hw/ppc/spapr.c: use g_autofree in spapr_dt_chosen()
[qemu/ar7.git] / hw / ppc / spapr.c
blobc74543ace324a4a1f3aa4ddbdb4f97e65f1ea367
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/qapi-events-qdev.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hostmem.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/qtest.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "qemu/log.h"
41 #include "hw/fw-path-provider.h"
42 #include "elf.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_ppc.h"
48 #include "migration/misc.h"
49 #include "migration/qemu-file-types.h"
50 #include "migration/global_state.h"
51 #include "migration/register.h"
52 #include "migration/blocker.h"
53 #include "mmu-hash64.h"
54 #include "mmu-book3s-v3.h"
55 #include "cpu-models.h"
56 #include "hw/core/cpu.h"
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
88 #include "monitor/monitor.h"
90 #include <libfdt.h>
92 /* SLOF memory layout:
94 * SLOF raw image loaded at 0, copies its romfs right below the flat
95 * device-tree, then position SLOF itself 31M below that
97 * So we set FW_OVERHEAD to 40MB which should account for all of that
98 * and more
100 * We load our kernel at 4M, leaving space for SLOF initial image
102 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
103 #define FW_MAX_SIZE 0x400000
104 #define FW_FILE_NAME "slof.bin"
105 #define FW_FILE_NAME_VOF "vof.bin"
106 #define FW_OVERHEAD 0x2800000
107 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
109 #define MIN_RMA_SLOF (128 * MiB)
111 #define PHANDLE_INTC 0x00001111
113 /* These two functions implement the VCPU id numbering: one to compute them
114 * all and one to identify thread 0 of a VCORE. Any change to the first one
115 * is likely to have an impact on the second one, so let's keep them close.
117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
119 MachineState *ms = MACHINE(spapr);
120 unsigned int smp_threads = ms->smp.threads;
122 assert(spapr->vsmt);
123 return
124 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
127 PowerPCCPU *cpu)
129 assert(spapr->vsmt);
130 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
135 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136 * and newer QEMUs don't even have them. In both cases, we don't want
137 * to send anything on the wire.
139 return false;
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
143 .name = "icp/server",
144 .version_id = 1,
145 .minimum_version_id = 1,
146 .needed = pre_2_10_vmstate_dummy_icp_needed,
147 .fields = (VMStateField[]) {
148 VMSTATE_UNUSED(4), /* uint32_t xirr */
149 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150 VMSTATE_UNUSED(1), /* uint8_t mfrr */
151 VMSTATE_END_OF_LIST()
155 static void pre_2_10_vmstate_register_dummy_icp(int i)
157 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
158 (void *)(uintptr_t) i);
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
163 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
164 (void *)(uintptr_t) i);
167 int spapr_max_server_number(SpaprMachineState *spapr)
169 MachineState *ms = MACHINE(spapr);
171 assert(spapr->vsmt);
172 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176 int smt_threads)
178 int i, ret = 0;
179 uint32_t servers_prop[smt_threads];
180 uint32_t gservers_prop[smt_threads * 2];
181 int index = spapr_get_vcpu_id(cpu);
183 if (cpu->compat_pvr) {
184 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185 if (ret < 0) {
186 return ret;
190 /* Build interrupt servers and gservers properties */
191 for (i = 0; i < smt_threads; i++) {
192 servers_prop[i] = cpu_to_be32(index + i);
193 /* Hack, direct the group queues back to cpu 0 */
194 gservers_prop[i*2] = cpu_to_be32(index + i);
195 gservers_prop[i*2 + 1] = 0;
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198 servers_prop, sizeof(servers_prop));
199 if (ret < 0) {
200 return ret;
202 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203 gservers_prop, sizeof(gservers_prop));
205 return ret;
208 static void spapr_dt_pa_features(SpaprMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset)
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
259 if (!pa_features) {
260 return;
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
271 pa_features[3] |= 0x20;
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
276 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
286 static hwaddr spapr_node0_size(MachineState *machine)
288 if (machine->numa_state->num_nodes) {
289 int i;
290 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
291 if (machine->numa_state->nodes[i].node_mem) {
292 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
293 machine->ram_size);
297 return machine->ram_size;
300 static void add_str(GString *s, const gchar *s1)
302 g_string_append_len(s, s1, strlen(s1) + 1);
305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
306 hwaddr start, hwaddr size)
308 char mem_name[32];
309 uint64_t mem_reg_property[2];
310 int off;
312 mem_reg_property[0] = cpu_to_be64(start);
313 mem_reg_property[1] = cpu_to_be64(size);
315 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
316 off = fdt_add_subnode(fdt, 0, mem_name);
317 _FDT(off);
318 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
319 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
320 sizeof(mem_reg_property))));
321 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
322 return off;
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
327 MemoryDeviceInfoList *info;
329 for (info = list; info; info = info->next) {
330 MemoryDeviceInfo *value = info->value;
332 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
333 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
335 if (addr >= pcdimm_info->addr &&
336 addr < (pcdimm_info->addr + pcdimm_info->size)) {
337 return pcdimm_info->node;
342 return -1;
345 struct sPAPRDrconfCellV2 {
346 uint32_t seq_lmbs;
347 uint64_t base_addr;
348 uint32_t drc_index;
349 uint32_t aa_index;
350 uint32_t flags;
351 } QEMU_PACKED;
353 typedef struct DrconfCellQueue {
354 struct sPAPRDrconfCellV2 cell;
355 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
356 } DrconfCellQueue;
358 static DrconfCellQueue *
359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
360 uint32_t drc_index, uint32_t aa_index,
361 uint32_t flags)
363 DrconfCellQueue *elem;
365 elem = g_malloc0(sizeof(*elem));
366 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
367 elem->cell.base_addr = cpu_to_be64(base_addr);
368 elem->cell.drc_index = cpu_to_be32(drc_index);
369 elem->cell.aa_index = cpu_to_be32(aa_index);
370 elem->cell.flags = cpu_to_be32(flags);
372 return elem;
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
376 int offset, MemoryDeviceInfoList *dimms)
378 MachineState *machine = MACHINE(spapr);
379 uint8_t *int_buf, *cur_index;
380 int ret;
381 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
382 uint64_t addr, cur_addr, size;
383 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
384 uint64_t mem_end = machine->device_memory->base +
385 memory_region_size(&machine->device_memory->mr);
386 uint32_t node, buf_len, nr_entries = 0;
387 SpaprDrc *drc;
388 DrconfCellQueue *elem, *next;
389 MemoryDeviceInfoList *info;
390 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
391 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
393 /* Entry to cover RAM and the gap area */
394 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
395 SPAPR_LMB_FLAGS_RESERVED |
396 SPAPR_LMB_FLAGS_DRC_INVALID);
397 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
398 nr_entries++;
400 cur_addr = machine->device_memory->base;
401 for (info = dimms; info; info = info->next) {
402 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
404 addr = di->addr;
405 size = di->size;
406 node = di->node;
409 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410 * area is marked hotpluggable in the next iteration for the bigger
411 * chunk including the NVDIMM occupied area.
413 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
414 continue;
416 /* Entry for hot-pluggable area */
417 if (cur_addr < addr) {
418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
419 g_assert(drc);
420 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
421 cur_addr, spapr_drc_index(drc), -1, 0);
422 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
423 nr_entries++;
426 /* Entry for DIMM */
427 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
428 g_assert(drc);
429 elem = spapr_get_drconf_cell(size / lmb_size, addr,
430 spapr_drc_index(drc), node,
431 (SPAPR_LMB_FLAGS_ASSIGNED |
432 SPAPR_LMB_FLAGS_HOTREMOVABLE));
433 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
434 nr_entries++;
435 cur_addr = addr + size;
438 /* Entry for remaining hotpluggable area */
439 if (cur_addr < mem_end) {
440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
441 g_assert(drc);
442 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
443 cur_addr, spapr_drc_index(drc), -1, 0);
444 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
445 nr_entries++;
448 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
449 int_buf = cur_index = g_malloc0(buf_len);
450 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
451 cur_index += sizeof(nr_entries);
453 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
454 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
455 cur_index += sizeof(elem->cell);
456 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
457 g_free(elem);
460 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
461 g_free(int_buf);
462 if (ret < 0) {
463 return -1;
465 return 0;
468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
469 int offset, MemoryDeviceInfoList *dimms)
471 MachineState *machine = MACHINE(spapr);
472 int i, ret;
473 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
474 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
475 uint32_t nr_lmbs = (machine->device_memory->base +
476 memory_region_size(&machine->device_memory->mr)) /
477 lmb_size;
478 uint32_t *int_buf, *cur_index, buf_len;
481 * Allocate enough buffer size to fit in ibm,dynamic-memory
483 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
484 cur_index = int_buf = g_malloc0(buf_len);
485 int_buf[0] = cpu_to_be32(nr_lmbs);
486 cur_index++;
487 for (i = 0; i < nr_lmbs; i++) {
488 uint64_t addr = i * lmb_size;
489 uint32_t *dynamic_memory = cur_index;
491 if (i >= device_lmb_start) {
492 SpaprDrc *drc;
494 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
495 g_assert(drc);
497 dynamic_memory[0] = cpu_to_be32(addr >> 32);
498 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
499 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
500 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
501 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
502 if (memory_region_present(get_system_memory(), addr)) {
503 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
504 } else {
505 dynamic_memory[5] = cpu_to_be32(0);
507 } else {
509 * LMB information for RMA, boot time RAM and gap b/n RAM and
510 * device memory region -- all these are marked as reserved
511 * and as having no valid DRC.
513 dynamic_memory[0] = cpu_to_be32(addr >> 32);
514 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515 dynamic_memory[2] = cpu_to_be32(0);
516 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517 dynamic_memory[4] = cpu_to_be32(-1);
518 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
519 SPAPR_LMB_FLAGS_DRC_INVALID);
522 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
524 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
525 g_free(int_buf);
526 if (ret < 0) {
527 return -1;
529 return 0;
533 * Adds ibm,dynamic-reconfiguration-memory node.
534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535 * of this device tree node.
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
538 void *fdt)
540 MachineState *machine = MACHINE(spapr);
541 int ret, offset;
542 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
544 cpu_to_be32(lmb_size & 0xffffffff)};
545 MemoryDeviceInfoList *dimms = NULL;
548 * Don't create the node if there is no device memory
550 if (machine->ram_size == machine->maxram_size) {
551 return 0;
554 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
557 sizeof(prop_lmb_size));
558 if (ret < 0) {
559 return ret;
562 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
563 if (ret < 0) {
564 return ret;
567 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
568 if (ret < 0) {
569 return ret;
572 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573 dimms = qmp_memory_device_list();
574 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
575 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
576 } else {
577 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579 qapi_free_MemoryDeviceInfoList(dimms);
581 if (ret < 0) {
582 return ret;
585 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587 return ret;
590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 MachineState *machine = MACHINE(spapr);
593 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
594 hwaddr mem_start, node_size;
595 int i, nb_nodes = machine->numa_state->num_nodes;
596 NodeInfo *nodes = machine->numa_state->nodes;
598 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
599 if (!nodes[i].node_mem) {
600 continue;
602 if (mem_start >= machine->ram_size) {
603 node_size = 0;
604 } else {
605 node_size = nodes[i].node_mem;
606 if (node_size > machine->ram_size - mem_start) {
607 node_size = machine->ram_size - mem_start;
610 if (!mem_start) {
611 /* spapr_machine_init() checks for rma_size <= node0_size
612 * already */
613 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
614 mem_start += spapr->rma_size;
615 node_size -= spapr->rma_size;
617 for ( ; node_size; ) {
618 hwaddr sizetmp = pow2floor(node_size);
620 /* mem_start != 0 here */
621 if (ctzl(mem_start) < ctzl(sizetmp)) {
622 sizetmp = 1ULL << ctzl(mem_start);
625 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
626 node_size -= sizetmp;
627 mem_start += sizetmp;
631 /* Generate ibm,dynamic-reconfiguration-memory node if required */
632 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
633 int ret;
635 g_assert(smc->dr_lmb_enabled);
636 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
637 if (ret) {
638 return ret;
642 return 0;
645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
646 SpaprMachineState *spapr)
648 MachineState *ms = MACHINE(spapr);
649 PowerPCCPU *cpu = POWERPC_CPU(cs);
650 CPUPPCState *env = &cpu->env;
651 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
652 int index = spapr_get_vcpu_id(cpu);
653 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
654 0xffffffff, 0xffffffff};
655 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
656 : SPAPR_TIMEBASE_FREQ;
657 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658 uint32_t page_sizes_prop[64];
659 size_t page_sizes_prop_size;
660 unsigned int smp_threads = ms->smp.threads;
661 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
662 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
663 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
664 SpaprDrc *drc;
665 int drc_index;
666 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
667 int i;
669 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
670 if (drc) {
671 drc_index = spapr_drc_index(drc);
672 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
675 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
676 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
679 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
680 env->dcache_line_size)));
681 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
682 env->dcache_line_size)));
683 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
684 env->icache_line_size)));
685 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
686 env->icache_line_size)));
688 if (pcc->l1_dcache_size) {
689 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
690 pcc->l1_dcache_size)));
691 } else {
692 warn_report("Unknown L1 dcache size for cpu");
694 if (pcc->l1_icache_size) {
695 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
696 pcc->l1_icache_size)));
697 } else {
698 warn_report("Unknown L1 icache size for cpu");
701 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
702 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
704 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
706 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708 if (ppc_has_spr(cpu, SPR_PURR)) {
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711 if (ppc_has_spr(cpu, SPR_PURR)) {
712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
715 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
716 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
717 segs, sizeof(segs))));
720 /* Advertise VSX (vector extensions) if available
721 * 1 == VMX / Altivec available
722 * 2 == VSX available
724 * Only CPUs for which we create core types in spapr_cpu_core.c
725 * are possible, and all of those have VMX */
726 if (env->insns_flags & PPC_ALTIVEC) {
727 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
728 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
729 } else {
730 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
734 /* Advertise DFP (Decimal Floating Point) if available
735 * 0 / no property == no DFP
736 * 1 == DFP available */
737 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
738 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
741 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
742 sizeof(page_sizes_prop));
743 if (page_sizes_prop_size) {
744 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
745 page_sizes_prop, page_sizes_prop_size)));
748 spapr_dt_pa_features(spapr, cpu, fdt, offset);
750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
751 cs->cpu_index / vcpus_per_socket)));
753 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
754 pft_size_prop, sizeof(pft_size_prop))));
756 if (ms->numa_state->num_nodes > 1) {
757 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
760 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762 if (pcc->radix_page_info) {
763 for (i = 0; i < pcc->radix_page_info->count; i++) {
764 radix_AP_encodings[i] =
765 cpu_to_be32(pcc->radix_page_info->entries[i]);
767 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
768 radix_AP_encodings,
769 pcc->radix_page_info->count *
770 sizeof(radix_AP_encodings[0]))));
774 * We set this property to let the guest know that it can use the large
775 * decrementer and its width in bits.
