
87 * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
89 int32_t ret
= (int32_t)src1
* src2
;
90 ret
= ((int32_t)src3
<< 15) - ret
+ (1 << 14);
92 if (ret
!= (int16_t)ret
) {
94 ret
= (ret
< 0 ? -0x8000 : 0x7fff);
99 uint32_t HELPER(neon_qrdmlsh_s16
)(CPUARMState
*env
, uint32_t src1
,
100 uint32_t src2
, uint32_t src3
)
102 uint32_t *sat
= &env
->vfp
.qc
[0];
103 uint16_t e1
= inl_qrdmlsh_s16(src1
, src2
, src3
, sat
);
104 uint16_t e2
= inl_qrdmlsh_s16(src1
>> 16, src2
>> 16, src3
>> 16, sat
);
105 return deposit32(e1
, 16, 16, e2
);
108 void HELPER(gvec_qrdmlsh_s16
)(void *vd
, void *vn
, void *vm
,
109 void *vq
, uint32_t desc
)
111 uintptr_t opr_sz
= simd_oprsz(desc
);
117 for (i
= 0; i
< opr_sz
/ 2; ++i
) {
118 d
[i
] = inl_qrdmlsh_s16(n
[i
], m
[i
], d
[i
], vq
);
120 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
123 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
124 static int32_t inl_qrdmlah_s32(int32_t src1
, int32_t src2
,
125 int32_t src3
, uint32_t *sat
)
127 /* Simplify similarly to int_qrdmlah_s16 above. */
128 int64_t ret
= (int64_t)src1
* src2
;
129 ret
= ((int64_t)src3
<< 31) + ret
+ (1 << 30);
131 if (ret
!= (int32_t)ret
) {
133 ret
= (ret
< 0 ? INT32_MIN
: INT32_MAX
);
138 uint32_t HELPER(neon_qrdmlah_s32
)(CPUARMState
*env
, int32_t src1
,
139 int32_t src2
, int32_t src3
)
141 uint32_t *sat
= &env
->vfp
.qc
[0];
142 return inl_qrdmlah_s32(src1
, src2
, src3
, sat
);
145 void HELPER(gvec_qrdmlah_s32
)(void *vd
, void *vn
, void *vm
,
146 void *vq
, uint32_t desc
)
148 uintptr_t opr_sz
= simd_oprsz(desc
);
154 for (i
= 0; i
< opr_sz
/ 4; ++i
) {
155 d
[i
] = inl_qrdmlah_s32(n
[i
], m
[i
], d
[i
], vq
);
157 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
160 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
161 static int32_t inl_qrdmlsh_s32(int32_t src1
, int32_t src2
,
162 int32_t src3
, uint32_t *sat
)
164 /* Simplify similarly to int_qrdmlsh_s16 above. */
165 int64_t ret
= (int64_t)src1
* src2
;
166 ret
= ((int64_t)src3
<< 31) - ret
+ (1 << 30);
168 if (ret
!= (int32_t)ret
) {
170 ret
= (ret
< 0 ? INT32_MIN
: INT32_MAX
);
175 uint32_t HELPER(neon_qrdmlsh_s32
)(CPUARMState
*env
, int32_t src1
,
176 int32_t src2
, int32_t src3
)
178 uint32_t *sat
= &env
->vfp
.qc
[0];
179 return inl_qrdmlsh_s32(src1
, src2
, src3
, sat
);
182 void HELPER(gvec_qrdmlsh_s32
)(void *vd
, void *vn
, void *vm
,
183 void *vq
, uint32_t desc
)
185 uintptr_t opr_sz
= simd_oprsz(desc
);
191 for (i
= 0; i
< opr_sz
/ 4; ++i
) {
192 d
[i
] = inl_qrdmlsh_s32(n
[i
], m
[i
], d
[i
], vq
);
194 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
197 /* Integer 8 and 16-bit dot-product.
199 * Note that for the loops herein, host endianness does not matter
200 * with respect to the ordering of data within the 64-bit lanes.
201 * All elements are treated equally, no matter where they are.
204 void HELPER(gvec_sdot_b
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
206 intptr_t i
, opr_sz
= simd_oprsz(desc
);
208 int8_t *n
= vn
, *m
= vm
;
210 for (i
= 0; i
< opr_sz
/ 4; ++i
) {
211 d
[i
] += n
[i
* 4 + 0] * m
[i
* 4 + 0]
212 + n
[i
* 4 + 1] * m
[i
* 4 + 1]
213 + n
[i
* 4 + 2] * m
[i
* 4 + 2]
214 + n
[i
* 4 + 3] * m
[i
* 4 + 3];
216 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
219 void HELPER(gvec_udot_b
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
221 intptr_t i
, opr_sz
= simd_oprsz(desc
);
223 uint8_t *n
= vn
, *m
= vm
;
225 for (i
= 0; i
< opr_sz
/ 4; ++i
) {
226 d
[i
] += n
[i
* 4 + 0] * m
[i
* 4 + 0]
227 + n
[i
* 4 + 1] * m
[i
* 4 + 1]
228 + n
[i
* 4 + 2] * m
[i
* 4 + 2]
229 + n
[i
* 4 + 3] * m
[i
* 4 + 3];
231 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
234 void HELPER(gvec_sdot_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
236 intptr_t i
, opr_sz
= simd_oprsz(desc
);
238 int16_t *n
= vn
, *m
= vm
;
240 for (i
= 0; i
< opr_sz
/ 8; ++i
) {
241 d
[i
] += (int64_t)n
[i
* 4 + 0] * m
[i
* 4 + 0]
242 + (int64_t)n
[i
* 4 + 1] * m
[i
* 4 + 1]
243 + (int64_t)n
[i
* 4 + 2] * m
[i
* 4 + 2]
244 + (int64_t)n
[i
* 4 + 3] * m
[i
* 4 + 3];
246 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
249 void HELPER(gvec_udot_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
251 intptr_t i
, opr_sz
= simd_oprsz(desc
);
253 uint16_t *n
= vn
, *m
= vm
;
255 for (i
= 0; i
< opr_sz
/ 8; ++i
) {
256 d
[i
] += (uint64_t)n
[i
* 4 + 0] * m
[i
* 4 + 0]
257 + (uint64_t)n
[i
* 4 + 1] * m
[i
* 4 + 1]
258 + (uint64_t)n
[i
* 4 + 2] * m
[i
* 4 + 2]
259 + (uint64_t)n
[i
* 4 + 3] * m
[i
* 4 + 3];
261 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
264 void HELPER(gvec_sdot_idx_b
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
266 intptr_t i
, segend
, opr_sz
= simd_oprsz(desc
), opr_sz_4
= opr_sz
/ 4;
267 intptr_t index
= simd_data(desc
);
270 int8_t *m_indexed
= (int8_t *)vm
+ index
* 4;
272 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
273 * Otherwise opr_sz is a multiple of 16.
