spapr: Start hotplugged PCI devices in ISOLATED state
[qemu/ar7.git] / hw / ppc / spapr_drc.c
blob91fc08d4a1ce3841fb36f438507b2777fb30ed36
1 /*
2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
4 * Copyright IBM Corp. 2014
6 * Authors:
7 * Michael Roth <mdroth@linux.vnet.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "hw/qdev.h"
20 #include "qapi/visitor.h"
21 #include "qemu/error-report.h"
22 #include "hw/ppc/spapr.h" /* for RTAS return codes */
23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
24 #include "trace.h"
26 #define DRC_CONTAINER_PATH "/dr-connector"
27 #define DRC_INDEX_TYPE_SHIFT 28
28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
32 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
34 return 1 << drck->typeshift;
37 uint32_t spapr_drc_index(sPAPRDRConnector *drc)
39 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
41 /* no set format for a drc index: it only needs to be globally
42 * unique. this is how we encode the DRC type on bare-metal
43 * however, so might as well do that here
45 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
46 | (drc->id & DRC_INDEX_ID_MASK);
49 static uint32_t set_isolation_state(sPAPRDRConnector *drc,
50 sPAPRDRIsolationState state)
52 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
54 /* if the guest is configuring a device attached to this DRC, we
55 * should reset the configuration state at this point since it may
56 * no longer be reliable (guest released device and needs to start
57 * over, or unplug occurred so the FDT is no longer valid)
59 if (state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
60 g_free(drc->ccs);
61 drc->ccs = NULL;
64 if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
65 /* cannot unisolate a non-existent resource, and, or resources
66 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 13.5.3.5)
68 if (!drc->dev ||
69 drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
70 return RTAS_OUT_NO_SUCH_INDICATOR;
75 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
76 * belong to a DIMM device that is marked for removal.
78 * Currently the guest userspace tool drmgr that drives the memory
79 * hotplug/unplug will just try to remove a set of 'removable' LMBs
80 * in response to a hot unplug request that is based on drc-count.
81 * If the LMB being removed doesn't belong to a DIMM device that is
82 * actually being unplugged, fail the isolation request here.
84 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
85 if ((state == SPAPR_DR_ISOLATION_STATE_ISOLATED) &&
86 !drc->awaiting_release) {
87 return RTAS_OUT_HW_ERROR;
91 drc->isolation_state = state;
93 if (drc->isolation_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
94 /* if we're awaiting release, but still in an unconfigured state,
95 * it's likely the guest is still in the process of configuring
96 * the device and is transitioning the devices to an ISOLATED
97 * state as a part of that process. so we only complete the
98 * removal when this transition happens for a device in a
99 * configured state, as suggested by the state diagram from
100 * PAPR+ 2.7, 13.4
102 if (drc->awaiting_release) {
103 uint32_t drc_index = spapr_drc_index(drc);
104 if (drc->configured) {
105 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
106 spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
107 } else {
108 trace_spapr_drc_set_isolation_state_deferring(drc_index);
111 drc->configured = false;
114 return RTAS_OUT_SUCCESS;
117 static uint32_t set_allocation_state(sPAPRDRConnector *drc,
118 sPAPRDRAllocationState state)
120 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
122 if (state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
123 /* if there's no resource/device associated with the DRC, there's
124 * no way for us to put it in an allocation state consistent with
125 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
126 * result in an RTAS return code of -3 / "no such indicator"
128 if (!drc->dev) {
129 return RTAS_OUT_NO_SUCH_INDICATOR;
133 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
134 drc->allocation_state = state;
135 if (drc->awaiting_release &&
136 drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
137 uint32_t drc_index = spapr_drc_index(drc);
138 trace_spapr_drc_set_allocation_state_finalizing(drc_index);
139 spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
140 } else if (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
141 drc->awaiting_allocation = false;
144 return RTAS_OUT_SUCCESS;
147 static const char *spapr_drc_name(sPAPRDRConnector *drc)
149 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
151 /* human-readable name for a DRC to encode into the DT
152 * description. this is mainly only used within a guest in place
153 * of the unique DRC index.
155 * in the case of VIO/PCI devices, it corresponds to a "location
156 * code" that maps a logical device/function (DRC index) to a
157 * physical (or virtual in the case of VIO) location in the system
158 * by chaining together the "location label" for each
159 * encapsulating component.
