2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
26 #include "hw/net/imx_fec.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/dma.h"
31 #include "qemu/module.h"
32 #include "net/checksum.h"
39 #define IMX_MAX_DESC 1024
41 static const char *imx_default_reg_name(IMXFECState
*s
, uint32_t index
)
44 sprintf(tmp
, "index %d", index
);
48 static const char *imx_fec_reg_name(IMXFECState
*s
, uint32_t index
)
55 case ENET_MIIGSK_CFGR
:
60 return imx_default_reg_name(s
, index
);
64 static const char *imx_enet_reg_name(IMXFECState
*s
, uint32_t index
)
122 return imx_default_reg_name(s
, index
);
126 static const char *imx_eth_reg_name(IMXFECState
*s
, uint32_t index
)
173 return imx_fec_reg_name(s
, index
);
175 return imx_enet_reg_name(s
, index
);
181 * Versions of this device with more than one TX descriptor save the
182 * 2nd and 3rd descriptors in a subsection, to maintain migration
183 * compatibility with previous versions of the device that only
184 * supported a single descriptor.
186 static bool imx_eth_is_multi_tx_ring(void *opaque
)
188 IMXFECState
*s
= IMX_FEC(opaque
);
190 return s
->tx_ring_num
> 1;
193 static const VMStateDescription vmstate_imx_eth_txdescs
= {
194 .name
= "imx.fec/txdescs",
196 .minimum_version_id
= 1,
197 .needed
= imx_eth_is_multi_tx_ring
,
198 .fields
= (VMStateField
[]) {
199 VMSTATE_UINT32(tx_descriptor
[1], IMXFECState
),
200 VMSTATE_UINT32(tx_descriptor
[2], IMXFECState
),
201 VMSTATE_END_OF_LIST()
205 static const VMStateDescription vmstate_imx_eth
= {
206 .name
= TYPE_IMX_FEC
,
208 .minimum_version_id
= 2,
209 .fields
= (VMStateField
[]) {
210 VMSTATE_UINT32_ARRAY(regs
, IMXFECState
, ENET_MAX
),
211 VMSTATE_UINT32(rx_descriptor
, IMXFECState
),
212 VMSTATE_UINT32(tx_descriptor
[0], IMXFECState
),
213 VMSTATE_UINT32(phy_status
, IMXFECState
),
214 VMSTATE_UINT32(phy_control
, IMXFECState
),
215 VMSTATE_UINT32(phy_advertise
, IMXFECState
),
216 VMSTATE_UINT32(phy_int
, IMXFECState
),
217 VMSTATE_UINT32(phy_int_mask
, IMXFECState
),
218 VMSTATE_END_OF_LIST()
220 .subsections
= (const VMStateDescription
* []) {
221 &vmstate_imx_eth_txdescs
,
226 #define PHY_INT_ENERGYON (1 << 7)
227 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
228 #define PHY_INT_FAULT (1 << 5)
229 #define PHY_INT_DOWN (1 << 4)
230 #define PHY_INT_AUTONEG_LP (1 << 3)
231 #define PHY_INT_PARFAULT (1 << 2)
232 #define PHY_INT_AUTONEG_PAGE (1 << 1)
234 static void imx_eth_update(IMXFECState
*s
);
237 * The MII phy could raise a GPIO to the processor which in turn
238 * could be handled as an interrpt by the OS.
239 * For now we don't handle any GPIO/interrupt line, so the OS will
240 * have to poll for the PHY status.