777 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
778 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
779 pcc->lrg_decr_bits)));
782 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 CPUState **rev;
785 CPUState *cs;
786 int n_cpus;
787 int cpus_offset;
788 int i;
790 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
791 _FDT(cpus_offset);
792 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
796 * We walk the CPUs in reverse order to ensure that CPU DT nodes
797 * created by fdt_add_subnode() end up in the right order in FDT
798 * for the guest kernel the enumerate the CPUs correctly.
800 * The CPU list cannot be traversed in reverse order, so we need
801 * to do extra work.
803 n_cpus = 0;
804 rev = NULL;
805 CPU_FOREACH(cs) {
806 rev = g_renew(CPUState *, rev, n_cpus + 1);
807 rev[n_cpus++] = cs;
810 for (i = n_cpus - 1; i >= 0; i--) {
811 CPUState *cs = rev[i];
812 PowerPCCPU *cpu = POWERPC_CPU(cs);
813 int index = spapr_get_vcpu_id(cpu);
814 DeviceClass *dc = DEVICE_GET_CLASS(cs);
815 g_autofree char *nodename = NULL;
816 int offset;
818 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
819 continue;
822 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
823 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
824 _FDT(offset);
825 spapr_dt_cpu(cs, fdt, offset, spapr);
828 g_free(rev);
831 static int spapr_dt_rng(void *fdt)
833 int node;
834 int ret;
836 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
837 if (node <= 0) {
838 return -1;
840 ret = fdt_setprop_string(fdt, node, "device_type",
841 "ibm,platform-facilities");
842 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
843 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
846 if (node <= 0) {
847 return -1;
849 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851 return ret ? -1 : 0;
854 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 MachineState *ms = MACHINE(spapr);
857 int rtas;
858 GString *hypertas = g_string_sized_new(256);
859 GString *qemu_hypertas = g_string_sized_new(256);
860 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
861 memory_region_size(&MACHINE(spapr)->device_memory->mr);
862 uint32_t lrdr_capacity[] = {
863 cpu_to_be32(max_device_addr >> 32),
864 cpu_to_be32(max_device_addr & 0xffffffff),
865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
867 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
870 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
872 /* hypertas */
873 add_str(hypertas, "hcall-pft");
874 add_str(hypertas, "hcall-term");
875 add_str(hypertas, "hcall-dabr");
876 add_str(hypertas, "hcall-interrupt");
877 add_str(hypertas, "hcall-tce");
878 add_str(hypertas, "hcall-vio");
879 add_str(hypertas, "hcall-splpar");
880 add_str(hypertas, "hcall-join");
881 add_str(hypertas, "hcall-bulk");
882 add_str(hypertas, "hcall-set-mode");
883 add_str(hypertas, "hcall-sprg0");
884 add_str(hypertas, "hcall-copy");
885 add_str(hypertas, "hcall-debug");
886 add_str(hypertas, "hcall-vphn");
887 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
888 add_str(hypertas, "hcall-rpt-invalidate");
891 add_str(qemu_hypertas, "hcall-memop1");
893 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
894 add_str(hypertas, "hcall-multi-tce");
897 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
898 add_str(hypertas, "hcall-hpt-resize");
901 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
902 hypertas->str, hypertas->len));
903 g_string_free(hypertas, TRUE);
904 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
905 qemu_hypertas->str, qemu_hypertas->len));
906 g_string_free(qemu_hypertas, TRUE);
908 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
911 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
912 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
914 * The system reset requirements are driven by existing Linux and PowerVM
915 * implementation which (contrary to PAPR) saves r3 in the error log
916 * structure like machine check, so Linux expects to find the saved r3
917 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
918 * does not look at the error value).
920 * System reset interrupts are not subject to interlock like machine
921 * check, so this memory area could be corrupted if the sreset is
922 * interrupted by a machine check (or vice versa) if it was shared. To
923 * prevent this, system reset uses per-CPU areas for the sreset save
924 * area. A system reset that interrupts a system reset handler could
925 * still overwrite this area, but Linux doesn't try to recover in that
926 * case anyway.
928 * The extra 8 bytes is required because Linux's FWNMI error log check
929 * is off-by-one.
931 * RTAS_MIN_SIZE is required for the RTAS blob itself.
933 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
934 RTAS_ERROR_LOG_MAX +
935 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
936 sizeof(uint64_t)));
937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
938 RTAS_ERROR_LOG_MAX));
939 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
940 RTAS_EVENT_SCAN_RATE));
942 g_assert(msi_nonbroken);
943 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
946 * According to PAPR, rtas ibm,os-term does not guarantee a return
947 * back to the guest cpu.
949 * While an additional ibm,extended-os-term property indicates
950 * that rtas call return will always occur. Set this property.
952 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
954 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
955 lrdr_capacity, sizeof(lrdr_capacity)));
957 spapr_dt_rtas_tokens(fdt, rtas);
961 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
962 * and the XIVE features that the guest may request and thus the valid
963 * values for bytes 23..26 of option vector 5:
965 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
966 int chosen)
968 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
970 char val[2 * 4] = {
971 23, 0x00, /* XICS / XIVE mode */
972 24, 0x00, /* Hash/Radix, filled in below. */
973 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
974 26, 0x40, /* Radix options: GTSE == yes. */
977 if (spapr->irq->xics && spapr->irq->xive) {
978 val[1] = SPAPR_OV5_XIVE_BOTH;
979 } else if (spapr->irq->xive) {
980 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
981 } else {
982 assert(spapr->irq->xics);
983 val[1] = SPAPR_OV5_XIVE_LEGACY;
986 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
987 first_ppc_cpu->compat_pvr)) {
989 * If we're in a pre POWER9 compat mode then the guest should
990 * do hash and use the legacy interrupt mode
992 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
993 val[3] = 0x00; /* Hash */
994 spapr_check_mmu_mode(false);
995 } else if (kvm_enabled()) {
996 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
997 val[3] = 0x80; /* OV5_MMU_BOTH */
998 } else if (kvmppc_has_cap_mmu_radix()) {
999 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1000 } else {
1001 val[3] = 0x00; /* Hash */
1003 } else {
1004 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1005 val[3] = 0xC0;
1007 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1008 val, sizeof(val)));
1011 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1013 MachineState *machine = MACHINE(spapr);
1014 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1015 int chosen;
1017 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1019 if (reset) {
1020 const char *boot_device = spapr->boot_device;
1021 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1022 size_t cb = 0;
1023 g_autofree char *bootlist = get_boot_devices_list(&cb);
1025 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1026 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1027 machine->kernel_cmdline));
1030 if (spapr->initrd_size) {
1031 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1032 spapr->initrd_base));
1033 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1034 spapr->initrd_base + spapr->initrd_size));
1037 if (spapr->kernel_size) {
1038 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1039 cpu_to_be64(spapr->kernel_size) };
1041 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1042 &kprop, sizeof(kprop)));
1043 if (spapr->kernel_le) {
1044 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1047 if (boot_menu) {
1048 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1050 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1051 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1052 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1054 if (cb && bootlist) {
1055 int i;
1057 for (i = 0; i < cb; i++) {
1058 if (bootlist[i] == '\n') {
1059 bootlist[i] = ' ';
1062 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1065 if (boot_device && strlen(boot_device)) {
1066 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1069 if (!spapr->has_graphics && stdout_path) {
1071 * "linux,stdout-path" and "stdout" properties are
1072 * deprecated by linux kernel. New platforms should only
1073 * use the "stdout-path" property. Set the new property
1074 * and continue using older property to remain compatible
1075 * with the existing firmware.
1077 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1078 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1082 * We can deal with BAR reallocation just fine, advertise it
1083 * to the guest
1085 if (smc->linux_pci_probe) {
1086 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1089 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1092 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1097 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1098 * KVM to work under pHyp with some guest co-operation */
1099 int hypervisor;
1100 uint8_t hypercall[16];
1102 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1103 /* indicate KVM hypercall interface */
1104 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1105 if (kvmppc_has_cap_fixup_hcalls()) {
1107 * Older KVM versions with older guest kernels were broken
1108 * with the magic page, don't allow the guest to map it.
1110 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1111 sizeof(hypercall))) {
1112 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1113 hypercall, sizeof(hypercall)));
1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1120 MachineState *machine = MACHINE(spapr);
1121 MachineClass *mc = MACHINE_GET_CLASS(machine);
1122 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1123 uint32_t root_drc_type_mask = 0;
1124 int ret;
1125 void *fdt;
1126 SpaprPhbState *phb;
1127 char *buf;
1129 fdt = g_malloc0(space);
1130 _FDT((fdt_create_empty_tree(fdt, space)));
1132 /* Root node */
1133 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1134 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1135 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1137 /* Guest UUID & Name*/
1138 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1139 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1140 if (qemu_uuid_set) {
1141 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1143 g_free(buf);
1145 if (qemu_get_vm_name()) {
1146 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1147 qemu_get_vm_name()));
1150 /* Host Model & Serial Number */
1151 if (spapr->host_model) {
1152 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1153 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1154 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1155 g_free(buf);
1158 if (spapr->host_serial) {
1159 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1160 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1161 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1162 g_free(buf);
1165 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1166 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1168 /* /interrupt controller */
1169 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1171 ret = spapr_dt_memory(spapr, fdt);
1172 if (ret < 0) {
1173 error_report("couldn't setup memory nodes in fdt");
1174 exit(1);
1177 /* /vdevice */
1178 spapr_dt_vdevice(spapr->vio_bus, fdt);
1180 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1181 ret = spapr_dt_rng(fdt);
1182 if (ret < 0) {
1183 error_report("could not set up rng device in the fdt");
1184 exit(1);
1188 QLIST_FOREACH(phb, &spapr->phbs, list) {
1189 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1190 if (ret < 0) {
1191 error_report("couldn't setup PCI devices in fdt");
1192 exit(1);
1196 spapr_dt_cpus(fdt, spapr);
1198 /* ibm,drc-indexes and friends */
1199 if (smc->dr_lmb_enabled) {
1200 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1202 if (smc->dr_phb_enabled) {
1203 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1205 if (mc->nvdimm_supported) {
1206 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1208 if (root_drc_type_mask) {
1209 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1212 if (mc->has_hotpluggable_cpus) {
1213 int offset = fdt_path_offset(fdt, "/cpus");
1214 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1215 if (ret < 0) {
1216 error_report("Couldn't set up CPU DR device tree properties");
1217 exit(1);
1221 /* /event-sources */
1222 spapr_dt_events(spapr, fdt);
1224 /* /rtas */
1225 spapr_dt_rtas(spapr, fdt);
1227 /* /chosen */
1228 spapr_dt_chosen(spapr, fdt, reset);
1230 /* /hypervisor */
1231 if (kvm_enabled()) {
1232 spapr_dt_hypervisor(spapr, fdt);
1235 /* Build memory reserve map */
1236 if (reset) {
1237 if (spapr->kernel_size) {
1238 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1239 spapr->kernel_size)));
1241 if (spapr->initrd_size) {
1242 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1243 spapr->initrd_size)));
1247 /* NVDIMM devices */
1248 if (mc->nvdimm_supported) {
1249 spapr_dt_persistent_memory(spapr, fdt);
1252 return fdt;
1255 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1257 SpaprMachineState *spapr = opaque;
1259 return (addr & 0x0fffffff) + spapr->kernel_addr;
1262 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1263 PowerPCCPU *cpu)
1265 CPUPPCState *env = &cpu->env;
1267 /* The TCG path should also be holding the BQL at this point */
1268 g_assert(qemu_mutex_iothread_locked());
1270 g_assert(!vhyp_cpu_in_nested(cpu));
1272 if (msr_pr) {
1273 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1274 env->gpr[3] = H_PRIVILEGE;
1275 } else {
1276 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1280 struct LPCRSyncState {
1281 target_ulong value;
1282 target_ulong mask;
1285 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1287 struct LPCRSyncState *s = arg.host_ptr;
1288 PowerPCCPU *cpu = POWERPC_CPU(cs);
1289 CPUPPCState *env = &cpu->env;
1290 target_ulong lpcr;
1292 cpu_synchronize_state(cs);
1293 lpcr = env->spr[SPR_LPCR];
1294 lpcr &= ~s->mask;
1295 lpcr |= s->value;
1296 ppc_store_lpcr(cpu, lpcr);
1299 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1301 CPUState *cs;
1302 struct LPCRSyncState s = {
1303 .value = value,
1304 .mask = mask
1306 CPU_FOREACH(cs) {
1307 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1311 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1312 target_ulong lpid, ppc_v3_pate_t *entry)
1314 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1315 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1317 if (!spapr_cpu->in_nested) {
1318 assert(lpid == 0);
1320 /* Copy PATE1:GR into PATE0:HR */
1321 entry->dw0 = spapr->patb_entry & PATE0_HR;
1322 entry->dw1 = spapr->patb_entry;
1324 } else {
1325 uint64_t patb, pats;
1327 assert(lpid != 0);
1329 patb = spapr->nested_ptcr & PTCR_PATB;
1330 pats = spapr->nested_ptcr & PTCR_PATS;
1332 /* Calculate number of entries */
1333 pats = 1ull << (pats + 12 - 4);
1334 if (pats <= lpid) {
1335 return false;
1338 /* Grab entry */
1339 patb += 16 * lpid;
1340 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1341 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1344 return true;
1347 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1348 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1349 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1350 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1351 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1354 * Get the fd to access the kernel htab, re-opening it if necessary
1356 static int get_htab_fd(SpaprMachineState *spapr)
1358 Error *local_err = NULL;
1360 if (spapr->htab_fd >= 0) {
1361 return spapr->htab_fd;
1364 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1365 if (spapr->htab_fd < 0) {
1366 error_report_err(local_err);
1369 return spapr->htab_fd;
1372 void close_htab_fd(SpaprMachineState *spapr)
1374 if (spapr->htab_fd >= 0) {
1375 close(spapr->htab_fd);
1377 spapr->htab_fd = -1;
1380 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1382 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1384 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1387 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1389 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1391 assert(kvm_enabled());
1393 if (!spapr->htab) {
1394 return 0;
1397 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1400 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1401 hwaddr ptex, int n)
1403 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1404 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1406 if (!spapr->htab) {
1408 * HTAB is controlled by KVM. Fetch into temporary buffer
1410 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1411 kvmppc_read_hptes(hptes, ptex, n);
1412 return hptes;
1416 * HTAB is controlled by QEMU. Just point to the internally
1417 * accessible PTEG.