161 * since this is more to do with diagnosing physical hardware
162 * issues than guest compatibility, we choose location codes/DRC
163 * names that adhere to the documented format, but avoid encoding
164 * the entire topology information into the label/code, instead
165 * just using the location codes based on the labels for the
166 * endpoints (VIO/PCI adaptor connectors), which is basically just
167 * "C" followed by an integer ID.
169 * DRC names as documented by PAPR+ v2.7, 13.5.2.4
170 * location codes as documented by PAPR+ v2.7, 12.3.1.5
172 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
175 /* has the guest been notified of device attachment? */
176 static void set_signalled(sPAPRDRConnector *drc)
178 drc->signalled = true;
182 * dr-entity-sense sensor value
183 * returned via get-sensor-state RTAS calls
184 * as expected by state diagram in PAPR+ 2.7, 13.4
185 * based on the current allocation/indicator/power states
186 * for the DR connector.
188 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc)
190 /* this assumes all PCI devices are assigned to a 'live insertion'
191 * power domain, where QEMU manages power state automatically as
192 * opposed to the guest. present, non-PCI resources are unaffected
193 * by power state.
195 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
196 : SPAPR_DR_ENTITY_SENSE_EMPTY;
199 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc)
201 if (drc->dev
202 && (drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE)) {
203 return SPAPR_DR_ENTITY_SENSE_PRESENT;
204 } else {
205 return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
209 static void prop_get_index(Object *obj, Visitor *v, const char *name,
210 void *opaque, Error **errp)
212 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
213 uint32_t value = spapr_drc_index(drc);
214 visit_type_uint32(v, name, &value, errp);
217 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
218 void *opaque, Error **errp)
220 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
221 Error *err = NULL;
222 int fdt_offset_next, fdt_offset, fdt_depth;
223 void *fdt;
225 if (!drc->fdt) {
226 visit_type_null(v, NULL, errp);
227 return;
230 fdt = drc->fdt;
231 fdt_offset = drc->fdt_start_offset;
232 fdt_depth = 0;
234 do {
235 const char *name = NULL;
236 const struct fdt_property *prop = NULL;
237 int prop_len = 0, name_len = 0;
238 uint32_t tag;
240 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
241 switch (tag) {
242 case FDT_BEGIN_NODE:
243 fdt_depth++;
244 name = fdt_get_name(fdt, fdt_offset, &name_len);
245 visit_start_struct(v, name, NULL, 0, &err);
246 if (err) {
247 error_propagate(errp, err);
248 return;
250 break;
251 case FDT_END_NODE:
252 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
253 g_assert(fdt_depth > 0);
254 visit_check_struct(v, &err);
255 visit_end_struct(v, NULL);
256 if (err) {
257 error_propagate(errp, err);
258 return;
260 fdt_depth--;
261 break;
262 case FDT_PROP: {
263 int i;
264 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
265 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
266 visit_start_list(v, name, NULL, 0, &err);
267 if (err) {
268 error_propagate(errp, err);
269 return;
271 for (i = 0; i < prop_len; i++) {
272 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
273 if (err) {
274 error_propagate(errp, err);
275 return;
278 visit_check_list(v, &err);
279 visit_end_list(v, NULL);
280 if (err) {
281 error_propagate(errp, err);
282 return;
284 break;
286 default:
287 error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
289 fdt_offset = fdt_offset_next;
290 } while (fdt_depth != 0);
293 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
294 int fdt_start_offset, bool coldplug, Error **errp)
296 trace_spapr_drc_attach(spapr_drc_index(drc));
298 if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
299 error_setg(errp, "an attached device is still awaiting release");
300 return;
302 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
303 g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE);
305 g_assert(fdt || coldplug);
307 drc->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
309 drc->dev = d;
310 drc->fdt = fdt;
311 drc->fdt_start_offset = fdt_start_offset;
312 drc->configured = coldplug;
313 /* 'logical' DR resources such as memory/cpus are in some cases treated
314 * as a pool of resources from which the guest is free to choose from
315 * based on only a count. for resources that can be assigned in this
316 * fashion, we must assume the resource is signalled immediately
317 * since a single hotplug request might make an arbitrary number of
318 * such attached resources available to the guest, as opposed to
319 * 'physical' DR resources such as PCI where each device/resource is
320 * signalled individually.