275 segend
= MIN(4, opr_sz_4
);
278 int8_t m0
= m_indexed
[i
* 4 + 0];
279 int8_t m1
= m_indexed
[i
* 4 + 1];
280 int8_t m2
= m_indexed
[i
* 4 + 2];
281 int8_t m3
= m_indexed
[i
* 4 + 3];
284 d
[i
] += n
[i
* 4 + 0] * m0
288 } while (++i
< segend
);
290 } while (i
< opr_sz_4
);
292 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
295 void HELPER(gvec_udot_idx_b
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
297 intptr_t i
, segend
, opr_sz
= simd_oprsz(desc
), opr_sz_4
= opr_sz
/ 4;
298 intptr_t index
= simd_data(desc
);
301 uint8_t *m_indexed
= (uint8_t *)vm
+ index
* 4;
303 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
304 * Otherwise opr_sz is a multiple of 16.
306 segend
= MIN(4, opr_sz_4
);
309 uint8_t m0
= m_indexed
[i
* 4 + 0];
310 uint8_t m1
= m_indexed
[i
* 4 + 1];
311 uint8_t m2
= m_indexed
[i
* 4 + 2];
312 uint8_t m3
= m_indexed
[i
* 4 + 3];
315 d
[i
] += n
[i
* 4 + 0] * m0
319 } while (++i
< segend
);
321 } while (i
< opr_sz_4
);
323 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
326 void HELPER(gvec_sdot_idx_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
328 intptr_t i
, opr_sz
= simd_oprsz(desc
), opr_sz_8
= opr_sz
/ 8;
329 intptr_t index
= simd_data(desc
);
332 int16_t *m_indexed
= (int16_t *)vm
+ index
* 4;
334 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
335 * Process the entire segment all at once, writing back the results
336 * only after we've consumed all of the inputs.
338 for (i
= 0; i
< opr_sz_8
; i
+= 2) {
341 d0
= n
[i
* 4 + 0] * (int64_t)m_indexed
[i
* 4 + 0];
342 d0
+= n
[i
* 4 + 1] * (int64_t)m_indexed
[i
* 4 + 1];
343 d0
+= n
[i
* 4 + 2] * (int64_t)m_indexed
[i
* 4 + 2];
344 d0
+= n
[i
* 4 + 3] * (int64_t)m_indexed
[i
* 4 + 3];
345 d1
= n
[i
* 4 + 4] * (int64_t)m_indexed
[i
* 4 + 0];
346 d1
+= n
[i
* 4 + 5] * (int64_t)m_indexed
[i
* 4 + 1];
347 d1
+= n
[i
* 4 + 6] * (int64_t)m_indexed
[i
* 4 + 2];
348 d1
+= n
[i
* 4 + 7] * (int64_t)m_indexed
[i
* 4 + 3];
354 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
357 void HELPER(gvec_udot_idx_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
359 intptr_t i
, opr_sz
= simd_oprsz(desc
), opr_sz_8
= opr_sz
/ 8;
360 intptr_t index
= simd_data(desc
);
363 uint16_t *m_indexed
= (uint16_t *)vm
+ index
* 4;
365 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
366 * Process the entire segment all at once, writing back the results
367 * only after we've consumed all of the inputs.
369 for (i
= 0; i
< opr_sz_8
; i
+= 2) {
372 d0
= n
[i
* 4 + 0] * (uint64_t)m_indexed
[i
* 4 + 0];
373 d0
+= n
[i
* 4 + 1] * (uint64_t)m_indexed
[i
* 4 + 1];
374 d0
+= n
[i
* 4 + 2] * (uint64_t)m_indexed
[i
* 4 + 2];
375 d0
+= n
[i
* 4 + 3] * (uint64_t)m_indexed
[i
* 4 + 3];
376 d1
= n
[i
* 4 + 4] * (uint64_t)m_indexed
[i
* 4 + 0];
377 d1
+= n
[i
* 4 + 5] * (uint64_t)m_indexed
[i
* 4 + 1];
378 d1
+= n
[i
* 4 + 6] * (uint64_t)m_indexed
[i
* 4 + 2];
379 d1
+= n
[i
* 4 + 7] * (uint64_t)m_indexed
[i
* 4 + 3];
385 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
388 void HELPER(gvec_fcaddh
)(void *vd
, void *vn
, void *vm
,
389 void *vfpst
, uint32_t desc
)
391 uintptr_t opr_sz
= simd_oprsz(desc
);
395 float_status
*fpst
= vfpst
;
396 uint32_t neg_real
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
397 uint32_t neg_imag
= neg_real
^ 1;
400 /* Shift boolean to the sign bit so we can xor to negate. */
404 for (i
= 0; i
< opr_sz
/ 2; i
+= 2) {
405 float16 e0
= n
[H2(i
)];
406 float16 e1
= m
[H2(i
+ 1)] ^ neg_imag
;
407 float16 e2
= n
[H2(i
+ 1)];
408 float16 e3
= m
[H2(i
)] ^ neg_real
;
410 d
[H2(i
)] = float16_add(e0
, e1
, fpst
);
411 d
[H2(i
+ 1)] = float16_add(e2
, e3
, fpst
);
413 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
416 void HELPER(gvec_fcadds
)(void *vd
, void *vn
, void *vm
,
417 void *vfpst
, uint32_t desc
)
419 uintptr_t opr_sz
= simd_oprsz(desc
);
423 float_status
*fpst
= vfpst
;
424 uint32_t neg_real
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
425 uint32_t neg_imag
= neg_real
^ 1;
428 /* Shift boolean to the sign bit so we can xor to negate. */
432 for (i
= 0; i
< opr_sz
/ 4; i
+= 2) {
433 float32 e0
= n
[H4(i
)];
434 float32 e1
= m
[H4(i
+ 1)] ^ neg_imag
;
435 float32 e2
= n
[H4(i
+ 1)];