1419 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1422 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1423 const ppc_hash_pte64_t *hptes,
1424 hwaddr ptex, int n)
1426 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1428 if (!spapr->htab) {
1429 g_free((void *)hptes);
1432 /* Nothing to do for qemu managed HPT */
1435 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1436 uint64_t pte0, uint64_t pte1)
1438 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1439 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1441 if (!spapr->htab) {
1442 kvmppc_write_hpte(ptex, pte0, pte1);
1443 } else {
1444 if (pte0 & HPTE64_V_VALID) {
1445 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1447 * When setting valid, we write PTE1 first. This ensures
1448 * proper synchronization with the reading code in
1449 * ppc_hash64_pteg_search()
1451 smp_wmb();
1452 stq_p(spapr->htab + offset, pte0);
1453 } else {
1454 stq_p(spapr->htab + offset, pte0);
1456 * When clearing it we set PTE0 first. This ensures proper
1457 * synchronization with the reading code in
1458 * ppc_hash64_pteg_search()
1460 smp_wmb();
1461 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1466 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1467 uint64_t pte1)
1469 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1472 if (!spapr->htab) {
1473 /* There should always be a hash table when this is called */
1474 error_report("spapr_hpte_set_c called with no hash table !");
1475 return;
1478 /* The HW performs a non-atomic byte update */
1479 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1482 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1483 uint64_t pte1)
1485 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1488 if (!spapr->htab) {
1489 /* There should always be a hash table when this is called */
1490 error_report("spapr_hpte_set_r called with no hash table !");
1491 return;
1494 /* The HW performs a non-atomic byte update */
1495 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1498 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1500 int shift;
1502 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1503 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1504 * that's much more than is needed for Linux guests */
1505 shift = ctz64(pow2ceil(ramsize)) - 7;
1506 shift = MAX(shift, 18); /* Minimum architected size */
1507 shift = MIN(shift, 46); /* Maximum architected size */
1508 return shift;
1511 void spapr_free_hpt(SpaprMachineState *spapr)
1513 g_free(spapr->htab);
1514 spapr->htab = NULL;
1515 spapr->htab_shift = 0;
1516 close_htab_fd(spapr);
1519 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1521 ERRP_GUARD();
1522 long rc;
1524 /* Clean up any HPT info from a previous boot */
1525 spapr_free_hpt(spapr);
1527 rc = kvmppc_reset_htab(shift);
1529 if (rc == -EOPNOTSUPP) {
1530 error_setg(errp, "HPT not supported in nested guests");
1531 return -EOPNOTSUPP;
1534 if (rc < 0) {
1535 /* kernel-side HPT needed, but couldn't allocate one */
1536 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1537 shift);
1538 error_append_hint(errp, "Try smaller maxmem?\n");
1539 return -errno;
1540 } else if (rc > 0) {
1541 /* kernel-side HPT allocated */
1542 if (rc != shift) {
1543 error_setg(errp,
1544 "Requested order %d HPT, but kernel allocated order %ld",
1545 shift, rc);
1546 error_append_hint(errp, "Try smaller maxmem?\n");
1547 return -ENOSPC;
1550 spapr->htab_shift = shift;
1551 spapr->htab = NULL;
1552 } else {
1553 /* kernel-side HPT not needed, allocate in userspace instead */
1554 size_t size = 1ULL << shift;
1555 int i;
1557 spapr->htab = qemu_memalign(size, size);
1558 memset(spapr->htab, 0, size);
1559 spapr->htab_shift = shift;
1561 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1562 DIRTY_HPTE(HPTE(spapr->htab, i));
1565 /* We're setting up a hash table, so that means we're not radix */
1566 spapr->patb_entry = 0;
1567 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1568 return 0;
1571 void spapr_setup_hpt(SpaprMachineState *spapr)
1573 int hpt_shift;
1575 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1576 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1577 } else {
1578 uint64_t current_ram_size;
1580 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1581 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1583 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1585 if (kvm_enabled()) {
1586 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1588 /* Check our RMA fits in the possible VRMA */
1589 if (vrma_limit < spapr->rma_size) {
1590 error_report("Unable to create %" HWADDR_PRIu
1591 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1592 spapr->rma_size / MiB, vrma_limit / MiB);
1593 exit(EXIT_FAILURE);
1598 void spapr_check_mmu_mode(bool guest_radix)
1600 if (guest_radix) {
1601 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1602 error_report("Guest requested unavailable MMU mode (radix).");
1603 exit(EXIT_FAILURE);
1605 } else {
1606 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1607 && !kvmppc_has_cap_mmu_hash_v3()) {
1608 error_report("Guest requested unavailable MMU mode (hash).");
1609 exit(EXIT_FAILURE);
1614 static void spapr_machine_reset(MachineState *machine)
1616 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1617 PowerPCCPU *first_ppc_cpu;
1618 hwaddr fdt_addr;
1619 void *fdt;
1620 int rc;
1622 pef_kvm_reset(machine->cgs, &error_fatal);
1623 spapr_caps_apply(spapr);
1625 first_ppc_cpu = POWERPC_CPU(first_cpu);
1626 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1627 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1628 spapr->max_compat_pvr)) {
1630 * If using KVM with radix mode available, VCPUs can be started
1631 * without a HPT because KVM will start them in radix mode.
1632 * Set the GR bit in PATE so that we know there is no HPT.
1634 spapr->patb_entry = PATE1_GR;
1635 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1636 } else {
1637 spapr_setup_hpt(spapr);
1640 qemu_devices_reset();
1642 spapr_ovec_cleanup(spapr->ov5_cas);
1643 spapr->ov5_cas = spapr_ovec_new();
1645 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1648 * This is fixing some of the default configuration of the XIVE
1649 * devices. To be called after the reset of the machine devices.
1651 spapr_irq_reset(spapr, &error_fatal);
1654 * There is no CAS under qtest. Simulate one to please the code that
1655 * depends on spapr->ov5_cas. This is especially needed to test device
1656 * unplug, so we do that before resetting the DRCs.
1658 if (qtest_enabled()) {
1659 spapr_ovec_cleanup(spapr->ov5_cas);
1660 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1663 spapr_nvdimm_finish_flushes();
1665 /* DRC reset may cause a device to be unplugged. This will cause troubles
1666 * if this device is used by another device (eg, a running vhost backend
1667 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1668 * situations, we reset DRCs after all devices have been reset.
1670 spapr_drc_reset_all(spapr);
1672 spapr_clear_pending_events(spapr);
1675 * We place the device tree just below either the top of the RMA,
1676 * or just below 2GB, whichever is lower, so that it can be
1677 * processed with 32-bit real mode code if necessary
1679 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1681 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1682 if (spapr->vof) {
1683 spapr_vof_reset(spapr, fdt, &error_fatal);
1685 * Do not pack the FDT as the client may change properties.
1686 * VOF client does not expect the FDT so we do not load it to the VM.
1688 } else {
1689 rc = fdt_pack(fdt);
1690 /* Should only fail if we've built a corrupted tree */
1691 assert(rc == 0);
1693 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1694 0, fdt_addr, 0);
1695 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1697 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1699 g_free(spapr->fdt_blob);
1700 spapr->fdt_size = fdt_totalsize(fdt);
1701 spapr->fdt_initial_size = spapr->fdt_size;
1702 spapr->fdt_blob = fdt;
1704 /* Set up the entry state */
1705 first_ppc_cpu->env.gpr[5] = 0;
1707 spapr->fwnmi_system_reset_addr = -1;
1708 spapr->fwnmi_machine_check_addr = -1;
1709 spapr->fwnmi_machine_check_interlock = -1;
1711 /* Signal all vCPUs waiting on this condition */
1712 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1714 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1717 static void spapr_create_nvram(SpaprMachineState *spapr)
1719 DeviceState *dev = qdev_new("spapr-nvram");
1720 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1722 if (dinfo) {
1723 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1724 &error_fatal);
1727 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1729 spapr->nvram = (struct SpaprNvram *)dev;
1732 static void spapr_rtc_create(SpaprMachineState *spapr)
1734 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1735 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1736 &error_fatal, NULL);
1737 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1738 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1739 "date");
1742 /* Returns whether we want to use VGA or not */
1743 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1745 switch (vga_interface_type) {
1746 case VGA_NONE:
1747 return false;
1748 case VGA_DEVICE:
1749 return true;
1750 case VGA_STD:
1751 case VGA_VIRTIO:
1752 case VGA_CIRRUS:
1753 return pci_vga_init(pci_bus) != NULL;
1754 default:
1755 error_setg(errp,
1756 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1757 return false;
1761 static int spapr_pre_load(void *opaque)
1763 int rc;
1765 rc = spapr_caps_pre_load(opaque);
1766 if (rc) {
1767 return rc;
1770 return 0;
1773 static int spapr_post_load(void *opaque, int version_id)
1775 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1776 int err = 0;
1778 err = spapr_caps_post_migration(spapr);
1779 if (err) {
1780 return err;
1784 * In earlier versions, there was no separate qdev for the PAPR
1785 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1786 * So when migrating from those versions, poke the incoming offset
1787 * value into the RTC device
1789 if (version_id < 3) {
1790 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1791 if (err) {
1792 return err;
1796 if (kvm_enabled() && spapr->patb_entry) {
1797 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1798 bool radix = !!(spapr->patb_entry & PATE1_GR);
1799 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1802 * Update LPCR:HR and UPRT as they may not be set properly in
1803 * the stream
1805 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1806 LPCR_HR | LPCR_UPRT);
1808 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1809 if (err) {
1810 error_report("Process table config unsupported by the host");
1811 return -EINVAL;
1815 err = spapr_irq_post_load(spapr, version_id);
1816 if (err) {
1817 return err;
1820 return err;
1823 static int spapr_pre_save(void *opaque)
1825 int rc;
1827 rc = spapr_caps_pre_save(opaque);
1828 if (rc) {
1829 return rc;
1832 return 0;
1835 static bool version_before_3(void *opaque, int version_id)
1837 return version_id < 3;
1840 static bool spapr_pending_events_needed(void *opaque)
1842 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1843 return !QTAILQ_EMPTY(&spapr->pending_events);
1846 static const VMStateDescription vmstate_spapr_event_entry = {
1847 .name = "spapr_event_log_entry",
1848 .version_id = 1,
1849 .minimum_version_id = 1,
1850 .fields = (VMStateField[]) {
1851 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1852 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1853 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1854 NULL, extended_length),
1855 VMSTATE_END_OF_LIST()
1859 static const VMStateDescription vmstate_spapr_pending_events = {
1860 .name = "spapr_pending_events",
1861 .version_id = 1,
1862 .minimum_version_id = 1,
1863 .needed = spapr_pending_events_needed,
1864 .fields = (VMStateField[]) {
1865 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1866 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1867 VMSTATE_END_OF_LIST()
1871 static bool spapr_ov5_cas_needed(void *opaque)
1873 SpaprMachineState *spapr = opaque;
1874 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1875 bool cas_needed;
1877 /* Prior to the introduction of SpaprOptionVector, we had two option
1878 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1879 * Both of these options encode machine topology into the device-tree
1880 * in such a way that the now-booted OS should still be able to interact
1881 * appropriately with QEMU regardless of what options were actually
1882 * negotiatied on the source side.
1884 * As such, we can avoid migrating the CAS-negotiated options if these
1885 * are the only options available on the current machine/platform.
1886 * Since these are the only options available for pseries-2.7 and
1887 * earlier, this allows us to maintain old->new/new->old migration
1888 * compatibility.
1890 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1891 * via default pseries-2.8 machines and explicit command-line parameters.
1892 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1893 * of the actual CAS-negotiated values to continue working properly. For
1894 * example, availability of memory unplug depends on knowing whether
1895 * OV5_HP_EVT was negotiated via CAS.
1897 * Thus, for any cases where the set of available CAS-negotiatable
1898 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1899 * include the CAS-negotiated options in the migration stream, unless
1900 * if they affect boot time behaviour only.
1902 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1903 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1904 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1906 /* We need extra information if we have any bits outside the mask
1907 * defined above */
1908 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1910 spapr_ovec_cleanup(ov5_mask);
1912 return cas_needed;
1915 static const VMStateDescription vmstate_spapr_ov5_cas = {
1916 .name = "spapr_option_vector_ov5_cas",
1917 .version_id = 1,
1918 .minimum_version_id = 1,
1919 .needed = spapr_ov5_cas_needed,
1920 .fields = (VMStateField[]) {
1921 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1922 vmstate_spapr_ovec, SpaprOptionVector),
1923 VMSTATE_END_OF_LIST()
1927 static bool spapr_patb_entry_needed(void *opaque)
1929 SpaprMachineState *spapr = opaque;
1931 return !!spapr->patb_entry;
1934 static const VMStateDescription vmstate_spapr_patb_entry = {
1935 .name = "spapr_patb_entry",
1936 .version_id = 1,
1937 .minimum_version_id = 1,
1938 .needed = spapr_patb_entry_needed,
1939 .fields = (VMStateField[]) {
1940 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1941 VMSTATE_END_OF_LIST()
1945 static bool spapr_irq_map_needed(void *opaque)
1947 SpaprMachineState *spapr = opaque;
1949 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1952 static const VMStateDescription vmstate_spapr_irq_map = {
1953 .name = "spapr_irq_map",
1954 .version_id = 1,
1955 .minimum_version_id = 1,
1956 .needed = spapr_irq_map_needed,
1957 .fields = (VMStateField[]) {
1958 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1959 VMSTATE_END_OF_LIST()
1963 static bool spapr_dtb_needed(void *opaque)
1965 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1967 return smc->update_dt_enabled;
1970 static int spapr_dtb_pre_load(void *opaque)
1972 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1974 g_free(spapr->fdt_blob);
1975 spapr->fdt_blob = NULL;
1976 spapr->fdt_size = 0;
1978 return 0;
1981 static const VMStateDescription vmstate_spapr_dtb = {
1982 .name = "spapr_dtb",
1983 .version_id = 1,
1984 .minimum_version_id = 1,
1985 .needed = spapr_dtb_needed,
1986 .pre_load = spapr_dtb_pre_load,
1987 .fields = (VMStateField[]) {
1988 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1989 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1990 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1991 fdt_size),
1992 VMSTATE_END_OF_LIST()
1996 static bool spapr_fwnmi_needed(void *opaque)
1998 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2000 return spapr->fwnmi_machine_check_addr != -1;
2003 static int spapr_fwnmi_pre_save(void *opaque)
2005 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2008 * Check if machine check handling is in progress and print a
2009 * warning message.
