4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
33 #include "exec/cpu_ldst.h"
36 static void v7m_msr_xpsr(CPUARMState
*env
, uint32_t mask
,
37 uint32_t reg
, uint32_t val
)
39 /* Only APSR is actually writable */
41 uint32_t apsrmask
= 0;
44 apsrmask
|= XPSR_NZCV
| XPSR_Q
;
46 if ((mask
& 4) && arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
49 xpsr_write(env
, val
, apsrmask
);
53 static uint32_t v7m_mrs_xpsr(CPUARMState
*env
, uint32_t reg
, unsigned el
)
57 if ((reg
& 1) && el
) {
58 mask
|= XPSR_EXCP
; /* IPSR (unpriv. reads as zero) */
61 mask
|= XPSR_NZCV
| XPSR_Q
; /* APSR */
62 if (arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
66 /* EPSR reads as zero */
67 return xpsr_read(env
) & mask
;
70 static uint32_t v7m_mrs_control(CPUARMState
*env
, uint32_t secure
)
72 uint32_t value
= env
->v7m
.control
[secure
];
75 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
76 value
|= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
;
81 #ifdef CONFIG_USER_ONLY
83 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
85 uint32_t mask
= extract32(maskreg
, 8, 4);
86 uint32_t reg
= extract32(maskreg
, 0, 8);
89 case 0 ... 7: /* xPSR sub-fields */
90 v7m_msr_xpsr(env
, mask
, reg
, val
);
92 case 20: /* CONTROL */
93 /* There are no sub-fields that are actually writable from EL0. */
96 /* Unprivileged writes to other registers are ignored */
101 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
104 case 0 ... 7: /* xPSR sub-fields */
105 return v7m_mrs_xpsr(env
, reg
, 0);
106 case 20: /* CONTROL */
107 return v7m_mrs_control(env
, 0);
109 /* Unprivileged reads others as zero. */
114 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
116 /* translate.c should never generate calls here in user-only mode */
117 g_assert_not_reached();
120 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
122 /* translate.c should never generate calls here in user-only mode */
123 g_assert_not_reached();
126 void HELPER(v7m_preserve_fp_state
)(CPUARMState
*env
)
128 /* translate.c should never generate calls here in user-only mode */
129 g_assert_not_reached();
132 void HELPER(v7m_vlstm
)(CPUARMState
*env
, uint32_t fptr
)
134 /* translate.c should never generate calls here in user-only mode */
135 g_assert_not_reached();
138 void HELPER(v7m_vlldm
)(CPUARMState
*env
, uint32_t fptr
)
140 /* translate.c should never generate calls here in user-only mode */
141 g_assert_not_reached();
144 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
147 * The TT instructions can be used by unprivileged code, but in
148 * user-only emulation we don't have the MPU.
149 * Luckily since we know we are NonSecure unprivileged (and that in
150 * turn means that the A flag wasn't specified), all the bits in the
151 * register must be zero:
152 * IREGION: 0 because IRVALID is 0
153 * IRVALID: 0 because NS
157 * RW: 0 because unpriv and A flag not set
158 * R: 0 because unpriv and A flag not set
159 * SRVALID: 0 because NS
160 * MRVALID: 0 because unpriv and A flag not set
161 * SREGION: 0 becaus SRVALID is 0
162 * MREGION: 0 because MRVALID is 0
170 * What kind of stack write are we doing? This affects how exceptions
171 * generated during the stacking are treated.
173 typedef enum StackingMode
{
179 static bool v7m_stack_write(ARMCPU
*cpu
, uint32_t addr
, uint32_t value
,
180 ARMMMUIdx mmu_idx
, StackingMode mode
)
182 CPUState
*cs
= CPU(cpu
);
183 CPUARMState
*env
= &cpu
->env
;
184 MemTxAttrs attrs
= {};
186 target_ulong page_size
;
189 ARMMMUFaultInfo fi
= {};
190 ARMCacheAttrs cacheattrs
= {};
191 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
195 if (get_phys_addr(env
, addr
, MMU_DATA_STORE
, mmu_idx
, &physaddr
,
196 &attrs
, &prot
, &page_size
, &fi
, &cacheattrs
)) {
197 /* MPU/SAU lookup failed */
198 if (fi
.type
== ARMFault_QEMU_SFault
) {
199 if (mode
== STACK_LAZYFP
) {
200 qemu_log_mask(CPU_LOG_INT
,
201 "...SecureFault with SFSR.LSPERR "
202 "during lazy stacking\n");
203 env
->v7m
.sfsr
|= R_V7M_SFSR_LSPERR_MASK
;
205 qemu_log_mask(CPU_LOG_INT
,
206 "...SecureFault with SFSR.AUVIOL "
207 "during stacking\n");
208 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
210 env
->v7m
.sfsr
|= R_V7M_SFSR_SFARVALID_MASK
;
211 env
->v7m
.sfar
= addr
;
212 exc
= ARMV7M_EXCP_SECURE
;
215 if (mode
== STACK_LAZYFP
) {
216 qemu_log_mask(CPU_LOG_INT
,
217 "...MemManageFault with CFSR.MLSPERR\n");
218 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MLSPERR_MASK
;
220 qemu_log_mask(CPU_LOG_INT
,
221 "...MemManageFault with CFSR.MSTKERR\n");
222 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MSTKERR_MASK
;
224 exc
= ARMV7M_EXCP_MEM
;
229 address_space_stl_le(arm_addressspace(cs
, attrs
), physaddr
, value
,
231 if (txres
!= MEMTX_OK
) {
232 /* BusFault trying to write the data */
233 if (mode
== STACK_LAZYFP
) {
234 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.LSPERR\n");
235 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_LSPERR_MASK
;
237 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.STKERR\n");
238 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_STKERR_MASK
;
240 exc
= ARMV7M_EXCP_BUS
;
248 * By pending the exception at this point we are making
249 * the IMPDEF choice "overridden exceptions pended" (see the
250 * MergeExcInfo() pseudocode). The other choice would be to not
251 * pend them now and then make a choice about which to throw away
252 * later if we have two derived exceptions.
253 * The only case when we must not pend the exception but instead
254 * throw it away is if we are doing the push of the callee registers
255 * and we've already generated a derived exception (this is indicated
256 * by the caller passing STACK_IGNFAULTS). Even in this case we will
257 * still update the fault status registers.
261 armv7m_nvic_set_pending_derived(env
->nvic
, exc
, exc_secure
);
264 armv7m_nvic_set_pending_lazyfp(env
->nvic
, exc
, exc_secure
);
266 case STACK_IGNFAULTS
:
272 static bool v7m_stack_read(ARMCPU
*cpu
, uint32_t *dest
, uint32_t addr
,
275 CPUState
*cs
= CPU(cpu
);
276 CPUARMState
*env
= &cpu
->env
;
277 MemTxAttrs attrs
= {};
279 target_ulong page_size
;
282 ARMMMUFaultInfo fi
= {};
283 ARMCacheAttrs cacheattrs
= {};
284 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
289 if (get_phys_addr(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &physaddr
,
290 &attrs
, &prot
, &page_size
, &fi
, &cacheattrs
)) {
291 /* MPU/SAU lookup failed */
292 if (fi
.type
== ARMFault_QEMU_SFault
) {
293 qemu_log_mask(CPU_LOG_INT
,
294 "...SecureFault with SFSR.AUVIOL during unstack\n");
295 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
296 env
->v7m
.sfar
= addr
;
297 exc
= ARMV7M_EXCP_SECURE
;
300 qemu_log_mask(CPU_LOG_INT
,
301 "...MemManageFault with CFSR.MUNSTKERR\n");
302 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MUNSTKERR_MASK
;
303 exc
= ARMV7M_EXCP_MEM
;
309 value
= address_space_ldl(arm_addressspace(cs
, attrs
), physaddr
,
311 if (txres
!= MEMTX_OK
) {
312 /* BusFault trying to read the data */
313 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.UNSTKERR\n");
314 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_UNSTKERR_MASK
;
315 exc
= ARMV7M_EXCP_BUS
;
325 * By pending the exception at this point we are making
326 * the IMPDEF choice "overridden exceptions pended" (see the
327 * MergeExcInfo() pseudocode). The other choice would be to not
328 * pend them now and then make a choice about which to throw away
329 * later if we have two derived exceptions.
331 armv7m_nvic_set_pending(env
->nvic
, exc
, exc_secure
);
335 void HELPER(v7m_preserve_fp_state
)(CPUARMState
*env
)
338 * Preserve FP state (because LSPACT was set and we are about
339 * to execute an FP instruction). This corresponds to the
340 * PreserveFPState() pseudocode.
341 * We may throw an exception if the stacking fails.
343 ARMCPU
*cpu
= env_archcpu(env
);
344 bool is_secure
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
345 bool negpri
= !(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_HFRDY_MASK
);
346 bool is_priv
= !(env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_USER_MASK
);
347 bool splimviol
= env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_SPLIMVIOL_MASK
;
348 uint32_t fpcar
= env
->v7m
.fpcar
[is_secure
];
349 bool stacked_ok
= true;
350 bool ts
= is_secure
&& (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
);
353 /* Take the iothread lock as we are going to touch the NVIC */
354 qemu_mutex_lock_iothread();
356 /* Check the background context had access to the FPU */
357 if (!v7m_cpacr_pass(env
, is_secure
, is_priv
)) {
358 armv7m_nvic_set_pending_lazyfp(env
->nvic
, ARMV7M_EXCP_USAGE
, is_secure
);
359 env
->v7m
.cfsr
[is_secure
] |= R_V7M_CFSR_NOCP_MASK
;
361 } else if (!is_secure
&& !extract32(env
->v7m
.nsacr
, 10, 1)) {
362 armv7m_nvic_set_pending_lazyfp(env
->nvic
, ARMV7M_EXCP_USAGE
, M_REG_S
);
363 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_NOCP_MASK
;
367 if (!splimviol
&& stacked_ok
) {
368 /* We only stack if the stack limit wasn't violated */
372 mmu_idx
= arm_v7m_mmu_idx_all(env
, is_secure
, is_priv
, negpri
);
373 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
374 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
375 uint32_t faddr
= fpcar
+ 4 * i
;
376 uint32_t slo
= extract64(dn
, 0, 32);
377 uint32_t shi
= extract64(dn
, 32, 32);
380 faddr
+= 8; /* skip the slot for the FPSCR */
382 stacked_ok
= stacked_ok
&&
383 v7m_stack_write(cpu
, faddr
, slo
, mmu_idx
, STACK_LAZYFP
) &&
384 v7m_stack_write(cpu
, faddr
+ 4, shi
, mmu_idx
, STACK_LAZYFP
);
387 stacked_ok
= stacked_ok
&&
388 v7m_stack_write(cpu
, fpcar
+ 0x40,
389 vfp_get_fpscr(env
), mmu_idx
, STACK_LAZYFP
);
393 * We definitely pended an exception, but it's possible that it
394 * might not be able to be taken now. If its priority permits us
395 * to take it now, then we must not update the LSPACT or FP regs,
396 * but instead jump out to take the exception immediately.