322 drc->signalled = (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI)
323 ? true : coldplug;
325 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
326 drc->awaiting_allocation = true;
329 object_property_add_link(OBJECT(drc), "device",
330 object_get_typename(OBJECT(drc->dev)),
331 (Object **)(&drc->dev),
332 NULL, 0, NULL);
335 void spapr_drc_detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp)
337 trace_spapr_drc_detach(spapr_drc_index(drc));
339 /* if we've signalled device presence to the guest, or if the guest
340 * has gone ahead and configured the device (via manually-executed
341 * device add via drmgr in guest, namely), we need to wait
342 * for the guest to quiesce the device before completing detach.
343 * Otherwise, we can assume the guest hasn't seen it and complete the
344 * detach immediately. Note that there is a small race window
345 * just before, or during, configuration, which is this context
346 * refers mainly to fetching the device tree via RTAS.
347 * During this window the device access will be arbitrated by
348 * associated DRC, which will simply fail the RTAS calls as invalid.
349 * This is recoverable within guest and current implementations of
350 * drmgr should be able to cope.
352 if (!drc->signalled && !drc->configured) {
353 /* if the guest hasn't seen the device we can't rely on it to
354 * set it back to an isolated state via RTAS, so do it here manually
356 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
359 if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
360 trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc));
361 drc->awaiting_release = true;
362 return;
365 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
366 drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
367 trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc));
368 drc->awaiting_release = true;
369 return;
372 if (drc->awaiting_allocation) {
373 drc->awaiting_release = true;
374 trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc));
375 return;
378 drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
380 /* Calling release callbacks based on spapr_drc_type(drc). */
381 switch (spapr_drc_type(drc)) {
382 case SPAPR_DR_CONNECTOR_TYPE_CPU:
383 spapr_core_release(drc->dev);
384 break;
385 case SPAPR_DR_CONNECTOR_TYPE_PCI:
386 spapr_phb_remove_pci_device_cb(drc->dev);
387 break;
388 case SPAPR_DR_CONNECTOR_TYPE_LMB:
389 spapr_lmb_release(drc->dev);
390 break;
391 case SPAPR_DR_CONNECTOR_TYPE_PHB:
392 case SPAPR_DR_CONNECTOR_TYPE_VIO:
393 default:
394 g_assert(false);
397 drc->awaiting_release = false;
398 g_free(drc->fdt);
399 drc->fdt = NULL;
400 drc->fdt_start_offset = 0;
401 object_property_del(OBJECT(drc), "device", NULL);
402 drc->dev = NULL;
405 static bool release_pending(sPAPRDRConnector *drc)
407 return drc->awaiting_release;
410 static void reset(DeviceState *d)
412 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
413 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
415 trace_spapr_drc_reset(spapr_drc_index(drc));
417 g_free(drc->ccs);
418 drc->ccs = NULL;
420 /* immediately upon reset we can safely assume DRCs whose devices
421 * are pending removal can be safely removed, and that they will
422 * subsequently be left in an ISOLATED state. move the DRC to this
423 * state in these cases (which will in turn complete any pending
424 * device removals)
426 if (drc->awaiting_release) {
427 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_ISOLATED);
428 /* generally this should also finalize the removal, but if the device
429 * hasn't yet been configured we normally defer removal under the
430 * assumption that this transition is taking place as part of device
431 * configuration. so check if we're still waiting after this, and
432 * force removal if we are
434 if (drc->awaiting_release) {
435 spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
438 /* non-PCI devices may be awaiting a transition to UNUSABLE */
439 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
440 drc->awaiting_release) {
441 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_UNUSABLE);
445 if (drck->dr_entity_sense(drc) == SPAPR_DR_ENTITY_SENSE_PRESENT) {
446 drck->set_signalled(drc);
450 static bool spapr_drc_needed(void *opaque)
452 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
453 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
