target/mips: Clean up handling of CP0 register 29
[qemu/ar7.git] / qtest.c
blob8b50e2783ee0dde871ecd944340b6a5115902d60
1 /*
2 * Test Server
4 * Copyright IBM, Corp. 2011
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qapi/error.h"
16 #include "cpu.h"
17 #include "sysemu/qtest.h"
18 #include "sysemu/runstate.h"
19 #include "chardev/char-fe.h"
20 #include "exec/ioport.h"
21 #include "exec/memory.h"
22 #include "hw/irq.h"
23 #include "sysemu/accel.h"
24 #include "sysemu/cpus.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "qemu/error-report.h"
28 #include "qemu/module.h"
29 #include "qemu/cutils.h"
30 #ifdef TARGET_PPC64
31 #include "hw/ppc/spapr_rtas.h"
32 #endif
34 #define MAX_IRQ 256
36 bool qtest_allowed;
38 static DeviceState *irq_intercept_dev;
39 static FILE *qtest_log_fp;
40 static CharBackend qtest_chr;
41 static GString *inbuf;
42 static int irq_levels[MAX_IRQ];
43 static qemu_timeval start_time;
44 static bool qtest_opened;
46 #define FMT_timeval "%ld.%06ld"
48 /**
49 * QTest Protocol
51 * Line based protocol, request/response based. Server can send async messages
52 * so clients should always handle many async messages before the response
53 * comes in.
55 * Valid requests
57 * Clock management:
59 * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands
60 * let you adjust the value of the clock (monotonically). All the commands
61 * return the current value of the clock in nanoseconds.
63 * > clock_step
64 * < OK VALUE
66 * Advance the clock to the next deadline. Useful when waiting for
67 * asynchronous events.
69 * > clock_step NS
70 * < OK VALUE
72 * Advance the clock by NS nanoseconds.
74 * > clock_set NS
75 * < OK VALUE
77 * Advance the clock to NS nanoseconds (do nothing if it's already past).
79 * PIO and memory access:
81 * > outb ADDR VALUE
82 * < OK
84 * > outw ADDR VALUE
85 * < OK
87 * > outl ADDR VALUE
88 * < OK
90 * > inb ADDR
91 * < OK VALUE
93 * > inw ADDR
94 * < OK VALUE
96 * > inl ADDR
97 * < OK VALUE
99 * > writeb ADDR VALUE
100 * < OK
102 * > writew ADDR VALUE
103 * < OK
105 * > writel ADDR VALUE
106 * < OK
108 * > writeq ADDR VALUE
109 * < OK
111 * > readb ADDR
112 * < OK VALUE
114 * > readw ADDR
115 * < OK VALUE
117 * > readl ADDR
118 * < OK VALUE
120 * > readq ADDR
121 * < OK VALUE
123 * > read ADDR SIZE
124 * < OK DATA
126 * > write ADDR SIZE DATA
127 * < OK
129 * > b64read ADDR SIZE
130 * < OK B64_DATA
132 * > b64write ADDR SIZE B64_DATA
133 * < OK
135 * > memset ADDR SIZE VALUE
136 * < OK
138 * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0.
139 * For 'memset' a zero size is permitted and does nothing.
141 * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller
142 * than the expected size, the value will be zero filled at the end of the data
143 * sequence.
145 * B64_DATA is an arbitrarily long base64 encoded string.
146 * If the sizes do not match, the data will be truncated.
148 * IRQ management:
150 * > irq_intercept_in QOM-PATH
151 * < OK
153 * > irq_intercept_out QOM-PATH
154 * < OK
156 * Attach to the gpio-in (resp. gpio-out) pins exported by the device at
157 * QOM-PATH. When the pin is triggered, one of the following async messages
158 * will be printed to the qtest stream:
160 * IRQ raise NUM
161 * IRQ lower NUM
163 * where NUM is an IRQ number. For the PC, interrupts can be intercepted
164 * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
165 * NUM=0 even though it is remapped to GSI 2).