436 float32 e3
= m
[H4(i
)] ^ neg_real
;
438 d
[H4(i
)] = float32_add(e0
, e1
, fpst
);
439 d
[H4(i
+ 1)] = float32_add(e2
, e3
, fpst
);
441 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
444 void HELPER(gvec_fcaddd
)(void *vd
, void *vn
, void *vm
,
445 void *vfpst
, uint32_t desc
)
447 uintptr_t opr_sz
= simd_oprsz(desc
);
451 float_status
*fpst
= vfpst
;
452 uint64_t neg_real
= extract64(desc
, SIMD_DATA_SHIFT
, 1);
453 uint64_t neg_imag
= neg_real
^ 1;
456 /* Shift boolean to the sign bit so we can xor to negate. */
460 for (i
= 0; i
< opr_sz
/ 8; i
+= 2) {
462 float64 e1
= m
[i
+ 1] ^ neg_imag
;
463 float64 e2
= n
[i
+ 1];
464 float64 e3
= m
[i
] ^ neg_real
;
466 d
[i
] = float64_add(e0
, e1
, fpst
);
467 d
[i
+ 1] = float64_add(e2
, e3
, fpst
);
469 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
472 void HELPER(gvec_fcmlah
)(void *vd
, void *vn
, void *vm
,
473 void *vfpst
, uint32_t desc
)
475 uintptr_t opr_sz
= simd_oprsz(desc
);
479 float_status
*fpst
= vfpst
;
480 intptr_t flip
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
481 uint32_t neg_imag
= extract32(desc
, SIMD_DATA_SHIFT
+ 1, 1);
482 uint32_t neg_real
= flip
^ neg_imag
;
485 /* Shift boolean to the sign bit so we can xor to negate. */
489 for (i
= 0; i
< opr_sz
/ 2; i
+= 2) {
490 float16 e2
= n
[H2(i
+ flip
)];
491 float16 e1
= m
[H2(i
+ flip
)] ^ neg_real
;
493 float16 e3
= m
[H2(i
+ 1 - flip
)] ^ neg_imag
;
495 d
[H2(i
)] = float16_muladd(e2
, e1
, d
[H2(i
)], 0, fpst
);
496 d
[H2(i
+ 1)] = float16_muladd(e4
, e3
, d
[H2(i
+ 1)], 0, fpst
);
498 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
501 void HELPER(gvec_fcmlah_idx
)(void *vd
, void *vn
, void *vm
,
502 void *vfpst
, uint32_t desc
)
504 uintptr_t opr_sz
= simd_oprsz(desc
);
508 float_status
*fpst
= vfpst
;
509 intptr_t flip
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
510 uint32_t neg_imag
= extract32(desc
, SIMD_DATA_SHIFT
+ 1, 1);
511 intptr_t index
= extract32(desc
, SIMD_DATA_SHIFT
+ 2, 2);
512 uint32_t neg_real
= flip
^ neg_imag
;
513 intptr_t elements
= opr_sz
/ sizeof(float16
);
514 intptr_t eltspersegment
= 16 / sizeof(float16
);
517 /* Shift boolean to the sign bit so we can xor to negate. */
521 for (i
= 0; i
< elements
; i
+= eltspersegment
) {
522 float16 mr
= m
[H2(i
+ 2 * index
+ 0)];
523 float16 mi
= m
[H2(i
+ 2 * index
+ 1)];
524 float16 e1
= neg_real
^ (flip
? mi
: mr
);
525 float16 e3
= neg_imag
^ (flip
? mr
: mi
);
527 for (j
= i
; j
< i
+ eltspersegment
; j
+= 2) {
528 float16 e2
= n
[H2(j
+ flip
)];
531 d
[H2(j
)] = float16_muladd(e2
, e1
, d
[H2(j
)], 0, fpst
);
532 d
[H2(j
+ 1)] = float16_muladd(e4
, e3
, d
[H2(j
+ 1)], 0, fpst
);
535 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
538 void HELPER(gvec_fcmlas
)(void *vd
, void *vn
, void *vm
,
539 void *vfpst
, uint32_t desc
)
541 uintptr_t opr_sz
= simd_oprsz(desc
);
545 float_status
*fpst
= vfpst
;
546 intptr_t flip
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
547 uint32_t neg_imag
= extract32(desc
, SIMD_DATA_SHIFT
+ 1, 1);
548 uint32_t neg_real
= flip
^ neg_imag
;
551 /* Shift boolean to the sign bit so we can xor to negate. */
555 for (i
= 0; i
< opr_sz
/ 4; i
+= 2) {
556 float32 e2
= n
[H4(i
+ flip
)];
557 float32 e1
= m
[H4(i
+ flip
)] ^ neg_real
;
559 float32 e3
= m
[H4(i
+ 1 - flip
)] ^ neg_imag
;
561 d
[H4(i
)] = float32_muladd(e2
, e1
, d
[H4(i
)], 0, fpst
);
562 d
[H4(i
+ 1)] = float32_muladd(e4
, e3
, d
[H4(i
+ 1)], 0, fpst
);
564 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
567 void HELPER(gvec_fcmlas_idx
)(void *vd
, void *vn
, void *vm
,
568 void *vfpst
, uint32_t desc
)
570 uintptr_t opr_sz
= simd_oprsz(desc
);
574 float_status
*fpst
= vfpst
;
575 intptr_t flip
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
576 uint32_t neg_imag
= extract32(desc
, SIMD_DATA_SHIFT
+ 1, 1);
577 intptr_t index
= extract32(desc
, SIMD_DATA_SHIFT
+ 2, 2);
578 uint32_t neg_real
= flip
^ neg_imag
;
579 intptr_t elements
= opr_sz
/ sizeof(float32
);
580 intptr_t eltspersegment
= 16 / sizeof(float32
);
583 /* Shift boolean to the sign bit so we can xor to negate. */
587 for (i
= 0; i
< elements
; i
+= eltspersegment
) {
588 float32 mr
= m
[H4(i
+ 2 * index
+ 0)];
589 float32 mi