454 bool rc = false;
455 sPAPRDREntitySense value = drck->dr_entity_sense(drc);
457 /* If no dev is plugged in there is no need to migrate the DRC state */
458 if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
459 return false;
463 * If there is dev plugged in, we need to migrate the DRC state when
464 * it is different from cold-plugged state
466 switch (spapr_drc_type(drc)) {
467 case SPAPR_DR_CONNECTOR_TYPE_PCI:
468 case SPAPR_DR_CONNECTOR_TYPE_CPU:
469 case SPAPR_DR_CONNECTOR_TYPE_LMB:
470 rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) &&
471 (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) &&
472 drc->configured && drc->signalled && !drc->awaiting_release);
473 break;
474 case SPAPR_DR_CONNECTOR_TYPE_PHB:
475 case SPAPR_DR_CONNECTOR_TYPE_VIO:
476 default:
477 g_assert_not_reached();
479 return rc;
482 static const VMStateDescription vmstate_spapr_drc = {
483 .name = "spapr_drc",
484 .version_id = 1,
485 .minimum_version_id = 1,
486 .needed = spapr_drc_needed,
487 .fields = (VMStateField []) {
488 VMSTATE_UINT32(isolation_state, sPAPRDRConnector),
489 VMSTATE_UINT32(allocation_state, sPAPRDRConnector),
490 VMSTATE_UINT32(dr_indicator, sPAPRDRConnector),
491 VMSTATE_BOOL(configured, sPAPRDRConnector),
492 VMSTATE_BOOL(awaiting_release, sPAPRDRConnector),
493 VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector),
494 VMSTATE_BOOL(signalled, sPAPRDRConnector),
495 VMSTATE_END_OF_LIST()
499 static void realize(DeviceState *d, Error **errp)
501 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
502 Object *root_container;
503 char link_name[256];
504 gchar *child_name;
505 Error *err = NULL;
507 trace_spapr_drc_realize(spapr_drc_index(drc));
508 /* NOTE: we do this as part of realize/unrealize due to the fact
509 * that the guest will communicate with the DRC via RTAS calls
510 * referencing the global DRC index. By unlinking the DRC
511 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
512 * inaccessible by the guest, since lookups rely on this path
513 * existing in the composition tree
515 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
516 snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc));
517 child_name = object_get_canonical_path_component(OBJECT(drc));
518 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
519 object_property_add_alias(root_container, link_name,
520 drc->owner, child_name, &err);
521 if (err) {
522 error_report_err(err);
523 object_unref(OBJECT(drc));
525 g_free(child_name);
526 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
527 drc);
528 trace_spapr_drc_realize_complete(spapr_drc_index(drc));
531 static void unrealize(DeviceState *d, Error **errp)
533 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
534 Object *root_container;
535 char name[256];
536 Error *err = NULL;
538 trace_spapr_drc_unrealize(spapr_drc_index(drc));
539 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
540 snprintf(name, sizeof(name), "%x", spapr_drc_index(drc));
541 object_property_del(root_container, name, &err);
542 if (err) {
543 error_report_err(err);
544 object_unref(OBJECT(drc));
548 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
549 uint32_t id)
551 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
552 char *prop_name;
554 drc->id = id;
555 drc->owner = owner;
556 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
557 spapr_drc_index(drc));
558 object_property_add_child(owner, prop_name, OBJECT(drc), NULL);
559 object_property_set_bool(OBJECT(drc), true, "realized", NULL);
560 g_free(prop_name);
562 /* PCI slot always start in a USABLE state, and stay there */
563 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
564 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
567 return drc;
570 static void spapr_dr_connector_instance_init(Object *obj)
572 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
574 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
575 object_property_add(obj, "index", "uint32", prop_get_index,
576 NULL, NULL, NULL, NULL);
577 object_property_add(obj, "fdt", "struct", prop_get_fdt,
578 NULL, NULL, NULL, NULL);
581 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
583 DeviceClass *dk = DEVICE_CLASS(k);
584 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
586 dk->reset = reset;
587 dk->realize = realize;
588 dk->unrealize = unrealize;
