ppc: Drop useless extern annotation for functions
[qemu/ar7.git] / tcg / tcg.c
blob5475d49ed1199aa8619cd8f40aa005e6a50d64ce
1 /*
2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* define it to use liveness analysis (better code) */
26 #define USE_TCG_OPTIMIZATIONS
28 #include "qemu/osdep.h"
30 /* Define to jump the ELF file used to communicate with GDB. */
31 #undef DEBUG_JIT
33 #include "qemu/error-report.h"
34 #include "qemu/cutils.h"
35 #include "qemu/host-utils.h"
36 #include "qemu/qemu-print.h"
37 #include "qemu/timer.h"
39 /* Note: the long term plan is to reduce the dependencies on the QEMU
40 CPU definitions. Currently they are used for qemu_ld/st
41 instructions */
42 #define NO_CPU_IO_DEFS
43 #include "cpu.h"
45 #include "exec/exec-all.h"
47 #if !defined(CONFIG_USER_ONLY)
48 #include "hw/boards.h"
49 #endif
51 #include "tcg-op.h"
53 #if UINTPTR_MAX == UINT32_MAX
54 # define ELF_CLASS ELFCLASS32
55 #else
56 # define ELF_CLASS ELFCLASS64
57 #endif
58 #ifdef HOST_WORDS_BIGENDIAN
59 # define ELF_DATA ELFDATA2MSB
60 #else
61 # define ELF_DATA ELFDATA2LSB
62 #endif
64 #include "elf.h"
65 #include "exec/log.h"
66 #include "sysemu/sysemu.h"
68 /* Forward declarations for functions declared in tcg-target.inc.c and
69 used here. */
70 static void tcg_target_init(TCGContext *s);
71 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode);
72 static void tcg_target_qemu_prologue(TCGContext *s);
73 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
74 intptr_t value, intptr_t addend);
76 /* The CIE and FDE header definitions will be common to all hosts. */
77 typedef struct {
78 uint32_t len __attribute__((aligned((sizeof(void *)))));
79 uint32_t id;
80 uint8_t version;
81 char augmentation[1];
82 uint8_t code_align;
83 uint8_t data_align;
84 uint8_t return_column;
85 } DebugFrameCIE;
87 typedef struct QEMU_PACKED {
88 uint32_t len __attribute__((aligned((sizeof(void *)))));
89 uint32_t cie_offset;
90 uintptr_t func_start;
91 uintptr_t func_len;
92 } DebugFrameFDEHeader;
94 typedef struct QEMU_PACKED {
95 DebugFrameCIE cie;
96 DebugFrameFDEHeader fde;
97 } DebugFrameHeader;
99 static void tcg_register_jit_int(void *buf, size_t size,
100 const void *debug_frame,
101 size_t debug_frame_size)
102 __attribute__((unused));
104 /* Forward declarations for functions declared and used in tcg-target.inc.c. */
105 static const char *target_parse_constraint(TCGArgConstraint *ct,
106 const char *ct_str, TCGType type);
107 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
108 intptr_t arg2);
109 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg);
110 static void tcg_out_movi(TCGContext *s, TCGType type,
111 TCGReg ret, tcg_target_long arg);
112 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
113 const int *const_args);
114 #if TCG_TARGET_MAYBE_vec
115 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
116 TCGReg dst, TCGReg src);
117 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
118 TCGReg dst, TCGReg base, intptr_t offset);
119 static void tcg_out_dupi_vec(TCGContext *s, TCGType type,
120 TCGReg dst, tcg_target_long arg);
121 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
122 unsigned vece, const TCGArg *args,
123 const int *const_args);
124 #else
125 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
126 TCGReg dst, TCGReg src)
128 g_assert_not_reached();
130 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
131 TCGReg dst, TCGReg base, intptr_t offset)
133 g_assert_not_reached();
135 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type,
136 TCGReg dst, tcg_target_long arg)
138 g_assert_not_reached();
140 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
141 unsigned vece, const TCGArg *args,
142 const int *const_args)
144 g_assert_not_reached();
146 #endif
147 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
148 intptr_t arg2);
149 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
150 TCGReg base, intptr_t ofs);
151 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target);
152 static int tcg_target_const_match(tcg_target_long val, TCGType type,
153 const TCGArgConstraint *arg_ct);
154 #ifdef TCG_TARGET_NEED_LDST_LABELS
155 static int tcg_out_ldst_finalize(TCGContext *s);
156 #endif
158 #define TCG_HIGHWATER 1024
160 static TCGContext **tcg_ctxs;
161 static unsigned int n_tcg_ctxs;
162 TCGv_env cpu_env = 0;
164 struct tcg_region_tree {
165 QemuMutex lock;
166 GTree *tree;
167 /* padding to avoid false sharing is computed at run-time */
171 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
172 * dynamically allocate from as demand dictates. Given appropriate region
173 * sizing, this minimizes flushes even when some TCG threads generate a lot
174 * more code than others.