= m
[H4(i
+ 2 * index
+ 1)];
590 float32 e1
= neg_real
^ (flip
? mi
: mr
);
591 float32 e3
= neg_imag
^ (flip
? mr
: mi
);
593 for (j
= i
; j
< i
+ eltspersegment
; j
+= 2) {
594 float32 e2
= n
[H4(j
+ flip
)];
597 d
[H4(j
)] = float32_muladd(e2
, e1
, d
[H4(j
)], 0, fpst
);
598 d
[H4(j
+ 1)] = float32_muladd(e4
, e3
, d
[H4(j
+ 1)], 0, fpst
);
601 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
604 void HELPER(gvec_fcmlad
)(void *vd
, void *vn
, void *vm
,
605 void *vfpst
, uint32_t desc
)
607 uintptr_t opr_sz
= simd_oprsz(desc
);
611 float_status
*fpst
= vfpst
;
612 intptr_t flip
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
613 uint64_t neg_imag
= extract32(desc
, SIMD_DATA_SHIFT
+ 1, 1);
614 uint64_t neg_real
= flip
^ neg_imag
;
617 /* Shift boolean to the sign bit so we can xor to negate. */
621 for (i
= 0; i
< opr_sz
/ 8; i
+= 2) {
622 float64 e2
= n
[i
+ flip
];
623 float64 e1
= m
[i
+ flip
] ^ neg_real
;
625 float64 e3
= m
[i
+ 1 - flip
] ^ neg_imag
;
627 d
[i
] = float64_muladd(e2
, e1
, d
[i
], 0, fpst
);
628 d
[i
+ 1] = float64_muladd(e4
, e3
, d
[i
+ 1], 0, fpst
);
630 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
633 #define DO_2OP(NAME, FUNC, TYPE) \
634 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
636 intptr_t i, oprsz = simd_oprsz(desc); \
637 TYPE *d = vd, *n = vn; \
638 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
639 d[i] = FUNC(n[i], stat); \
641 clear_tail(d, oprsz, simd_maxsz(desc)); \
644 DO_2OP(gvec_frecpe_h
, helper_recpe_f16
, float16
)
645 DO_2OP(gvec_frecpe_s
, helper_recpe_f32
, float32
)
646 DO_2OP(gvec_frecpe_d
, helper_recpe_f64
, float64
)
648 DO_2OP(gvec_frsqrte_h
, helper_rsqrte_f16
, float16
)
649 DO_2OP(gvec_frsqrte_s
, helper_rsqrte_f32
, float32
)
650 DO_2OP(gvec_frsqrte_d
, helper_rsqrte_f64
, float64
)
654 /* Floating-point trigonometric starting value.
655 * See the ARM ARM pseudocode function FPTrigSMul.
657 static float16
float16_ftsmul(float16 op1
, uint16_t op2
, float_status
*stat
)
659 float16 result
= float16_mul(op1
, op1
, stat
);
660 if (!float16_is_any_nan(result
)) {
661 result
= float16_set_sign(result
, op2
& 1);
666 static float32
float32_ftsmul(float32 op1
, uint32_t op2
, float_status
*stat
)
668 float32 result
= float32_mul(op1
, op1
, stat
);
669 if (!float32_is_any_nan(result
)) {
670 result
= float32_set_sign(result
, op2
& 1);
675 static float64
float64_ftsmul(float64 op1
, uint64_t op2
, float_status
*stat
)
677 float64 result
= float64_mul(op1
, op1
, stat
);
678 if (!float64_is_any_nan(result
)) {
679 result
= float64_set_sign(result
, op2
& 1);
684 static float32
float32_abd(float32 op1
, float32 op2
, float_status
*stat
)
686 return float32_abs(float32_sub(op1
, op2
, stat
));
689 #define DO_3OP(NAME, FUNC, TYPE) \
690 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
692 intptr_t i, oprsz = simd_oprsz(desc); \
693 TYPE *d = vd, *n = vn, *m = vm; \
694 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
695 d[i] = FUNC(n[i], m[i], stat); \
697 clear_tail(d, oprsz, simd_maxsz(desc)); \
700 DO_3OP(gvec_fadd_h
, float16_add
, float16
)
701 DO_3OP(gvec_fadd_s
, float32_add
, float32
)
702 DO_3OP(gvec_fadd_d
, float64_add
, float64
)
704 DO_3OP(gvec_fsub_h
, float16_sub
, float16
)
705 DO_3OP(gvec_fsub_s
, float32_sub
, float32
)
706 DO_3OP(gvec_fsub_d
, float64_sub
, float64
)
708 DO_3OP(gvec_fmul_h
, float16_mul
, float16
)
709 DO_3OP(gvec_fmul_s
, float32_mul
, float32
)
710 DO_3OP(gvec_fmul_d
, float64_mul
, float64
)
712 DO_3OP(gvec_ftsmul_h
, float16_ftsmul
, float16
)
713 DO_3OP(gvec_ftsmul_s
, float32_ftsmul
, float32
)
714 DO_3OP(gvec_ftsmul_d
, float64_ftsmul
, float64
)
716 DO_3OP(gvec_fabd_s
, float32_abd
, float32
)
718 #ifdef TARGET_AARCH64
720 DO_3OP(gvec_recps_h
, helper_recpsf_f16
, float16
)
721 DO_3OP(gvec_recps_s
, helper_recpsf_f32
, float32
)
722 DO_3OP(gvec_recps_d
, helper_recpsf_f64
, float64
)
724 DO_3OP(gvec_rsqrts_h
, helper_rsqrtsf_f16
, float16
)
725 DO_3OP(gvec_rsqrts_s
, helper_rsqrtsf_f32
, float32
)
726 DO_3OP(gvec_rsqrts_d
, helper_rsqrtsf_f64
, float64
)
731 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
732 * For AdvSIMD, there is of course only one such vector segment.