2011 if (spapr->fwnmi_machine_check_interlock != -1) {
2012 warn_report("A machine check is being handled during migration. The"
2013 "handler may run and log hardware error on the destination");
2016 return 0;
2019 static const VMStateDescription vmstate_spapr_fwnmi = {
2020 .name = "spapr_fwnmi",
2021 .version_id = 1,
2022 .minimum_version_id = 1,
2023 .needed = spapr_fwnmi_needed,
2024 .pre_save = spapr_fwnmi_pre_save,
2025 .fields = (VMStateField[]) {
2026 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2027 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2028 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2029 VMSTATE_END_OF_LIST()
2033 static const VMStateDescription vmstate_spapr = {
2034 .name = "spapr",
2035 .version_id = 3,
2036 .minimum_version_id = 1,
2037 .pre_load = spapr_pre_load,
2038 .post_load = spapr_post_load,
2039 .pre_save = spapr_pre_save,
2040 .fields = (VMStateField[]) {
2041 /* used to be @next_irq */
2042 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2044 /* RTC offset */
2045 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2047 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2048 VMSTATE_END_OF_LIST()
2050 .subsections = (const VMStateDescription*[]) {
2051 &vmstate_spapr_ov5_cas,
2052 &vmstate_spapr_patb_entry,
2053 &vmstate_spapr_pending_events,
2054 &vmstate_spapr_cap_htm,
2055 &vmstate_spapr_cap_vsx,
2056 &vmstate_spapr_cap_dfp,
2057 &vmstate_spapr_cap_cfpc,
2058 &vmstate_spapr_cap_sbbc,
2059 &vmstate_spapr_cap_ibs,
2060 &vmstate_spapr_cap_hpt_maxpagesize,
2061 &vmstate_spapr_irq_map,
2062 &vmstate_spapr_cap_nested_kvm_hv,
2063 &vmstate_spapr_dtb,
2064 &vmstate_spapr_cap_large_decr,
2065 &vmstate_spapr_cap_ccf_assist,
2066 &vmstate_spapr_cap_fwnmi,
2067 &vmstate_spapr_fwnmi,
2068 &vmstate_spapr_cap_rpt_invalidate,
2069 NULL
2073 static int htab_save_setup(QEMUFile *f, void *opaque)
2075 SpaprMachineState *spapr = opaque;
2077 /* "Iteration" header */
2078 if (!spapr->htab_shift) {
2079 qemu_put_be32(f, -1);
2080 } else {
2081 qemu_put_be32(f, spapr->htab_shift);
2084 if (spapr->htab) {
2085 spapr->htab_save_index = 0;
2086 spapr->htab_first_pass = true;
2087 } else {
2088 if (spapr->htab_shift) {
2089 assert(kvm_enabled());
2094 return 0;
2097 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2098 int chunkstart, int n_valid, int n_invalid)
2100 qemu_put_be32(f, chunkstart);
2101 qemu_put_be16(f, n_valid);
2102 qemu_put_be16(f, n_invalid);
2103 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2104 HASH_PTE_SIZE_64 * n_valid);
2107 static void htab_save_end_marker(QEMUFile *f)
2109 qemu_put_be32(f, 0);
2110 qemu_put_be16(f, 0);
2111 qemu_put_be16(f, 0);
2114 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2115 int64_t max_ns)
2117 bool has_timeout = max_ns != -1;
2118 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2119 int index = spapr->htab_save_index;
2120 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2122 assert(spapr->htab_first_pass);
2124 do {
2125 int chunkstart;
2127 /* Consume invalid HPTEs */
2128 while ((index < htabslots)
2129 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2130 CLEAN_HPTE(HPTE(spapr->htab, index));
2131 index++;
2134 /* Consume valid HPTEs */
2135 chunkstart = index;
2136 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2137 && HPTE_VALID(HPTE(spapr->htab, index))) {
2138 CLEAN_HPTE(HPTE(spapr->htab, index));
2139 index++;
2142 if (index > chunkstart) {
2143 int n_valid = index - chunkstart;
2145 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2147 if (has_timeout &&
2148 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2149 break;
2152 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2154 if (index >= htabslots) {
2155 assert(index == htabslots);
2156 index = 0;
2157 spapr->htab_first_pass = false;
2159 spapr->htab_save_index = index;
2162 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2163 int64_t max_ns)
2165 bool final = max_ns < 0;
2166 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2167 int examined = 0, sent = 0;
2168 int index = spapr->htab_save_index;
2169 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2171 assert(!spapr->htab_first_pass);
2173 do {
2174 int chunkstart, invalidstart;
2176 /* Consume non-dirty HPTEs */
2177 while ((index < htabslots)
2178 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2179 index++;
2180 examined++;
2183 chunkstart = index;
2184 /* Consume valid dirty HPTEs */
2185 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2186 && HPTE_DIRTY(HPTE(spapr->htab, index))
2187 && HPTE_VALID(HPTE(spapr->htab, index))) {
2188 CLEAN_HPTE(HPTE(spapr->htab, index));
2189 index++;
2190 examined++;
2193 invalidstart = index;
2194 /* Consume invalid dirty HPTEs */
2195 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2196 && HPTE_DIRTY(HPTE(spapr->htab, index))
2197 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2198 CLEAN_HPTE(HPTE(spapr->htab, index));
2199 index++;
2200 examined++;
2203 if (index > chunkstart) {
2204 int n_valid = invalidstart - chunkstart;
2205 int n_invalid = index - invalidstart;
2207 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2208 sent += index - chunkstart;
2210 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2211 break;
2215 if (examined >= htabslots) {
2216 break;
2219 if (index >= htabslots) {
2220 assert(index == htabslots);
2221 index = 0;
2223 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2225 if (index >= htabslots) {
2226 assert(index == htabslots);
2227 index = 0;
2230 spapr->htab_save_index = index;
2232 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2235 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2236 #define MAX_KVM_BUF_SIZE 2048
2238 static int htab_save_iterate(QEMUFile *f, void *opaque)
2240 SpaprMachineState *spapr = opaque;
2241 int fd;
2242 int rc = 0;
2244 /* Iteration header */
2245 if (!spapr->htab_shift) {
2246 qemu_put_be32(f, -1);
2247 return 1;
2248 } else {
2249 qemu_put_be32(f, 0);
2252 if (!spapr->htab) {
2253 assert(kvm_enabled());
2255 fd = get_htab_fd(spapr);
2256 if (fd < 0) {
2257 return fd;
2260 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2261 if (rc < 0) {
2262 return rc;
2264 } else if (spapr->htab_first_pass) {
2265 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2266 } else {
2267 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2270 htab_save_end_marker(f);
2272 return rc;
2275 static int htab_save_complete(QEMUFile *f, void *opaque)
2277 SpaprMachineState *spapr = opaque;
2278 int fd;
2280 /* Iteration header */
2281 if (!spapr->htab_shift) {
2282 qemu_put_be32(f, -1);
2283 return 0;
2284 } else {
2285 qemu_put_be32(f, 0);
2288 if (!spapr->htab) {
2289 int rc;
2291 assert(kvm_enabled());
2293 fd = get_htab_fd(spapr);
2294 if (fd < 0) {
2295 return fd;
2298 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2299 if (rc < 0) {
2300 return rc;
2302 } else {
2303 if (spapr->htab_first_pass) {
2304 htab_save_first_pass(f, spapr, -1);
2306 htab_save_later_pass(f, spapr, -1);
2309 /* End marker */
2310 htab_save_end_marker(f);
2312 return 0;
2315 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2317 SpaprMachineState *spapr = opaque;
2318 uint32_t section_hdr;
2319 int fd = -1;
2320 Error *local_err = NULL;
2322 if (version_id < 1 || version_id > 1) {
2323 error_report("htab_load() bad version");
2324 return -EINVAL;
2327 section_hdr = qemu_get_be32(f);
2329 if (section_hdr == -1) {
2330 spapr_free_hpt(spapr);
2331 return 0;
2334 if (section_hdr) {
2335 int ret;
2337 /* First section gives the htab size */
2338 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2339 if (ret < 0) {
2340 error_report_err(local_err);
2341 return ret;
2343 return 0;
2346 if (!spapr->htab) {
2347 assert(kvm_enabled());
2349 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2350 if (fd < 0) {
2351 error_report_err(local_err);
2352 return fd;
2356 while (true) {
2357 uint32_t index;
2358 uint16_t n_valid, n_invalid;
2360 index = qemu_get_be32(f);
2361 n_valid = qemu_get_be16(f);
2362 n_invalid = qemu_get_be16(f);
2364 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2365 /* End of Stream */
2366 break;
2369 if ((index + n_valid + n_invalid) >
2370 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2371 /* Bad index in stream */
2372 error_report(
2373 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2374 index, n_valid, n_invalid, spapr->htab_shift);
2375 return -EINVAL;
2378 if (spapr->htab) {
2379 if (n_valid) {
2380 qemu_get_buffer(f, HPTE(spapr->htab, index),
2381 HASH_PTE_SIZE_64 * n_valid);
2383 if (n_invalid) {
2384 memset(HPTE(spapr->htab, index + n_valid), 0,
2385 HASH_PTE_SIZE_64 * n_invalid);
2387 } else {
2388 int rc;
2390 assert(fd >= 0);
2392 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2393 &local_err);
2394 if (rc < 0) {
2395 error_report_err(local_err);
2396 return rc;
2401 if (!spapr->htab) {
2402 assert(fd >= 0);
2403 close(fd);
2406 return 0;
2409 static void htab_save_cleanup(void *opaque)
2411 SpaprMachineState *spapr = opaque;
2413 close_htab_fd(spapr);
2416 static SaveVMHandlers savevm_htab_handlers = {
2417 .save_setup = htab_save_setup,
2418 .save_live_iterate = htab_save_iterate,
2419 .save_live_complete_precopy = htab_save_complete,
2420 .save_cleanup = htab_save_cleanup,
2421 .load_state = htab_load,
2424 static void spapr_boot_set(void *opaque, const char *boot_device,
2425 Error **errp)
2427 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2429 g_free(spapr->boot_device);
2430 spapr->boot_device = g_strdup(boot_device);
2433 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2435 MachineState *machine = MACHINE(spapr);
2436 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2437 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2438 int i;
2440 for (i = 0; i < nr_lmbs; i++) {
2441 uint64_t addr;
2443 addr = i * lmb_size + machine->device_memory->base;
2444 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2445 addr / lmb_size);
2450 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2451 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2452 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2454 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2456 int i;
2458 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2459 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2460 " is not aligned to %" PRIu64 " MiB",
2461 machine->ram_size,
2462 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2463 return;
2466 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2467 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2468 " is not aligned to %" PRIu64 " MiB",
2469 machine->ram_size,
2470 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2471 return;
2474 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2475 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2476 error_setg(errp,
2477 "Node %d memory size 0x%" PRIx64
2478 " is not aligned to %" PRIu64 " MiB",
2479 i, machine->numa_state->nodes[i].node_mem,
2480 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2481 return;
2486 /* find cpu slot in machine->possible_cpus by core_id */
2487 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2489 int index = id / ms->smp.threads;
2491 if (index >= ms->possible_cpus->len) {
2492 return NULL;
2494 if (idx) {
2495 *idx = index;
2497 return &ms->possible_cpus->cpus[index];
2500 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2502 MachineState *ms = MACHINE(spapr);
2503 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2504 Error *local_err = NULL;
2505 bool vsmt_user = !!spapr->vsmt;
2506 int kvm_smt = kvmppc_smt_threads();
2507 int ret;
2508 unsigned int smp_threads = ms->smp.threads;
2510 if (!kvm_enabled() && (smp_threads > 1)) {
2511 error_setg(errp, "TCG cannot support more than 1 thread/core "
2512 "on a pseries machine");
2513 return;
2515 if (!is_power_of_2(smp_threads)) {
2516 error_setg(errp, "Cannot support %d threads/core on a pseries "
2517 "machine because it must be a power of 2", smp_threads);
2518 return;
2521 /* Detemine the VSMT mode to use: */
2522 if (vsmt_user) {
2523 if (spapr->vsmt < smp_threads) {
2524 error_setg(errp, "Cannot support VSMT mode %d"
2525 " because it must be >= threads/core (%d)",
2526 spapr->vsmt, smp_threads);
2527 return;
2529 /* In this case, spapr->vsmt has been set by the command line */
2530 } else if (!smc->smp_threads_vsmt) {
2532 * Default VSMT value is tricky, because we need it to be as
2533 * consistent as possible (for migration), but this requires
2534 * changing it for at least some existing cases. We pick 8 as
2535 * the value that we'd get with KVM on POWER8, the
2536 * overwhelmingly common case in production systems.
2538 spapr->vsmt = MAX(8, smp_threads);
2539 } else {
2540 spapr->vsmt = smp_threads;
2543 /* KVM: If necessary, set the SMT mode: */
2544 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2545 ret = kvmppc_set_smt_threads(spapr->vsmt);
2546 if (ret) {
2547 /* Looks like KVM isn't able to change VSMT mode */
2548 error_setg(&local_err,
2549 "Failed to set KVM's VSMT mode to %d (errno %d)",
2550 spapr->vsmt, ret);
2551 /* We can live with that if the default one is big enough
2552 * for the number of threads, and a submultiple of the one
2553 * we want. In this case we'll waste some vcpu ids, but
2554 * behaviour will be correct */
2555 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2556 warn_report_err(local_err);
2557 } else {
2558 if (!vsmt_user) {
2559 error_append_hint(&local_err,
2560 "On PPC, a VM with %d threads/core"
2561 " on a host with %d threads/core"
2562 " requires the use of VSMT mode %d.\n",
2563 smp_threads, kvm_smt, spapr->vsmt);
2565 kvmppc_error_append_smt_possible_hint(&local_err);
2566 error_propagate(errp, local_err);
2570 /* else TCG: nothing to do currently */
2573 static void spapr_init_cpus(SpaprMachineState *spapr)
2575 MachineState *machine = MACHINE(spapr);
2576 MachineClass *mc = MACHINE_GET_CLASS(machine);
2577 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2578 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2579 const CPUArchIdList *possible_cpus;
2580 unsigned int smp_cpus = machine->smp.cpus;
2581 unsigned int smp_threads = machine->smp.threads;
2582 unsigned int max_cpus = machine->smp.max_cpus;
2583 int boot_cores_nr = smp_cpus / smp_threads;
2584 int i;
2586 possible_cpus = mc->possible_cpu_arch_ids(machine);
2587 if (mc->has_hotpluggable_cpus) {
2588 if (smp_cpus % smp_threads) {
2589 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2590 smp_cpus, smp_threads);
2591 exit(1);
2593 if (max_cpus % smp_threads) {
2594 error_report("max_cpus (%u) must be multiple of threads (%u)",
2595 max_cpus, smp_threads);
2596 exit(1);
2598 } else {
2599 if (max_cpus != smp_cpus) {
2600 error_report("This machine version does not support CPU hotplug");
2601 exit(1);
2603 boot_cores_nr = possible_cpus->len;
2606 if (smc->pre_2_10_has_unused_icps) {
2607 int i;
2609 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2610 /* Dummy entries get deregistered when real ICPState objects
2611 * are registered during CPU core hotplug.