176 struct tcg_region_state {
177 QemuMutex lock;
179 /* fields set at init time */
180 void *start;
181 void *start_aligned;
182 void *end;
183 size_t n;
184 size_t size; /* size of one region */
185 size_t stride; /* .size + guard size */
187 /* fields protected by the lock */
188 size_t current; /* current region index */
189 size_t agg_size_full; /* aggregate size of full regions */
192 static struct tcg_region_state region;
194 * This is an array of struct tcg_region_tree's, with padding.
195 * We use void * to simplify the computation of region_trees[i]; each
196 * struct is found every tree_size bytes.
198 static void *region_trees;
199 static size_t tree_size;
200 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT];
201 static TCGRegSet tcg_target_call_clobber_regs;
203 #if TCG_TARGET_INSN_UNIT_SIZE == 1
204 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v)
206 *s->code_ptr++ = v;
209 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p,
210 uint8_t v)
212 *p = v;
214 #endif
216 #if TCG_TARGET_INSN_UNIT_SIZE <= 2
217 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v)
219 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
220 *s->code_ptr++ = v;
221 } else {
222 tcg_insn_unit *p = s->code_ptr;
223 memcpy(p, &v, sizeof(v));
224 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE);
228 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p,
229 uint16_t v)
231 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
232 *p = v;
233 } else {
234 memcpy(p, &v, sizeof(v));
237 #endif
239 #if TCG_TARGET_INSN_UNIT_SIZE <= 4
240 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v)
242 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
243 *s->code_ptr++ = v;
244 } else {
245 tcg_insn_unit *p = s->code_ptr;
246 memcpy(p, &v, sizeof(v));
247 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE);
251 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p,
252 uint32_t v)
254 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
255 *p = v;
256 } else {
257 memcpy(p, &v, sizeof(v));
260 #endif
262 #if TCG_TARGET_INSN_UNIT_SIZE <= 8
263 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v)
265 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
266 *s->code_ptr++ = v;
267 } else {
268 tcg_insn_unit *p = s->code_ptr;
269 memcpy(p, &v, sizeof(v));
270 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE);
274 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p,
275 uint64_t v)
277 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
278 *p = v;
279 } else {
280 memcpy(p, &v, sizeof(v));
283 #endif
285 /* label relocation processing */
287 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type,
288 TCGLabel *l, intptr_t addend)
290 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation));
292 r->type = type;
293 r->ptr = code_ptr;
294 r->addend = addend;
295 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next);
298 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr)
300 tcg_debug_assert(!l->has_value);
301 l->has_value = 1;
302 l->u.value_ptr = ptr;
305 TCGLabel *gen_new_label(void)
307 TCGContext *s = tcg_ctx;
308 TCGLabel *l = tcg_malloc(sizeof(TCGLabel));
310 memset(l, 0, sizeof(TCGLabel));
311 l->id = s->nb_labels++;
312 QSIMPLEQ_INIT(&l->relocs);
314 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next);
316 return l;
319 static bool tcg_resolve_relocs(TCGContext *s)
321 TCGLabel *l;
323 QSIMPLEQ_FOREACH(l, &s->labels, next) {
324 TCGRelocation *r;
325 uintptr_t value = l->u.value;
327 QSIMPLEQ_FOREACH(r, &l->relocs, next) {
328 if (!patch_reloc(r->ptr, r->type, value, r->addend)) {
329 return false;
333 return true;
336 static void set_jmp_reset_offset(TCGContext *s, int which)
338 size_t off = tcg_current_code_size(s);
339 s->tb_jmp_reset_offset[which] = off;
340 /* Make sure that we didn't overflow the stored offset. */
341 assert(s->tb_jmp_reset_offset[which] == off);
344 #include "tcg-target.inc.c"
346 /* compare a pointer @ptr and a tb_tc @s */
347 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
349 if (ptr >= s->ptr + s->size) {
350 return 1;
351 } else if (ptr < s->ptr) {
352 return -1;
354 return 0;
357 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp)
359 const struct tb_tc *a = ap;
360 const struct tb_tc *b = bp;
363 * When both sizes are set, we know this isn't a lookup.