167 * Setting interrupt level:
169 * > set_irq_in QOM-PATH NAME NUM LEVEL
170 * < OK
172 * where NAME is the name of the irq/gpio list, NUM is an IRQ number and
173 * LEVEL is an signed integer IRQ level.
175 * Forcibly set the given interrupt pin to the given level.
179 static int hex2nib(char ch)
181 if (ch >= '0' && ch <= '9') {
182 return ch - '0';
183 } else if (ch >= 'a' && ch <= 'f') {
184 return 10 + (ch - 'a');
185 } else if (ch >= 'A' && ch <= 'F') {
186 return 10 + (ch - 'A');
187 } else {
188 return -1;
192 static void qtest_get_time(qemu_timeval *tv)
194 qemu_gettimeofday(tv);
195 tv->tv_sec -= start_time.tv_sec;
196 tv->tv_usec -= start_time.tv_usec;
197 if (tv->tv_usec < 0) {
198 tv->tv_usec += 1000000;
199 tv->tv_sec -= 1;
203 static void qtest_send_prefix(CharBackend *chr)
205 qemu_timeval tv;
207 if (!qtest_log_fp || !qtest_opened) {
208 return;
211 qtest_get_time(&tv);
212 fprintf(qtest_log_fp, "[S +" FMT_timeval "] ",
213 (long) tv.tv_sec, (long) tv.tv_usec);
216 static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...)
218 va_list ap;
220 if (!qtest_log_fp || !qtest_opened) {
221 return;
224 qtest_send_prefix(NULL);
226 va_start(ap, fmt);
227 vfprintf(qtest_log_fp, fmt, ap);
228 va_end(ap);
231 static void do_qtest_send(CharBackend *chr, const char *str, size_t len)
233 qemu_chr_fe_write_all(chr, (uint8_t *)str, len);
234 if (qtest_log_fp && qtest_opened) {
235 fprintf(qtest_log_fp, "%s", str);
239 static void qtest_send(CharBackend *chr, const char *str)
241 do_qtest_send(chr, str, strlen(str));
244 static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharBackend *chr,
245 const char *fmt, ...)
247 va_list ap;
248 gchar *buffer;
250 va_start(ap, fmt);
251 buffer = g_strdup_vprintf(fmt, ap);
252 qtest_send(chr, buffer);
253 g_free(buffer);
254 va_end(ap);
257 static void qtest_irq_handler(void *opaque, int n, int level)
259 qemu_irq old_irq = *(qemu_irq *)opaque;
260 qemu_set_irq(old_irq, level);
262 if (irq_levels[n] != level) {
263 CharBackend *chr = &qtest_chr;
264 irq_levels[n] = level;
265 qtest_send_prefix(chr);
266 qtest_sendf(chr, "IRQ %s %d\n",
267 level ? "raise" : "lower", n);
271 static void qtest_process_command(CharBackend *chr, gchar **words)
273 const gchar *command;
275 g_assert(words);
277 command = words[0];
279 if (qtest_log_fp) {
280 qemu_timeval tv;
281 int i;
283 qtest_get_time(&tv);
284 fprintf(qtest_log_fp, "[R +" FMT_timeval "]",
285 (long) tv.tv_sec, (long) tv.tv_usec);
286 for (i = 0; words[i]; i++) {
287 fprintf(qtest_log_fp, " %s", words[i]);
289 fprintf(qtest_log_fp, "\n");
292 g_assert(command);
293 if (strcmp(words[0], "irq_intercept_out") == 0
294 || strcmp(words[0], "irq_intercept_in") == 0) {
295 DeviceState *dev;
296 NamedGPIOList *ngl;
298 g_assert(words[1]);
299 dev = DEVICE(object_resolve_path(words[1], NULL));
300 if (!dev) {
301 qtest_send_prefix(chr);
302 qtest_send(chr, "FAIL Unknown device\n");
303 return;
306 if (irq_intercept_dev) {
307 qtest_send_prefix(chr);
308 if (irq_intercept_dev != dev) {
309 qtest_send(chr, "FAIL IRQ intercept already enabled\n");
310 } else {
311 qtest_send(chr, "OK\n");
313 return;