397 * If it's just pending and won't be taken until the current
398 * handler exits, then we do update LSPACT and the FP regs.
400 take_exception
= !stacked_ok
&&
401 armv7m_nvic_can_take_pending_exception(env
->nvic
);
403 qemu_mutex_unlock_iothread();
405 if (take_exception
) {
406 raise_exception_ra(env
, EXCP_LAZYFP
, 0, 1, GETPC());
409 env
->v7m
.fpccr
[is_secure
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
412 /* Clear s0 to s31 and the FPSCR */
415 for (i
= 0; i
< 32; i
+= 2) {
416 *aa32_vfp_dreg(env
, i
/ 2) = 0;
418 vfp_set_fpscr(env
, 0);
421 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
427 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
428 * This may change the current stack pointer between Main and Process
429 * stack pointers if it is done for the CONTROL register for the current
432 static void write_v7m_control_spsel_for_secstate(CPUARMState
*env
,
436 bool old_is_psp
= v7m_using_psp(env
);
438 env
->v7m
.control
[secstate
] =
439 deposit32(env
->v7m
.control
[secstate
],
440 R_V7M_CONTROL_SPSEL_SHIFT
,
441 R_V7M_CONTROL_SPSEL_LENGTH
, new_spsel
);
443 if (secstate
== env
->v7m
.secure
) {
444 bool new_is_psp
= v7m_using_psp(env
);
447 if (old_is_psp
!= new_is_psp
) {
448 tmp
= env
->v7m
.other_sp
;
449 env
->v7m
.other_sp
= env
->regs
[13];
456 * Write to v7M CONTROL.SPSEL bit. This may change the current
457 * stack pointer between Main and Process stack pointers.
459 static void write_v7m_control_spsel(CPUARMState
*env
, bool new_spsel
)
461 write_v7m_control_spsel_for_secstate(env
, new_spsel
, env
->v7m
.secure
);
464 void write_v7m_exception(CPUARMState
*env
, uint32_t new_exc
)
467 * Write a new value to v7m.exception, thus transitioning into or out
468 * of Handler mode; this may result in a change of active stack pointer.
470 bool new_is_psp
, old_is_psp
= v7m_using_psp(env
);
473 env
->v7m
.exception
= new_exc
;
475 new_is_psp
= v7m_using_psp(env
);
477 if (old_is_psp
!= new_is_psp
) {
478 tmp
= env
->v7m
.other_sp
;
479 env
->v7m
.other_sp
= env
->regs
[13];
484 /* Switch M profile security state between NS and S */
485 static void switch_v7m_security_state(CPUARMState
*env
, bool new_secstate
)
487 uint32_t new_ss_msp
, new_ss_psp
;
489 if (env
->v7m
.secure
== new_secstate
) {
494 * All the banked state is accessed by looking at env->v7m.secure
495 * except for the stack pointer; rearrange the SP appropriately.
497 new_ss_msp
= env
->v7m
.other_ss_msp
;
498 new_ss_psp
= env
->v7m
.other_ss_psp
;
500 if (v7m_using_psp(env
)) {
501 env
->v7m
.other_ss_psp
= env
->regs
[13];
502 env
->v7m
.other_ss_msp
= env
->v7m
.other_sp
;
504 env
->v7m
.other_ss_msp
= env
->regs
[13];
505 env
->v7m
.other_ss_psp
= env
->v7m
.other_sp
;
508 env
->v7m
.secure
= new_secstate
;
510 if (v7m_using_psp(env
)) {
511 env
->regs
[13] = new_ss_psp
;
512 env
->v7m
.other_sp
= new_ss_msp
;
514 env
->regs
[13] = new_ss_msp
;
515 env
->v7m
.other_sp
= new_ss_psp
;
519 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
523 * - if the return value is a magic value, do exception return (like BX)
524 * - otherwise bit 0 of the return value is the target security state
528 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
529 /* Covers FNC_RETURN and EXC_RETURN magic */
530 min_magic
= FNC_RETURN_MIN_MAGIC
;
532 /* EXC_RETURN magic only */
533 min_magic
= EXC_RETURN_MIN_MAGIC
;
536 if (dest
>= min_magic
) {
538 * This is an exception return magic value; put it where
539 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
540 * Note that if we ever add gen_ss_advance() singlestep support to
541 * M profile this should count as an "instruction execution complete"
542 * event (compare gen_bx_excret_final_code()).
544 env
->regs
[15] = dest
& ~1;
545 env
->thumb
= dest
& 1;
546 HELPER(exception_internal
)(env
, EXCP_EXCEPTION_EXIT
);
550 /* translate.c should have made BXNS UNDEF unless we're secure */
551 assert(env
->v7m
.secure
);
554 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
556 switch_v7m_security_state(env
, dest
& 1);
558 env
->regs
[15] = dest
& ~1;
559 arm_rebuild_hflags(env
);
562 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
566 * - bit 0 of the destination address is the target security state
569 /* At this point regs[15] is the address just after the BLXNS */
570 uint32_t nextinst
= env
->regs
[15] | 1;
571 uint32_t sp
= env
->regs
[13] - 8;
574 /* translate.c will have made BLXNS UNDEF unless we're secure */
575 assert(env
->v7m
.secure
);
579 * Target is Secure, so this is just a normal BLX,
580 * except that the low bit doesn't indicate Thumb/not.
582 env
->regs
[14] = nextinst
;
584 env
->regs
[15] = dest
& ~1;
588 /* Target is non-secure: first push a stack frame */
589 if (!QEMU_IS_ALIGNED(sp
, 8)) {
590 qemu_log_mask(LOG_GUEST_ERROR
,
591 "BLXNS with misaligned SP is UNPREDICTABLE\n");
594 if (sp
< v7m_sp_limit(env
)) {
595 raise_exception(env
, EXCP_STKOF
, 0, 1);
598 saved_psr
= env
->v7m
.exception
;
599 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
) {
600 saved_psr
|= XPSR_SFPA
;
603 /* Note that these stores can throw exceptions on MPU faults */
604 cpu_stl_data_ra(env
, sp
, nextinst
, GETPC());
605 cpu_stl_data_ra(env
, sp
+ 4, saved_psr
, GETPC());
608 env
->regs
[14] = 0xfeffffff;
609 if (arm_v7m_is_handler_mode(env
)) {
611 * Write a dummy value to IPSR, to avoid leaking the current secure
612 * exception number to non-secure code. This is guaranteed not
613 * to cause write_v7m_exception() to actually change stacks.
615 write_v7m_exception(env
, 1);
617 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
618 switch_v7m_security_state(env
, 0);
620 env
->regs
[15] = dest
;
621 arm_rebuild_hflags(env
);
624 static uint32_t *get_v7m_sp_ptr(CPUARMState
*env
, bool secure
, bool threadmode
,
628 * Return a pointer to the location where we currently store the
629 * stack pointer for the requested security state and thread mode.
630 * This pointer will become invalid if the CPU state is updated
631 * such that the stack pointers are switched around (eg changing
632 * the SPSEL control bit).
633 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
634 * Unlike that pseudocode, we require the caller to pass us in the
635 * SPSEL control bit value; this is because we also use this
636 * function in handling of pushing of the callee-saves registers
637 * part of the v8M stack frame (pseudocode PushCalleeStack()),
638 * and in the tailchain codepath the SPSEL bit comes from the exception
639 * return magic LR value from the previous exception. The pseudocode
640 * opencodes the stack-selection in PushCalleeStack(), but we prefer
641 * to make this utility function generic enough to do the job.
643 bool want_psp
= threadmode
&& spsel
;
645 if (secure
== env
->v7m
.secure
) {
646 if (want_psp
== v7m_using_psp(env
)) {
647 return &env
->regs
[13];
649 return &env
->v7m
.other_sp
;
653 return &env
->v7m
.other_ss_psp
;
655 return &env
->v7m
.other_ss_msp
;
660 static bool arm_v7m_load_vector(ARMCPU
*cpu
, int exc
, bool targets_secure
,
663 CPUState
*cs
= CPU(cpu
);
664 CPUARMState
*env
= &cpu
->env
;
666 uint32_t addr
= env
->v7m
.vecbase
[targets_secure
] + exc
* 4;
667 uint32_t vector_entry
;
668 MemTxAttrs attrs
= {};
672 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targets_secure
, true);
675 * We don't do a get_phys_addr() here because the rules for vector
676 * loads are special: they always use the default memory map, and
677 * the default memory map permits reads from all addresses.
678 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
679 * that we want this special case which would always say "yes",
680 * we just do the SAU lookup here followed by a direct physical load.
682 attrs
.secure
= targets_secure
;
685 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
686 V8M_SAttributes sattrs
= {};
688 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
690 attrs
.secure
= false;
691 } else if (!targets_secure
) {
693 * NS access to S memory: the underlying exception which we escalate
694 * to HardFault is SecureFault, which always targets Secure.
701 vector_entry
= address_space_ldl(arm_addressspace(cs
, attrs
), addr
,
703 if (result
!= MEMTX_OK
) {
705 * Underlying exception is BusFault: its target security state
706 * depends on BFHFNMINS.
708 exc_secure
= !(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
);
711 *pvec
= vector_entry
;
716 * All vector table fetch fails are reported as HardFault, with
717 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
718 * technically the underlying exception is a SecureFault or BusFault
719 * that is escalated to HardFault.) This is a terminal exception,
720 * so we will either take the HardFault immediately or else enter
721 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
722 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
723 * secure); otherwise it targets the same security state as the
724 * underlying exception.
726 if (!(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
)) {
729 env
->v7m
.hfsr
|= R_V7M_HFSR_VECTTBL_MASK
| R_V7M_HFSR_FORCED_MASK
;
730 armv7m_nvic_set_pending_derived(env
->nvic
, ARMV7M_EXCP_HARD
, exc_secure
);
734 static uint32_t v7m_integrity_sig(CPUARMState
*env
, uint32_t lr
)
737 * Return the integrity signature value for the callee-saves
738 * stack frame section. @lr is the exception return payload/LR value
739 * whose FType bit forms bit 0 of the signature if FP is present.