364 * This is the most likely case: every TB must be inserted; lookups
365 * are a lot less frequent.
367 if (likely(a->size && b->size)) {
368 if (a->ptr > b->ptr) {
369 return 1;
370 } else if (a->ptr < b->ptr) {
371 return -1;
373 /* a->ptr == b->ptr should happen only on deletions */
374 g_assert(a->size == b->size);
375 return 0;
378 * All lookups have either .size field set to 0.
379 * From the glib sources we see that @ap is always the lookup key. However
380 * the docs provide no guarantee, so we just mark this case as likely.
382 if (likely(a->size == 0)) {
383 return ptr_cmp_tb_tc(a->ptr, b);
385 return ptr_cmp_tb_tc(b->ptr, a);
388 static void tcg_region_trees_init(void)
390 size_t i;
392 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
393 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
394 for (i = 0; i < region.n; i++) {
395 struct tcg_region_tree *rt = region_trees + i * tree_size;
397 qemu_mutex_init(&rt->lock);
398 rt->tree = g_tree_new(tb_tc_cmp);
402 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p)
404 size_t region_idx;
406 if (p < region.start_aligned) {
407 region_idx = 0;
408 } else {
409 ptrdiff_t offset = p - region.start_aligned;
411 if (offset > region.stride * (region.n - 1)) {
412 region_idx = region.n - 1;
413 } else {
414 region_idx = offset / region.stride;
417 return region_trees + region_idx * tree_size;
420 void tcg_tb_insert(TranslationBlock *tb)
422 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
424 qemu_mutex_lock(&rt->lock);
425 g_tree_insert(rt->tree, &tb->tc, tb);
426 qemu_mutex_unlock(&rt->lock);
429 void tcg_tb_remove(TranslationBlock *tb)
431 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
433 qemu_mutex_lock(&rt->lock);
434 g_tree_remove(rt->tree, &tb->tc);
435 qemu_mutex_unlock(&rt->lock);
439 * Find the TB 'tb' such that
440 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
441 * Return NULL if not found.
443 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
445 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
446 TranslationBlock *tb;
447 struct tb_tc s = { .ptr = (void *)tc_ptr };
449 qemu_mutex_lock(&rt->lock);
450 tb = g_tree_lookup(rt->tree, &s);
451 qemu_mutex_unlock(&rt->lock);
452 return tb;
455 static void tcg_region_tree_lock_all(void)
457 size_t i;
459 for (i = 0; i < region.n; i++) {
460 struct tcg_region_tree *rt = region_trees + i * tree_size;
462 qemu_mutex_lock(&rt->lock);
466 static void tcg_region_tree_unlock_all(void)
468 size_t i;
470 for (i = 0; i < region.n; i++) {
471 struct tcg_region_tree *rt = region_trees + i * tree_size;
473 qemu_mutex_unlock(&rt->lock);
477 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
479 size_t i;
481 tcg_region_tree_lock_all();
482 for (i = 0; i < region.n; i++) {
483 struct tcg_region_tree *rt = region_trees + i * tree_size;
485 g_tree_foreach(rt->tree, func, user_data);
487 tcg_region_tree_unlock_all();
490 size_t tcg_nb_tbs(void)
492 size_t nb_tbs = 0;
493 size_t i;
495 tcg_region_tree_lock_all();
496 for (i = 0; i < region.n; i++) {
497 struct tcg_region_tree *rt = region_trees + i * tree_size;
499 nb_tbs += g_tree_nnodes(rt->tree);
501 tcg_region_tree_unlock_all();
502 return nb_tbs;
505 static void tcg_region_tree_reset_all(void)
507 size_t i;
509 tcg_region_tree_lock_all();
510 for (i = 0; i < region.n; i++) {
511 struct tcg_region_tree *rt = region_trees + i * tree_size;
513 /* Increment the refcount first so that destroy acts as a reset */