316 QLIST_FOREACH(ngl, &dev->gpios, node) {
317 /* We don't support intercept of named GPIOs yet */
318 if (ngl->name) {
319 continue;
321 if (words[0][14] == 'o') {
322 int i;
323 for (i = 0; i < ngl->num_out; ++i) {
324 qemu_irq *disconnected = g_new0(qemu_irq, 1);
325 qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler,
326 disconnected, i);
328 *disconnected = qdev_intercept_gpio_out(dev, icpt,
329 ngl->name, i);
331 } else {
332 qemu_irq_intercept_in(ngl->in, qtest_irq_handler,
333 ngl->num_in);
336 irq_intercept_dev = dev;
337 qtest_send_prefix(chr);
338 qtest_send(chr, "OK\n");
339 } else if (strcmp(words[0], "set_irq_in") == 0) {
340 DeviceState *dev;
341 qemu_irq irq;
342 char *name;
343 int ret;
344 int num;
345 int level;
347 g_assert(words[1] && words[2] && words[3] && words[4]);
349 dev = DEVICE(object_resolve_path(words[1], NULL));
350 if (!dev) {
351 qtest_send_prefix(chr);
352 qtest_send(chr, "FAIL Unknown device\n");
353 return;
356 if (strcmp(words[2], "unnamed-gpio-in") == 0) {
357 name = NULL;
358 } else {
359 name = words[2];
362 ret = qemu_strtoi(words[3], NULL, 0, &num);
363 g_assert(!ret);
364 ret = qemu_strtoi(words[4], NULL, 0, &level);
365 g_assert(!ret);
367 irq = qdev_get_gpio_in_named(dev, name, num);
369 qemu_set_irq(irq, level);
370 qtest_send_prefix(chr);
371 qtest_send(chr, "OK\n");
372 } else if (strcmp(words[0], "outb") == 0 ||
373 strcmp(words[0], "outw") == 0 ||
374 strcmp(words[0], "outl") == 0) {
375 unsigned long addr;
376 unsigned long value;
377 int ret;
379 g_assert(words[1] && words[2]);
380 ret = qemu_strtoul(words[1], NULL, 0, &addr);
381 g_assert(ret == 0);
382 ret = qemu_strtoul(words[2], NULL, 0, &value);
383 g_assert(ret == 0);
384 g_assert(addr <= 0xffff);
386 if (words[0][3] == 'b') {
387 cpu_outb(addr, value);
388 } else if (words[0][3] == 'w') {
389 cpu_outw(addr, value);
390 } else if (words[0][3] == 'l') {
391 cpu_outl(addr, value);
393 qtest_send_prefix(chr);
394 qtest_send(chr, "OK\n");
395 } else if (strcmp(words[0], "inb") == 0 ||
396 strcmp(words[0], "inw") == 0 ||
397 strcmp(words[0], "inl") == 0) {
398 unsigned long addr;
399 uint32_t value = -1U;
400 int ret;
402 g_assert(words[1]);
403 ret = qemu_strtoul(words[1], NULL, 0, &addr);
404 g_assert(ret == 0);
405 g_assert(addr <= 0xffff);
407 if (words[0][2] == 'b') {
408 value = cpu_inb(addr);
409 } else if (words[0][2] == 'w') {
410 value = cpu_inw(addr);
411 } else if (words[0][2] == 'l') {
412 value = cpu_inl(addr);
414 qtest_send_prefix(chr);
415 qtest_sendf(chr, "OK 0x%04x\n", value);
416 } else if (strcmp(words[0], "writeb") == 0 ||
417 strcmp(words[0], "writew") == 0 ||
418 strcmp(words[0], "writel") == 0 ||
419 strcmp(words[0], "writeq") == 0) {
420 uint64_t addr;
421 uint64_t value;
422 int ret;
424 g_assert(words[1] && words[2]);
425 ret = qemu_strtou64(words[1], NULL, 0, &addr);
426 g_assert(ret == 0);
427 ret = qemu_strtou64(words[2], NULL, 0, &value);
428 g_assert(ret == 0);
430 if (words[0][5] == 'b') {
431 uint8_t data = value;
432 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
433 &data, 1, true);
434 } else if (words[0][5] == 'w') {
435 uint16_t data = value;