242 static void imx_phy_update_irq(IMXFECState
*s
)
247 static void imx_phy_update_link(IMXFECState
*s
)
249 /* Autonegotiation status mirrors link status. */
250 if (qemu_get_queue(s
->nic
)->link_down
) {
251 trace_imx_phy_update_link("down");
252 s
->phy_status
&= ~0x0024;
253 s
->phy_int
|= PHY_INT_DOWN
;
255 trace_imx_phy_update_link("up");
256 s
->phy_status
|= 0x0024;
257 s
->phy_int
|= PHY_INT_ENERGYON
;
258 s
->phy_int
|= PHY_INT_AUTONEG_COMPLETE
;
260 imx_phy_update_irq(s
);
263 static void imx_eth_set_link(NetClientState
*nc
)
265 imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc
)));
268 static void imx_phy_reset(IMXFECState
*s
)
270 trace_imx_phy_reset();
272 s
->phy_status
= 0x7809;
273 s
->phy_control
= 0x3000;
274 s
->phy_advertise
= 0x01e1;
277 imx_phy_update_link(s
);
280 static uint32_t imx_phy_read(IMXFECState
*s
, int reg
)
283 uint32_t phy
= reg
/ 32;
285 if (phy
!= s
->phy_num
) {
286 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad phy num %u\n",
287 TYPE_IMX_FEC
, __func__
, phy
);
294 case 0: /* Basic Control */
295 val
= s
->phy_control
;
297 case 1: /* Basic Status */
306 case 4: /* Auto-neg advertisement */
307 val
= s
->phy_advertise
;
309 case 5: /* Auto-neg Link Partner Ability */
312 case 6: /* Auto-neg Expansion */
315 case 29: /* Interrupt source. */
318 imx_phy_update_irq(s
);
320 case 30: /* Interrupt mask */
321 val
= s
->phy_int_mask
;
327 qemu_log_mask(LOG_UNIMP
, "[%s.phy]%s: reg %d not implemented\n",
328 TYPE_IMX_FEC
, __func__
, reg
);
332 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
333 TYPE_IMX_FEC
, __func__
, reg
);
338 trace_imx_phy_read(val
, phy
, reg
);
343 static void imx_phy_write(IMXFECState
*s
, int reg
, uint32_t val
)
345 uint32_t phy
= reg
/ 32;
347 if (phy
!= s
->phy_num
) {
348 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad phy num %u\n",
349 TYPE_IMX_FEC
, __func__
, phy
);
355 trace_imx_phy_write(val
, phy
, reg
);
358 case 0: /* Basic Control */
362 s
->phy_control
= val
& 0x7980;
363 /* Complete autonegotiation immediately. */
365 s
->phy_status
|= 0x0020;
369 case 4: /* Auto-neg advertisement */
370 s
->phy_advertise
= (val
& 0x2d7f) | 0x80;
372 case 30: /* Interrupt mask */
373 s
->phy_int_mask
= val
& 0xff;
374 imx_phy_update_irq(s
);
380 qemu_log_mask(LOG_UNIMP
, "[%s.phy)%s: reg %d not implemented\n",
381 TYPE_IMX_FEC
, __func__
, reg
);
384 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
385 TYPE_IMX_FEC
, __func__
, reg
);
390 static void imx_fec_read_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
392 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
394 trace_imx_fec_read_bd(addr
, bd
->flags
, bd
->length
, bd
->data
);
397 static void imx_fec_write_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
399 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
402 static void imx_enet_read_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
404 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
406 trace_imx_enet_read_bd(addr
, bd
->flags
, bd
->length
, bd
->data
,
407 bd
->option
, bd
->status
);
410 static void imx_enet_write_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
412 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
415 static void imx_eth_update(IMXFECState
*s
)
418 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
419 * interrupts swapped. This worked with older versions of Linux (4.14
420 * and older) since Linux associated both interrupt lines with Ethernet
421 * MAC interrupts. Specifically,
422 * - Linux 4.15 and later have separate interrupt handlers for the MAC and
423 * timer interrupts. Those versions of Linux fail with versions of QEMU
424 * with swapped interrupt assignments.
425 * - In linux 4.14, both interrupt lines were registered with the Ethernet
426 * MAC interrupt handler. As a result, all versions of qemu happen to
427 * work, though that is accidental.
428 * - In Linux 4.9 and older, the timer interrupt was registered directly
429 * with the Ethernet MAC interrupt handler. The MAC interrupt was
430 * redirected to a GPIO interrupt to work around erratum ERR006687.
431 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO
432 * interrupt never fired since IOMUX is currently not supported in qemu.
433 * Linux instead received MAC interrupts on the timer interrupt.