514 g_tree_ref(rt->tree);
515 g_tree_destroy(rt->tree);
517 tcg_region_tree_unlock_all();
520 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
522 void *start, *end;
524 start = region.start_aligned + curr_region * region.stride;
525 end = start + region.size;
527 if (curr_region == 0) {
528 start = region.start;
530 if (curr_region == region.n - 1) {
531 end = region.end;
534 *pstart = start;
535 *pend = end;
538 static void tcg_region_assign(TCGContext *s, size_t curr_region)
540 void *start, *end;
542 tcg_region_bounds(curr_region, &start, &end);
544 s->code_gen_buffer = start;
545 s->code_gen_ptr = start;
546 s->code_gen_buffer_size = end - start;
547 s->code_gen_highwater = end - TCG_HIGHWATER;
550 static bool tcg_region_alloc__locked(TCGContext *s)
552 if (region.current == region.n) {
553 return true;
555 tcg_region_assign(s, region.current);
556 region.current++;
557 return false;
561 * Request a new region once the one in use has filled up.
562 * Returns true on error.
564 static bool tcg_region_alloc(TCGContext *s)
566 bool err;
567 /* read the region size now; alloc__locked will overwrite it on success */
568 size_t size_full = s->code_gen_buffer_size;
570 qemu_mutex_lock(&region.lock);
571 err = tcg_region_alloc__locked(s);
572 if (!err) {
573 region.agg_size_full += size_full - TCG_HIGHWATER;
575 qemu_mutex_unlock(&region.lock);
576 return err;
580 * Perform a context's first region allocation.
581 * This function does _not_ increment region.agg_size_full.
583 static inline bool tcg_region_initial_alloc__locked(TCGContext *s)
585 return tcg_region_alloc__locked(s);
588 /* Call from a safe-work context */
589 void tcg_region_reset_all(void)
591 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
592 unsigned int i;
594 qemu_mutex_lock(&region.lock);
595 region.current = 0;
596 region.agg_size_full = 0;
598 for (i = 0; i < n_ctxs; i++) {
599 TCGContext *s = atomic_read(&tcg_ctxs[i]);
600 bool err = tcg_region_initial_alloc__locked(s);
602 g_assert(!err);
604 qemu_mutex_unlock(&region.lock);
606 tcg_region_tree_reset_all();
609 #ifdef CONFIG_USER_ONLY
610 static size_t tcg_n_regions(void)
612 return 1;
614 #else
616 * It is likely that some vCPUs will translate more code than others, so we
617 * first try to set more regions than max_cpus, with those regions being of
618 * reasonable size. If that's not possible we make do by evenly dividing
619 * the code_gen_buffer among the vCPUs.
621 static size_t tcg_n_regions(void)
623 size_t i;
625 /* Use a single region if all we have is one vCPU thread */
626 #if !defined(CONFIG_USER_ONLY)
627 MachineState *ms = MACHINE(qdev_get_machine());
628 unsigned int max_cpus = ms->smp.max_cpus;
629 #endif
630 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
631 return 1;
634 /* Try to have more regions than max_cpus, with each region being >= 2 MB */
635 for (i = 8; i > 0; i--) {
636 size_t regions_per_thread = i;
637 size_t region_size;
639 region_size = tcg_init_ctx.code_gen_buffer_size;
640 region_size /= max_cpus * regions_per_thread;
642 if (region_size >= 2 * 1024u * 1024) {
643 return max_cpus * regions_per_thread;
646 /* If we can't, then just allocate one region per vCPU thread */
647 return max_cpus;
649 #endif
652 * Initializes region partitioning.
654 * Called at init time from the parent thread (i.e. the one calling
655 * tcg_context_init), after the target's TCG globals have been set.