436 tswap16s(&data);
437 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
438 (uint8_t *) &data, 2, true);
439 } else if (words[0][5] == 'l') {
440 uint32_t data = value;
441 tswap32s(&data);
442 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
443 (uint8_t *) &data, 4, true);
444 } else if (words[0][5] == 'q') {
445 uint64_t data = value;
446 tswap64s(&data);
447 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
448 (uint8_t *) &data, 8, true);
450 qtest_send_prefix(chr);
451 qtest_send(chr, "OK\n");
452 } else if (strcmp(words[0], "readb") == 0 ||
453 strcmp(words[0], "readw") == 0 ||
454 strcmp(words[0], "readl") == 0 ||
455 strcmp(words[0], "readq") == 0) {
456 uint64_t addr;
457 uint64_t value = UINT64_C(-1);
458 int ret;
460 g_assert(words[1]);
461 ret = qemu_strtou64(words[1], NULL, 0, &addr);
462 g_assert(ret == 0);
464 if (words[0][4] == 'b') {
465 uint8_t data;
466 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
467 &data, 1, false);
468 value = data;
469 } else if (words[0][4] == 'w') {
470 uint16_t data;
471 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
472 (uint8_t *) &data, 2, false);
473 value = tswap16(data);
474 } else if (words[0][4] == 'l') {
475 uint32_t data;
476 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
477 (uint8_t *) &data, 4, false);
478 value = tswap32(data);
479 } else if (words[0][4] == 'q') {
480 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
481 (uint8_t *) &value, 8, false);
482 tswap64s(&value);
484 qtest_send_prefix(chr);
485 qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value);
486 } else if (strcmp(words[0], "read") == 0) {
487 uint64_t addr, len, i;
488 uint8_t *data;
489 char *enc;
490 int ret;
492 g_assert(words[1] && words[2]);
493 ret = qemu_strtou64(words[1], NULL, 0, &addr);
494 g_assert(ret == 0);
495 ret = qemu_strtou64(words[2], NULL, 0, &len);
496 g_assert(ret == 0);
497 /* We'd send garbage to libqtest if len is 0 */
498 g_assert(len);
500 data = g_malloc(len);
501 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
502 data, len, false);
504 enc = g_malloc(2 * len + 1);
505 for (i = 0; i < len; i++) {
506 sprintf(&enc[i * 2], "%02x", data[i]);
509 qtest_send_prefix(chr);
510 qtest_sendf(chr, "OK 0x%s\n", enc);
512 g_free(data);
513 g_free(enc);
514 } else if (strcmp(words[0], "b64read") == 0) {
515 uint64_t addr, len;
516 uint8_t *data;
517 gchar *b64_data;
518 int ret;
520 g_assert(words[1] && words[2]);
521 ret = qemu_strtou64(words[1], NULL, 0, &addr);
522 g_assert(ret == 0);
523 ret = qemu_strtou64(words[2], NULL, 0, &len);
524 g_assert(ret == 0);
526 data = g_malloc(len);
527 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
528 data, len, false);
529 b64_data = g_base64_encode(data, len);
530 qtest_send_prefix(chr);
531 qtest_sendf(chr, "OK %s\n", b64_data);
533 g_free(data);
534 g_free(b64_data);
535 } else if (strcmp(words[0], "write") == 0) {
536 uint64_t addr, len, i;
537 uint8_t *data;
538 size_t data_len;
539 int ret;
541 g_assert(words[1] && words[2] && words[3]);
542 ret = qemu_strtou64(words[1], NULL, 0, &addr);
543 g_assert(ret == 0);