589 drck->set_isolation_state = set_isolation_state;
590 drck->set_allocation_state = set_allocation_state;
591 drck->release_pending = release_pending;
592 drck->set_signalled = set_signalled;
594 * Reason: it crashes FIXME find and document the real reason
596 dk->user_creatable = false;
599 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
601 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
603 drck->dr_entity_sense = physical_entity_sense;
606 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
608 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
610 drck->dr_entity_sense = logical_entity_sense;
613 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
615 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
617 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
618 drck->typename = "CPU";
619 drck->drc_name_prefix = "CPU ";
622 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
624 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
626 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
627 drck->typename = "28";
628 drck->drc_name_prefix = "C";
631 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
633 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
635 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
636 drck->typename = "MEM";
637 drck->drc_name_prefix = "LMB ";
640 static const TypeInfo spapr_dr_connector_info = {
641 .name = TYPE_SPAPR_DR_CONNECTOR,
642 .parent = TYPE_DEVICE,
643 .instance_size = sizeof(sPAPRDRConnector),
644 .instance_init = spapr_dr_connector_instance_init,
645 .class_size = sizeof(sPAPRDRConnectorClass),
646 .class_init = spapr_dr_connector_class_init,
647 .abstract = true,
650 static const TypeInfo spapr_drc_physical_info = {
651 .name = TYPE_SPAPR_DRC_PHYSICAL,
652 .parent = TYPE_SPAPR_DR_CONNECTOR,
653 .instance_size = sizeof(sPAPRDRConnector),
654 .class_init = spapr_drc_physical_class_init,
655 .abstract = true,
658 static const TypeInfo spapr_drc_logical_info = {
659 .name = TYPE_SPAPR_DRC_LOGICAL,
660 .parent = TYPE_SPAPR_DR_CONNECTOR,
661 .instance_size = sizeof(sPAPRDRConnector),
662 .class_init = spapr_drc_logical_class_init,
663 .abstract = true,
666 static const TypeInfo spapr_drc_cpu_info = {
667 .name = TYPE_SPAPR_DRC_CPU,
668 .parent = TYPE_SPAPR_DRC_LOGICAL,
669 .instance_size = sizeof(sPAPRDRConnector),
670 .class_init = spapr_drc_cpu_class_init,
673 static const TypeInfo spapr_drc_pci_info = {
674 .name = TYPE_SPAPR_DRC_PCI,
675 .parent = TYPE_SPAPR_DRC_PHYSICAL,
676 .instance_size = sizeof(sPAPRDRConnector),
677 .class_init = spapr_drc_pci_class_init,
680 static const TypeInfo spapr_drc_lmb_info = {
681 .name = TYPE_SPAPR_DRC_LMB,
682 .parent = TYPE_SPAPR_DRC_LOGICAL,
683 .instance_size = sizeof(sPAPRDRConnector),
684 .class_init = spapr_drc_lmb_class_init,
687 /* helper functions for external users */
689 sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
691 Object *obj;
692 char name[256];
694 snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
695 obj = object_resolve_path(name, NULL);
697 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
700 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
702 sPAPRDRConnectorClass *drck
703 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
705 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
706 | (id & DRC_INDEX_ID_MASK));
710 * spapr_drc_populate_dt
712 * @fdt: libfdt device tree
713 * @path: path in the DT to generate properties
714 * @owner: parent Object/DeviceState for which to generate DRC
715 * descriptions for
716 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
717 * to the types of DRCs to generate entries for
719 * generate OF properties to describe DRC topology/indices to guests
721 * as documented in PAPR+ v2.1, 13.5.2
723 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
724 uint32_t drc_type_mask)
726 Object *root_container;
727 ObjectProperty *prop;
728 ObjectPropertyIterator iter;
729 uint32_t drc_count = 0;
730 GArray *drc_indexes, *drc_power_domains;
731 GString *drc_names, *drc_types;
732 int ret;
734 /* the first entry of each properties is a 32-bit integer encoding
735 * the number of elements in the array. we won't know this until
736 * we complete the iteration through all the matching DRCs, but
737 * reserve the space now and set the offsets accordingly so we
738 * can fill them in later.