657 * Region partitioning works by splitting code_gen_buffer into separate regions,
658 * and then assigning regions to TCG threads so that the threads can translate
659 * code in parallel without synchronization.
661 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
662 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
663 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
664 * must have been parsed before calling this function, since it calls
665 * qemu_tcg_mttcg_enabled().
667 * In user-mode we use a single region. Having multiple regions in user-mode
668 * is not supported, because the number of vCPU threads (recall that each thread
669 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
670 * OS, and usually this number is huge (tens of thousands is not uncommon).
671 * Thus, given this large bound on the number of vCPU threads and the fact
672 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
673 * that the availability of at least one region per vCPU thread.
675 * However, this user-mode limitation is unlikely to be a significant problem
676 * in practice. Multi-threaded guests share most if not all of their translated
677 * code, which makes parallel code generation less appealing than in softmmu.
679 void tcg_region_init(void)
681 void *buf = tcg_init_ctx.code_gen_buffer;
682 void *aligned;
683 size_t size = tcg_init_ctx.code_gen_buffer_size;
684 size_t page_size = qemu_real_host_page_size;
685 size_t region_size;
686 size_t n_regions;
687 size_t i;
689 n_regions = tcg_n_regions();
691 /* The first region will be 'aligned - buf' bytes larger than the others */
692 aligned = QEMU_ALIGN_PTR_UP(buf, page_size);
693 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size);
695 * Make region_size a multiple of page_size, using aligned as the start.
696 * As a result of this we might end up with a few extra pages at the end of
697 * the buffer; we will assign those to the last region.
699 region_size = (size - (aligned - buf)) / n_regions;
700 region_size = QEMU_ALIGN_DOWN(region_size, page_size);
702 /* A region must have at least 2 pages; one code, one guard */
703 g_assert(region_size >= 2 * page_size);
705 /* init the region struct */
706 qemu_mutex_init(&region.lock);
707 region.n = n_regions;
708 region.size = region_size - page_size;
709 region.stride = region_size;
710 region.start = buf;
711 region.start_aligned = aligned;
712 /* page-align the end, since its last page will be a guard page */
713 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size);
714 /* account for that last guard page */
715 region.end -= page_size;
717 /* set guard pages */
718 for (i = 0; i < region.n; i++) {
719 void *start, *end;
720 int rc;
722 tcg_region_bounds(i, &start, &end);
723 rc = qemu_mprotect_none(end, page_size);
724 g_assert(!rc);
727 tcg_region_trees_init();
729 /* In user-mode we support only one ctx, so do the initial allocation now */
730 #ifdef CONFIG_USER_ONLY
732 bool err = tcg_region_initial_alloc__locked(tcg_ctx);
734 g_assert(!err);
736 #endif
739 static void alloc_tcg_plugin_context(TCGContext *s)
741 #ifdef CONFIG_PLUGIN
742 s->plugin_tb = g_new0(struct qemu_plugin_tb, 1);
743 s->plugin_tb->insns =
744 g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn);
745 #endif
749 * All TCG threads except the parent (i.e. the one that called tcg_context_init
750 * and registered the target's TCG globals) must register with this function
751 * before initiating translation.
753 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation
754 * of tcg_region_init() for the reasoning behind this.
756 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in
757 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context
758 * is not used anymore for translation once this function is called.
760 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates
761 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode.
763 #ifdef CONFIG_USER_ONLY
764 void tcg_register_thread(void)
766 tcg_ctx = &tcg_init_ctx;
768 #else
769 void tcg_register_thread(void)
771 MachineState *ms = MACHINE(qdev_get_machine());
772 TCGContext *s = g_malloc(sizeof(*s));
773 unsigned int i, n;
774 bool err;
776 *s = tcg_init_ctx;
778 /* Relink mem_base. */
779 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) {
780 if (tcg_init_ctx.temps[i].mem_base) {
781 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps;
782 tcg_debug_assert(b >= 0 && b < n);
783 s->temps[i].mem_base = &s->temps[b];
787 /* Claim an entry in tcg_ctxs */
788 n = atomic_fetch_inc(&n_tcg_ctxs);
789 g_assert(n < ms->smp.max_cpus);
790 atomic_set(&tcg_ctxs[n], s);
792 if (n > 0) {
793 alloc_tcg_plugin_context(s);
796 tcg_ctx = s;
797 qemu_mutex_lock(&region.lock);
798 err = tcg_region_initial_alloc__locked(tcg_ctx);
799 g_assert(!err);
800 qemu_mutex_unlock(&region.lock);
802 #endif /* !CONFIG_USER_ONLY */
805 * Returns the size (in bytes) of all translated code (i.e. from all regions)
806 * currently in the cache.
