cputlb: atomically update tlb fields used by tlb_reset_dirty
[qemu/ar7.git] / include / exec / cpu-all.h
blobffe43d565454a3e934e3a39d0968543df9b5f460
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
22 #include "qemu-common.h"
23 #include "exec/cpu-common.h"
24 #include "exec/memory.h"
25 #include "qemu/thread.h"
26 #include "qom/cpu.h"
27 #include "qemu/rcu.h"
29 #define EXCP_INTERRUPT 0x10000 /* async interruption */
30 #define EXCP_HLT 0x10001 /* hlt instruction reached */
31 #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */
32 #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */
33 #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */
34 #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */
36 /* some important defines:
38 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
39 * otherwise little endian.
41 * TARGET_WORDS_BIGENDIAN : same for target cpu
44 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
45 #define BSWAP_NEEDED
46 #endif
48 #ifdef BSWAP_NEEDED
50 static inline uint16_t tswap16(uint16_t s)
52 return bswap16(s);
55 static inline uint32_t tswap32(uint32_t s)
57 return bswap32(s);
60 static inline uint64_t tswap64(uint64_t s)
62 return bswap64(s);
65 static inline void tswap16s(uint16_t *s)
67 *s = bswap16(*s);
70 static inline void tswap32s(uint32_t *s)
72 *s = bswap32(*s);
75 static inline void tswap64s(uint64_t *s)
77 *s = bswap64(*s);
80 #else
82 static inline uint16_t tswap16(uint16_t s)
84 return s;
87 static inline uint32_t tswap32(uint32_t s)
89 return s;
92 static inline uint64_t tswap64(uint64_t s)
94 return s;
97 static inline void tswap16s(uint16_t *s)
101 static inline void tswap32s(uint32_t *s)
105 static inline void tswap64s(uint64_t *s)
109 #endif
111 #if TARGET_LONG_SIZE == 4
112 #define tswapl(s) tswap32(s)
113 #define tswapls(s) tswap32s((uint32_t *)(s))
114 #define bswaptls(s) bswap32s(s)
115 #else
116 #define tswapl(s) tswap64(s)
117 #define tswapls(s) tswap64s((uint64_t *)(s))
118 #define bswaptls(s) bswap64s(s)
119 #endif
121 /* Target-endianness CPU memory access functions. These fit into the
122 * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
124 #if defined(TARGET_WORDS_BIGENDIAN)
125 #define lduw_p(p) lduw_be_p(p)
126 #define ldsw_p(p) ldsw_be_p(p)
127 #define ldl_p(p) ldl_be_p(p)
128 #define ldq_p(p) ldq_be_p(p)
129 #define ldfl_p(p) ldfl_be_p(p)
130 #define ldfq_p(p) ldfq_be_p(p)
131 #define stw_p(p, v) stw_be_p(p, v)
132 #define stl_p(p, v) stl_be_p(p, v)
133 #define stq_p(p, v) stq_be_p(p, v)
134 #define stfl_p(p, v) stfl_be_p(p, v)
135 #define stfq_p(p, v) stfq_be_p(p, v)
136 #else
137 #define lduw_p(p) lduw_le_p(p)
138 #define ldsw_p(p) ldsw_le_p(p)
139 #define ldl_p(p) ldl_le_p(p)
140 #define ldq_p(p) ldq_le_p(p)
141 #define ldfl_p(p) ldfl_le_p(p)
142 #define ldfq_p(p) ldfq_le_p(p)
143 #define stw_p(p, v) stw_le_p(p, v)
144 #define stl_p(p, v) stl_le_p(p, v)
145 #define stq_p(p, v) stq_le_p(p, v)
146 #define stfl_p(p, v) stfl_le_p(p, v)
147 #define stfq_p(p, v) stfq_le_p(p, v)
148 #endif
150 /* MMU memory access macros */
152 #if defined(CONFIG_USER_ONLY)
153 #include "exec/user/abitypes.h"
155 /* On some host systems the guest address space is reserved on the host.
156 * This allows the guest address space to be offset to a convenient location.
158 extern unsigned long guest_base;
159 extern int have_guest_base;
160 extern unsigned long reserved_va;
162 #define GUEST_ADDR_MAX (reserved_va ? reserved_va : \
163 (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
164 #else
166 #include "exec/hwaddr.h"
167 uint32_t lduw_phys(AddressSpace *as, hwaddr addr);
168 uint32_t ldl_phys(AddressSpace *as, hwaddr addr);
169 uint64_t ldq_phys(AddressSpace *as, hwaddr addr);
170 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val);
171 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val);
172 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val);
173 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val);
175 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
176 MemTxAttrs attrs, MemTxResult *result);
177 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
178 MemTxAttrs attrs, MemTxResult *result);
179 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
180 MemTxAttrs attrs, MemTxResult *result);
181 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
182 MemTxAttrs attrs, MemTxResult *result);
183 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
184 MemTxAttrs attrs, MemTxResult *result);
185 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
186 MemTxAttrs attrs, MemTxResult *result);
187 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
188 MemTxAttrs attrs, MemTxResult *result);
190 uint32_t lduw_phys_cached(MemoryRegionCache *cache, hwaddr addr);
191 uint32_t ldl_phys_cached(MemoryRegionCache *cache, hwaddr addr);
192 uint64_t ldq_phys_cached(MemoryRegionCache *cache, hwaddr addr);
193 void stl_phys_notdirty_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
194 void stw_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
195 void stl_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
196 void stq_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
198 uint32_t address_space_lduw_cached(MemoryRegionCache *cache, hwaddr addr,
199 MemTxAttrs attrs, MemTxResult *result);
200 uint32_t address_space_ldl_cached(MemoryRegionCache *cache, hwaddr addr,
201 MemTxAttrs attrs, MemTxResult *result);
202 uint64_t address_space_ldq_cached(MemoryRegionCache *cache, hwaddr addr,
203 MemTxAttrs attrs, MemTxResult *result);
204 void address_space_stl_notdirty_cached(MemoryRegionCache *cache, hwaddr addr,
205 uint32_t val, MemTxAttrs attrs, MemTxResult *result);
206 void address_space_stw_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
207 MemTxAttrs attrs, MemTxResult *result);
208 void address_space_stl_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
209 MemTxAttrs attrs, MemTxResult *result);
210 void address_space_stq_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
211 MemTxAttrs attrs, MemTxResult *result);
212 #endif
214 /* page related stuff */
216 #ifdef TARGET_PAGE_BITS_VARY
217 extern bool target_page_bits_decided;
218 extern int target_page_bits;
219 #define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \
220 target_page_bits; })
221 #else
222 #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
223 #endif
225 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
226 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
227 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
229 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
230 * when intptr_t is 32-bit and we are aligning a long long.