740 drc_indexes = g_array_new(false, true, sizeof(uint32_t));
741 drc_indexes = g_array_set_size(drc_indexes, 1);
742 drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
743 drc_power_domains = g_array_set_size(drc_power_domains, 1);
744 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
745 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
747 /* aliases for all DRConnector objects will be rooted in QOM
748 * composition tree at DRC_CONTAINER_PATH
750 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
752 object_property_iter_init(&iter, root_container);
753 while ((prop = object_property_iter_next(&iter))) {
754 Object *obj;
755 sPAPRDRConnector *drc;
756 sPAPRDRConnectorClass *drck;
757 uint32_t drc_index, drc_power_domain;
759 if (!strstart(prop->type, "link<", NULL)) {
760 continue;
763 obj = object_property_get_link(root_container, prop->name, NULL);
764 drc = SPAPR_DR_CONNECTOR(obj);
765 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
767 if (owner && (drc->owner != owner)) {
768 continue;
771 if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
772 continue;
775 drc_count++;
777 /* ibm,drc-indexes */
778 drc_index = cpu_to_be32(spapr_drc_index(drc));
779 g_array_append_val(drc_indexes, drc_index);
781 /* ibm,drc-power-domains */
782 drc_power_domain = cpu_to_be32(-1);
783 g_array_append_val(drc_power_domains, drc_power_domain);
785 /* ibm,drc-names */
786 drc_names = g_string_append(drc_names, spapr_drc_name(drc));
787 drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
789 /* ibm,drc-types */
790 drc_types = g_string_append(drc_types, drck->typename);
791 drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
794 /* now write the drc count into the space we reserved at the
795 * beginning of the arrays previously
797 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
798 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
799 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
800 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
802 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
803 drc_indexes->data,
804 drc_indexes->len * sizeof(uint32_t));
805 if (ret) {
806 error_report("Couldn't create ibm,drc-indexes property");
807 goto out;
810 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
811 drc_power_domains->data,
812 drc_power_domains->len * sizeof(uint32_t));
813 if (ret) {
814 error_report("Couldn't finalize ibm,drc-power-domains property");
815 goto out;
818 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
819 drc_names->str, drc_names->len);
820 if (ret) {
821 error_report("Couldn't finalize ibm,drc-names property");
822 goto out;
825 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
826 drc_types->str, drc_types->len);
827 if (ret) {
828 error_report("Couldn't finalize ibm,drc-types property");
829 goto out;
832 out:
833 g_array_free(drc_indexes, true);
834 g_array_free(drc_power_domains, true);
835 g_string_free(drc_names, true);
836 g_string_free(drc_types, true);
838 return ret;
842 * RTAS calls
845 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
847 sPAPRDRConnector *drc = spapr_drc_by_index(idx);
848 sPAPRDRConnectorClass *drck;
850 if (!drc) {
851 return RTAS_OUT_PARAM_ERROR;
854 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
855 return drck->set_isolation_state(drc, state);
858 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
860 sPAPRDRConnector *drc = spapr_drc_by_index(idx);
861 sPAPRDRConnectorClass *drck;
863 if (!drc) {
864 return RTAS_OUT_PARAM_ERROR;
867 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
868 return drck->set_allocation_state(drc, state);
871 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
873 sPAPRDRConnector *drc = spapr_drc_by_index(idx);
875 if (!drc) {
876 return RTAS_OUT_PARAM_ERROR;
879 trace_spapr_drc_set_dr_indicator(idx, state);
880 drc->dr_indicator = state;
881 return RTAS_OUT_SUCCESS;
884 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
885 uint32_t token,
886 uint32_t nargs, target_ulong args,
887 uint32_t nret, target_ulong rets)
889 uint32_t type, idx, state;
890 uint32_t ret = RTAS_OUT_SUCCESS;
892 if (nargs != 3 || nret != 1) {
893 ret = RTAS_OUT_PARAM_ERROR;
894 goto out;
897 type = rtas_ld(args, 0);
898 idx = rtas_ld(args, 1);
899 state = rtas_ld(args, 2);
901 switch (type) {
902 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
903 ret = rtas_set_isolation_state(idx, state);
904 break;
905 case RTAS_SENSOR_TYPE_DR:
906 ret = rtas_set_dr_indicator(idx, state);
907 break;
908 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
909 ret = rtas_set_allocation_state(idx, state);
910 break;
911 default:
912 ret = RTAS_OUT_NOT_SUPPORTED;
915 out:
916 rtas_st(rets, 0, ret);
919 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
920 uint32_t token, uint32_t nargs,
921 target_ulong args, uint32_t nret,
922 target_ulong rets)
924 uint32_t sensor_type;
925 uint32_t sensor_index;
926 uint32_t sensor_state = 0;
927 sPAPRDRConnector *drc;
928 sPAPRDRConnectorClass *drck;
929 uint32_t ret = RTAS_OUT_SUCCESS;
931 if (nargs != 2 || nret != 2) {
932 ret = RTAS_OUT_PARAM_ERROR;
933 goto out;
936 sensor_type = rtas_ld(args, 0);
937 sensor_index = rtas_ld(args, 1);
939 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
940 /* currently only DR-related sensors are implemented */
941 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
942 sensor_type);
943 ret = RTAS_OUT_NOT_SUPPORTED;
944 goto out;
947 drc = spapr_drc_by_index(sensor_index);
948 if (!drc) {
949 trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
950 ret = RTAS_OUT_PARAM_ERROR;
951 goto out;
953 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
954 sensor_state = drck->dr_entity_sense(drc);
956 out:
957 rtas_st(rets, 0, ret);
958 rtas_st(rets, 1, sensor_state);
961 /* configure-connector work area offsets, int32_t units for field
962 * indexes, bytes for field offset/len values.