807 * See also: tcg_code_capacity()
808 * Do not confuse with tcg_current_code_size(); that one applies to a single
809 * TCG context.
811 size_t tcg_code_size(void)
813 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
814 unsigned int i;
815 size_t total;
817 qemu_mutex_lock(&region.lock);
818 total = region.agg_size_full;
819 for (i = 0; i < n_ctxs; i++) {
820 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
821 size_t size;
823 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
824 g_assert(size <= s->code_gen_buffer_size);
825 total += size;
827 qemu_mutex_unlock(&region.lock);
828 return total;
832 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
833 * regions.
834 * See also: tcg_code_size()
836 size_t tcg_code_capacity(void)
838 size_t guard_size, capacity;
840 /* no need for synchronization; these variables are set at init time */
841 guard_size = region.stride - region.size;
842 capacity = region.end + guard_size - region.start;
843 capacity -= region.n * (guard_size + TCG_HIGHWATER);
844 return capacity;
847 size_t tcg_tb_phys_invalidate_count(void)
849 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
850 unsigned int i;
851 size_t total = 0;
853 for (i = 0; i < n_ctxs; i++) {
854 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
856 total += atomic_read(&s->tb_phys_invalidate_count);
858 return total;
861 /* pool based memory allocation */
862 void *tcg_malloc_internal(TCGContext *s, int size)
864 TCGPool *p;
865 int pool_size;
867 if (size > TCG_POOL_CHUNK_SIZE) {
868 /* big malloc: insert a new pool (XXX: could optimize) */
869 p = g_malloc(sizeof(TCGPool) + size);
870 p->size = size;
871 p->next = s->pool_first_large;
872 s->pool_first_large = p;
873 return p->data;
874 } else {
875 p = s->pool_current;
876 if (!p) {
877 p = s->pool_first;
878 if (!p)
879 goto new_pool;
880 } else {
881 if (!p->next) {
882 new_pool:
883 pool_size = TCG_POOL_CHUNK_SIZE;
884 p = g_malloc(sizeof(TCGPool) + pool_size);
885 p->size = pool_size;
886 p->next = NULL;
887 if (s->pool_current)
888 s->pool_current->next = p;
889 else
890 s->pool_first = p;
891 } else {
892 p = p->next;
896 s->pool_current = p;
897 s->pool_cur = p->data + size;
898 s->pool_end = p->data + p->size;
899 return p->data;
902 void tcg_pool_reset(TCGContext *s)
904 TCGPool *p, *t;
905 for (p = s->pool_first_large; p; p = t) {
906 t = p->next;
907 g_free(p);
909 s->pool_first_large = NULL;
910 s->pool_cur = s->pool_end = NULL;
911 s->pool_current = NULL;
914 typedef struct TCGHelperInfo {
915 void *func;
916 const char *name;
917 unsigned flags;
918 unsigned sizemask;
919 } TCGHelperInfo;
921 #include "exec/helper-proto.h"
923 static const TCGHelperInfo all_helpers[] = {
924 #include "exec/helper-tcg.h"
926 static GHashTable *helper_table;
928 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)];
929 static void process_op_defs(TCGContext *s);
930 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
931 TCGReg reg, const char *name);
933 void tcg_context_init(TCGContext *s)
935 int op, total_args, n, i;
936 TCGOpDef *def;
937 TCGArgConstraint *args_ct;
938 int *sorted_args;
939 TCGTemp *ts;
941 memset(s, 0, sizeof(*s));
942 s->nb_globals = 0;
944 /* Count total number of arguments and allocate the corresponding
945 space */
946 total_args = 0;
947 for(op = 0; op < NB_OPS; op++) {
948 def = &tcg_op_defs[op];
949 n = def->nb_iargs + def->nb_oargs;
950 total_args += n;
953 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args);
954 sorted_args = g_malloc(sizeof(int) * total_args);
956 for(op = 0; op < NB_OPS; op++) {
957 def = &tcg_op_defs[op];
958 def->args_ct = args_ct;
959 def->sorted_args = sorted_args;