735 #define DO_MUL_IDX(NAME, TYPE, H) \
736 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
738 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
739 intptr_t idx = simd_data(desc); \
740 TYPE *d = vd, *n = vn, *m = vm; \
741 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
742 TYPE mm = m[H(i + idx)]; \
743 for (j = 0; j < segment; j++) { \
744 d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
747 clear_tail(d, oprsz, simd_maxsz(desc)); \
750 DO_MUL_IDX(gvec_fmul_idx_h
, float16
, H2
)
751 DO_MUL_IDX(gvec_fmul_idx_s
, float32
, H4
)
752 DO_MUL_IDX(gvec_fmul_idx_d
, float64
, )
756 #define DO_FMLA_IDX(NAME, TYPE, H) \
757 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
758 void *stat, uint32_t desc) \
760 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
761 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
762 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
763 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
764 op1_neg <<= (8 * sizeof(TYPE) - 1); \
765 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
766 TYPE mm = m[H(i + idx)]; \
767 for (j = 0; j < segment; j++) { \
768 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
769 mm, a[i + j], 0, stat); \
772 clear_tail(d, oprsz, simd_maxsz(desc)); \
775 DO_FMLA_IDX(gvec_fmla_idx_h
, float16
, H2
)
776 DO_FMLA_IDX(gvec_fmla_idx_s
, float32
, H4
)
777 DO_FMLA_IDX(gvec_fmla_idx_d
, float64
, )
781 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
782 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
784 intptr_t i, oprsz = simd_oprsz(desc); \
785 TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
787 for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
788 WTYPE dd = (WTYPE)n[i] OP m[i]; \
792 } else if (dd > MAX) { \
802 clear_tail(d, oprsz, simd_maxsz(desc)); \
805 DO_SAT(gvec_uqadd_b
, int, uint8_t, uint8_t, +, 0, UINT8_MAX
)
806 DO_SAT(gvec_uqadd_h
, int, uint16_t, uint16_t, +, 0, UINT16_MAX
)
807 DO_SAT(gvec_uqadd_s
, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX
)
809 DO_SAT(gvec_sqadd_b
, int, int8_t, int8_t, +, INT8_MIN
, INT8_MAX
)
810 DO_SAT(gvec_sqadd_h
, int, int16_t, int16_t, +, INT16_MIN
, INT16_MAX
)
811 DO_SAT(gvec_sqadd_s
, int64_t, int32_t, int32_t, +, INT32_MIN
, INT32_MAX
)
813 DO_SAT(gvec_uqsub_b
, int, uint8_t, uint8_t, -, 0, UINT8_MAX
)
814 DO_SAT(gvec_uqsub_h
, int, uint16_t, uint16_t, -, 0, UINT16_MAX
)
815 DO_SAT(gvec_uqsub_s
, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX
)
817 DO_SAT(gvec_sqsub_b
, int, int8_t, int8_t, -, INT8_MIN
, INT8_MAX
)
818 DO_SAT(gvec_sqsub_h
, int, int16_t, int16_t, -, INT16_MIN
, INT16_MAX
)
819 DO_SAT(gvec_sqsub_s
, int64_t, int32_t, int32_t, -, INT32_MIN
, INT32_MAX
)
823 void HELPER(gvec_uqadd_d
)(void *vd
, void *vq
, void *vn
,
824 void *vm
, uint32_t desc
)
826 intptr_t i
, oprsz
= simd_oprsz(desc
);
827 uint64_t *d
= vd
, *n
= vn
, *m
= vm
;
830 for (i
= 0; i
< oprsz
/ 8; i
++) {
831 uint64_t nn
= n
[i
], mm
= m
[i
], dd
= nn
+ mm
;
842 clear_tail(d
, oprsz
, simd_maxsz(desc
));
845 void HELPER(gvec_uqsub_d
)(void *vd
, void *vq
, void *vn
,
846 void *vm
, uint32_t desc
)
848 intptr_t i
, oprsz
= simd_oprsz(desc
);
849 uint64_t *d
= vd
, *n
= vn
, *m
= vm
;
852 for (i
= 0; i
< oprsz
/ 8; i
++) {
853 uint64_t nn
= n
[i
], mm
= m
[i
], dd
= nn
- mm
;
864 clear_tail(d
, oprsz
, simd_maxsz(desc
));
867 void HELPER(gvec_sqadd_d
)(void *vd
, void *vq
, void *vn
,
868 void *vm
, uint32_t desc
)
870 intptr_t i
, oprsz
= simd_oprsz(desc
);
871 int64_t *d
= vd
, *n
= vn
, *m
= vm
;
874 for (i
= 0; i
< oprsz
/ 8; i
++) {
875 int64_t nn
= n
[i
], mm
= m
[i
], dd
= nn
+ mm
;
876 if (((dd
^ nn
) & ~(nn
^ mm
)) & INT64_MIN
) {
877 dd
= (nn
>> 63) ^ ~INT64_MIN
;
886 clear_tail(d
, oprsz
, simd_maxsz(desc
));
889 void HELPER(gvec_sqsub_d
)(void *vd
, void *vq
, void *vn
,
890 void *vm
, uint32_t desc
)
892 intptr_t i
, oprsz
= simd_oprsz(desc
);
893 int64_t *d
= vd
, *n
= vn
, *m
= vm
;
896 for (i
= 0; i
< oprsz
/ 8; i
++) {
897 int64_t nn
= n
[i
], mm
= m
[i
], dd
= nn
- mm
;
898 if (((dd
^ nn
) & (nn
^ mm
)) & INT64_MIN
) {
899 dd
= (nn
>> 63) ^ ~INT64_MIN
;
908 clear_tail(d
, oprsz
, simd_maxsz(desc
));
912 #define DO_SRA(NAME, TYPE) \
913 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
915 intptr_t i, oprsz = simd_oprsz(desc); \