434 * As a result, qemu versions with the swapped interrupt assignment work,
435 * albeit accidentally, but qemu versions with the correct interrupt
438 * To ensure that all versions of Linux work, generate ENET_INT_MAC
439 * interrrupts on both interrupt lines. This should be changed if and when
440 * qemu supports IOMUX.
442 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] &
443 (ENET_INT_MAC
| ENET_INT_TS_TIMER
)) {
444 qemu_set_irq(s
->irq
[1], 1);
446 qemu_set_irq(s
->irq
[1], 0);
449 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] & ENET_INT_MAC
) {
450 qemu_set_irq(s
->irq
[0], 1);
452 qemu_set_irq(s
->irq
[0], 0);
456 static void imx_fec_do_tx(IMXFECState
*s
)
458 int frame_size
= 0, descnt
= 0;
459 uint8_t *ptr
= s
->frame
;
460 uint32_t addr
= s
->tx_descriptor
[0];
462 while (descnt
++ < IMX_MAX_DESC
) {
466 imx_fec_read_bd(&bd
, addr
);
467 if ((bd
.flags
& ENET_BD_R
) == 0) {
469 /* Run out of descriptors to transmit. */
470 trace_imx_eth_tx_bd_busy();
475 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
476 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
477 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
479 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
482 if (bd
.flags
& ENET_BD_L
) {
483 /* Last buffer in frame. */
484 qemu_send_packet(qemu_get_queue(s
->nic
), s
->frame
, frame_size
);
487 s
->regs
[ENET_EIR
] |= ENET_INT_TXF
;
489 s
->regs
[ENET_EIR
] |= ENET_INT_TXB
;
490 bd
.flags
&= ~ENET_BD_R
;
491 /* Write back the modified descriptor. */
492 imx_fec_write_bd(&bd
, addr
);
493 /* Advance to the next descriptor. */
494 if ((bd
.flags
& ENET_BD_W
) != 0) {
495 addr
= s
->regs
[ENET_TDSR
];
501 s
->tx_descriptor
[0] = addr
;
506 static void imx_enet_do_tx(IMXFECState
*s
, uint32_t index
)
508 int frame_size
= 0, descnt
= 0;
510 uint8_t *ptr
= s
->frame
;
511 uint32_t addr
, int_txb
, int_txf
, tdsr
;
517 int_txb
= ENET_INT_TXB
;
518 int_txf
= ENET_INT_TXF
;
523 int_txb
= ENET_INT_TXB1
;
524 int_txf
= ENET_INT_TXF1
;
529 int_txb
= ENET_INT_TXB2
;
530 int_txf
= ENET_INT_TXF2
;
534 qemu_log_mask(LOG_GUEST_ERROR
,
535 "%s: bogus value for index %x\n",
541 addr
= s
->tx_descriptor
[ring
];
543 while (descnt
++ < IMX_MAX_DESC
) {
547 imx_enet_read_bd(&bd
, addr
);
548 if ((bd
.flags
& ENET_BD_R
) == 0) {
549 /* Run out of descriptors to transmit. */
551 trace_imx_eth_tx_bd_busy();
556 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
557 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
558 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
560 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
563 if (bd
.flags
& ENET_BD_L
) {
564 if (bd
.option
& ENET_BD_PINS
) {
565 struct ip_header
*ip_hd
= PKT_GET_IP_HDR(s
->frame
);
566 if (IP_HEADER_VERSION(ip_hd
) == 4) {
567 net_checksum_calculate(s
->frame
, frame_size
);
570 if (bd
.option
& ENET_BD_IINS
) {
571 struct ip_header
*ip_hd
= PKT_GET_IP_HDR(s
->frame
);
572 /* We compute checksum only for IPv4 frames */
573 if (IP_HEADER_VERSION(ip_hd
) == 4) {
576 csum
= net_raw_checksum((uint8_t *)ip_hd
, sizeof(*ip_hd
));
577 ip_hd