2613 pre_2_10_vmstate_register_dummy_icp(i);
2617 for (i = 0; i < possible_cpus->len; i++) {
2618 int core_id = i * smp_threads;
2620 if (mc->has_hotpluggable_cpus) {
2621 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2622 spapr_vcpu_id(spapr, core_id));
2625 if (i < boot_cores_nr) {
2626 Object *core = object_new(type);
2627 int nr_threads = smp_threads;
2629 /* Handle the partially filled core for older machine types */
2630 if ((i + 1) * smp_threads >= smp_cpus) {
2631 nr_threads = smp_cpus - i * smp_threads;
2634 object_property_set_int(core, "nr-threads", nr_threads,
2635 &error_fatal);
2636 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2637 &error_fatal);
2638 qdev_realize(DEVICE(core), NULL, &error_fatal);
2640 object_unref(core);
2645 static PCIHostState *spapr_create_default_phb(void)
2647 DeviceState *dev;
2649 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2650 qdev_prop_set_uint32(dev, "index", 0);
2651 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2653 return PCI_HOST_BRIDGE(dev);
2656 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2658 MachineState *machine = MACHINE(spapr);
2659 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2660 hwaddr rma_size = machine->ram_size;
2661 hwaddr node0_size = spapr_node0_size(machine);
2663 /* RMA has to fit in the first NUMA node */
2664 rma_size = MIN(rma_size, node0_size);
2667 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2668 * never exceed that
2670 rma_size = MIN(rma_size, 1 * TiB);
2673 * Clamp the RMA size based on machine type. This is for
2674 * migration compatibility with older qemu versions, which limited
2675 * the RMA size for complicated and mostly bad reasons.
2677 if (smc->rma_limit) {
2678 rma_size = MIN(rma_size, smc->rma_limit);
2681 if (rma_size < MIN_RMA_SLOF) {
2682 error_setg(errp,
2683 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2684 "ldMiB guest RMA (Real Mode Area memory)",
2685 MIN_RMA_SLOF / MiB);
2686 return 0;
2689 return rma_size;
2692 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2694 MachineState *machine = MACHINE(spapr);
2695 int i;
2697 for (i = 0; i < machine->ram_slots; i++) {
2698 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2702 /* pSeries LPAR / sPAPR hardware init */
2703 static void spapr_machine_init(MachineState *machine)
2705 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2706 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2707 MachineClass *mc = MACHINE_GET_CLASS(machine);
2708 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2709 const char *bios_name = machine->firmware ?: bios_default;
2710 const char *kernel_filename = machine->kernel_filename;
2711 const char *initrd_filename = machine->initrd_filename;
2712 PCIHostState *phb;
2713 int i;
2714 MemoryRegion *sysmem = get_system_memory();
2715 long load_limit, fw_size;
2716 char *filename;
2717 Error *resize_hpt_err = NULL;
2720 * if Secure VM (PEF) support is configured, then initialize it
2722 pef_kvm_init(machine->cgs, &error_fatal);
2724 msi_nonbroken = true;
2726 QLIST_INIT(&spapr->phbs);
2727 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2729 /* Determine capabilities to run with */
2730 spapr_caps_init(spapr);
2732 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2733 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2735 * If the user explicitly requested a mode we should either
2736 * supply it, or fail completely (which we do below). But if
2737 * it's not set explicitly, we reset our mode to something
2738 * that works
2740 if (resize_hpt_err) {
2741 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2742 error_free(resize_hpt_err);
2743 resize_hpt_err = NULL;
2744 } else {
2745 spapr->resize_hpt = smc->resize_hpt_default;
2749 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2751 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2753 * User requested HPT resize, but this host can't supply it. Bail out
2755 error_report_err(resize_hpt_err);
2756 exit(1);
2758 error_free(resize_hpt_err);
2760 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2762 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2763 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2766 * VSMT must be set in order to be able to compute VCPU ids, ie to
2767 * call spapr_max_server_number() or spapr_vcpu_id().
2769 spapr_set_vsmt_mode(spapr, &error_fatal);
2771 /* Set up Interrupt Controller before we create the VCPUs */
2772 spapr_irq_init(spapr, &error_fatal);
2774 /* Set up containers for ibm,client-architecture-support negotiated options
2776 spapr->ov5 = spapr_ovec_new();
2777 spapr->ov5_cas = spapr_ovec_new();
2779 if (smc->dr_lmb_enabled) {
2780 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2781 spapr_validate_node_memory(machine, &error_fatal);
2784 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2786 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2787 if (!smc->pre_6_2_numa_affinity) {
2788 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2791 /* advertise support for dedicated HP event source to guests */
2792 if (spapr->use_hotplug_event_source) {
2793 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2796 /* advertise support for HPT resizing */
2797 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2798 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2801 /* advertise support for ibm,dyamic-memory-v2 */
2802 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2804 /* advertise XIVE on POWER9 machines */
2805 if (spapr->irq->xive) {
2806 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2809 /* init CPUs */
2810 spapr_init_cpus(spapr);
2812 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2814 /* Init numa_assoc_array */
2815 spapr_numa_associativity_init(spapr, machine);
2817 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2818 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2819 spapr->max_compat_pvr)) {
2820 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2821 /* KVM and TCG always allow GTSE with radix... */
2822 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2824 /* ... but not with hash (currently). */
2826 if (kvm_enabled()) {
2827 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2828 kvmppc_enable_logical_ci_hcalls();
2829 kvmppc_enable_set_mode_hcall();
2831 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2832 kvmppc_enable_clear_ref_mod_hcalls();
2834 /* Enable H_PAGE_INIT */
2835 kvmppc_enable_h_page_init();
2838 /* map RAM */
2839 memory_region_add_subregion(sysmem, 0, machine->ram);
2841 /* always allocate the device memory information */
2842 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2844 /* initialize hotplug memory address space */
2845 if (machine->ram_size < machine->maxram_size) {
2846 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2848 * Limit the number of hotpluggable memory slots to half the number
2849 * slots that KVM supports, leaving the other half for PCI and other
2850 * devices. However ensure that number of slots doesn't drop below 32.
2852 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2853 SPAPR_MAX_RAM_SLOTS;
2855 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2856 max_memslots = SPAPR_MAX_RAM_SLOTS;
2858 if (machine->ram_slots > max_memslots) {
2859 error_report("Specified number of memory slots %"
2860 PRIu64" exceeds max supported %d",
2861 machine->ram_slots, max_memslots);
2862 exit(1);
2865 machine->device_memory->base = ROUND_UP(machine->ram_size,
2866 SPAPR_DEVICE_MEM_ALIGN);
2867 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2868 "device-memory", device_mem_size);
2869 memory_region_add_subregion(sysmem, machine->device_memory->base,
2870 &machine->device_memory->mr);
2873 if (smc->dr_lmb_enabled) {
2874 spapr_create_lmb_dr_connectors(spapr);
2877 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2878 /* Create the error string for live migration blocker */
2879 error_setg(&spapr->fwnmi_migration_blocker,
2880 "A machine check is being handled during migration. The handler"
2881 "may run and log hardware error on the destination");
2884 if (mc->nvdimm_supported) {
2885 spapr_create_nvdimm_dr_connectors(spapr);
2888 /* Set up RTAS event infrastructure */
2889 spapr_events_init(spapr);
2891 /* Set up the RTC RTAS interfaces */
2892 spapr_rtc_create(spapr);
2894 /* Set up VIO bus */
2895 spapr->vio_bus = spapr_vio_bus_init();
2897 for (i = 0; serial_hd(i); i++) {
2898 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2901 /* We always have at least the nvram device on VIO */
2902 spapr_create_nvram(spapr);
2905 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2906 * connectors (described in root DT node's "ibm,drc-types" property)
2907 * are pre-initialized here. additional child connectors (such as
2908 * connectors for a PHBs PCI slots) are added as needed during their
2909 * parent's realization.
2911 if (smc->dr_phb_enabled) {
2912 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2913 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2917 /* Set up PCI */
2918 spapr_pci_rtas_init();
2920 phb = spapr_create_default_phb();
2922 for (i = 0; i < nb_nics; i++) {
2923 NICInfo *nd = &nd_table[i];
2925 if (!nd->model) {
2926 nd->model = g_strdup("spapr-vlan");
2929 if (g_str_equal(nd->model, "spapr-vlan") ||
2930 g_str_equal(nd->model, "ibmveth")) {
2931 spapr_vlan_create(spapr->vio_bus, nd);
2932 } else {
2933 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2937 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2938 spapr_vscsi_create(spapr->vio_bus);
2941 /* Graphics */
2942 if (spapr_vga_init(phb->bus, &error_fatal)) {
2943 spapr->has_graphics = true;
2944 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2947 if (machine->usb) {
2948 if (smc->use_ohci_by_default) {
2949 pci_create_simple(phb->bus, -1, "pci-ohci");
2950 } else {
2951 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2954 if (spapr->has_graphics) {
2955 USBBus *usb_bus = usb_bus_find(-1);
2957 usb_create_simple(usb_bus, "usb-kbd");
2958 usb_create_simple(usb_bus, "usb-mouse");
2962 if (kernel_filename) {
2963 spapr->kernel_size = load_elf(kernel_filename, NULL,
2964 translate_kernel_address, spapr,
2965 NULL, NULL, NULL, NULL, 1,
2966 PPC_ELF_MACHINE, 0, 0);
2967 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2968 spapr->kernel_size = load_elf(kernel_filename, NULL,
2969 translate_kernel_address, spapr,
2970 NULL, NULL, NULL, NULL, 0,
2971 PPC_ELF_MACHINE, 0, 0);
2972 spapr->kernel_le = spapr->kernel_size > 0;
2974 if (spapr->kernel_size < 0) {
2975 error_report("error loading %s: %s", kernel_filename,
2976 load_elf_strerror(spapr->kernel_size));
2977 exit(1);
2980 /* load initrd */
2981 if (initrd_filename) {
2982 /* Try to locate the initrd in the gap between the kernel
2983 * and the firmware. Add a bit of space just in case
2985 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2986 + 0x1ffff) & ~0xffff;
2987 spapr->initrd_size = load_image_targphys(initrd_filename,
2988 spapr->initrd_base,
2989 load_limit
2990 - spapr->initrd_base);
2991 if (spapr->initrd_size < 0) {
2992 error_report("could not load initial ram disk '%s'",
2993 initrd_filename);
2994 exit(1);
2999 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3000 if (!filename) {
3001 error_report("Could not find LPAR firmware '%s'", bios_name);
3002 exit(1);
3004 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3005 if (fw_size <= 0) {
3006 error_report("Could not load LPAR firmware '%s'", filename);
3007 exit(1);
3009 g_free(filename);
3011 /* FIXME: Should register things through the MachineState's qdev
3012 * interface, this is a legacy from the sPAPREnvironment structure
3013 * which predated MachineState but had a similar function */
3014 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3015 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3016 &savevm_htab_handlers, spapr);
3018 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3020 qemu_register_boot_set(spapr_boot_set, spapr);
3023 * Nothing needs to be done to resume a suspended guest because
3024 * suspending does not change the machine state, so no need for
3025 * a ->wakeup method.
3027 qemu_register_wakeup_support();
3029 if (kvm_enabled()) {
3030 /* to stop and start vmclock */
3031 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3032 &spapr->tb);
3034 kvmppc_spapr_enable_inkernel_multitce();
3037 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3038 if (spapr->vof) {
3039 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3040 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3044 #define DEFAULT_KVM_TYPE "auto"
3045 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3048 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3049 * accomodate the 'HV' and 'PV' formats that exists in the
3050 * wild. The 'auto' mode is being introduced already as
3051 * lower-case, thus we don't need to bother checking for
3052 * "AUTO".
3054 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3055 return 0;
3058 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3059 return 1;
3062 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3063 return 2;
3066 error_report("Unknown kvm-type specified '%s'", vm_type);
3067 exit(1);
3071 * Implementation of an interface to adjust firmware path
3072 * for the bootindex property handling.
3074 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3075 DeviceState *dev)
3077 #define CAST(type, obj, name) \
3078 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3079 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3080 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3081 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3082 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3084 if (d && bus) {
3085 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3086 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3087 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3089 if (spapr) {
3091 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3092 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3093 * 0x8000 | (target << 8) | (bus << 5) | lun
3094 * (see the "Logical unit addressing format" table in SAM5)
3096 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3097 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3098 (uint64_t)id << 48);
3099 } else if (virtio) {
3101 * We use SRP luns of the form 01000000 | (target << 8) | lun
3102 * in the top 32 bits of the 64-bit LUN
3103 * Note: the quote above is from SLOF and it is wrong,
3104 * the actual binding is:
3105 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3107 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3108 if (d->lun >= 256) {
3109 /* Use the LUN "flat space addressing method" */
3110 id |= 0x4000;
3112 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3113 (uint64_t)id << 32);
3114 } else if (usb) {
3116 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3117 * in the top 32 bits of the 64-bit LUN
3119 unsigned usb_port = atoi(usb->port->path);
3120 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3121 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3122 (uint64_t)id << 32);
3127 * SLOF probes the USB devices, and if it recognizes that the device is a
3128 * storage device, it changes its name to "storage" instead of "usb-host",
3129 * and additionally adds a child node for the SCSI LUN, so the correct
3130 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3132 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3133 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3134 if (usb_device_is_scsi_storage(usbdev)) {
3135 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3139 if (phb) {
3140 /* Replace "pci" with "pci@800000020000000" */
3141 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3144 if (vsc) {
3145 /* Same logic as virtio above */
3146 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3147 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3150 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3151 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3152 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3153 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3156 if (pcidev) {
3157 return spapr_pci_fw_dev_name(pcidev);
3160 return NULL;
3163 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3165 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167 return g_strdup(spapr->kvm_type);
3170 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3172 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174 g_free(spapr->kvm_type);
3175 spapr->kvm_type = g_strdup(value);
3178 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3180 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3182 return spapr->use_hotplug_event_source;
3185 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3186 Error **errp)
3188 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190 spapr->use_hotplug_event_source = value;
3193 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3195 return true;
3198 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3200 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 switch (spapr->resize_hpt) {
3203 case SPAPR_RESIZE_HPT_DEFAULT:
3204 return g_strdup("default");
3205 case SPAPR_RESIZE_HPT_DISABLED:
3206 return g_strdup("disabled");
3207 case SPAPR_RESIZE_HPT_ENABLED:
3208 return g_strdup("enabled");
3209 case SPAPR_RESIZE_HPT_REQUIRED:
3210 return g_strdup("required");
3212 g_assert_not_reached();
3215 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3217 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 if (strcmp(value, "default") == 0) {
3220 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3221 } else if (strcmp(value, "disabled") == 0) {
3222 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3223 } else if (strcmp(value, "enabled") == 0) {
3224 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3225 } else if (strcmp(value, "required") == 0) {
3226 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3227 } else {
3228 error_setg(errp, "Bad value for \"resize-hpt\" property");
3232 static bool spapr_get_vof(Object *obj, Error **errp)
3234 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236 return spapr->vof != NULL;
3239 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3243 if (spapr->vof) {
3244 vof_cleanup(spapr->vof);
3245 g_free(spapr->vof);
3246 spapr->vof = NULL;
3248 if (!value) {
3249 return;
3251 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3254 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3256 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3258 if (spapr->irq == &spapr_irq_xics_legacy) {
3259 return g_strdup("legacy");
3260 } else if (spapr->irq == &spapr_irq_xics) {
3261 return g_strdup("xics");
3262 } else if (spapr->irq == &spapr_irq_xive) {
3263 return g_strdup("xive");
3264 } else if (spapr->irq == &spapr_irq_dual) {
3265 return g_strdup("dual");
3267 g_assert_not_reached();
3270 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3272 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3274 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3275 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3276 return;
3279 /* The legacy IRQ backend can not be set */
3280 if (strcmp(value, "xics") == 0) {
3281 spapr->irq = &spapr_irq_xics;
3282 } else if (strcmp(value, "xive") == 0) {
3283 spapr->irq = &spapr_irq_xive;
3284 } else if (strcmp(value, "dual") == 0) {
3285 spapr->irq = &spapr_irq_dual;
3286 } else {
3287 error_setg(errp, "Bad value for \"ic-mode\" property");
3291 static char *spapr_get_host_model(Object *obj, Error **errp)
3293 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295 return g_strdup(spapr->host_model);
3298 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3300 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3302 g_free(spapr->host_model);
3303 spapr->host_model = g_strdup(value);
3306 static char *spapr_get_host_serial(Object *obj, Error **errp)
3308 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3310 return g_strdup(spapr->host_serial);
3313 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3315 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3317 g_free(spapr->host_serial);
3318 spapr->host_serial = g_strdup(value);
3321 static void spapr_instance_init(Object *obj)
3323 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3324 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3325 MachineState *ms = MACHINE(spapr);
3326 MachineClass *mc = MACHINE_GET_CLASS(ms);
3329 * NVDIMM support went live in 5.1 without considering that, in
3330 * other archs, the user needs to enable NVDIMM support with the
3331 * 'nvdimm' machine option and the default behavior is NVDIMM
3332 * support disabled. It is too late to roll back to the standard
3333 * behavior without breaking 5.1 guests.