741 uint32_t sig
= 0xfefa125a;
743 if (!cpu_isar_feature(aa32_vfp_simd
, env_archcpu(env
))
744 || (lr
& R_V7M_EXCRET_FTYPE_MASK
)) {
750 static bool v7m_push_callee_stack(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
754 * For v8M, push the callee-saves register part of the stack frame.
755 * Compare the v8M pseudocode PushCalleeStack().
756 * In the tailchaining case this may not be the current stack.
758 CPUARMState
*env
= &cpu
->env
;
759 uint32_t *frame_sp_p
;
766 StackingMode smode
= ignore_faults
? STACK_IGNFAULTS
: STACK_NORMAL
;
769 bool mode
= lr
& R_V7M_EXCRET_MODE_MASK
;
770 bool priv
= !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_NPRIV_MASK
) ||
773 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, M_REG_S
, priv
);
774 frame_sp_p
= get_v7m_sp_ptr(env
, M_REG_S
, mode
,
775 lr
& R_V7M_EXCRET_SPSEL_MASK
);
776 want_psp
= mode
&& (lr
& R_V7M_EXCRET_SPSEL_MASK
);
778 limit
= env
->v7m
.psplim
[M_REG_S
];
780 limit
= env
->v7m
.msplim
[M_REG_S
];
783 mmu_idx
= arm_mmu_idx(env
);
784 frame_sp_p
= &env
->regs
[13];
785 limit
= v7m_sp_limit(env
);
788 frameptr
= *frame_sp_p
- 0x28;
789 if (frameptr
< limit
) {
791 * Stack limit failure: set SP to the limit value, and generate
792 * STKOF UsageFault. Stack pushes below the limit must not be
793 * performed. It is IMPDEF whether pushes above the limit are
794 * performed; we choose not to.
796 qemu_log_mask(CPU_LOG_INT
,
797 "...STKOF during callee-saves register stacking\n");
798 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
799 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
806 * Write as much of the stack frame as we can. A write failure may
807 * cause us to pend a derived exception.
809 sig
= v7m_integrity_sig(env
, lr
);
811 v7m_stack_write(cpu
, frameptr
, sig
, mmu_idx
, smode
) &&
812 v7m_stack_write(cpu
, frameptr
+ 0x8, env
->regs
[4], mmu_idx
, smode
) &&
813 v7m_stack_write(cpu
, frameptr
+ 0xc, env
->regs
[5], mmu_idx
, smode
) &&
814 v7m_stack_write(cpu
, frameptr
+ 0x10, env
->regs
[6], mmu_idx
, smode
) &&
815 v7m_stack_write(cpu
, frameptr
+ 0x14, env
->regs
[7], mmu_idx
, smode
) &&
816 v7m_stack_write(cpu
, frameptr
+ 0x18, env
->regs
[8], mmu_idx
, smode
) &&
817 v7m_stack_write(cpu
, frameptr
+ 0x1c, env
->regs
[9], mmu_idx
, smode
) &&
818 v7m_stack_write(cpu
, frameptr
+ 0x20, env
->regs
[10], mmu_idx
, smode
) &&
819 v7m_stack_write(cpu
, frameptr
+ 0x24, env
->regs
[11], mmu_idx
, smode
);
821 /* Update SP regardless of whether any of the stack accesses failed. */
822 *frame_sp_p
= frameptr
;
827 static void v7m_exception_taken(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
828 bool ignore_stackfaults
)
831 * Do the "take the exception" parts of exception entry,
832 * but not the pushing of state to the stack. This is
833 * similar to the pseudocode ExceptionTaken() function.
835 CPUARMState
*env
= &cpu
->env
;
839 bool push_failed
= false;
841 armv7m_nvic_get_pending_irq_info(env
->nvic
, &exc
, &targets_secure
);
842 qemu_log_mask(CPU_LOG_INT
, "...taking pending %s exception %d\n",
843 targets_secure
? "secure" : "nonsecure", exc
);
846 /* Sanitize LR FType and PREFIX bits */
847 if (!cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
848 lr
|= R_V7M_EXCRET_FTYPE_MASK
;
850 lr
= deposit32(lr
, 24, 8, 0xff);
853 if (arm_feature(env
, ARM_FEATURE_V8
)) {
854 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
855 (lr
& R_V7M_EXCRET_S_MASK
)) {
857 * The background code (the owner of the registers in the
858 * exception frame) is Secure. This means it may either already
859 * have or now needs to push callee-saves registers.
861 if (targets_secure
) {
862 if (dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
)) {
864 * We took an exception from Secure to NonSecure
865 * (which means the callee-saved registers got stacked)
866 * and are now tailchaining to a Secure exception.
867 * Clear DCRS so eventual return from this Secure
868 * exception unstacks the callee-saved registers.
870 lr
&= ~R_V7M_EXCRET_DCRS_MASK
;
874 * We're going to a non-secure exception; push the
875 * callee-saves registers to the stack now, if they're
878 if (lr
& R_V7M_EXCRET_DCRS_MASK
&&
879 !(dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
))) {
880 push_failed
= v7m_push_callee_stack(cpu
, lr
, dotailchain
,
883 lr
|= R_V7M_EXCRET_DCRS_MASK
;
887 lr
&= ~R_V7M_EXCRET_ES_MASK
;
888 if (targets_secure
|| !arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
889 lr
|= R_V7M_EXCRET_ES_MASK
;
891 lr
&= ~R_V7M_EXCRET_SPSEL_MASK
;
892 if (env
->v7m
.control
[targets_secure
] & R_V7M_CONTROL_SPSEL_MASK
) {
893 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
897 * Clear registers if necessary to prevent non-secure exception
898 * code being able to see register values from secure code.
899 * Where register values become architecturally UNKNOWN we leave
900 * them with their previous values.
902 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
903 if (!targets_secure
) {
905 * Always clear the caller-saved registers (they have been
906 * pushed to the stack earlier in v7m_push_stack()).
907 * Clear callee-saved registers if the background code is
908 * Secure (in which case these regs were saved in
909 * v7m_push_callee_stack()).
913 for (i
= 0; i
< 13; i
++) {
914 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
915 if (i
< 4 || i
> 11 || (lr
& R_V7M_EXCRET_S_MASK
)) {
920 xpsr_write(env
, 0, XPSR_NZCV
| XPSR_Q
| XPSR_GE
| XPSR_IT
);
925 if (push_failed
&& !ignore_stackfaults
) {
927 * Derived exception on callee-saves register stacking:
928 * we might now want to take a different exception which
929 * targets a different security state, so try again from the top.
931 qemu_log_mask(CPU_LOG_INT
,
932 "...derived exception on callee-saves register stacking");
933 v7m_exception_taken(cpu
, lr
, true, true);
937 if (!arm_v7m_load_vector(cpu
, exc
, targets_secure
, &addr
)) {
938 /* Vector load failed: derived exception */
939 qemu_log_mask(CPU_LOG_INT
, "...derived exception on vector table load");
940 v7m_exception_taken(cpu
, lr
, true, true);
945 * Now we've done everything that might cause a derived exception
946 * we can go ahead and activate whichever exception we're going to
947 * take (which might now be the derived exception).
949 armv7m_nvic_acknowledge_irq(env
->nvic
);
951 /* Switch to target security state -- must do this before writing SPSEL */
952 switch_v7m_security_state(env
, targets_secure
);
953 write_v7m_control_spsel(env
, 0);
954 arm_clear_exclusive(env
);
955 /* Clear SFPA and FPCA (has no effect if no FPU) */
956 env
->v7m
.control
[M_REG_S
] &=
957 ~(R_V7M_CONTROL_FPCA_MASK
| R_V7M_CONTROL_SFPA_MASK
);
959 env
->condexec_bits
= 0;
961 env
->regs
[15] = addr
& 0xfffffffe;
962 env
->thumb
= addr
& 1;
963 arm_rebuild_hflags(env
);
966 static void v7m_update_fpccr(CPUARMState
*env
, uint32_t frameptr
,
970 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
971 * that we will need later in order to do lazy FP reg stacking.
973 bool is_secure
= env
->v7m
.secure
;
974 void *nvic
= env
->nvic
;
976 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
977 * are banked and we want to update the bit in the bank for the
978 * current security state; and in one case we want to specifically
979 * update the NS banked version of a bit even if we are secure.