916 int shift = simd_data(desc); \
917 TYPE *d = vd, *n = vn; \
918 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
919 d[i] += n[i] >> shift; \
921 clear_tail(d, oprsz, simd_maxsz(desc)); \
924 DO_SRA(gvec_ssra_b
, int8_t)
925 DO_SRA(gvec_ssra_h
, int16_t)
926 DO_SRA(gvec_ssra_s
, int32_t)
927 DO_SRA(gvec_ssra_d
, int64_t)
929 DO_SRA(gvec_usra_b
, uint8_t)
930 DO_SRA(gvec_usra_h
, uint16_t)
931 DO_SRA(gvec_usra_s
, uint32_t)
932 DO_SRA(gvec_usra_d
, uint64_t)
936 #define DO_RSHR(NAME, TYPE) \
937 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
939 intptr_t i, oprsz = simd_oprsz(desc); \
940 int shift = simd_data(desc); \
941 TYPE *d = vd, *n = vn; \
942 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
943 TYPE tmp = n[i] >> (shift - 1); \
944 d[i] = (tmp >> 1) + (tmp & 1); \
946 clear_tail(d, oprsz, simd_maxsz(desc)); \
949 DO_RSHR(gvec_srshr_b
, int8_t)
950 DO_RSHR(gvec_srshr_h
, int16_t)
951 DO_RSHR(gvec_srshr_s
, int32_t)
952 DO_RSHR(gvec_srshr_d
, int64_t)
954 DO_RSHR(gvec_urshr_b
, uint8_t)
955 DO_RSHR(gvec_urshr_h
, uint16_t)
956 DO_RSHR(gvec_urshr_s
, uint32_t)
957 DO_RSHR(gvec_urshr_d
, uint64_t)
961 #define DO_RSRA(NAME, TYPE) \
962 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
964 intptr_t i, oprsz = simd_oprsz(desc); \
965 int shift = simd_data(desc); \
966 TYPE *d = vd, *n = vn; \
967 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
968 TYPE tmp = n[i] >> (shift - 1); \
969 d[i] += (tmp >> 1) + (tmp & 1); \
971 clear_tail(d, oprsz, simd_maxsz(desc)); \
974 DO_RSRA(gvec_srsra_b
, int8_t)
975 DO_RSRA(gvec_srsra_h
, int16_t)
976 DO_RSRA(gvec_srsra_s
, int32_t)
977 DO_RSRA(gvec_srsra_d
, int64_t)
979 DO_RSRA(gvec_ursra_b
, uint8_t)
980 DO_RSRA(gvec_ursra_h
, uint16_t)
981 DO_RSRA(gvec_ursra_s
, uint32_t)
982 DO_RSRA(gvec_ursra_d
, uint64_t)
986 #define DO_SRI(NAME, TYPE) \
987 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
989 intptr_t i, oprsz = simd_oprsz(desc); \
990 int shift = simd_data(desc); \
991 TYPE *d = vd, *n = vn; \
992 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
993 d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
995 clear_tail(d, oprsz, simd_maxsz(desc)); \
998 DO_SRI(gvec_sri_b
, uint8_t)
999 DO_SRI(gvec_sri_h
, uint16_t)
1000 DO_SRI(gvec_sri_s
, uint32_t)
1001 DO_SRI(gvec_sri_d
, uint64_t)
1005 #define DO_SLI(NAME, TYPE) \
1006 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1008 intptr_t i, oprsz = simd_oprsz(desc); \
1009 int shift = simd_data(desc); \
1010 TYPE *d = vd, *n = vn; \
1011 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1012 d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1014 clear_tail(d, oprsz, simd_maxsz(desc)); \
1017 DO_SLI(gvec_sli_b
, uint8_t)
1018 DO_SLI(gvec_sli_h
, uint16_t)
1019 DO_SLI(gvec_sli_s
, uint32_t)
1020 DO_SLI(gvec_sli_d
, uint64_t)
1025 * Convert float16 to float32, raising no exceptions and
1026 * preserving exceptional values, including SNaN.
1027 * This is effectively an unpack+repack operation.
1029 static float32
float16_to_float32_by_bits(uint32_t f16
, bool fz16
)
1031 const int f16_bias
= 15;
1032 const int f32_bias
= 127;
1033 uint32_t sign
= extract32(f16
, 15, 1);
1034 uint32_t exp
= extract32(f16
, 10, 5);
1035 uint32_t frac
= extract32(f16
, 0, 10);
1040 } else if (exp
== 0) {
1041 /* Zero or denormal. */
1047 * Denormal; these are all normal float32.
1048 * Shift the fraction so that the msb is at bit 11,
1049 * then remove bit 11 as the implicit bit of the
1050 * normalized float32. Note that we still go through
1051 * the shift for normal numbers below, to put the
1052 * float32 fraction at the right place.
1054 int shift
= clz32(frac
) - 21;
1055 frac
= (frac
<< shift
) & 0x3ff;
1056 exp
= f32_bias
- f16_bias
- shift
+ 1;
1060 /* Normal number; adjust the bias. */
1061 exp
+= f32_bias
- f16_bias
;
1067 return sign
| exp
| frac
;
1070 static uint64_t load4_f16(uint64_t *ptr
, int is_q
, int is_2
)
1073 * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1074 * Load the 2nd qword iff is_q & is_2.
1075 * Shift to the 2nd dword iff !is_q & is_2.
1076 * For !is_q & !is_2, the upper bits of the result are garbage.
1078 return ptr
[is_q
& is_2
] >> ((is_2
& ~is_q
) << 5);
1082 * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1083 * as there is not yet SVE versions that might use blocking.