3335 if (mc->nvdimm_supported) {
3336 ms->nvdimms_state->is_enabled = true;
3339 spapr->htab_fd = -1;
3340 spapr->use_hotplug_event_source = true;
3341 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3342 object_property_add_str(obj, "kvm-type",
3343 spapr_get_kvm_type, spapr_set_kvm_type);
3344 object_property_set_description(obj, "kvm-type",
3345 "Specifies the KVM virtualization mode (auto,"
3346 " hv, pr). Defaults to 'auto'. This mode will use"
3347 " any available KVM module loaded in the host,"
3348 " where kvm_hv takes precedence if both kvm_hv and"
3349 " kvm_pr are loaded.");
3350 object_property_add_bool(obj, "modern-hotplug-events",
3351 spapr_get_modern_hotplug_events,
3352 spapr_set_modern_hotplug_events);
3353 object_property_set_description(obj, "modern-hotplug-events",
3354 "Use dedicated hotplug event mechanism in"
3355 " place of standard EPOW events when possible"
3356 " (required for memory hot-unplug support)");
3357 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3358 "Maximum permitted CPU compatibility mode");
3360 object_property_add_str(obj, "resize-hpt",
3361 spapr_get_resize_hpt, spapr_set_resize_hpt);
3362 object_property_set_description(obj, "resize-hpt",
3363 "Resizing of the Hash Page Table (enabled, disabled, required)");
3364 object_property_add_uint32_ptr(obj, "vsmt",
3365 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3366 object_property_set_description(obj, "vsmt",
3367 "Virtual SMT: KVM behaves as if this were"
3368 " the host's SMT mode");
3370 object_property_add_bool(obj, "vfio-no-msix-emulation",
3371 spapr_get_msix_emulation, NULL);
3373 object_property_add_uint64_ptr(obj, "kernel-addr",
3374 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3375 object_property_set_description(obj, "kernel-addr",
3376 stringify(KERNEL_LOAD_ADDR)
3377 " for -kernel is the default");
3378 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3380 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3381 object_property_set_description(obj, "x-vof",
3382 "Enable Virtual Open Firmware (experimental)");
3384 /* The machine class defines the default interrupt controller mode */
3385 spapr->irq = smc->irq;
3386 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3387 spapr_set_ic_mode);
3388 object_property_set_description(obj, "ic-mode",
3389 "Specifies the interrupt controller mode (xics, xive, dual)");
3391 object_property_add_str(obj, "host-model",
3392 spapr_get_host_model, spapr_set_host_model);
3393 object_property_set_description(obj, "host-model",
3394 "Host model to advertise in guest device tree");
3395 object_property_add_str(obj, "host-serial",
3396 spapr_get_host_serial, spapr_set_host_serial);
3397 object_property_set_description(obj, "host-serial",
3398 "Host serial number to advertise in guest device tree");
3401 static void spapr_machine_finalizefn(Object *obj)
3403 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3405 g_free(spapr->kvm_type);
3408 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3410 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3411 PowerPCCPU *cpu = POWERPC_CPU(cs);
3412 CPUPPCState *env = &cpu->env;
3414 cpu_synchronize_state(cs);
3415 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3416 if (spapr->fwnmi_system_reset_addr != -1) {
3417 uint64_t rtas_addr, addr;
3419 /* get rtas addr from fdt */
3420 rtas_addr = spapr_get_rtas_addr();
3421 if (!rtas_addr) {
3422 qemu_system_guest_panicked(NULL);
3423 return;
3426 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3427 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3428 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3429 env->gpr[3] = addr;
3431 ppc_cpu_do_system_reset(cs);
3432 if (spapr->fwnmi_system_reset_addr != -1) {
3433 env->nip = spapr->fwnmi_system_reset_addr;
3437 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3439 CPUState *cs;
3441 CPU_FOREACH(cs) {
3442 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3446 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3447 void *fdt, int *fdt_start_offset, Error **errp)
3449 uint64_t addr;
3450 uint32_t node;
3452 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3453 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3454 &error_abort);
3455 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3456 SPAPR_MEMORY_BLOCK_SIZE);
3457 return 0;
3460 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3461 bool dedicated_hp_event_source)
3463 SpaprDrc *drc;
3464 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3465 int i;
3466 uint64_t addr = addr_start;
3467 bool hotplugged = spapr_drc_hotplugged(dev);
3469 for (i = 0; i < nr_lmbs; i++) {
3470 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3471 addr / SPAPR_MEMORY_BLOCK_SIZE);
3472 g_assert(drc);
3475 * memory_device_get_free_addr() provided a range of free addresses
3476 * that doesn't overlap with any existing mapping at pre-plug. The
3477 * corresponding LMB DRCs are thus assumed to be all attachable.
3479 spapr_drc_attach(drc, dev);
3480 if (!hotplugged) {
3481 spapr_drc_reset(drc);
3483 addr += SPAPR_MEMORY_BLOCK_SIZE;
3485 /* send hotplug notification to the
3486 * guest only in case of hotplugged memory
3488 if (hotplugged) {
3489 if (dedicated_hp_event_source) {
3490 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3491 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3492 g_assert(drc);
3493 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3494 nr_lmbs,
3495 spapr_drc_index(drc));
3496 } else {
3497 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3498 nr_lmbs);
3503 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3505 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3506 PCDIMMDevice *dimm = PC_DIMM(dev);
3507 uint64_t size, addr;
3508 int64_t slot;
3509 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3511 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3513 pc_dimm_plug(dimm, MACHINE(ms));
3515 if (!is_nvdimm) {
3516 addr = object_property_get_uint(OBJECT(dimm),
3517 PC_DIMM_ADDR_PROP, &error_abort);
3518 spapr_add_lmbs(dev, addr, size,
3519 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3520 } else {
3521 slot = object_property_get_int(OBJECT(dimm),
3522 PC_DIMM_SLOT_PROP, &error_abort);
3523 /* We should have valid slot number at this point */
3524 g_assert(slot >= 0);
3525 spapr_add_nvdimm(dev, slot);
3529 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3530 Error **errp)
3532 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3533 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3534 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3535 PCDIMMDevice *dimm = PC_DIMM(dev);
3536 Error *local_err = NULL;
3537 uint64_t size;
3538 Object *memdev;
3539 hwaddr pagesize;
3541 if (!smc->dr_lmb_enabled) {
3542 error_setg(errp, "Memory hotplug not supported for this machine");
3543 return;
3546 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3547 if (local_err) {
3548 error_propagate(errp, local_err);
3549 return;
3552 if (is_nvdimm) {
3553 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3554 return;
3556 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3557 error_setg(errp, "Hotplugged memory size must be a multiple of "
3558 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3559 return;
3562 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3563 &error_abort);
3564 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3565 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3566 return;
3569 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3572 struct SpaprDimmState {
3573 PCDIMMDevice *dimm;
3574 uint32_t nr_lmbs;
3575 QTAILQ_ENTRY(SpaprDimmState) next;
3578 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3579 PCDIMMDevice *dimm)
3581 SpaprDimmState *dimm_state = NULL;
3583 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3584 if (dimm_state->dimm == dimm) {
3585 break;
3588 return dimm_state;
3591 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3592 uint32_t nr_lmbs,
3593 PCDIMMDevice *dimm)
3595 SpaprDimmState *ds = NULL;
3598 * If this request is for a DIMM whose removal had failed earlier
3599 * (due to guest's refusal to remove the LMBs), we would have this
3600 * dimm already in the pending_dimm_unplugs list. In that
3601 * case don't add again.
3603 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3604 if (!ds) {
3605 ds = g_malloc0(sizeof(SpaprDimmState));
3606 ds->nr_lmbs = nr_lmbs;
3607 ds->dimm = dimm;
3608 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3610 return ds;
3613 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3614 SpaprDimmState *dimm_state)
3616 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3617 g_free(dimm_state);
3620 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3621 PCDIMMDevice *dimm)
3623 SpaprDrc *drc;
3624 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3625 &error_abort);
3626 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3627 uint32_t avail_lmbs = 0;
3628 uint64_t addr_start, addr;
3629 int i;
3631 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3632 &error_abort);
3634 addr = addr_start;
3635 for (i = 0; i < nr_lmbs; i++) {
3636 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3637 addr / SPAPR_MEMORY_BLOCK_SIZE);
3638 g_assert(drc);
3639 if (drc->dev) {
3640 avail_lmbs++;
3642 addr += SPAPR_MEMORY_BLOCK_SIZE;
3645 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3648 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3650 SpaprDimmState *ds;
3651 PCDIMMDevice *dimm;
3652 SpaprDrc *drc;
3653 uint32_t nr_lmbs;
3654 uint64_t size, addr_start, addr;
3655 g_autofree char *qapi_error = NULL;
3656 int i;
3658 if (!dev) {
3659 return;
3662 dimm = PC_DIMM(dev);
3663 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3666 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3667 * unplug state, but one of its DRC is marked as unplug_requested.
3668 * This is bad and weird enough to g_assert() out.
3670 g_assert(ds);
3672 spapr_pending_dimm_unplugs_remove(spapr, ds);
3674 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3675 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3677 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3678 &error_abort);
3680 addr = addr_start;
3681 for (i = 0; i < nr_lmbs; i++) {
3682 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3683 addr / SPAPR_MEMORY_BLOCK_SIZE);
3684 g_assert(drc);
3686 drc->unplug_requested = false;
3687 addr += SPAPR_MEMORY_BLOCK_SIZE;
3691 * Tell QAPI that something happened and the memory
3692 * hotunplug wasn't successful. Keep sending
3693 * MEM_UNPLUG_ERROR even while sending
3694 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3695 * MEM_UNPLUG_ERROR is due.
3697 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3698 "for device %s", dev->id);
3700 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3702 qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3703 dev->canonical_path);
3706 /* Callback to be called during DRC release. */
3707 void spapr_lmb_release(DeviceState *dev)
3709 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3710 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3711 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3713 /* This information will get lost if a migration occurs
3714 * during the unplug process. In this case recover it. */
3715 if (ds == NULL) {
3716 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3717 g_assert(ds);
3718 /* The DRC being examined by the caller at least must be counted */
3719 g_assert(ds->nr_lmbs);
3722 if (--ds->nr_lmbs) {
3723 return;
3727 * Now that all the LMBs have been removed by the guest, call the
3728 * unplug handler chain. This can never fail.
3730 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3731 object_unparent(OBJECT(dev));
3734 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3736 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3737 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3739 /* We really shouldn't get this far without anything to unplug */
3740 g_assert(ds);
3742 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3743 qdev_unrealize(dev);
3744 spapr_pending_dimm_unplugs_remove(spapr, ds);
3747 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3748 DeviceState *dev, Error **errp)
3750 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3751 PCDIMMDevice *dimm = PC_DIMM(dev);
3752 uint32_t nr_lmbs;
3753 uint64_t size, addr_start, addr;
3754 int i;
3755 SpaprDrc *drc;
3757 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3758 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3759 return;
3762 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3763 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3765 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3766 &error_abort);
3769 * An existing pending dimm state for this DIMM means that there is an
3770 * unplug operation in progress, waiting for the spapr_lmb_release
3771 * callback to complete the job (BQL can't cover that far). In this case,
3772 * bail out to avoid detaching DRCs that were already released.
3774 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3775 error_setg(errp, "Memory unplug already in progress for device %s",
3776 dev->id);
3777 return;
3780 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3782 addr = addr_start;
3783 for (i = 0; i < nr_lmbs; i++) {
3784 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3785 addr / SPAPR_MEMORY_BLOCK_SIZE);
3786 g_assert(drc);
3788 spapr_drc_unplug_request(drc);
3789 addr += SPAPR_MEMORY_BLOCK_SIZE;
3792 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3793 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3794 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3795 nr_lmbs, spapr_drc_index(drc));
3798 /* Callback to be called during DRC release. */
3799 void spapr_core_release(DeviceState *dev)
3801 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3803 /* Call the unplug handler chain. This can never fail. */
3804 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3805 object_unparent(OBJECT(dev));
3808 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3810 MachineState *ms = MACHINE(hotplug_dev);
3811 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3812 CPUCore *cc = CPU_CORE(dev);
3813 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3815 if (smc->pre_2_10_has_unused_icps) {
3816 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3817 int i;
3819 for (i = 0; i < cc->nr_threads; i++) {
3820 CPUState *cs = CPU(sc->threads[i]);
3822 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3826 assert(core_slot);
3827 core_slot->cpu = NULL;
3828 qdev_unrealize(dev);
3831 static
3832 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3833 Error **errp)
3835 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3836 int index;
3837 SpaprDrc *drc;
3838 CPUCore *cc = CPU_CORE(dev);
3840 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3841 error_setg(errp, "Unable to find CPU core with core-id: %d",
3842 cc->core_id);
3843 return;
3845 if (index == 0) {
3846 error_setg(errp, "Boot CPU core may not be unplugged");
3847 return;
3850 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3851 spapr_vcpu_id(spapr, cc->core_id));
3852 g_assert(drc);
3854 if (!spapr_drc_unplug_requested(drc)) {
3855 spapr_drc_unplug_request(drc);
3859 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3860 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3861 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3862 * attempt (e.g. the kernel will refuse to remove the last online
3863 * CPU), we will never attempt it again because unplug_requested
3864 * will still be 'true' in that case.