981 uint32_t *fpccr_s
= &env
->v7m
.fpccr
[M_REG_S
];
982 uint32_t *fpccr_ns
= &env
->v7m
.fpccr
[M_REG_NS
];
983 uint32_t *fpccr
= &env
->v7m
.fpccr
[is_secure
];
984 bool hfrdy
, bfrdy
, mmrdy
, ns_ufrdy
, s_ufrdy
, sfrdy
, monrdy
;
986 env
->v7m
.fpcar
[is_secure
] = frameptr
& ~0x7;
988 if (apply_splim
&& arm_feature(env
, ARM_FEATURE_V8
)) {
990 uint32_t splim
= v7m_sp_limit(env
);
991 bool ign
= armv7m_nvic_neg_prio_requested(nvic
, is_secure
) &&
992 (env
->v7m
.ccr
[is_secure
] & R_V7M_CCR_STKOFHFNMIGN_MASK
);
994 splimviol
= !ign
&& frameptr
< splim
;
995 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, SPLIMVIOL
, splimviol
);
998 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, LSPACT
, 1);
1000 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, S
, is_secure
);
1002 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, USER
, arm_current_el(env
) == 0);
1004 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, THREAD
,
1005 !arm_v7m_is_handler_mode(env
));
1007 hfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_HARD
, false);
1008 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, HFRDY
, hfrdy
);
1010 bfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_BUS
, false);
1011 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, BFRDY
, bfrdy
);
1013 mmrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_MEM
, is_secure
);
1014 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, MMRDY
, mmrdy
);
1016 ns_ufrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_USAGE
, false);
1017 *fpccr_ns
= FIELD_DP32(*fpccr_ns
, V7M_FPCCR
, UFRDY
, ns_ufrdy
);
1019 monrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_DEBUG
, false);
1020 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, MONRDY
, monrdy
);
1022 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1023 s_ufrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_USAGE
, true);
1024 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, UFRDY
, s_ufrdy
);
1026 sfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_SECURE
, false);
1027 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, SFRDY
, sfrdy
);
1031 void HELPER(v7m_vlstm
)(CPUARMState
*env
, uint32_t fptr
)
1033 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1034 bool s
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
1035 bool lspact
= env
->v7m
.fpccr
[s
] & R_V7M_FPCCR_LSPACT_MASK
;
1036 uintptr_t ra
= GETPC();
1038 assert(env
->v7m
.secure
);
1040 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1044 /* Check access to the coprocessor is permitted */
1045 if (!v7m_cpacr_pass(env
, true, arm_current_el(env
) != 0)) {
1046 raise_exception_ra(env
, EXCP_NOCP
, 0, 1, GETPC());
1050 /* LSPACT should not be active when there is active FP state */
1051 raise_exception_ra(env
, EXCP_LSERR
, 0, 1, GETPC());
1055 raise_exception_ra(env
, EXCP_UNALIGNED
, 0, 1, GETPC());
1059 * Note that we do not use v7m_stack_write() here, because the
1060 * accesses should not set the FSR bits for stacking errors if they
1061 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1062 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1065 if (!(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPEN_MASK
)) {
1066 bool ts
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
;
1069 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
1070 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
1071 uint32_t faddr
= fptr
+ 4 * i
;
1072 uint32_t slo
= extract64(dn
, 0, 32);
1073 uint32_t shi
= extract64(dn
, 32, 32);
1076 faddr
+= 8; /* skip the slot for the FPSCR */
1078 cpu_stl_data_ra(env
, faddr
, slo
, ra
);
1079 cpu_stl_data_ra(env
, faddr
+ 4, shi
, ra
);
1081 cpu_stl_data_ra(env
, fptr
+ 0x40, vfp_get_fpscr(env
), ra
);
1084 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1085 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1088 for (i
= 0; i
< 32; i
+= 2) {
1089 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1091 vfp_set_fpscr(env
, 0);
1094 v7m_update_fpccr(env
, fptr
, false);
1097 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
1100 void HELPER(v7m_vlldm
)(CPUARMState
*env
, uint32_t fptr
)
1102 uintptr_t ra
= GETPC();
1104 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1105 assert(env
->v7m
.secure
);
1107 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1111 /* Check access to the coprocessor is permitted */
1112 if (!v7m_cpacr_pass(env
, true, arm_current_el(env
) != 0)) {
1113 raise_exception_ra(env
, EXCP_NOCP
, 0, 1, GETPC());
1116 if (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
) {
1117 /* State in FP is still valid */
1118 env
->v7m
.fpccr
[M_REG_S
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
1120 bool ts
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
;
1125 raise_exception_ra(env
, EXCP_UNALIGNED
, 0, 1, GETPC());
1128 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
1131 uint32_t faddr
= fptr
+ 4 * i
;
1134 faddr
+= 8; /* skip the slot for the FPSCR */
1137 slo
= cpu_ldl_data_ra(env
, faddr
, ra
);
1138 shi
= cpu_ldl_data_ra(env
, faddr
+ 4, ra
);
1140 dn
= (uint64_t) shi
<< 32 | slo
;
1141 *aa32_vfp_dreg(env
, i
/ 2) = dn
;
1143 fpscr
= cpu_ldl_data_ra(env
, fptr
+ 0x40, ra
);
1144 vfp_set_fpscr(env
, fpscr
);
1147 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_FPCA_MASK
;
1150 static bool v7m_push_stack(ARMCPU
*cpu
)
1153 * Do the "set up stack frame" part of exception entry,
1154 * similar to pseudocode PushStack().
1155 * Return true if we generate a derived exception (and so
1156 * should ignore further stack faults trying to process
1157 * that derived exception.)
1159 bool stacked_ok
= true, limitviol
= false;
1160 CPUARMState
*env
= &cpu
->env
;
1161 uint32_t xpsr
= xpsr_read(env
);
1162 uint32_t frameptr
= env
->regs
[13];
1163 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
1165 bool nsacr_cp10
= extract32(env
->v7m
.nsacr
, 10, 1);
1167 if ((env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) &&
1168 (env
->v7m
.secure
|| nsacr_cp10
)) {
1169 if (env
->v7m
.secure
&&
1170 env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
) {
1179 /* Align stack pointer if the guest wants that */
1180 if ((frameptr
& 4) &&
1181 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKALIGN_MASK
)) {
1183 xpsr
|= XPSR_SPREALIGN
;
1187 if (env
->v7m
.secure
&&
1188 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1192 frameptr
-= framesize
;
1194 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1195 uint32_t limit
= v7m_sp_limit(env
);
1197 if (frameptr
< limit
) {
1199 * Stack limit failure: set SP to the limit value, and generate
1200 * STKOF UsageFault. Stack pushes below the limit must not be
1201 * performed. It is IMPDEF whether pushes above the limit are
1202 * performed; we choose not to.
1204 qemu_log_mask(CPU_LOG_INT
,
1205 "...STKOF during stacking\n");
1206 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
1207 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1209 env
->regs
[13] = limit
;
1211 * We won't try to perform any further memory accesses but
1212 * we must continue through the following code to check for
1213 * permission faults during FPU state preservation, and we
1214 * must update FPCCR if lazy stacking is enabled.
1222 * Write as much of the stack frame as we can. If we fail a stack
1223 * write this will result in a derived exception being pended
1224 * (which may be taken in preference to the one we started with
1225 * if it has higher priority).
1227 stacked_ok
= stacked_ok
&&
1228 v7m_stack_write(cpu
, frameptr
, env
->regs
[0], mmu_idx
, STACK_NORMAL
) &&
1229 v7m_stack_write(cpu
, frameptr
+ 4, env
->regs
[1],
1230 mmu_idx
, STACK_NORMAL
) &&
1231 v7m_stack_write(cpu
, frameptr
+ 8, env
->regs
[2],
1232 mmu_idx
, STACK_NORMAL
) &&
1233 v7m_stack_write(cpu
, frameptr
+ 12, env
->regs
[3],
1234 mmu_idx
, STACK_NORMAL
) &&
1235 v7m_stack_write(cpu
, frameptr
+ 16, env
->regs
[12],
1236 mmu_idx
, STACK_NORMAL
) &&
1237 v7m_stack_write(cpu
, frameptr
+ 20, env
->regs
[14],
1238 mmu_idx
, STACK_NORMAL
) &&
1239 v7m_stack_write(cpu
, frameptr
+ 24, env
->regs
[15],
1240 mmu_idx
, STACK_NORMAL
) &&
1241 v7m_stack_write(cpu
, frameptr
+ 28, xpsr
, mmu_idx
, STACK_NORMAL
);
1243 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) {
1244 /* FPU is active, try to save its registers */
1245 bool fpccr_s
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
1246 bool lspact
= env
->v7m
.fpccr
[fpccr_s
] & R_V7M_FPCCR_LSPACT_MASK
;
1248 if (lspact
&& arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1249 qemu_log_mask(CPU_LOG_INT
,
1250 "...SecureFault because LSPACT and FPCA both set\n");
1251 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1252 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1253 } else if (!env
->v7m
.secure
&& !nsacr_cp10
) {
1254 qemu_log_mask(CPU_LOG_INT
,
1255 "...Secure UsageFault with CFSR.NOCP because "
1256 "NSACR.CP10 prevents stacking FP regs\n");
1257 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, M_REG_S
);
1258 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_NOCP_MASK
;
1260 if (!(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPEN_MASK
)) {
1261 /* Lazy stacking disabled, save registers now */
1263 bool cpacr_pass
= v7m_cpacr_pass(env
, env
->v7m
.secure
,
1264 arm_current_el(env
) != 0);
1266 if (stacked_ok
&& !cpacr_pass
) {
1268 * Take UsageFault if CPACR forbids access. The pseudocode
1269 * here does a full CheckCPEnabled() but we know the NSACR
1270 * check can never fail as we have already handled that.
1272 qemu_log_mask(CPU_LOG_INT
,
1273 "...UsageFault with CFSR.NOCP because "
1274 "CPACR.CP10 prevents stacking FP regs\n");
1275 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1277 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_NOCP_MASK
;
1281 for (i
= 0; i
< ((framesize
== 0xa8) ? 32 : 16); i
+= 2) {
1282 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
1283 uint32_t faddr
= frameptr
+ 0x20 + 4 * i
;
1284 uint32_t slo
= extract64(dn
, 0, 32);
1285 uint32_t shi
= extract64(dn
, 32, 32);
1288 faddr
+= 8; /* skip the slot for the FPSCR */
1290 stacked_ok
= stacked_ok
&&
1291 v7m_stack_write(cpu
, faddr
, slo
,
1292 mmu_idx
, STACK_NORMAL
) &&
1293 v7m_stack_write(cpu
, faddr
+ 4, shi
,
1294 mmu_idx
, STACK_NORMAL
);
1296 stacked_ok
= stacked_ok
&&
1297 v7m_stack_write(cpu
, frameptr
+ 0x60,
1298 vfp_get_fpscr(env
), mmu_idx
, STACK_NORMAL
);
1300 for (i
= 0; i
< ((framesize
== 0xa8) ? 32 : 16); i
+= 2) {
1301 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1303 vfp_set_fpscr(env
, 0);
1306 /* Lazy stacking enabled, save necessary info to stack later */
1307 v7m_update_fpccr(env
, frameptr
+ 0x20, true);
1313 * If we broke a stack limit then SP was already updated earlier;
1314 * otherwise we update SP regardless of whether any of the stack
1315 * accesses failed or we took some other kind of fault.
1318 env
->regs
[13] = frameptr
;
1324 static void do_v7m_exception_exit(ARMCPU
*cpu
)
1326 CPUARMState
*env
= &cpu
->env
;
1328 uint32_t xpsr
, xpsr_mask
;
1329 bool ufault
= false;
1330 bool sfault
= false;
1331 bool return_to_sp_process
;
1332 bool return_to_handler
;
1333 bool rettobase
= false;
1334 bool exc_secure
= false;
1335 bool return_to_secure
;
1337 bool restore_s16_s31
;
1340 * If we're not in Handler mode then jumps to magic exception-exit
1341 * addresses don't have magic behaviour. However for the v8M
1342 * security extensions the magic secure-function-return has to
1343 * work in thread mode too, so to avoid doing an extra check in
1344 * the generated code we allow exception-exit magic to also cause the
1345 * internal exception and bring us here in thread mode. Correct code
1346 * will never try to do this (the following insn fetch will always
1347 * fault) so we the overhead of having taken an unnecessary exception
1350 if (!arm_v7m_is_handler_mode(env
)) {
1355 * In the spec pseudocode ExceptionReturn() is called directly
1356 * from BXWritePC() and gets the full target PC value including
1357 * bit zero. In QEMU's implementation we treat it as a normal
1358 * jump-to-register (which is then caught later on), and so split
1359 * the target value up between env->regs[15] and env->thumb in
1360 * gen_bx(). Reconstitute it.