1086 static void do_fmlal(float32
*d
, void *vn
, void *vm
, float_status
*fpst
,
1087 uint32_t desc
, bool fz16
)
1089 intptr_t i
, oprsz
= simd_oprsz(desc
);
1090 int is_s
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
1091 int is_2
= extract32(desc
, SIMD_DATA_SHIFT
+ 1, 1);
1092 int is_q
= oprsz
== 16;
1095 /* Pre-load all of the f16 data, avoiding overlap issues. */
1096 n_4
= load4_f16(vn
, is_q
, is_2
);
1097 m_4
= load4_f16(vm
, is_q
, is_2
);
1099 /* Negate all inputs for FMLSL at once. */
1101 n_4
^= 0x8000800080008000ull
;
1104 for (i
= 0; i
< oprsz
/ 4; i
++) {
1105 float32 n_1
= float16_to_float32_by_bits(n_4
>> (i
* 16), fz16
);
1106 float32 m_1
= float16_to_float32_by_bits(m_4
>> (i
* 16), fz16
);
1107 d
[H4(i
)] = float32_muladd(n_1
, m_1
, d
[H4(i
)], 0, fpst
);
1109 clear_tail(d
, oprsz
, simd_maxsz(desc
));
1112 void HELPER(gvec_fmlal_a32
)(void *vd
, void *vn
, void *vm
,
1113 void *venv
, uint32_t desc
)
1115 CPUARMState
*env
= venv
;
1116 do_fmlal(vd
, vn
, vm
, &env
->vfp
.standard_fp_status
, desc
,
1117 get_flush_inputs_to_zero(&env
->vfp
.fp_status_f16
));
1120 void HELPER(gvec_fmlal_a64
)(void *vd
, void *vn
, void *vm
,
1121 void *venv
, uint32_t desc
)
1123 CPUARMState
*env
= venv
;
1124 do_fmlal(vd
, vn
, vm
, &env
->vfp
.fp_status
, desc
,
1125 get_flush_inputs_to_zero(&env
->vfp
.fp_status_f16
));
1128 static void do_fmlal_idx(float32
*d
, void *vn
, void *vm
, float_status
*fpst
,
1129 uint32_t desc
, bool fz16
)
1131 intptr_t i
, oprsz
= simd_oprsz(desc
);
1132 int is_s
= extract32(desc
, SIMD_DATA_SHIFT
, 1);
1133 int is_2
= extract32(desc
, SIMD_DATA_SHIFT
+ 1, 1);
1134 int index
= extract32(desc
, SIMD_DATA_SHIFT
+ 2, 3);
1135 int is_q
= oprsz
== 16;
1139 /* Pre-load all of the f16 data, avoiding overlap issues. */
1140 n_4
= load4_f16(vn
, is_q
, is_2
);
1142 /* Negate all inputs for FMLSL at once. */
1144 n_4
^= 0x8000800080008000ull
;
1147 m_1
= float16_to_float32_by_bits(((float16
*)vm
)[H2(index
)], fz16
);
1149 for (i
= 0; i
< oprsz
/ 4; i
++) {
1150 float32 n_1
= float16_to_float32_by_bits(n_4
>> (i
* 16), fz16
);
1151 d
[H4(i
)] = float32_muladd(n_1
, m_1
, d
[H4(i
)], 0, fpst
);
1153 clear_tail(d
, oprsz
, simd_maxsz(desc
));
1156 void HELPER(gvec_fmlal_idx_a32
)(void *vd
, void *vn
, void *vm
,
1157 void *venv
, uint32_t desc
)
1159 CPUARMState
*env
= venv
;
1160 do_fmlal_idx(vd
, vn
, vm
, &env
->vfp
.standard_fp_status
, desc
,
1161 get_flush_inputs_to_zero(&env
->vfp
.fp_status_f16
));
1164 void HELPER(gvec_fmlal_idx_a64
)(void *vd
, void *vn
, void *vm
,
1165 void *venv
, uint32_t desc
)
1167 CPUARMState
*env
= venv
;
1168 do_fmlal_idx(vd
, vn
, vm
, &env
->vfp
.fp_status
, desc
,
1169 get_flush_inputs_to_zero(&env
->vfp
.fp_status_f16
));
1172 void HELPER(gvec_sshl_b
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1174 intptr_t i
, opr_sz
= simd_oprsz(desc
);
1175 int8_t *d
= vd
, *n
= vn
, *m
= vm
;
1177 for (i
= 0; i
< opr_sz
; ++i
) {
1186 res
= nn
>> (mm
> -8 ? -mm
: 7);
1190 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
1193 void HELPER(gvec_sshl_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1195 intptr_t i
, opr_sz
= simd_oprsz(desc
);
1196 int16_t *d
= vd
, *n
= vn
, *m
= vm
;
1198 for (i
= 0; i
< opr_sz
/ 2; ++i
) {
1199 int8_t mm
= m
[i
]; /* only 8 bits of shift are significant */
1207 res
= nn
>> (mm
> -16 ? -mm
: 15);
1211 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
1214 void HELPER(gvec_ushl_b
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1216 intptr_t i
, opr_sz
= simd_oprsz(desc
);
1217 uint8_t *d
= vd
, *n
= vn
, *m
= vm
;
1219 for (i
= 0; i
< opr_sz
; ++i
) {
1234 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
1237 void HELPER(gvec_ushl_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1239 intptr_t i
, opr_sz
= simd_oprsz(desc
);
1240 uint16_t *d
= vd
, *n
= vn
, *m
= vm
;
1242 for (i
= 0; i
< opr_sz
/ 2; ++i
) {
1243 int8_t mm
= m
[i
]; /* only 8 bits of shift are significant */
1257 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
1261 * 8x8->8 polynomial multiply.
1263 * Polynomial multiplication is like integer multiplication except the
1264 * partial products are XORed, not added.
1266 * TODO: expose this as a generic vector operation, as it is a common
1267 * crypto building block.
1269 void HELPER(gvec_pmul_b
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1271 intptr_t i
, j
, opr_sz
= simd_oprsz(desc
);
1272 uint64_t *d
= vd
, *n
= vn
, *m
= vm
;
1274 for (i
= 0; i
< opr_sz
/ 8; ++i
) {
1279 for (j
= 0; j
< 8; ++j
) {
1280 uint64_t mask
= (nn
& 0x0101010101010101ull
) * 0xff;
1282 mm
= (mm
<< 1) & 0xfefefefefefefefeull
;
1287 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
1291 * 64x64->128 polynomial multiply.