964 * as documented by PAPR+ v2.7, 13.5.3.5
966 #define CC_IDX_NODE_NAME_OFFSET 2
967 #define CC_IDX_PROP_NAME_OFFSET 2
968 #define CC_IDX_PROP_LEN 3
969 #define CC_IDX_PROP_DATA_OFFSET 4
970 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
971 #define CC_WA_LEN 4096
973 static void configure_connector_st(target_ulong addr, target_ulong offset,
974 const void *buf, size_t len)
976 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
977 buf, MIN(len, CC_WA_LEN - offset));
980 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
981 sPAPRMachineState *spapr,
982 uint32_t token, uint32_t nargs,
983 target_ulong args, uint32_t nret,
984 target_ulong rets)
986 uint64_t wa_addr;
987 uint64_t wa_offset;
988 uint32_t drc_index;
989 sPAPRDRConnector *drc;
990 sPAPRConfigureConnectorState *ccs;
991 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
992 int rc;
994 if (nargs != 2 || nret != 1) {
995 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
996 return;
999 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1001 drc_index = rtas_ld(wa_addr, 0);
1002 drc = spapr_drc_by_index(drc_index);
1003 if (!drc) {
1004 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1005 rc = RTAS_OUT_PARAM_ERROR;
1006 goto out;
1009 if (!drc->fdt) {
1010 trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
1011 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1012 goto out;
1015 ccs = drc->ccs;
1016 if (!ccs) {
1017 ccs = g_new0(sPAPRConfigureConnectorState, 1);
1018 ccs->fdt_offset = drc->fdt_start_offset;
1019 drc->ccs = ccs;
1022 do {
1023 uint32_t tag;
1024 const char *name;
1025 const struct fdt_property *prop;
1026 int fdt_offset_next, prop_len;
1028 tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next);
1030 switch (tag) {
1031 case FDT_BEGIN_NODE:
1032 ccs->fdt_depth++;
1033 name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL);
1035 /* provide the name of the next OF node */
1036 wa_offset = CC_VAL_DATA_OFFSET;
1037 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1038 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1039 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1040 break;
1041 case FDT_END_NODE:
1042 ccs->fdt_depth--;
1043 if (ccs->fdt_depth == 0) {
1044 sPAPRDRIsolationState state = drc->isolation_state;
1045 uint32_t drc_index = spapr_drc_index(drc);
1046 /* done sending the device tree, don't need to track
1047 * the state anymore
1049 trace_spapr_drc_set_configured(drc_index);
1050 if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
1051 drc->configured = true;
1052 } else {
1053 /* guest should be not configuring an isolated device */
1054 trace_spapr_drc_set_configured_skipping(drc_index);
1056 g_free(ccs);
1057 drc->ccs = NULL;
1058 ccs = NULL;
1059 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1060 } else {
1061 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1063 break;
1064 case FDT_PROP:
1065 prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset,
1066 &prop_len);
1067 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1069 /* provide the name of the next OF property */
1070 wa_offset = CC_VAL_DATA_OFFSET;
1071 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1072 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1074 /* provide the length and value of the OF property. data gets
1075 * placed immediately after NULL terminator of the OF property's
1076 * name string
1078 wa_offset += strlen(name) + 1,
1079 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1080 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1081 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1082 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1083 break;
1084 case FDT_END:
1085 resp = SPAPR_DR_CC_RESPONSE_ERROR;
1086 default:
1087 /* keep seeking for an actionable tag */
1088 break;
1090 if (ccs) {
1091 ccs->fdt_offset = fdt_offset_next;
1093 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1095 rc = resp;
1096 out:
1097 rtas_st(rets, 0, rc);
1100 static void spapr_drc_register_types(void)
1102 type_register_static(&spapr_dr_connector_info);
1103 type_register_static(&spapr_drc_physical_info);
1104 type_register_static(&spapr_drc_logical_info);
1105 type_register_static(&spapr_drc_cpu_info);
1106 type_register_static(&spapr_drc_pci_info);
1107 type_register_static(&spapr_drc_lmb_info);
1109 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1110 rtas_set_indicator);
1111 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1112 rtas_get_sensor_state);
1113 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1114 rtas_ibm_configure_connector);
1116 type_init(spapr_drc_register_types)