1362 excret
= env
->regs
[15];
1367 qemu_log_mask(CPU_LOG_INT
, "Exception return: magic PC %" PRIx32
1368 " previous exception %d\n",
1369 excret
, env
->v7m
.exception
);
1371 if ((excret
& R_V7M_EXCRET_RES1_MASK
) != R_V7M_EXCRET_RES1_MASK
) {
1372 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero high bits in exception "
1373 "exit PC value 0x%" PRIx32
" are UNPREDICTABLE\n",
1377 ftype
= excret
& R_V7M_EXCRET_FTYPE_MASK
;
1379 if (!ftype
&& !cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
1380 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero FTYPE in exception "
1381 "exit PC value 0x%" PRIx32
" is UNPREDICTABLE "
1382 "if FPU not present\n",
1387 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1389 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1390 * we pick which FAULTMASK to clear.
1392 if (!env
->v7m
.secure
&&
1393 ((excret
& R_V7M_EXCRET_ES_MASK
) ||
1394 !(excret
& R_V7M_EXCRET_DCRS_MASK
))) {
1396 /* For all other purposes, treat ES as 0 (R_HXSR) */
1397 excret
&= ~R_V7M_EXCRET_ES_MASK
;
1399 exc_secure
= excret
& R_V7M_EXCRET_ES_MASK
;
1402 if (env
->v7m
.exception
!= ARMV7M_EXCP_NMI
) {
1404 * Auto-clear FAULTMASK on return from other than NMI.
1405 * If the security extension is implemented then this only
1406 * happens if the raw execution priority is >= 0; the
1407 * value of the ES bit in the exception return value indicates
1408 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1410 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1411 if (armv7m_nvic_raw_execution_priority(env
->nvic
) >= 0) {
1412 env
->v7m
.faultmask
[exc_secure
] = 0;
1415 env
->v7m
.faultmask
[M_REG_NS
] = 0;
1419 switch (armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
,
1422 /* attempt to exit an exception that isn't active */
1426 /* still an irq active now */
1430 * We returned to base exception level, no nesting.
1431 * (In the pseudocode this is written using "NestedActivation != 1"
1432 * where we have 'rettobase == false'.)
1437 g_assert_not_reached();
1440 return_to_handler
= !(excret
& R_V7M_EXCRET_MODE_MASK
);
1441 return_to_sp_process
= excret
& R_V7M_EXCRET_SPSEL_MASK
;
1442 return_to_secure
= arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
1443 (excret
& R_V7M_EXCRET_S_MASK
);
1445 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1446 if (!arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1448 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1449 * we choose to take the UsageFault.
1451 if ((excret
& R_V7M_EXCRET_S_MASK
) ||
1452 (excret
& R_V7M_EXCRET_ES_MASK
) ||
1453 !(excret
& R_V7M_EXCRET_DCRS_MASK
)) {
1457 if (excret
& R_V7M_EXCRET_RES0_MASK
) {
1461 /* For v7M we only recognize certain combinations of the low bits */
1462 switch (excret
& 0xf) {
1463 case 1: /* Return to Handler */
1465 case 13: /* Return to Thread using Process stack */
1466 case 9: /* Return to Thread using Main stack */
1468 * We only need to check NONBASETHRDENA for v7M, because in
1469 * v8M this bit does not exist (it is RES1).
1472 !(env
->v7m
.ccr
[env
->v7m
.secure
] &
1473 R_V7M_CCR_NONBASETHRDENA_MASK
)) {
1483 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1484 * Handler mode (and will be until we write the new XPSR.Interrupt
1485 * field) this does not switch around the current stack pointer.
1486 * We must do this before we do any kind of tailchaining, including
1487 * for the derived exceptions on integrity check failures, or we will
1488 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1490 write_v7m_control_spsel_for_secstate(env
, return_to_sp_process
, exc_secure
);
1493 * Clear scratch FP values left in caller saved registers; this
1494 * must happen before any kind of tail chaining.
1496 if ((env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_CLRONRET_MASK
) &&
1497 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
)) {
1498 if (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
) {
1499 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1500 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1501 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1502 "stackframe: error during lazy state deactivation\n");
1503 v7m_exception_taken(cpu
, excret
, true, false);
1506 /* Clear s0..s15 and FPSCR */
1509 for (i
= 0; i
< 16; i
+= 2) {
1510 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1512 vfp_set_fpscr(env
, 0);
1517 env
->v7m
.sfsr
|= R_V7M_SFSR_INVER_MASK
;
1518 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1519 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1520 "stackframe: failed EXC_RETURN.ES validity check\n");
1521 v7m_exception_taken(cpu
, excret
, true, false);
1527 * Bad exception return: instead of popping the exception
1528 * stack, directly take a usage fault on the current stack.
1530 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1531 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
1532 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1533 "stackframe: failed exception return integrity check\n");
1534 v7m_exception_taken(cpu
, excret
, true, false);
1539 * Tailchaining: if there is currently a pending exception that
1540 * is high enough priority to preempt execution at the level we're
1541 * about to return to, then just directly take that exception now,
1542 * avoiding an unstack-and-then-stack. Note that now we have
1543 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1544 * our current execution priority is already the execution priority we are
1545 * returning to -- none of the state we would unstack or set based on
1546 * the EXCRET value affects it.
1548 if (armv7m_nvic_can_take_pending_exception(env
->nvic
)) {
1549 qemu_log_mask(CPU_LOG_INT
, "...tailchaining to pending exception\n");
1550 v7m_exception_taken(cpu
, excret
, true, false);
1554 switch_v7m_security_state(env
, return_to_secure
);
1558 * The stack pointer we should be reading the exception frame from
1559 * depends on bits in the magic exception return type value (and
1560 * for v8M isn't necessarily the stack pointer we will eventually
1561 * end up resuming execution with). Get a pointer to the location
1562 * in the CPU state struct where the SP we need is currently being
1563 * stored; we will use and modify it in place.
1564 * We use this limited C variable scope so we don't accidentally
1565 * use 'frame_sp_p' after we do something that makes it invalid.
1567 uint32_t *frame_sp_p
= get_v7m_sp_ptr(env
,
1570 return_to_sp_process
);
1571 uint32_t frameptr
= *frame_sp_p
;
1574 bool return_to_priv
= return_to_handler
||
1575 !(env
->v7m
.control
[return_to_secure
] & R_V7M_CONTROL_NPRIV_MASK
);
1577 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, return_to_secure
,
1580 if (!QEMU_IS_ALIGNED(frameptr
, 8) &&
1581 arm_feature(env
, ARM_FEATURE_V8
)) {
1582 qemu_log_mask(LOG_GUEST_ERROR
,
1583 "M profile exception return with non-8-aligned SP "
1584 "for destination state is UNPREDICTABLE\n");
1587 /* Do we need to pop callee-saved registers? */
1588 if (return_to_secure
&&
1589 ((excret
& R_V7M_EXCRET_ES_MASK
) == 0 ||
1590 (excret
& R_V7M_EXCRET_DCRS_MASK
) == 0)) {
1591 uint32_t actual_sig
;
1593 pop_ok
= v7m_stack_read(cpu
, &actual_sig
, frameptr
, mmu_idx
);
1595 if (pop_ok
&& v7m_integrity_sig(env
, excret
) != actual_sig
) {
1596 /* Take a SecureFault on the current stack */
1597 env
->v7m
.sfsr
|= R_V7M_SFSR_INVIS_MASK
;
1598 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1599 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1600 "stackframe: failed exception return integrity "
1601 "signature check\n");
1602 v7m_exception_taken(cpu
, excret
, true, false);
1607 v7m_stack_read(cpu
, &env
->regs
[4], frameptr
+ 0x8, mmu_idx
) &&
1608 v7m_stack_read(cpu
, &env
->regs
[5], frameptr
+ 0xc, mmu_idx
) &&
1609 v7m_stack_read(cpu
, &env
->regs
[6], frameptr
+ 0x10, mmu_idx
) &&
1610 v7m_stack_read(cpu
, &env
->regs
[7], frameptr
+ 0x14, mmu_idx
) &&
1611 v7m_stack_read(cpu
, &env
->regs
[8], frameptr
+ 0x18, mmu_idx
) &&
1612 v7m_stack_read(cpu
, &env
->regs
[9], frameptr
+ 0x1c, mmu_idx
) &&
1613 v7m_stack_read(cpu
, &env
->regs
[10], frameptr
+ 0x20, mmu_idx
) &&
1614 v7m_stack_read(cpu
, &env
->regs
[11], frameptr
+ 0x24, mmu_idx
);
1621 v7m_stack_read(cpu
, &env
->regs
[0], frameptr
, mmu_idx
) &&
1622 v7m_stack_read(cpu
, &env
->regs
[1], frameptr
+ 0x4, mmu_idx
) &&
1623 v7m_stack_read(cpu
, &env
->regs
[2], frameptr
+ 0x8, mmu_idx
) &&
1624 v7m_stack_read(cpu
, &env
->regs
[3], frameptr
+ 0xc, mmu_idx
) &&
1625 v7m_stack_read(cpu
, &env
->regs
[12], frameptr
+ 0x10, mmu_idx
) &&
1626 v7m_stack_read(cpu
, &env
->regs
[14], frameptr
+ 0x14, mmu_idx
) &&
1627 v7m_stack_read(cpu
, &env
->regs
[15], frameptr
+ 0x18, mmu_idx
) &&
1628 v7m_stack_read(cpu
, &xpsr
, frameptr
+ 0x1c, mmu_idx
);
1632 * v7m_stack_read() pended a fault, so take it (as a tail
1633 * chained exception on the same stack frame)
1635 qemu_log_mask(CPU_LOG_INT
, "...derived exception on unstacking\n");
1636 v7m_exception_taken(cpu
, excret
, true, false);
1641 * Returning from an exception with a PC with bit 0 set is defined
1642 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1643 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1644 * the lsbit, and there are several RTOSes out there which incorrectly
1645 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1646 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1647 * complain about the badly behaved guest.