->ip_sum
= cpu_to_be16(csum
);
580 /* Last buffer in frame. */
582 qemu_send_packet(qemu_get_queue(s
->nic
), s
->frame
, frame_size
);
586 if (bd
.option
& ENET_BD_TX_INT
) {
587 s
->regs
[ENET_EIR
] |= int_txf
;
589 /* Indicate that we've updated the last buffer descriptor. */
590 bd
.last_buffer
= ENET_BD_BDU
;
592 if (bd
.option
& ENET_BD_TX_INT
) {
593 s
->regs
[ENET_EIR
] |= int_txb
;
595 bd
.flags
&= ~ENET_BD_R
;
596 /* Write back the modified descriptor. */
597 imx_enet_write_bd(&bd
, addr
);
598 /* Advance to the next descriptor. */
599 if ((bd
.flags
& ENET_BD_W
) != 0) {
600 addr
= s
->regs
[tdsr
];
606 s
->tx_descriptor
[ring
] = addr
;
611 static void imx_eth_do_tx(IMXFECState
*s
, uint32_t index
)
613 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
614 imx_enet_do_tx(s
, index
);
620 static void imx_eth_enable_rx(IMXFECState
*s
, bool flush
)
624 imx_fec_read_bd(&bd
, s
->rx_descriptor
);
626 s
->regs
[ENET_RDAR
] = (bd
.flags
& ENET_BD_E
) ? ENET_RDAR_RDAR
: 0;
628 if (!s
->regs
[ENET_RDAR
]) {
629 trace_imx_eth_rx_bd_full();
631 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
635 static void imx_eth_reset(DeviceState
*d
)
637 IMXFECState
*s
= IMX_FEC(d
);
639 /* Reset the Device */
640 memset(s
->regs
, 0, sizeof(s
->regs
));
641 s
->regs
[ENET_ECR
] = 0xf0000000;
642 s
->regs
[ENET_MIBC
] = 0xc0000000;
643 s
->regs
[ENET_RCR
] = 0x05ee0001;
644 s
->regs
[ENET_OPD
] = 0x00010000;
646 s
->regs
[ENET_PALR
] = (s
->conf
.macaddr
.a
[0] << 24)
647 | (s
->conf
.macaddr
.a
[1] << 16)
648 | (s
->conf
.macaddr
.a
[2] << 8)
649 | s
->conf
.macaddr
.a
[3];
650 s
->regs
[ENET_PAUR
] = (s
->conf
.macaddr
.a
[4] << 24)
651 | (s
->conf
.macaddr
.a
[5] << 16)
655 s
->regs
[ENET_FRBR
] = 0x00000600;
656 s
->regs
[ENET_FRSR
] = 0x00000500;
657 s
->regs
[ENET_MIIGSK_ENR
] = 0x00000006;
659 s
->regs
[ENET_RAEM
] = 0x00000004;
660 s
->regs
[ENET_RAFL
] = 0x00000004;
661 s
->regs
[ENET_TAEM
] = 0x00000004;
662 s
->regs
[ENET_TAFL
] = 0x00000008;
663 s
->regs
[ENET_TIPG
] = 0x0000000c;
664 s
->regs
[ENET_FTRL
] = 0x000007ff;
665 s
->regs
[ENET_ATPER
] = 0x3b9aca00;
668 s
->rx_descriptor
= 0;
669 memset(s
->tx_descriptor
, 0, sizeof(s
->tx_descriptor
));
671 /* We also reset the PHY */
675 static uint32_t imx_default_read(IMXFECState
*s
, uint32_t index
)
677 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
678 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
682 static uint32_t imx_fec_read(IMXFECState
*s
, uint32_t index
)
687 case ENET_MIIGSK_CFGR
:
688 case ENET_MIIGSK_ENR
:
689 return s
->regs
[index
];
691 return imx_default_read(s
, index
);
695 static uint32_t imx_enet_read(IMXFECState
*s
, uint32_t index
)
725 return s
->regs
[index
];
727 return imx_default_read(s
, index
);
731 static uint64_t imx_eth_read(void *opaque
, hwaddr offset
, unsigned size
)
734 IMXFECState
*s
= IMX_FEC(opaque
);
735 uint32_t index
= offset
>> 2;
759 value
= s
->regs
[index
];
763 value
= imx_fec_read(s
, index
);
765 value
= imx_enet_read(s
, index
);
770 trace_imx_eth_read(index
, imx_eth_reg_name(s
, index
), value
);