3866 spapr_hotplug_req_remove_by_index(drc);
3869 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3870 void *fdt, int *fdt_start_offset, Error **errp)
3872 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3873 CPUState *cs = CPU(core->threads[0]);
3874 PowerPCCPU *cpu = POWERPC_CPU(cs);
3875 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3876 int id = spapr_get_vcpu_id(cpu);
3877 g_autofree char *nodename = NULL;
3878 int offset;
3880 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3881 offset = fdt_add_subnode(fdt, 0, nodename);
3883 spapr_dt_cpu(cs, fdt, offset, spapr);
3886 * spapr_dt_cpu() does not fill the 'name' property in the
3887 * CPU node. The function is called during boot process, before
3888 * and after CAS, and overwriting the 'name' property written
3889 * by SLOF is not allowed.
3891 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3892 * CPUs more compatible with the coldplugged ones, which have
3893 * the 'name' property. Linux Kernel also relies on this
3894 * property to identify CPU nodes.
3896 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3898 *fdt_start_offset = offset;
3899 return 0;
3902 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3904 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3905 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3906 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3907 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3908 CPUCore *cc = CPU_CORE(dev);
3909 CPUState *cs;
3910 SpaprDrc *drc;
3911 CPUArchId *core_slot;
3912 int index;
3913 bool hotplugged = spapr_drc_hotplugged(dev);
3914 int i;
3916 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3917 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3919 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3920 spapr_vcpu_id(spapr, cc->core_id));
3922 g_assert(drc || !mc->has_hotpluggable_cpus);
3924 if (drc) {
3926 * spapr_core_pre_plug() already buys us this is a brand new
3927 * core being plugged into a free slot. Nothing should already
3928 * be attached to the corresponding DRC.
3930 spapr_drc_attach(drc, dev);
3932 if (hotplugged) {
3934 * Send hotplug notification interrupt to the guest only
3935 * in case of hotplugged CPUs.
3937 spapr_hotplug_req_add_by_index(drc);
3938 } else {
3939 spapr_drc_reset(drc);
3943 core_slot->cpu = OBJECT(dev);
3946 * Set compatibility mode to match the boot CPU, which was either set
3947 * by the machine reset code or by CAS. This really shouldn't fail at
3948 * this point.
3950 if (hotplugged) {
3951 for (i = 0; i < cc->nr_threads; i++) {
3952 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3953 &error_abort);
3957 if (smc->pre_2_10_has_unused_icps) {
3958 for (i = 0; i < cc->nr_threads; i++) {
3959 cs = CPU(core->threads[i]);
3960 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3965 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3966 Error **errp)
3968 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3969 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3970 CPUCore *cc = CPU_CORE(dev);
3971 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3972 const char *type = object_get_typename(OBJECT(dev));
3973 CPUArchId *core_slot;
3974 int index;
3975 unsigned int smp_threads = machine->smp.threads;
3977 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3978 error_setg(errp, "CPU hotplug not supported for this machine");
3979 return;
3982 if (strcmp(base_core_type, type)) {
3983 error_setg(errp, "CPU core type should be %s", base_core_type);
3984 return;
3987 if (cc->core_id % smp_threads) {
3988 error_setg(errp, "invalid core id %d", cc->core_id);
3989 return;
3993 * In general we should have homogeneous threads-per-core, but old
3994 * (pre hotplug support) machine types allow the last core to have
3995 * reduced threads as a compatibility hack for when we allowed
3996 * total vcpus not a multiple of threads-per-core.
3998 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3999 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4000 smp_threads);
4001 return;
4004 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4005 if (!core_slot) {
4006 error_setg(errp, "core id %d out of range", cc->core_id);
4007 return;
4010 if (core_slot->cpu) {
4011 error_setg(errp, "core %d already populated", cc->core_id);
4012 return;
4015 numa_cpu_pre_plug(core_slot, dev, errp);
4018 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4019 void *fdt, int *fdt_start_offset, Error **errp)
4021 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4022 int intc_phandle;
4024 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4025 if (intc_phandle <= 0) {
4026 return -1;
4029 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4030 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4031 return -1;
4034 /* generally SLOF creates these, for hotplug it's up to QEMU */
4035 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4037 return 0;
4040 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4041 Error **errp)
4043 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4044 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4045 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4046 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4047 SpaprDrc *drc;
4049 if (dev->hotplugged && !smc->dr_phb_enabled) {
4050 error_setg(errp, "PHB hotplug not supported for this machine");
4051 return false;
4054 if (sphb->index == (uint32_t)-1) {
4055 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4056 return false;
4059 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4060 if (drc && drc->dev) {
4061 error_setg(errp, "PHB %d already attached", sphb->index);
4062 return false;
4066 * This will check that sphb->index doesn't exceed the maximum number of
4067 * PHBs for the current machine type.
4069 return
4070 smc->phb_placement(spapr, sphb->index,
4071 &sphb->buid, &sphb->io_win_addr,
4072 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4073 windows_supported, sphb->dma_liobn,
4074 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4075 errp);
4078 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4080 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4081 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4082 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4083 SpaprDrc *drc;
4084 bool hotplugged = spapr_drc_hotplugged(dev);
4086 if (!smc->dr_phb_enabled) {
4087 return;
4090 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4091 /* hotplug hooks should check it's enabled before getting this far */
4092 assert(drc);
4094 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4095 spapr_drc_attach(drc, dev);
4097 if (hotplugged) {
4098 spapr_hotplug_req_add_by_index(drc);
4099 } else {
4100 spapr_drc_reset(drc);
4104 void spapr_phb_release(DeviceState *dev)
4106 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4108 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4109 object_unparent(OBJECT(dev));
4112 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4114 qdev_unrealize(dev);
4117 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4118 DeviceState *dev, Error **errp)
4120 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4121 SpaprDrc *drc;
4123 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4124 assert(drc);
4126 if (!spapr_drc_unplug_requested(drc)) {
4127 spapr_drc_unplug_request(drc);
4128 spapr_hotplug_req_remove_by_index(drc);
4129 } else {
4130 error_setg(errp,
4131 "PCI Host Bridge unplug already in progress for device %s",
4132 dev->id);
4136 static
4137 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4138 Error **errp)
4140 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4142 if (spapr->tpm_proxy != NULL) {
4143 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4144 return false;
4147 return true;
4150 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4152 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4153 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4155 /* Already checked in spapr_tpm_proxy_pre_plug() */
4156 g_assert(spapr->tpm_proxy == NULL);
4158 spapr->tpm_proxy = tpm_proxy;
4161 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4163 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4165 qdev_unrealize(dev);
4166 object_unparent(OBJECT(dev));
4167 spapr->tpm_proxy = NULL;
4170 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4171 DeviceState *dev, Error **errp)
4173 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4174 spapr_memory_plug(hotplug_dev, dev);
4175 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4176 spapr_core_plug(hotplug_dev, dev);
4177 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4178 spapr_phb_plug(hotplug_dev, dev);
4179 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4180 spapr_tpm_proxy_plug(hotplug_dev, dev);
4184 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4185 DeviceState *dev, Error **errp)
4187 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4188 spapr_memory_unplug(hotplug_dev, dev);
4189 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4190 spapr_core_unplug(hotplug_dev, dev);
4191 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4192 spapr_phb_unplug(hotplug_dev, dev);
4193 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4194 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4198 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4200 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4202 * CAS will process all pending unplug requests.
4204 * HACK: a guest could theoretically have cleared all bits in OV5,
4205 * but none of the guests we care for do.
4207 spapr_ovec_empty(spapr->ov5_cas);
4210 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4211 DeviceState *dev, Error **errp)
4213 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4214 MachineClass *mc = MACHINE_GET_CLASS(sms);
4215 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4217 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4218 if (spapr_memory_hot_unplug_supported(sms)) {
4219 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4220 } else {
4221 error_setg(errp, "Memory hot unplug not supported for this guest");
4223 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4224 if (!mc->has_hotpluggable_cpus) {
4225 error_setg(errp, "CPU hot unplug not supported on this machine");
4226 return;
4228 spapr_core_unplug_request(hotplug_dev, dev, errp);
4229 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4230 if (!smc->dr_phb_enabled) {
4231 error_setg(errp, "PHB hot unplug not supported on this machine");
4232 return;
4234 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4235 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4236 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4240 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4241 DeviceState *dev, Error **errp)
4243 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4244 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4245 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4246 spapr_core_pre_plug(hotplug_dev, dev, errp);
4247 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4248 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4249 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4250 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4254 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4255 DeviceState *dev)
4257 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4258 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4259 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4260 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4261 return HOTPLUG_HANDLER(machine);
4263 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4264 PCIDevice *pcidev = PCI_DEVICE(dev);
4265 PCIBus *root = pci_device_root_bus(pcidev);
4266 SpaprPhbState *phb =
4267 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4268 TYPE_SPAPR_PCI_HOST_BRIDGE);
4270 if (phb) {
4271 return HOTPLUG_HANDLER(phb);
4274 return NULL;
4277 static CpuInstanceProperties
4278 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4280 CPUArchId *core_slot;
4281 MachineClass *mc = MACHINE_GET_CLASS(machine);
4283 /* make sure possible_cpu are intialized */
4284 mc->possible_cpu_arch_ids(machine);
4285 /* get CPU core slot containing thread that matches cpu_index */
4286 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4287 assert(core_slot);
4288 return core_slot->props;
4291 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4293 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4296 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4298 int i;
4299 unsigned int smp_threads = machine->smp.threads;
4300 unsigned int smp_cpus = machine->smp.cpus;
4301 const char *core_type;
4302 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4303 MachineClass *mc = MACHINE_GET_CLASS(machine);
4305 if (!mc->has_hotpluggable_cpus) {
4306 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4308 if (machine->possible_cpus) {
4309 assert(machine->possible_cpus->len == spapr_max_cores);
4310 return machine->possible_cpus;
4313 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4314 if (!core_type) {
4315 error_report("Unable to find sPAPR CPU Core definition");
4316 exit(1);
4319 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4320 sizeof(CPUArchId) * spapr_max_cores);
4321 machine->possible_cpus->len = spapr_max_cores;
4322 for (i = 0; i < machine->possible_cpus->len; i++) {
4323 int core_id = i * smp_threads;
4325 machine->possible_cpus->cpus[i].type = core_type;
4326 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4327 machine->possible_cpus->cpus[i].arch_id = core_id;
4328 machine->possible_cpus->cpus[i].props.has_core_id = true;
4329 machine->possible_cpus->cpus[i].props.core_id = core_id;
4331 return machine->possible_cpus;
4334 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4335 uint64_t *buid, hwaddr *pio,
4336 hwaddr *mmio32, hwaddr *mmio64,
4337 unsigned n_dma, uint32_t *liobns,
4338 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4341 * New-style PHB window placement.
4343 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4344 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4345 * windows.
4347 * Some guest kernels can't work with MMIO windows above 1<<46
4348 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4350 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4351 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4352 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4353 * 1TiB 64-bit MMIO windows for each PHB.
4355 const uint64_t base_buid = 0x800000020000000ULL;
4356 int i;
4358 /* Sanity check natural alignments */
4359 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4360 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4361 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4362 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4363 /* Sanity check bounds */
4364 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4365 SPAPR_PCI_MEM32_WIN_SIZE);
4366 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4367 SPAPR_PCI_MEM64_WIN_SIZE);
4369 if (index >= SPAPR_MAX_PHBS) {
4370 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4371 SPAPR_MAX_PHBS - 1);
4372 return false;
4375 *buid = base_buid + index;
4376 for (i = 0; i < n_dma; ++i) {
4377 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4380 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4381 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4382 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4384 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4385 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4386 return true;
4389 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4391 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4393 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4396 static void spapr_ics_resend(XICSFabric *dev)
4398 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4400 ics_resend(spapr->ics);
4403 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4405 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4407 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4410 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4411 Monitor *mon)
4413 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4415 spapr_irq_print_info(spapr, mon);
4416 monitor_printf(mon, "irqchip: %s\n",
4417 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4421 * This is a XIVE only operation
4423 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4424 uint8_t nvt_blk, uint32_t nvt_idx,
4425 bool cam_ignore, uint8_t priority,
4426 uint32_t logic_serv, XiveTCTXMatch *match)
4428 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4429 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4430 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4431 int count;
4433 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4434 priority, logic_serv, match);
4435 if (count < 0) {
4436 return count;
4440 * When we implement the save and restore of the thread interrupt
4441 * contexts in the enter/exit CPU handlers of the machine and the
4442 * escalations in QEMU, we should be able to handle non dispatched
4443 * vCPUs.
4445 * Until this is done, the sPAPR machine should find at least one
4446 * matching context always.