544 ret = qemu_strtou64(words[2], NULL, 0, &len);
545 g_assert(ret == 0);
547 data_len = strlen(words[3]);
548 if (data_len < 3) {
549 qtest_send(chr, "ERR invalid argument size\n");
550 return;
553 data = g_malloc(len);
554 for (i = 0; i < len; i++) {
555 if ((i * 2 + 4) <= data_len) {
556 data[i] = hex2nib(words[3][i * 2 + 2]) << 4;
557 data[i] |= hex2nib(words[3][i * 2 + 3]);
558 } else {
559 data[i] = 0;
562 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
563 data, len, true);
564 g_free(data);
566 qtest_send_prefix(chr);
567 qtest_send(chr, "OK\n");
568 } else if (strcmp(words[0], "memset") == 0) {
569 uint64_t addr, len;
570 uint8_t *data;
571 unsigned long pattern;
572 int ret;
574 g_assert(words[1] && words[2] && words[3]);
575 ret = qemu_strtou64(words[1], NULL, 0, &addr);
576 g_assert(ret == 0);
577 ret = qemu_strtou64(words[2], NULL, 0, &len);
578 g_assert(ret == 0);
579 ret = qemu_strtoul(words[3], NULL, 0, &pattern);
580 g_assert(ret == 0);
582 if (len) {
583 data = g_malloc(len);
584 memset(data, pattern, len);
585 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
586 data, len, true);
587 g_free(data);
590 qtest_send_prefix(chr);
591 qtest_send(chr, "OK\n");
592 } else if (strcmp(words[0], "b64write") == 0) {
593 uint64_t addr, len;
594 uint8_t *data;
595 size_t data_len;
596 gsize out_len;
597 int ret;
599 g_assert(words[1] && words[2] && words[3]);
600 ret = qemu_strtou64(words[1], NULL, 0, &addr);
601 g_assert(ret == 0);
602 ret = qemu_strtou64(words[2], NULL, 0, &len);
603 g_assert(ret == 0);
605 data_len = strlen(words[3]);
606 if (data_len < 3) {
607 qtest_send(chr, "ERR invalid argument size\n");
608 return;
611 data = g_base64_decode_inplace(words[3], &out_len);
612 if (out_len != len) {
613 qtest_log_send("b64write: data length mismatch (told %"PRIu64", "
614 "found %zu)\n",
615 len, out_len);
616 out_len = MIN(out_len, len);
619 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
620 data, len, true);
622 qtest_send_prefix(chr);
623 qtest_send(chr, "OK\n");
624 } else if (strcmp(words[0], "endianness") == 0) {
625 qtest_send_prefix(chr);
626 #if defined(TARGET_WORDS_BIGENDIAN)
627 qtest_sendf(chr, "OK big\n");
628 #else
629 qtest_sendf(chr, "OK little\n");
630 #endif
631 #ifdef TARGET_PPC64
632 } else if (strcmp(words[0], "rtas") == 0) {
633 uint64_t res, args, ret;
634 unsigned long nargs, nret;
635 int rc;
637 rc = qemu_strtoul(words[2], NULL, 0, &nargs);
638 g_assert(rc == 0);
639 rc = qemu_strtou64(words[3], NULL, 0, &args);
640 g_assert(rc == 0);
641 rc = qemu_strtoul(words[4], NULL, 0, &nret);
642 g_assert(rc == 0);
643 rc = qemu_strtou64(words[5], NULL, 0, &ret);
644 g_assert(rc == 0);
645 res = qtest_rtas_call(words[1], nargs, args, nret, ret);
647 qtest_send_prefix(chr);
648 qtest_sendf(chr, "OK %"PRIu64"\n", res);
649 #endif
650 } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) {
651 int64_t ns;
653 if (words[1]) {
654 int ret = qemu_strtoi64(words[1], NULL, 0, &ns);
655 g_assert(ret == 0);
656 } else {
657 ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
658 QEMU_TIMER_ATTR_ALL);
660 qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns);