775 static void imx_default_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
777 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad address at offset 0x%"
778 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
782 static void imx_fec_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
786 /* FRBR is read only */
787 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register FRBR is read only\n",
788 TYPE_IMX_FEC
, __func__
);
791 s
->regs
[index
] = (value
& 0x000003fc) | 0x00000400;
793 case ENET_MIIGSK_CFGR
:
794 s
->regs
[index
] = value
& 0x00000053;
796 case ENET_MIIGSK_ENR
:
797 s
->regs
[index
] = (value
& 0x00000002) ? 0x00000006 : 0;
800 imx_default_write(s
, index
, value
);
805 static void imx_enet_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
815 s
->regs
[index
] = value
& 0x000001ff;
818 s
->regs
[index
] = value
& 0x0000001f;
821 s
->regs
[index
] = value
& 0x00003fff;
824 s
->regs
[index
] = value
& 0x00000019;
827 s
->regs
[index
] = value
& 0x000000C7;
830 s
->regs
[index
] = value
& 0x00002a9d;
835 s
->regs
[index
] = value
;
838 /* ATSTMP is read only */
839 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register ATSTMP is read only\n",
840 TYPE_IMX_FEC
, __func__
);
843 s
->regs
[index
] = value
& 0x7fffffff;
846 s
->regs
[index
] = value
& 0x00007f7f;
849 /* implement clear timer flag */
850 s
->regs
[index
] &= ~(value
& 0x0000000f); /* all bits W1C */
856 s
->regs
[index
] &= ~(value
& 0x00000080); /* W1C bits */
857 s
->regs
[index
] &= ~0x0000007d; /* writable fields */
858 s
->regs
[index
] |= (value
& 0x0000007d);
864 s
->regs
[index
] = value
;
867 imx_default_write(s
, index
, value
);
872 static void imx_eth_write(void *opaque
, hwaddr offset
, uint64_t value
,
875 IMXFECState
*s
= IMX_FEC(opaque
);
876 const bool single_tx_ring
= !imx_eth_is_multi_tx_ring(s
);
877 uint32_t index
= offset
>> 2;
879 trace_imx_eth_write(index
, imx_eth_reg_name(s
, index
), value
);
883 s
->regs
[index
] &= ~value
;
886 s
->regs
[index
] = value
;
889 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
890 if (!s
->regs
[index
]) {
891 imx_eth_enable_rx(s
, true);
899 if (unlikely(single_tx_ring
)) {
900 qemu_log_mask(LOG_GUEST_ERROR
,
901 "[%s]%s: trying to access TDAR2 or TDAR1\n",
902 TYPE_IMX_FEC
, __func__
);
907 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
908 s
->regs
[index
] = ENET_TDAR_TDAR
;
909 imx_eth_do_tx(s
, index
);
914 if (value
& ENET_ECR_RESET
) {
915 return imx_eth_reset(DEVICE(s
));
917 s
->regs
[index
] = value
;
918 if ((s
->regs
[index
] & ENET_ECR_ETHEREN
) == 0) {
919 s
->regs
[ENET_RDAR
] = 0;
920 s
->rx_descriptor
= s
->regs
[ENET_RDSR
];
921 s
->regs
[ENET_TDAR
] = 0;
922 s
->regs
[ENET_TDAR1
] = 0;
923 s
->regs
[ENET_TDAR2
] = 0;
924 s
->tx_descriptor
[0] = s
->regs
[ENET_TDSR
];
925 s
->tx_descriptor
[1] = s
->regs
[ENET_TDSR1
];
926 s
->tx_descriptor
[2] = s
->regs
[ENET_TDSR2
];
930 s
->regs
[index
] = value
;
931 if (extract32(value
, 29, 1)) {
932 /* This is a read operation */
933 s
->regs
[ENET_MMFR
] = deposit32(s
->regs
[ENET_MMFR
], 0, 16,
938 /* This is a write operation */