4448 if (count == 0) {
4449 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4450 nvt_blk, nvt_idx);
4453 return count;
4456 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4458 return cpu->vcpu_id;
4461 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4463 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4464 MachineState *ms = MACHINE(spapr);
4465 int vcpu_id;
4467 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4469 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4470 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4471 error_append_hint(errp, "Adjust the number of cpus to %d "
4472 "or try to raise the number of threads per core\n",
4473 vcpu_id * ms->smp.threads / spapr->vsmt);
4474 return false;
4477 cpu->vcpu_id = vcpu_id;
4478 return true;
4481 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4483 CPUState *cs;
4485 CPU_FOREACH(cs) {
4486 PowerPCCPU *cpu = POWERPC_CPU(cs);
4488 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4489 return cpu;
4493 return NULL;
4496 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4498 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4500 return spapr_cpu->in_nested;
4503 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4505 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4507 /* These are only called by TCG, KVM maintains dispatch state */
4509 spapr_cpu->prod = false;
4510 if (spapr_cpu->vpa_addr) {
4511 CPUState *cs = CPU(cpu);
4512 uint32_t dispatch;
4514 dispatch = ldl_be_phys(cs->as,
4515 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4516 dispatch++;
4517 if ((dispatch & 1) != 0) {
4518 qemu_log_mask(LOG_GUEST_ERROR,
4519 "VPA: incorrect dispatch counter value for "
4520 "dispatched partition %u, correcting.\n", dispatch);
4521 dispatch++;
4523 stl_be_phys(cs->as,
4524 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4528 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4530 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4532 if (spapr_cpu->vpa_addr) {
4533 CPUState *cs = CPU(cpu);
4534 uint32_t dispatch;
4536 dispatch = ldl_be_phys(cs->as,
4537 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4538 dispatch++;
4539 if ((dispatch & 1) != 1) {
4540 qemu_log_mask(LOG_GUEST_ERROR,
4541 "VPA: incorrect dispatch counter value for "
4542 "preempted partition %u, correcting.\n", dispatch);
4543 dispatch++;
4545 stl_be_phys(cs->as,
4546 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4550 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4552 MachineClass *mc = MACHINE_CLASS(oc);
4553 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4554 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4555 NMIClass *nc = NMI_CLASS(oc);
4556 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4557 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4558 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4559 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4560 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4561 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4563 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4564 mc->ignore_boot_device_suffixes = true;
4567 * We set up the default / latest behaviour here. The class_init
4568 * functions for the specific versioned machine types can override
4569 * these details for backwards compatibility
4571 mc->init = spapr_machine_init;
4572 mc->reset = spapr_machine_reset;
4573 mc->block_default_type = IF_SCSI;
4576 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4577 * should be limited by the host capability instead of hardcoded.
4578 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4579 * guests are welcome to have as many CPUs as the host are capable
4580 * of emulate.
4582 mc->max_cpus = INT32_MAX;
4584 mc->no_parallel = 1;
4585 mc->default_boot_order = "";
4586 mc->default_ram_size = 512 * MiB;
4587 mc->default_ram_id = "ppc_spapr.ram";
4588 mc->default_display = "std";
4589 mc->kvm_type = spapr_kvm_type;
4590 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4591 mc->pci_allow_0_address = true;
4592 assert(!mc->get_hotplug_handler);
4593 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4594 hc->pre_plug = spapr_machine_device_pre_plug;
4595 hc->plug = spapr_machine_device_plug;
4596 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4597 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4598 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4599 hc->unplug_request = spapr_machine_device_unplug_request;
4600 hc->unplug = spapr_machine_device_unplug;
4602 smc->dr_lmb_enabled = true;
4603 smc->update_dt_enabled = true;
4604 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4605 mc->has_hotpluggable_cpus = true;
4606 mc->nvdimm_supported = true;
4607 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4608 fwc->get_dev_path = spapr_get_fw_dev_path;
4609 nc->nmi_monitor_handler = spapr_nmi;
4610 smc->phb_placement = spapr_phb_placement;
4611 vhc->cpu_in_nested = spapr_cpu_in_nested;
4612 vhc->deliver_hv_excp = spapr_exit_nested;
4613 vhc->hypercall = emulate_spapr_hypercall;
4614 vhc->hpt_mask = spapr_hpt_mask;
4615 vhc->map_hptes = spapr_map_hptes;
4616 vhc->unmap_hptes = spapr_unmap_hptes;
4617 vhc->hpte_set_c = spapr_hpte_set_c;
4618 vhc->hpte_set_r = spapr_hpte_set_r;
4619 vhc->get_pate = spapr_get_pate;
4620 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4621 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4622 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4623 xic->ics_get = spapr_ics_get;
4624 xic->ics_resend = spapr_ics_resend;
4625 xic->icp_get = spapr_icp_get;
4626 ispc->print_info = spapr_pic_print_info;
4627 /* Force NUMA node memory size to be a multiple of
4628 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4629 * in which LMBs are represented and hot-added
4631 mc->numa_mem_align_shift = 28;
4632 mc->auto_enable_numa = true;
4634 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4635 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4636 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4637 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4638 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4639 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4640 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4641 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4642 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4643 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4644 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4645 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4646 spapr_caps_add_properties(smc);
4647 smc->irq = &spapr_irq_dual;
4648 smc->dr_phb_enabled = true;
4649 smc->linux_pci_probe = true;
4650 smc->smp_threads_vsmt = true;
4651 smc->nr_xirqs = SPAPR_NR_XIRQS;
4652 xfc->match_nvt = spapr_match_nvt;
4653 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4654 vmc->quiesce = spapr_vof_quiesce;
4655 vmc->setprop = spapr_vof_setprop;
4658 static const TypeInfo spapr_machine_info = {
4659 .name = TYPE_SPAPR_MACHINE,
4660 .parent = TYPE_MACHINE,
4661 .abstract = true,
4662 .instance_size = sizeof(SpaprMachineState),
4663 .instance_init = spapr_instance_init,
4664 .instance_finalize = spapr_machine_finalizefn,
4665 .class_size = sizeof(SpaprMachineClass),
4666 .class_init = spapr_machine_class_init,
4667 .interfaces = (InterfaceInfo[]) {
4668 { TYPE_FW_PATH_PROVIDER },
4669 { TYPE_NMI },
4670 { TYPE_HOTPLUG_HANDLER },
4671 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4672 { TYPE_XICS_FABRIC },
4673 { TYPE_INTERRUPT_STATS_PROVIDER },
4674 { TYPE_XIVE_FABRIC },
4675 { TYPE_VOF_MACHINE_IF },
4680 static void spapr_machine_latest_class_options(MachineClass *mc)
4682 mc->alias = "pseries";
4683 mc->is_default = true;
4686 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4687 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4688 void *data) \
4690 MachineClass *mc = MACHINE_CLASS(oc); \
4691 spapr_machine_##suffix##_class_options(mc); \
4692 if (latest) { \
4693 spapr_machine_latest_class_options(mc); \
4696 static const TypeInfo spapr_machine_##suffix##_info = { \
4697 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4698 .parent = TYPE_SPAPR_MACHINE, \
4699 .class_init = spapr_machine_##suffix##_class_init, \
4700 }; \
4701 static void spapr_machine_register_##suffix(void) \
4703 type_register(&spapr_machine_##suffix##_info); \
4705 type_init(spapr_machine_register_##suffix)
4708 * pseries-7.0
4710 static void spapr_machine_7_0_class_options(MachineClass *mc)
4712 /* Defaults for the latest behaviour inherited from the base class */
4715 DEFINE_SPAPR_MACHINE(7_0, "7.0", true);
4718 * pseries-6.2
4720 static void spapr_machine_6_2_class_options(MachineClass *mc)
4722 spapr_machine_7_0_class_options(mc);
4723 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4726 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4729 * pseries-6.1
4731 static void spapr_machine_6_1_class_options(MachineClass *mc)
4733 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735 spapr_machine_6_2_class_options(mc);
4736 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4737 smc->pre_6_2_numa_affinity = true;
4738 mc->smp_props.prefer_sockets = true;
4741 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4744 * pseries-6.0
4746 static void spapr_machine_6_0_class_options(MachineClass *mc)
4748 spapr_machine_6_1_class_options(mc);
4749 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4752 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4755 * pseries-5.2
4757 static void spapr_machine_5_2_class_options(MachineClass *mc)
4759 spapr_machine_6_0_class_options(mc);
4760 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4763 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4766 * pseries-5.1
4768 static void spapr_machine_5_1_class_options(MachineClass *mc)
4770 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4772 spapr_machine_5_2_class_options(mc);
4773 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4774 smc->pre_5_2_numa_associativity = true;
4777 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4780 * pseries-5.0
4782 static void spapr_machine_5_0_class_options(MachineClass *mc)
4784 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4785 static GlobalProperty compat[] = {
4786 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4789 spapr_machine_5_1_class_options(mc);
4790 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4791 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4792 mc->numa_mem_supported = true;
4793 smc->pre_5_1_assoc_refpoints = true;
4796 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4799 * pseries-4.2
4801 static void spapr_machine_4_2_class_options(MachineClass *mc)
4803 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4805 spapr_machine_5_0_class_options(mc);
4806 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4807 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4808 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4809 smc->rma_limit = 16 * GiB;
4810 mc->nvdimm_supported = false;
4813 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4816 * pseries-4.1
4818 static void spapr_machine_4_1_class_options(MachineClass *mc)
4820 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4821 static GlobalProperty compat[] = {
4822 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4823 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4826 spapr_machine_4_2_class_options(mc);
4827 smc->linux_pci_probe = false;
4828 smc->smp_threads_vsmt = false;
4829 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4830 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4833 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4836 * pseries-4.0
4838 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4839 uint64_t *buid, hwaddr *pio,
4840 hwaddr *mmio32, hwaddr *mmio64,
4841 unsigned n_dma, uint32_t *liobns,
4842 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4844 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4845 liobns, nv2gpa, nv2atsd, errp)) {
4846 return false;
4849 *nv2gpa = 0;
4850 *nv2atsd = 0;
4851 return true;
4853 static void spapr_machine_4_0_class_options(MachineClass *mc)
4855 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4857 spapr_machine_4_1_class_options(mc);
4858 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4859 smc->phb_placement = phb_placement_4_0;
4860 smc->irq = &spapr_irq_xics;
4861 smc->pre_4_1_migration = true;
4864 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4867 * pseries-3.1
4869 static void spapr_machine_3_1_class_options(MachineClass *mc)
4871 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4873 spapr_machine_4_0_class_options(mc);
4874 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4876 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4877 smc->update_dt_enabled = false;
4878 smc->dr_phb_enabled = false;
4879 smc->broken_host_serial_model = true;
4880 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4881 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4882 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4883 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4886 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4889 * pseries-3.0
4892 static void spapr_machine_3_0_class_options(MachineClass *mc)
4894 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4896 spapr_machine_3_1_class_options(mc);
4897 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4899 smc->legacy_irq_allocation = true;
4900 smc->nr_xirqs = 0x400;
4901 smc->irq = &spapr_irq_xics_legacy;
4904 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4907 * pseries-2.12
4909 static void spapr_machine_2_12_class_options(MachineClass *mc)
4911 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4912 static GlobalProperty compat[] = {
4913 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4914 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4917 spapr_machine_3_0_class_options(mc);
4918 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4919 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4921 /* We depend on kvm_enabled() to choose a default value for the
4922 * hpt-max-page-size capability. Of course we can't do it here
4923 * because this is too early and the HW accelerator isn't initialzed
4924 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4926 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4929 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4931 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4933 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4935 spapr_machine_2_12_class_options(mc);
4936 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4937 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4938 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4941 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4944 * pseries-2.11
4947 static void spapr_machine_2_11_class_options(MachineClass *mc)
4949 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4951 spapr_machine_2_12_class_options(mc);
4952 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4953 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4956 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4959 * pseries-2.10
4962 static void spapr_machine_2_10_class_options(MachineClass *mc)
4964 spapr_machine_2_11_class_options(mc);
4965 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4968 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4971 * pseries-2.9
4974 static void spapr_machine_2_9_class_options(MachineClass *mc)
4976 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4977 static GlobalProperty compat[] = {
4978 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4981 spapr_machine_2_10_class_options(mc);
4982 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4983 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4984 smc->pre_2_10_has_unused_icps = true;
4985 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4988 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4991 * pseries-2.8
4994 static void spapr_machine_2_8_class_options(MachineClass *mc)
4996 static GlobalProperty compat[] = {
4997 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5000 spapr_machine_2_9_class_options(mc);
5001 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5002 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5003 mc->numa_mem_align_shift = 23;
5006 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5009 * pseries-2.7
5012 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5013 uint64_t *buid, hwaddr *pio,
5014 hwaddr *mmio32, hwaddr *mmio64,
5015 unsigned n_dma, uint32_t *liobns,
5016 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5018 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5019 const uint64_t base_buid = 0x800000020000000ULL;
5020 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5021 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5022 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5023 const uint32_t max_index = 255;
5024 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5026 uint64_t ram_top = MACHINE(spapr)->ram_size;
5027 hwaddr phb0_base, phb_base;
5028 int i;
5030 /* Do we have device memory? */
5031 if (MACHINE(spapr)->maxram_size > ram_top) {
5032 /* Can't just use maxram_size, because there may be an
5033 * alignment gap between normal and device memory regions
5035 ram_top = MACHINE(spapr)->device_memory->base +
5036 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5039 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5041 if (index > max_index) {
5042 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5043 max_index);
5044 return false;
5047 *buid = base_buid + index;
5048 for (i = 0; i < n_dma; ++i) {
5049 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5052 phb_base = phb0_base + index * phb_spacing;
5053 *pio = phb_base + pio_offset;
5054 *mmio32 = phb_base + mmio_offset;
5056 * We don't set the 64-bit MMIO window, relying on the PHB's
5057 * fallback behaviour of automatically splitting a large "32-bit"
5058 * window into contiguous 32-bit and 64-bit windows
5061 *nv2gpa = 0;
5062 *nv2atsd = 0;
5063 return true;
5066 static void spapr_machine_2_7_class_options(MachineClass *mc)
5068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5069 static GlobalProperty compat[] = {
5070 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5071 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5072 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5073 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5076 spapr_machine_2_8_class_options(mc);
5077 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5078 mc->default_machine_opts = "modern-hotplug-events=off";
5079 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5080 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5081 smc->phb_placement = phb_placement_2_7;
5084 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5087 * pseries-2.6
5090 static void spapr_machine_2_6_class_options(MachineClass *mc)
5092 static GlobalProperty compat[] = {
5093 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5096 spapr_machine_2_7_class_options(mc);
5097 mc->has_hotpluggable_cpus = false;
5098 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5099 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5102 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5105 * pseries-2.5
5108 static void spapr_machine_2_5_class_options(MachineClass *mc)
5110 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5111 static GlobalProperty compat[] = {
5112 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5115 spapr_machine_2_6_class_options(mc);
5116 smc->use_ohci_by_default = true;
5117 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5118 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5121 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5124 * pseries-2.4
5127 static void spapr_machine_2_4_class_options(MachineClass *mc)
5129 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5131 spapr_machine_2_5_class_options(mc);
5132 smc->dr_lmb_enabled = false;
5133 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5136 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5139 * pseries-2.3
5142 static void spapr_machine_2_3_class_options(MachineClass *mc)
5144 static GlobalProperty compat[] = {
5145 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5147 spapr_machine_2_4_class_options(mc);
5148 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5149 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5151 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5154 * pseries-2.2
5157 static void spapr_machine_2_2_class_options(MachineClass *mc)
5159 static GlobalProperty compat[] = {
5160 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5163 spapr_machine_2_3_class_options(mc);
5164 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5165 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5166 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5168 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5171 * pseries-2.1
5174 static void spapr_machine_2_1_class_options(MachineClass *mc)
5176 spapr_machine_2_2_class_options(mc);
5177 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5179 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5181 static void spapr_machine_register_types(void)
5183 type_register_static(&spapr_machine_info);
5186 type_init(spapr_machine_register_types)