661 qtest_send_prefix(chr);
662 qtest_sendf(chr, "OK %"PRIi64"\n",
663 (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
664 } else if (strcmp(words[0], "module_load") == 0) {
665 g_assert(words[1] && words[2]);
667 qtest_send_prefix(chr);
668 if (module_load_one(words[1], words[2])) {
669 qtest_sendf(chr, "OK\n");
670 } else {
671 qtest_sendf(chr, "FAIL\n");
673 } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) {
674 int64_t ns;
675 int ret;
677 g_assert(words[1]);
678 ret = qemu_strtoi64(words[1], NULL, 0, &ns);
679 g_assert(ret == 0);
680 qtest_clock_warp(ns);
681 qtest_send_prefix(chr);
682 qtest_sendf(chr, "OK %"PRIi64"\n",
683 (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
684 } else {
685 qtest_send_prefix(chr);
686 qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]);
690 static void qtest_process_inbuf(CharBackend *chr, GString *inbuf)
692 char *end;
694 while ((end = strchr(inbuf->str, '\n')) != NULL) {
695 size_t offset;
696 GString *cmd;
697 gchar **words;
699 offset = end - inbuf->str;
701 cmd = g_string_new_len(inbuf->str, offset);
702 g_string_erase(inbuf, 0, offset + 1);
704 words = g_strsplit(cmd->str, " ", 0);
705 qtest_process_command(chr, words);
706 g_strfreev(words);
708 g_string_free(cmd, TRUE);
712 static void qtest_read(void *opaque, const uint8_t *buf, int size)
714 CharBackend *chr = opaque;
716 g_string_append_len(inbuf, (const gchar *)buf, size);
717 qtest_process_inbuf(chr, inbuf);
720 static int qtest_can_read(void *opaque)
722 return 1024;
725 static void qtest_event(void *opaque, int event)
727 int i;
729 switch (event) {
730 case CHR_EVENT_OPENED:
732 * We used to call qemu_system_reset() here, hoping we could
733 * use the same process for multiple tests that way. Never
734 * used. Injects an extra reset even when it's not used, and
735 * that can mess up tests, e.g. -boot once.
737 for (i = 0; i < ARRAY_SIZE(irq_levels); i++) {
738 irq_levels[i] = 0;
740 qemu_gettimeofday(&start_time);
741 qtest_opened = true;
742 if (qtest_log_fp) {
743 fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n",
744 (long) start_time.tv_sec, (long) start_time.tv_usec);
746 break;
747 case CHR_EVENT_CLOSED:
748 qtest_opened = false;
749 if (qtest_log_fp) {
750 qemu_timeval tv;
751 qtest_get_time(&tv);
752 fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n",
753 (long) tv.tv_sec, (long) tv.tv_usec);
755 break;
756 default:
757 break;
760 void qtest_server_init(const char *qtest_chrdev, const char *qtest_log, Error **errp)
762 Chardev *chr;
764 chr = qemu_chr_new("qtest", qtest_chrdev, NULL);
766 if (chr == NULL) {
767 error_setg(errp, "Failed to initialize device for qtest: \"%s\"",
768 qtest_chrdev);
769 return;
772 if (qtest_log) {
773 if (strcmp(qtest_log, "none") != 0) {
774 qtest_log_fp = fopen(qtest_log, "w+");
776 } else {
777 qtest_log_fp = stderr;
780 qemu_chr_fe_init(&qtest_chr, chr, errp);
781 qemu_chr_fe_set_handlers(&qtest_chr, qtest_can_read, qtest_read,
782 qtest_event, NULL, &qtest_chr, NULL, true);
783 qemu_chr_fe_set_echo(&qtest_chr, true);
785 inbuf = g_string_new("");
788 bool qtest_driver(void)
790 return qtest_chr.chr != NULL;