232 extern uintptr_t qemu_real_host_page_size;
233 extern intptr_t qemu_real_host_page_mask;
234 extern uintptr_t qemu_host_page_size;
235 extern intptr_t qemu_host_page_mask;
237 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
238 #define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \
239 qemu_real_host_page_mask)
241 /* same as PROT_xxx */
242 #define PAGE_READ 0x0001
243 #define PAGE_WRITE 0x0002
244 #define PAGE_EXEC 0x0004
245 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
246 #define PAGE_VALID 0x0008
247 /* original state of the write flag (used when tracking self-modifying
248 code */
249 #define PAGE_WRITE_ORG 0x0010
250 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
251 /* FIXME: Code that sets/uses this is broken and needs to go away. */
252 #define PAGE_RESERVED 0x0020
253 #endif
255 #if defined(CONFIG_USER_ONLY)
256 void page_dump(FILE *f);
258 typedef int (*walk_memory_regions_fn)(void *, target_ulong,
259 target_ulong, unsigned long);
260 int walk_memory_regions(void *, walk_memory_regions_fn);
262 int page_get_flags(target_ulong address);
263 void page_set_flags(target_ulong start, target_ulong end, int flags);
264 int page_check_range(target_ulong start, target_ulong len, int flags);
265 #endif
267 CPUArchState *cpu_copy(CPUArchState *env);
269 /* Flags for use in ENV->INTERRUPT_PENDING.
271 The numbers assigned here are non-sequential in order to preserve
272 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
273 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
274 the vmstate dump. */
276 /* External hardware interrupt pending. This is typically used for
277 interrupts from devices. */
278 #define CPU_INTERRUPT_HARD 0x0002
280 /* Exit the current TB. This is typically used when some system-level device
281 makes some change to the memory mapping. E.g. the a20 line change. */
282 #define CPU_INTERRUPT_EXITTB 0x0004
284 /* Halt the CPU. */
285 #define CPU_INTERRUPT_HALT 0x0020
287 /* Debug event pending. */
288 #define CPU_INTERRUPT_DEBUG 0x0080
290 /* Reset signal. */
291 #define CPU_INTERRUPT_RESET 0x0400
293 /* Several target-specific external hardware interrupts. Each target/cpu.h
294 should define proper names based on these defines. */
295 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
296 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
297 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
298 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
299 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
301 /* Several target-specific internal interrupts. These differ from the
302 preceding target-specific interrupts in that they are intended to
303 originate from within the cpu itself, typically in response to some
304 instruction being executed. These, therefore, are not masked while
305 single-stepping within the debugger. */
306 #define CPU_INTERRUPT_TGT_INT_0 0x0100
307 #define CPU_INTERRUPT_TGT_INT_1 0x0800
308 #define CPU_INTERRUPT_TGT_INT_2 0x2000
310 /* First unused bit: 0x4000. */
312 /* The set of all bits that should be masked when single-stepping. */
313 #define CPU_INTERRUPT_SSTEP_MASK \
314 (CPU_INTERRUPT_HARD \
315 | CPU_INTERRUPT_TGT_EXT_0 \
316 | CPU_INTERRUPT_TGT_EXT_1 \
317 | CPU_INTERRUPT_TGT_EXT_2 \
318 | CPU_INTERRUPT_TGT_EXT_3 \
319 | CPU_INTERRUPT_TGT_EXT_4)
321 #if !defined(CONFIG_USER_ONLY)
323 /* Flags stored in the low bits of the TLB virtual address. These are
324 * defined so that fast path ram access is all zeros.
325 * The flags all must be between TARGET_PAGE_BITS and
326 * maximum address alignment bit.
328 /* Zero if TLB entry is valid. */
329 #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS - 1))
330 /* Set if TLB entry references a clean RAM page. The iotlb entry will
331 contain the page physical address. */
332 #define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS - 2))
333 /* Set if TLB entry is an IO callback. */
334 #define TLB_MMIO (1 << (TARGET_PAGE_BITS - 3))
336 /* Use this mask to check interception with an alignment mask
337 * in a TCG backend.
339 #define TLB_FLAGS_MASK (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO)
341 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
342 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf);
343 #endif /* !CONFIG_USER_ONLY */
345 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
346 uint8_t *buf, int len, int is_write);
348 int cpu_exec(CPUState *cpu);
350 #endif /* CPU_ALL_H */