1649 if (env
->regs
[15] & 1) {
1650 env
->regs
[15] &= ~1U;
1651 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1652 qemu_log_mask(LOG_GUEST_ERROR
,
1653 "M profile return from interrupt with misaligned "
1654 "PC is UNPREDICTABLE on v7M\n");
1658 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1660 * For v8M we have to check whether the xPSR exception field
1661 * matches the EXCRET value for return to handler/thread
1662 * before we commit to changing the SP and xPSR.
1664 bool will_be_handler
= (xpsr
& XPSR_EXCP
) != 0;
1665 if (return_to_handler
!= will_be_handler
) {
1667 * Take an INVPC UsageFault on the current stack.
1668 * By this point we will have switched to the security state
1669 * for the background state, so this UsageFault will target
1672 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1674 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1675 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1676 "stackframe: failed exception return integrity "
1678 v7m_exception_taken(cpu
, excret
, true, false);
1684 /* FP present and we need to handle it */
1685 if (!return_to_secure
&&
1686 (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
)) {
1687 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1688 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1689 qemu_log_mask(CPU_LOG_INT
,
1690 "...taking SecureFault on existing stackframe: "
1691 "Secure LSPACT set but exception return is "
1692 "not to secure state\n");
1693 v7m_exception_taken(cpu
, excret
, true, false);
1697 restore_s16_s31
= return_to_secure
&&
1698 (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
);
1700 if (env
->v7m
.fpccr
[return_to_secure
] & R_V7M_FPCCR_LSPACT_MASK
) {
1701 /* State in FPU is still valid, just clear LSPACT */
1702 env
->v7m
.fpccr
[return_to_secure
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
1706 bool cpacr_pass
, nsacr_pass
;
1708 cpacr_pass
= v7m_cpacr_pass(env
, return_to_secure
,
1710 nsacr_pass
= return_to_secure
||
1711 extract32(env
->v7m
.nsacr
, 10, 1);
1714 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1716 env
->v7m
.cfsr
[return_to_secure
] |= R_V7M_CFSR_NOCP_MASK
;
1717 qemu_log_mask(CPU_LOG_INT
,
1718 "...taking UsageFault on existing "
1719 "stackframe: CPACR.CP10 prevents unstacking "
1721 v7m_exception_taken(cpu
, excret
, true, false);
1723 } else if (!nsacr_pass
) {
1724 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, true);
1725 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_INVPC_MASK
;
1726 qemu_log_mask(CPU_LOG_INT
,
1727 "...taking Secure UsageFault on existing "
1728 "stackframe: NSACR.CP10 prevents unstacking "
1730 v7m_exception_taken(cpu
, excret
, true, false);
1734 for (i
= 0; i
< (restore_s16_s31
? 32 : 16); i
+= 2) {
1737 uint32_t faddr
= frameptr
+ 0x20 + 4 * i
;
1740 faddr
+= 8; /* Skip the slot for the FPSCR */
1744 v7m_stack_read(cpu
, &slo
, faddr
, mmu_idx
) &&
1745 v7m_stack_read(cpu
, &shi
, faddr
+ 4, mmu_idx
);
1751 dn
= (uint64_t)shi
<< 32 | slo
;
1752 *aa32_vfp_dreg(env
, i
/ 2) = dn
;
1755 v7m_stack_read(cpu
, &fpscr
, frameptr
+ 0x60, mmu_idx
);
1757 vfp_set_fpscr(env
, fpscr
);
1761 * These regs are 0 if security extension present;
1762 * otherwise merely UNKNOWN. We zero always.
1764 for (i
= 0; i
< (restore_s16_s31
? 32 : 16); i
+= 2) {
1765 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1767 vfp_set_fpscr(env
, 0);
1771 env
->v7m
.control
[M_REG_S
] = FIELD_DP32(env
->v7m
.control
[M_REG_S
],
1772 V7M_CONTROL
, FPCA
, !ftype
);
1774 /* Commit to consuming the stack frame */
1778 if (restore_s16_s31
) {
1783 * Undo stack alignment (the SPREALIGN bit indicates that the original
1784 * pre-exception SP was not 8-aligned and we added a padding word to
1785 * align it, so we undo this by ORing in the bit that increases it
1786 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1787 * would work too but a logical OR is how the pseudocode specifies it.)
1789 if (xpsr
& XPSR_SPREALIGN
) {
1792 *frame_sp_p
= frameptr
;
1795 xpsr_mask
= ~(XPSR_SPREALIGN
| XPSR_SFPA
);
1796 if (!arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
1797 xpsr_mask
&= ~XPSR_GE
;
1799 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1800 xpsr_write(env
, xpsr
, xpsr_mask
);
1802 if (env
->v7m
.secure
) {
1803 bool sfpa
= xpsr
& XPSR_SFPA
;
1805 env
->v7m
.control
[M_REG_S
] = FIELD_DP32(env
->v7m
.control
[M_REG_S
],
1806 V7M_CONTROL
, SFPA
, sfpa
);
1810 * The restored xPSR exception field will be zero if we're
1811 * resuming in Thread mode. If that doesn't match what the
1812 * exception return excret specified then this is a UsageFault.
1813 * v7M requires we make this check here; v8M did it earlier.
1815 if (return_to_handler
!= arm_v7m_is_handler_mode(env
)) {
1817 * Take an INVPC UsageFault by pushing the stack again;
1818 * we know we're v7M so this is never a Secure UsageFault.
1820 bool ignore_stackfaults
;
1822 assert(!arm_feature(env
, ARM_FEATURE_V8
));
1823 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, false);
1824 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1825 ignore_stackfaults
= v7m_push_stack(cpu
);
1826 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on new stackframe: "
1827 "failed exception return integrity check\n");
1828 v7m_exception_taken(cpu
, excret
, false, ignore_stackfaults
);
1832 /* Otherwise, we have a successful exception exit. */
1833 arm_clear_exclusive(env
);
1834 arm_rebuild_hflags(env
);
1835 qemu_log_mask(CPU_LOG_INT
, "...successful exception return\n");
1838 static bool do_v7m_function_return(ARMCPU
*cpu
)
1841 * v8M security extensions magic function return.
1843 * (1) throw an exception (longjump)
1844 * (2) return true if we successfully handled the function return
1845 * (3) return false if we failed a consistency check and have
1846 * pended a UsageFault that needs to be taken now
1848 * At this point the magic return value is split between env->regs[15]
1849 * and env->thumb. We don't bother to reconstitute it because we don't
1850 * need it (all values are handled the same way).
1852 CPUARMState
*env
= &cpu
->env
;
1853 uint32_t newpc
, newpsr
, newpsr_exc
;
1855 qemu_log_mask(CPU_LOG_INT
, "...really v7M secure function return\n");
1858 bool threadmode
, spsel
;
1861 uint32_t *frame_sp_p
;
1864 /* Pull the return address and IPSR from the Secure stack */
1865 threadmode
= !arm_v7m_is_handler_mode(env
);
1866 spsel
= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SPSEL_MASK
;
1868 frame_sp_p
= get_v7m_sp_ptr(env
, true, threadmode
, spsel
);
1869 frameptr
= *frame_sp_p
;
1872 * These loads may throw an exception (for MPU faults). We want to
1873 * do them as secure, so work out what MMU index that is.
1875 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
1876 oi
= make_memop_idx(MO_LE
, arm_to_core_mmu_idx(mmu_idx
));
1877 newpc
= helper_le_ldul_mmu(env
, frameptr
, oi
, 0);
1878 newpsr
= helper_le_ldul_mmu(env
, frameptr
+ 4, oi
, 0);
1880 /* Consistency checks on new IPSR */
1881 newpsr_exc
= newpsr
& XPSR_EXCP
;
1882 if (!((env
->v7m
.exception
== 0 && newpsr_exc
== 0) ||
1883 (env
->v7m
.exception
== 1 && newpsr_exc
!= 0))) {
1884 /* Pend the fault and tell our caller to take it */
1885 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1886 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1888 qemu_log_mask(CPU_LOG_INT
,
1889 "...taking INVPC UsageFault: "
1890 "IPSR consistency check failed\n");
1894 *frame_sp_p
= frameptr
+ 8;
1897 /* This invalidates frame_sp_p */
1898 switch_v7m_security_state(env
, true);
1899 env
->v7m
.exception
= newpsr_exc
;
1900 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
1901 if (newpsr
& XPSR_SFPA
) {
1902 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_SFPA_MASK
;
1904 xpsr_write(env
, 0, XPSR_IT
);
1905 env
->thumb
= newpc
& 1;
1906 env
->regs
[15] = newpc
& ~1;
1907 arm_rebuild_hflags(env
);
1909 qemu_log_mask(CPU_LOG_INT
, "...function return successful\n");
1913 static bool v7m_read_half_insn(ARMCPU
*cpu
, ARMMMUIdx mmu_idx
,
1914 uint32_t addr
, uint16_t *insn
)
1917 * Load a 16-bit portion of a v7M instruction, returning true on success,
1918 * or false on failure (in which case we will have pended the appropriate
1920 * We need to do the instruction fetch's MPU and SAU checks
1921 * like this because there is no MMU index that would allow
1922 * doing the load with a single function call. Instead we must
1923 * first check that the security attributes permit the load
1924 * and that they don't mismatch on the two halves of the instruction,
1925 * and then we do the load as a secure load (ie using the security
1926 * attributes of the address, not the CPU, as architecturally required).
1928 CPUState
*cs
= CPU(cpu
);
1929 CPUARMState
*env
= &cpu
->env
;
1930 V8M_SAttributes sattrs
= {};
1931 MemTxAttrs attrs
= {};
1932 ARMMMUFaultInfo fi
= {};
1933 ARMCacheAttrs cacheattrs
= {};
1935 target_ulong page_size
;
1939 v8m_security_lookup(env
, addr
, MMU_INST_FETCH
, mmu_idx
, &sattrs
);
1940 if (!sattrs
.nsc
|| sattrs
.ns
) {
1942 * This must be the second half of the insn, and it straddles a
1943 * region boundary with the second half not being S&NSC.