1292 * Because of the lanes are not accessed in strict columns,
1293 * this probably cannot be turned into a generic helper.
1295 void HELPER(gvec_pmull_q
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1297 intptr_t i
, j
, opr_sz
= simd_oprsz(desc
);
1298 intptr_t hi
= simd_data(desc
);
1299 uint64_t *d
= vd
, *n
= vn
, *m
= vm
;
1301 for (i
= 0; i
< opr_sz
/ 8; i
+= 2) {
1302 uint64_t nn
= n
[i
+ hi
];
1303 uint64_t mm
= m
[i
+ hi
];
1307 /* Bit 0 can only influence the low 64-bit result. */
1312 for (j
= 1; j
< 64; ++j
) {
1313 uint64_t mask
= -((nn
>> j
) & 1);
1314 rlo
^= (mm
<< j
) & mask
;
1315 rhi
^= (mm
>> (64 - j
)) & mask
;
1320 clear_tail(d
, opr_sz
, simd_maxsz(desc
));
1324 * 8x8->16 polynomial multiply.
1326 * The byte inputs are expanded to (or extracted from) half-words.
1327 * Note that neon and sve2 get the inputs from different positions.
1328 * This allows 4 bytes to be processed in parallel with uint64_t.
1331 static uint64_t expand_byte_to_half(uint64_t x
)
1333 return (x
& 0x000000ff)
1334 | ((x
& 0x0000ff00) << 8)
1335 | ((x
& 0x00ff0000) << 16)
1336 | ((x
& 0xff000000) << 24);
1339 static uint64_t pmull_h(uint64_t op1
, uint64_t op2
)
1341 uint64_t result
= 0;
1344 for (i
= 0; i
< 8; ++i
) {
1345 uint64_t mask
= (op1
& 0x0001000100010001ull
) * 0xffff;
1346 result
^= op2
& mask
;
1353 void HELPER(neon_pmull_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1355 int hi
= simd_data(desc
);
1356 uint64_t *d
= vd
, *n
= vn
, *m
= vm
;
1357 uint64_t nn
= n
[hi
], mm
= m
[hi
];
1359 d
[0] = pmull_h(expand_byte_to_half(nn
), expand_byte_to_half(mm
));
1362 d
[1] = pmull_h(expand_byte_to_half(nn
), expand_byte_to_half(mm
));
1364 clear_tail(d
, 16, simd_maxsz(desc
));
1367 #ifdef TARGET_AARCH64
1368 void HELPER(sve2_pmull_h
)(void *vd
, void *vn
, void *vm
, uint32_t desc
)
1370 int shift
= simd_data(desc
) * 8;
1371 intptr_t i
, opr_sz
= simd_oprsz(desc
);
1372 uint64_t *d
= vd
, *n
= vn
, *m
= vm
;
1374 for (i
= 0; i
< opr_sz
/ 8; ++i
) {
1375 uint64_t nn
= (n
[i
] >> shift
) & 0x00ff00ff00ff00ffull
;
1376 uint64_t mm
= (m
[i
] >> shift
) & 0x00ff00ff00ff00ffull
;
1378 d
[i
] = pmull_h(nn
, mm
);
1383 #define DO_CMP0(NAME, TYPE, OP) \
1384 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1386 intptr_t i, opr_sz = simd_oprsz(desc); \
1387 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
1388 TYPE nn = *(TYPE *)(vn + i); \
1389 *(TYPE *)(vd + i) = -(nn OP 0); \
1391 clear_tail(vd, opr_sz, simd_maxsz(desc)); \
1394 DO_CMP0(gvec_ceq0_b
, int8_t, ==)
1395 DO_CMP0(gvec_clt0_b
, int8_t, <)
1396 DO_CMP0(gvec_cle0_b
, int8_t, <=)
1397 DO_CMP0(gvec_cgt0_b
, int8_t, >)
1398 DO_CMP0(gvec_cge0_b
, int8_t, >=)
1400 DO_CMP0(gvec_ceq0_h
, int16_t, ==)
1401 DO_CMP0(gvec_clt0_h
, int16_t, <)
1402 DO_CMP0(gvec_cle0_h
, int16_t, <=)
1403 DO_CMP0(gvec_cgt0_h
, int16_t, >)
1404 DO_CMP0(gvec_cge0_h
, int16_t, >=)
1408 #define DO_ABD(NAME, TYPE) \
1409 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1411 intptr_t i, opr_sz = simd_oprsz(desc); \
1412 TYPE *d = vd, *n = vn, *m = vm; \
1414 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1415 d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1417 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1420 DO_ABD(gvec_sabd_b
, int8_t)
1421 DO_ABD(gvec_sabd_h
, int16_t)
1422 DO_ABD(gvec_sabd_s
, int32_t)
1423 DO_ABD(gvec_sabd_d
, int64_t)
1425 DO_ABD(gvec_uabd_b
, uint8_t)
1426 DO_ABD(gvec_uabd_h
, uint16_t)
1427 DO_ABD(gvec_uabd_s
, uint32_t)
1428 DO_ABD(gvec_uabd_d
, uint64_t)
1432 #define DO_ABA(NAME, TYPE) \
1433 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1435 intptr_t i, opr_sz = simd_oprsz(desc); \
1436 TYPE *d = vd, *n = vn, *m = vm; \
1438 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1439 d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1441 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1444 DO_ABA(gvec_saba_b
, int8_t)
1445 DO_ABA(gvec_saba_h
, int16_t)
1446 DO_ABA(gvec_saba_s
, int32_t)
1447 DO_ABA(gvec_saba_d
, int64_t)
1449 DO_ABA(gvec_uaba_b
, uint8_t)
1450 DO_ABA(gvec_uaba_h
, uint16_t)
1451 DO_ABA(gvec_uaba_s
, uint32_t)
1452 DO_ABA(gvec_uaba_d
, uint64_t)