939 imx_phy_write(s
, extract32(value
, 18, 10), extract32(value
, 0, 16));
941 /* raise the interrupt as the PHY operation is done */
942 s
->regs
[ENET_EIR
] |= ENET_INT_MII
;
945 s
->regs
[index
] = value
& 0xfe;
948 /* TODO: Implement MIB. */
949 s
->regs
[index
] = (value
& 0x80000000) ? 0xc0000000 : 0;
952 s
->regs
[index
] = value
& 0x07ff003f;
953 /* TODO: Implement LOOP mode. */
956 /* We transmit immediately, so raise GRA immediately. */
957 s
->regs
[index
] = value
;
959 s
->regs
[ENET_EIR
] |= ENET_INT_GRA
;
963 s
->regs
[index
] = value
;
964 s
->conf
.macaddr
.a
[0] = value
>> 24;
965 s
->conf
.macaddr
.a
[1] = value
>> 16;
966 s
->conf
.macaddr
.a
[2] = value
>> 8;
967 s
->conf
.macaddr
.a
[3] = value
;
970 s
->regs
[index
] = (value
| 0x0000ffff) & 0xffff8808;
971 s
->conf
.macaddr
.a
[4] = value
>> 24;
972 s
->conf
.macaddr
.a
[5] = value
>> 16;
975 s
->regs
[index
] = (value
& 0x0000ffff) | 0x00010000;
981 /* TODO: implement MAC hash filtering. */
985 s
->regs
[index
] = value
& 0x3;
987 s
->regs
[index
] = value
& 0x13f;
992 s
->regs
[index
] = value
& ~3;
994 s
->regs
[index
] = value
& ~7;
996 s
->rx_descriptor
= s
->regs
[index
];
1000 s
->regs
[index
] = value
& ~3;
1002 s
->regs
[index
] = value
& ~7;
1004 s
->tx_descriptor
[0] = s
->regs
[index
];
1007 if (unlikely(single_tx_ring
)) {
1008 qemu_log_mask(LOG_GUEST_ERROR
,
1009 "[%s]%s: trying to access TDSR1\n",
1010 TYPE_IMX_FEC
, __func__
);
1014 s
->regs
[index
] = value
& ~7;
1015 s
->tx_descriptor
[1] = s
->regs
[index
];
1018 if (unlikely(single_tx_ring
)) {
1019 qemu_log_mask(LOG_GUEST_ERROR
,
1020 "[%s]%s: trying to access TDSR2\n",
1021 TYPE_IMX_FEC
, __func__
);
1025 s
->regs
[index
] = value
& ~7;
1026 s
->tx_descriptor
[2] = s
->regs
[index
];
1029 s
->regs
[index
] = value
& 0x00003ff0;
1033 imx_fec_write(s
, index
, value
);
1035 imx_enet_write(s
, index
, value
);
1043 static bool imx_eth_can_receive(NetClientState
*nc
)
1045 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1047 return !!s
->regs
[ENET_RDAR
];
1050 static ssize_t
imx_fec_receive(NetClientState
*nc
, const uint8_t *buf
,
1053 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1060 unsigned int buf_len
;
1063 trace_imx_fec_receive(size
);
1065 if (!s
->regs
[ENET_RDAR
]) {
1066 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
1067 TYPE_IMX_FEC
, __func__
);
1071 /* 4 bytes for the CRC. */
1073 crc
= cpu_to_be32(crc32(~0, buf
, size
));
1074 crc_ptr
= (uint8_t *) &crc
;
1076 /* Huge frames are truncated. */
1077 if (size
> ENET_MAX_FRAME_SIZE
) {
1078 size
= ENET_MAX_FRAME_SIZE
;
1079 flags
|= ENET_BD_TR
| ENET_BD_LG
;
1082 /* Frames larger than the user limit just set error flags. */
1083 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
1084 flags
|= ENET_BD_LG
;
1087 addr
= s
->rx_descriptor
;
1089 imx_fec_read_bd(&bd
, addr
);
1090 if ((bd
.flags
& ENET_BD_E
) == 0) {
1091 /* No descriptors available. Bail out. */
1093 * FIXME: This is wrong. We should probably either
1094 * save the remainder for when more RX buffers are
1095 * available, or flag an error.