1945 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
1946 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1947 qemu_log_mask(CPU_LOG_INT
,
1948 "...really SecureFault with SFSR.INVEP\n");
1951 if (get_phys_addr(env
, addr
, MMU_INST_FETCH
, mmu_idx
, &physaddr
,
1952 &attrs
, &prot
, &page_size
, &fi
, &cacheattrs
)) {
1953 /* the MPU lookup failed */
1954 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
1955 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
, env
->v7m
.secure
);
1956 qemu_log_mask(CPU_LOG_INT
, "...really MemManage with CFSR.IACCVIOL\n");
1959 *insn
= address_space_lduw_le(arm_addressspace(cs
, attrs
), physaddr
,
1961 if (txres
!= MEMTX_OK
) {
1962 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
1963 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
1964 qemu_log_mask(CPU_LOG_INT
, "...really BusFault with CFSR.IBUSERR\n");
1970 static bool v7m_handle_execute_nsc(ARMCPU
*cpu
)
1973 * Check whether this attempt to execute code in a Secure & NS-Callable
1974 * memory region is for an SG instruction; if so, then emulate the
1975 * effect of the SG instruction and return true. Otherwise pend
1976 * the correct kind of exception and return false.
1978 CPUARMState
*env
= &cpu
->env
;
1983 * We should never get here unless get_phys_addr_pmsav8() caused
1984 * an exception for NS executing in S&NSC memory.
1986 assert(!env
->v7m
.secure
);
1987 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
1989 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
1990 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
1992 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15], &insn
)) {
2000 if (insn
!= 0xe97f) {
2002 * Not an SG instruction first half (we choose the IMPDEF
2003 * early-SG-check option).
2008 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15] + 2, &insn
)) {
2012 if (insn
!= 0xe97f) {
2014 * Not an SG instruction second half (yes, both halves of the SG
2015 * insn have the same hex value)
2021 * OK, we have confirmed that we really have an SG instruction.
2022 * We know we're NS in S memory so don't need to repeat those checks.
2024 qemu_log_mask(CPU_LOG_INT
, "...really an SG instruction at 0x%08" PRIx32
2025 ", executing it\n", env
->regs
[15]);
2026 env
->regs
[14] &= ~1;
2027 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
2028 switch_v7m_security_state(env
, true);
2029 xpsr_write(env
, 0, XPSR_IT
);
2031 arm_rebuild_hflags(env
);
2035 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
2036 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2037 qemu_log_mask(CPU_LOG_INT
,
2038 "...really SecureFault with SFSR.INVEP\n");
2042 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
2044 ARMCPU
*cpu
= ARM_CPU(cs
);
2045 CPUARMState
*env
= &cpu
->env
;
2047 bool ignore_stackfaults
;
2049 arm_log_exception(cs
->exception_index
);
2052 * For exceptions we just mark as pending on the NVIC, and let that
2055 switch (cs
->exception_index
) {
2057 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2058 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNDEFINSTR_MASK
;
2063 * NOCP might be directed to something other than the current
2064 * security state if this fault is because of NSACR; we indicate
2065 * the target security state using exception.target_el.
2067 int target_secstate
;
2069 if (env
->exception
.target_el
== 3) {
2070 target_secstate
= M_REG_S
;
2072 target_secstate
= env
->v7m
.secure
;
2074 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, target_secstate
);
2075 env
->v7m
.cfsr
[target_secstate
] |= R_V7M_CFSR_NOCP_MASK
;
2079 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2080 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVSTATE_MASK
;
2083 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2084 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
2087 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2088 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
2090 case EXCP_UNALIGNED
:
2091 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2092 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNALIGNED_MASK
;
2095 /* The PC already points to the next instruction. */
2096 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
, env
->v7m
.secure
);
2098 case EXCP_PREFETCH_ABORT
:
2099 case EXCP_DATA_ABORT
:
2101 * Note that for M profile we don't have a guest facing FSR, but
2102 * the env->exception.fsr will be populated by the code that
2103 * raises the fault, in the A profile short-descriptor format.
2105 switch (env
->exception
.fsr
& 0xf) {
2106 case M_FAKE_FSR_NSC_EXEC
:
2108 * Exception generated when we try to execute code at an address
2109 * which is marked as Secure & Non-Secure Callable and the CPU
2110 * is in the Non-Secure state. The only instruction which can
2111 * be executed like this is SG (and that only if both halves of
2112 * the SG instruction have the same security attributes.)
2113 * Everything else must generate an INVEP SecureFault, so we
2114 * emulate the SG instruction here.
2116 if (v7m_handle_execute_nsc(cpu
)) {
2120 case M_FAKE_FSR_SFAULT
:
2122 * Various flavours of SecureFault for attempts to execute or
2123 * access data in the wrong security state.
2125 switch (cs
->exception_index
) {
2126 case EXCP_PREFETCH_ABORT
:
2127 if (env
->v7m
.secure
) {
2128 env
->v7m
.sfsr
|= R_V7M_SFSR_INVTRAN_MASK
;
2129 qemu_log_mask(CPU_LOG_INT
,
2130 "...really SecureFault with SFSR.INVTRAN\n");
2132 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
2133 qemu_log_mask(CPU_LOG_INT
,
2134 "...really SecureFault with SFSR.INVEP\n");
2137 case EXCP_DATA_ABORT
:
2138 /* This must be an NS access to S memory */
2139 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
2140 qemu_log_mask(CPU_LOG_INT
,
2141 "...really SecureFault with SFSR.AUVIOL\n");
2144 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2146 case 0x8: /* External Abort */
2147 switch (cs
->exception_index
) {
2148 case EXCP_PREFETCH_ABORT
:
2149 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
2150 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IBUSERR\n");
2152 case EXCP_DATA_ABORT
:
2153 env
->v7m
.cfsr
[M_REG_NS
] |=
2154 (R_V7M_CFSR_PRECISERR_MASK
| R_V7M_CFSR_BFARVALID_MASK
);
2155 env
->v7m
.bfar
= env
->exception
.vaddress
;
2156 qemu_log_mask(CPU_LOG_INT
,
2157 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2161 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
2165 * All other FSR values are either MPU faults or "can't happen
2166 * for M profile" cases.
2168 switch (cs
->exception_index
) {
2169 case EXCP_PREFETCH_ABORT
:
2170 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
2171 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IACCVIOL\n");
2173 case EXCP_DATA_ABORT
:
2174 env
->v7m
.cfsr
[env
->v7m
.secure
] |=
2175 (R_V7M_CFSR_DACCVIOL_MASK
| R_V7M_CFSR_MMARVALID_MASK
);
2176 env
->v7m
.mmfar
[env
->v7m
.secure
] = env
->exception
.vaddress
;
2177 qemu_log_mask(CPU_LOG_INT
,
2178 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2179 env
->v7m
.mmfar
[env
->v7m
.secure
]);
2182 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
,
2188 qemu_log_mask(CPU_LOG_INT
,
2189 "...handling as semihosting call 0x%x\n",
2191 env
->regs
[0] = do_arm_semihosting(env
);
2192 env
->regs
[15] += env
->thumb
? 2 : 4;
2195 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
, false);
2199 case EXCP_EXCEPTION_EXIT
:
2200 if (env
->regs
[15] < EXC_RETURN_MIN_MAGIC
) {
2201 /* Must be v8M security extension function return */
2202 assert(env
->regs
[15] >= FNC_RETURN_MIN_MAGIC
);
2203 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
2204 if (do_v7m_function_return(cpu
)) {
2208 do_v7m_exception_exit(cpu
);
2214 * We already pended the specific exception in the NVIC in the
2215 * v7m_preserve_fp_state() helper function.
2219 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
2220 return; /* Never happens. Keep compiler happy. */
2223 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2224 lr
= R_V7M_EXCRET_RES1_MASK
|
2225 R_V7M_EXCRET_DCRS_MASK
;
2227 * The S bit indicates whether we should return to Secure
2228 * or NonSecure (ie our current state).
2229 * The ES bit indicates whether we're taking this exception
2230 * to Secure or NonSecure (ie our target state). We set it
2231 * later, in v7m_exception_taken().
2232 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2233 * This corresponds to the ARM ARM pseudocode for v8M setting
2234 * some LR bits in PushStack() and some in ExceptionTaken();
2235 * the distinction matters for the tailchain cases where we
2236 * can take an exception without pushing the stack.
2238 if (env
->v7m
.secure
) {
2239 lr
|= R_V7M_EXCRET_S_MASK
;
2242 lr
= R_V7M_EXCRET_RES1_MASK
|
2243 R_V7M_EXCRET_S_MASK
|
2244 R_V7M_EXCRET_DCRS_MASK
|
2245 R_V7M_EXCRET_ES_MASK
;
2246 if (env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
) {
2247 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
2250 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
)) {
2251 lr
|= R_V7M_EXCRET_FTYPE_MASK
;
2253 if (!arm_v7m_is_handler_mode(env
)) {
2254 lr
|= R_V7M_EXCRET_MODE_MASK
;
2257 ignore_stackfaults
= v7m_push_stack(cpu
);
2258 v7m_exception_taken(cpu
, lr
, false, ignore_stackfaults
);
2261 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2263 unsigned el
= arm_current_el(env
);
2265 /* First handle registers which unprivileged can read */
2267 case 0 ... 7: /* xPSR sub-fields */
2268 return v7m_mrs_xpsr(env
, reg
, el
);
2269 case 20: /* CONTROL */
2270 return v7m_mrs_control(env
, env
->v7m
.secure
);
2271 case 0x94: /* CONTROL_NS */
2273 * We have to handle this here because unprivileged Secure code
2274 * can read the NS CONTROL register.