1097 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
1098 TYPE_IMX_FEC
, __func__
);
1101 buf_len
= (size
<= s
->regs
[ENET_MRBR
]) ? size
: s
->regs
[ENET_MRBR
];
1102 bd
.length
= buf_len
;
1105 trace_imx_fec_receive_len(addr
, bd
.length
);
1107 /* The last 4 bytes are the CRC. */
1109 buf_len
+= size
- 4;
1112 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
1115 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1117 crc_ptr
+= 4 - size
;
1119 bd
.flags
&= ~ENET_BD_E
;
1121 /* Last buffer in frame. */
1122 bd
.flags
|= flags
| ENET_BD_L
;
1124 trace_imx_fec_receive_last(bd
.flags
);
1126 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1128 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1130 imx_fec_write_bd(&bd
, addr
);
1131 /* Advance to the next descriptor. */
1132 if ((bd
.flags
& ENET_BD_W
) != 0) {
1133 addr
= s
->regs
[ENET_RDSR
];
1138 s
->rx_descriptor
= addr
;
1139 imx_eth_enable_rx(s
, false);
1144 static ssize_t
imx_enet_receive(NetClientState
*nc
, const uint8_t *buf
,
1147 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1154 unsigned int buf_len
;
1156 bool shift16
= s
->regs
[ENET_RACC
] & ENET_RACC_SHIFT16
;
1158 trace_imx_enet_receive(size
);
1160 if (!s
->regs
[ENET_RDAR
]) {
1161 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
1162 TYPE_IMX_FEC
, __func__
);
1166 /* 4 bytes for the CRC. */
1168 crc
= cpu_to_be32(crc32(~0, buf
, size
));
1169 crc_ptr
= (uint8_t *) &crc
;
1175 /* Huge frames are truncated. */
1176 if (size
> s
->regs
[ENET_FTRL
]) {
1177 size
= s
->regs
[ENET_FTRL
];
1178 flags
|= ENET_BD_TR
| ENET_BD_LG
;
1181 /* Frames larger than the user limit just set error flags. */
1182 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
1183 flags
|= ENET_BD_LG
;
1186 addr
= s
->rx_descriptor
;
1188 imx_enet_read_bd(&bd
, addr
);
1189 if ((bd
.flags
& ENET_BD_E
) == 0) {
1190 /* No descriptors available. Bail out. */
1192 * FIXME: This is wrong. We should probably either
1193 * save the remainder for when more RX buffers are
1194 * available, or flag an error.
1196 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
1197 TYPE_IMX_FEC
, __func__
);
1200 buf_len
= MIN(size
, s
->regs
[ENET_MRBR
]);
1201 bd
.length
= buf_len
;
1204 trace_imx_enet_receive_len(addr
, bd
.length
);
1206 /* The last 4 bytes are the CRC. */
1208 buf_len
+= size
- 4;
1214 * If SHIFT16 bit of ENETx_RACC register is set we need to
1215 * align the payload to 4-byte boundary.
1217 const uint8_t zeros
[2] = { 0 };
1219 dma_memory_write(&address_space_memory
, buf_addr
,
1220 zeros
, sizeof(zeros
));
1222 buf_addr
+= sizeof(zeros
);
1223 buf_len
-= sizeof(zeros
);
1225 /* We only do this once per Ethernet frame */
1229 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
1232 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1234 crc_ptr
+= 4 - size
;
1236 bd
.flags
&= ~ENET_BD_E
;
1238 /* Last buffer in frame. */
1239 bd
.flags
|= flags
| ENET_BD_L
;
1241 trace_imx_enet_receive_last(bd
.flags
);
1243 /* Indicate that we've updated the last buffer descriptor. */
1244 bd
.last_buffer
= ENET_BD_BDU
;
1245 if (bd
.option
& ENET_BD_RX_INT
) {
1246 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1249 if (bd
.option
& ENET_BD_RX_INT
) {
1250 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1253 imx_enet_write_bd(&bd
, addr
);
1254 /* Advance to the next descriptor. */
1255 if ((bd
.flags
& ENET_BD_W
) != 0) {
1256 addr
= s
->regs
[ENET_RDSR
];
1261 s
->rx_descriptor
= addr
;
1262 imx_eth_enable_rx(s
, false);
1267 static ssize_t
imx_eth_receive(NetClientState
*nc
, const uint8_t *buf
,
1270 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1272 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
1273 return imx_enet_receive(nc
, buf
, len
);
1275 return imx_fec_receive(nc
, buf
, len
);
1279 static const MemoryRegionOps imx_eth_ops
= {
1280 .read
= imx_eth_read
,
1281 .write
= imx_eth_write
,
1282 .valid
.min_access_size
= 4,
1283 .valid
.max_access_size
= 4,
1284 .endianness
= DEVICE_NATIVE_ENDIAN
,
1287 static void imx_eth_cleanup(NetClientState
*nc
)
1289 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1294 static NetClientInfo imx_eth_net_info
= {
1295 .type
= NET_CLIENT_DRIVER_NIC
,
1296 .size
= sizeof(NICState
),
1297 .can_receive
= imx_eth_can_receive
,
1298 .receive
= imx_eth_receive
,
1299 .cleanup
= imx_eth_cleanup
,
1300 .link_status_changed
= imx_eth_set_link
,
1304 static void imx_eth_realize(DeviceState
*dev
, Error
**errp
)
1306 IMXFECState
*s
= IMX_FEC(dev
);
1307 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
1309 memory_region_init_io(&s
->iomem
, OBJECT(dev
), &imx_eth_ops
, s
,
1310 TYPE_IMX_FEC
, FSL_IMX25_FEC_SIZE
);
1311 sysbus_init_mmio(sbd
, &s
->iomem
);
1312 sysbus_init_irq(sbd
, &s
->irq
[0]);
1313 sysbus_init_irq(sbd
, &s
->irq
[1]);
1315 qemu_macaddr_default_if_unset(&s
->conf
.macaddr
);
1317 s
->nic
= qemu_new_nic(&imx_eth_net_info
, &s
->conf
,
1318 object_get_typename(OBJECT(dev
)),
1321 qemu_format_nic_info_str(qemu_get_queue(s
->nic
), s
->conf
.macaddr
.a
);
1324 static Property imx_eth_properties
[] = {
1325 DEFINE_NIC_PROPERTIES(IMXFECState
, conf
),
1326 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState
, tx_ring_num
, 1),
1327 DEFINE_PROP_UINT32("phy-num", IMXFECState
, phy_num
, 0),
1328 DEFINE_PROP_END_OF_LIST(),
1331 static void imx_eth_class_init(ObjectClass
*klass
, void *data
)
1333 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1335 dc
->vmsd
= &vmstate_imx_eth
;
1336 dc
->reset
= imx_eth_reset
;
1337 device_class_set_props(dc
, imx_eth_properties
);
1338 dc
->realize
= imx_eth_realize
;
1339 dc
->desc
= "i.MX FEC/ENET Ethernet Controller";
1342 static void imx_fec_init(Object
*obj
)
1344 IMXFECState
*s
= IMX_FEC(obj
);
1349 static void imx_enet_init(Object
*obj
)
1351 IMXFECState
*s
= IMX_FEC(obj
);
1356 static const TypeInfo imx_fec_info
= {
1357 .name
= TYPE_IMX_FEC
,
1358 .parent
= TYPE_SYS_BUS_DEVICE
,
1359 .instance_size
= sizeof(IMXFECState
),
1360 .instance_init
= imx_fec_init
,
1361 .class_init
= imx_eth_class_init
,
1364 static const TypeInfo imx_enet_info
= {
1365 .name
= TYPE_IMX_ENET
,
1366 .parent
= TYPE_IMX_FEC
,
1367 .instance_init
= imx_enet_init
,
1370 static void imx_eth_register_types(void)
1372 type_register_static(&imx_fec_info
);
1373 type_register_static(&imx_enet_info
);
1376 type_init(imx_eth_register_types
)