2276 if (!env
->v7m
.secure
) {
2279 return env
->v7m
.control
[M_REG_NS
] |
2280 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
);
2284 return 0; /* unprivileged reads others as zero */
2287 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2289 case 0x88: /* MSP_NS */
2290 if (!env
->v7m
.secure
) {
2293 return env
->v7m
.other_ss_msp
;
2294 case 0x89: /* PSP_NS */
2295 if (!env
->v7m
.secure
) {
2298 return env
->v7m
.other_ss_psp
;
2299 case 0x8a: /* MSPLIM_NS */
2300 if (!env
->v7m
.secure
) {
2303 return env
->v7m
.msplim
[M_REG_NS
];
2304 case 0x8b: /* PSPLIM_NS */
2305 if (!env
->v7m
.secure
) {
2308 return env
->v7m
.psplim
[M_REG_NS
];
2309 case 0x90: /* PRIMASK_NS */
2310 if (!env
->v7m
.secure
) {
2313 return env
->v7m
.primask
[M_REG_NS
];
2314 case 0x91: /* BASEPRI_NS */
2315 if (!env
->v7m
.secure
) {
2318 return env
->v7m
.basepri
[M_REG_NS
];
2319 case 0x93: /* FAULTMASK_NS */
2320 if (!env
->v7m
.secure
) {
2323 return env
->v7m
.faultmask
[M_REG_NS
];
2324 case 0x98: /* SP_NS */
2327 * This gives the non-secure SP selected based on whether we're
2328 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2330 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
2332 if (!env
->v7m
.secure
) {
2335 if (!arm_v7m_is_handler_mode(env
) && spsel
) {
2336 return env
->v7m
.other_ss_psp
;
2338 return env
->v7m
.other_ss_msp
;
2348 return v7m_using_psp(env
) ? env
->v7m
.other_sp
: env
->regs
[13];
2350 return v7m_using_psp(env
) ? env
->regs
[13] : env
->v7m
.other_sp
;
2351 case 10: /* MSPLIM */
2352 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2355 return env
->v7m
.msplim
[env
->v7m
.secure
];
2356 case 11: /* PSPLIM */
2357 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2360 return env
->v7m
.psplim
[env
->v7m
.secure
];
2361 case 16: /* PRIMASK */
2362 return env
->v7m
.primask
[env
->v7m
.secure
];
2363 case 17: /* BASEPRI */
2364 case 18: /* BASEPRI_MAX */
2365 return env
->v7m
.basepri
[env
->v7m
.secure
];
2366 case 19: /* FAULTMASK */
2367 return env
->v7m
.faultmask
[env
->v7m
.secure
];
2370 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to read unknown special"
2371 " register %d\n", reg
);
2376 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
2379 * We're passed bits [11..0] of the instruction; extract
2380 * SYSm and the mask bits.
2381 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2382 * we choose to treat them as if the mask bits were valid.
2383 * NB that the pseudocode 'mask' variable is bits [11..10],
2384 * whereas ours is [11..8].
2386 uint32_t mask
= extract32(maskreg
, 8, 4);
2387 uint32_t reg
= extract32(maskreg
, 0, 8);
2388 int cur_el
= arm_current_el(env
);
2390 if (cur_el
== 0 && reg
> 7 && reg
!= 20) {
2392 * only xPSR sub-fields and CONTROL.SFPA may be written by
2398 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2400 case 0x88: /* MSP_NS */
2401 if (!env
->v7m
.secure
) {
2404 env
->v7m
.other_ss_msp
= val
;
2406 case 0x89: /* PSP_NS */
2407 if (!env
->v7m
.secure
) {
2410 env
->v7m
.other_ss_psp
= val
;
2412 case 0x8a: /* MSPLIM_NS */
2413 if (!env
->v7m
.secure
) {
2416 env
->v7m
.msplim
[M_REG_NS
] = val
& ~7;
2418 case 0x8b: /* PSPLIM_NS */
2419 if (!env
->v7m
.secure
) {
2422 env
->v7m
.psplim
[M_REG_NS
] = val
& ~7;
2424 case 0x90: /* PRIMASK_NS */
2425 if (!env
->v7m
.secure
) {
2428 env
->v7m
.primask
[M_REG_NS
] = val
& 1;
2430 case 0x91: /* BASEPRI_NS */
2431 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2434 env
->v7m
.basepri
[M_REG_NS
] = val
& 0xff;
2436 case 0x93: /* FAULTMASK_NS */
2437 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2440 env
->v7m
.faultmask
[M_REG_NS
] = val
& 1;
2442 case 0x94: /* CONTROL_NS */
2443 if (!env
->v7m
.secure
) {
2446 write_v7m_control_spsel_for_secstate(env
,
2447 val
& R_V7M_CONTROL_SPSEL_MASK
,
2449 if (arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2450 env
->v7m
.control
[M_REG_NS
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
2451 env
->v7m
.control
[M_REG_NS
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
2454 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2455 * RES0 if the FPU is not present, and is stored in the S bank
2457 if (cpu_isar_feature(aa32_vfp_simd
, env_archcpu(env
)) &&
2458 extract32(env
->v7m
.nsacr
, 10, 1)) {
2459 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
2460 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_FPCA_MASK
;
2463 case 0x98: /* SP_NS */
2466 * This gives the non-secure SP selected based on whether we're
2467 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2469 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
2470 bool is_psp
= !arm_v7m_is_handler_mode(env
) && spsel
;
2473 if (!env
->v7m
.secure
) {
2477 limit
= is_psp
? env
->v7m
.psplim
[false] : env
->v7m
.msplim
[false];
2480 CPUState
*cs
= env_cpu(env
);
2482 cpu_restore_state(cs
, GETPC(), true);
2483 raise_exception(env
, EXCP_STKOF
, 0, 1);
2487 env
->v7m
.other_ss_psp
= val
;
2489 env
->v7m
.other_ss_msp
= val
;
2499 case 0 ... 7: /* xPSR sub-fields */
2500 v7m_msr_xpsr(env
, mask
, reg
, val
);
2503 if (v7m_using_psp(env
)) {
2504 env
->v7m
.other_sp
= val
;
2506 env
->regs
[13] = val
;
2510 if (v7m_using_psp(env
)) {
2511 env
->regs
[13] = val
;
2513 env
->v7m
.other_sp
= val
;
2516 case 10: /* MSPLIM */
2517 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2520 env
->v7m
.msplim
[env
->v7m
.secure
] = val
& ~7;
2522 case 11: /* PSPLIM */
2523 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2526 env
->v7m
.psplim
[env
->v7m
.secure
] = val
& ~7;
2528 case 16: /* PRIMASK */
2529 env
->v7m
.primask
[env
->v7m
.secure
] = val
& 1;
2531 case 17: /* BASEPRI */
2532 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2535 env
->v7m
.basepri
[env
->v7m
.secure
] = val
& 0xff;
2537 case 18: /* BASEPRI_MAX */
2538 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2542 if (val
!= 0 && (val
< env
->v7m
.basepri
[env
->v7m
.secure
]
2543 || env
->v7m
.basepri
[env
->v7m
.secure
] == 0)) {
2544 env
->v7m
.basepri
[env
->v7m
.secure
] = val
;
2547 case 19: /* FAULTMASK */
2548 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2551 env
->v7m
.faultmask
[env
->v7m
.secure
] = val
& 1;
2553 case 20: /* CONTROL */
2555 * Writing to the SPSEL bit only has an effect if we are in
2556 * thread mode; other bits can be updated by any privileged code.
2557 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2558 * env->v7m.control, so we only need update the others.
2559 * For v7M, we must just ignore explicit writes to SPSEL in handler
2560 * mode; for v8M the write is permitted but will have no effect.
2561 * All these bits are writes-ignored from non-privileged code,
2564 if (cur_el
> 0 && (arm_feature(env
, ARM_FEATURE_V8
) ||
2565 !arm_v7m_is_handler_mode(env
))) {
2566 write_v7m_control_spsel(env
, (val
& R_V7M_CONTROL_SPSEL_MASK
) != 0);
2568 if (cur_el
> 0 && arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2569 env
->v7m
.control
[env
->v7m
.secure
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
2570 env
->v7m
.control
[env
->v7m
.secure
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
2572 if (cpu_isar_feature(aa32_vfp_simd
, env_archcpu(env
))) {
2574 * SFPA is RAZ/WI from NS or if no FPU.
2575 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2576 * Both are stored in the S bank.
2578 if (env
->v7m
.secure
) {
2579 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
2580 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_SFPA_MASK
;
2583 (env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_SECURITY
) ||
2584 extract32(env
->v7m
.nsacr
, 10, 1))) {
2585 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
2586 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_FPCA_MASK
;
2592 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to write unknown special"
2593 " register %d\n", reg
);
2598 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
2600 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2601 bool forceunpriv
= op
& 1;
2603 V8M_SAttributes sattrs
= {};
2605 bool r
, rw
, nsr
, nsrw
, mrvalid
;
2607 ARMMMUFaultInfo fi
= {};
2608 MemTxAttrs attrs
= {};
2613 bool targetsec
= env
->v7m
.secure
;
2617 * Work out what the security state and privilege level we're
2618 * interested in is...
2621 targetsec
= !targetsec
;
2627 targetpriv
= arm_v7m_is_handler_mode(env
) ||
2628 !(env
->v7m
.control
[targetsec
] & R_V7M_CONTROL_NPRIV_MASK
);
2631 /* ...and then figure out which MMU index this is */
2632 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targetsec
, targetpriv
);
2635 * We know that the MPU and SAU don't care about the access type
2636 * for our purposes beyond that we don't want to claim to be
2637 * an insn fetch, so we arbitrarily call this a read.
2641 * MPU region info only available for privileged or if
2642 * inspecting the other MPU state.
2644 if (arm_current_el(env
) != 0 || alt
) {
2645 /* We can ignore the return value as prot is always set */
2646 pmsav8_mpu_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
,
2647 &phys_addr
, &attrs
, &prot
, &is_subpage
,
2649 if (mregion
== -1) {
2655 r
= prot
& PAGE_READ
;
2656 rw
= prot
& PAGE_WRITE
;
2664 if (env
->v7m
.secure
) {
2665 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
2666 nsr
= sattrs
.ns
&& r
;
2667 nsrw
= sattrs
.ns
&& rw
;
2674 tt_resp
= (sattrs
.iregion
<< 24) |
2675 (sattrs
.irvalid
<< 23) |
2676 ((!sattrs
.ns
) << 22) |
2681 (sattrs
.srvalid
<< 17) |
2683 (sattrs
.sregion
<< 8) |
2689 #endif /* !CONFIG_USER_ONLY */
2691 ARMMMUIdx
arm_v7m_mmu_idx_all(CPUARMState
*env
,
2692 bool secstate
, bool priv
, bool negpri
)
2694 ARMMMUIdx mmu_idx
= ARM_MMU_IDX_M
;
2697 mmu_idx
|= ARM_MMU_IDX_M_PRIV
;
2701 mmu_idx
|= ARM_MMU_IDX_M_NEGPRI
;
2705 mmu_idx
|= ARM_MMU_IDX_M_S
;
2711 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState
*env
,
2712 bool secstate
, bool priv
)
2714 bool negpri
= armv7m_nvic_neg_prio_requested(env
->nvic
, secstate
);
2716 return arm_v7m_mmu_idx_all(env
, secstate
, priv
, negpri
);
2719 /* Return the MMU index for a v7M CPU in the specified security state */
2720 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
2722 bool priv
= arm_current_el(env
) != 0;
2724 return arm_v7m_mmu_idx_for_secstate_and_priv(env
, secstate
, priv
);