960 n = def->nb_iargs + def->nb_oargs;
961 sorted_args += n;
962 args_ct += n;
965 /* Register helpers. */
966 /* Use g_direct_hash/equal for direct pointer comparisons on func. */
967 helper_table = g_hash_table_new(NULL, NULL);
969 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
970 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func,
971 (gpointer)&all_helpers[i]);
974 tcg_target_init(s);
975 process_op_defs(s);
977 /* Reverse the order of the saved registers, assuming they're all at
978 the start of tcg_target_reg_alloc_order. */
979 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) {
980 int r = tcg_target_reg_alloc_order[n];
981 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) {
982 break;
985 for (i = 0; i < n; ++i) {
986 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i];
988 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) {
989 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i];
992 alloc_tcg_plugin_context(s);
994 tcg_ctx = s;
996 * In user-mode we simply share the init context among threads, since we
997 * use a single region. See the documentation tcg_region_init() for the
998 * reasoning behind this.
999 * In softmmu we will have at most max_cpus TCG threads.
1001 #ifdef CONFIG_USER_ONLY
1002 tcg_ctxs = &tcg_ctx;
1003 n_tcg_ctxs = 1;
1004 #else
1005 MachineState *ms = MACHINE(qdev_get_machine());
1006 unsigned int max_cpus = ms->smp.max_cpus;
1007 tcg_ctxs = g_new(TCGContext *, max_cpus);
1008 #endif
1010 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0));
1011 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env");
1012 cpu_env = temp_tcgv_ptr(ts);
1016 * Allocate TBs right before their corresponding translated code, making
1017 * sure that TBs and code are on different cache lines.
1019 TranslationBlock *tcg_tb_alloc(TCGContext *s)
1021 uintptr_t align = qemu_icache_linesize;
1022 TranslationBlock *tb;
1023 void *next;
1025 retry:
1026 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align);
1027 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align);
1029 if (unlikely(next > s->code_gen_highwater)) {
1030 if (tcg_region_alloc(s)) {
1031 return NULL;
1033 goto retry;
1035 atomic_set(&s->code_gen_ptr, next);
1036 s->data_gen_ptr = NULL;
1037 return tb;
1040 void tcg_prologue_init(TCGContext *s)
1042 size_t prologue_size, total_size;
1043 void *buf0, *buf1;
1045 /* Put the prologue at the beginning of code_gen_buffer. */
1046 buf0 = s->code_gen_buffer;
1047 total_size = s->code_gen_buffer_size;
1048 s->code_ptr = buf0;
1049 s->code_buf = buf0;
1050 s->data_gen_ptr = NULL;
1051 s->code_gen_prologue = buf0;
1053 /* Compute a high-water mark, at which we voluntarily flush the buffer
1054 and start over. The size here is arbitrary, significantly larger
1055 than we expect the code generation for any one opcode to require. */
1056 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER);
1058 #ifdef TCG_TARGET_NEED_POOL_LABELS
1059 s->pool_labels = NULL;
1060 #endif
1062 /* Generate the prologue. */
1063 tcg_target_qemu_prologue(s);
1065 #ifdef TCG_TARGET_NEED_POOL_LABELS
1066 /* Allow the prologue to put e.g. guest_base into a pool entry. */
1068 int result = tcg_out_pool_finalize(s);
1069 tcg_debug_assert(result == 0);
1071 #endif
1073 buf1 = s->code_ptr;
1074 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1);
1076 /* Deduct the prologue from the buffer. */
1077 prologue_size = tcg_current_code_size(s);
1078 s->code_gen_ptr = buf1;
1079 s->code_gen_buffer = buf1;
1080 s->code_buf = buf1;
1081 total_size -= prologue_size;
1082 s->code_gen_buffer_size = total_size;
1084 tcg_register_jit(s->code_gen_buffer, total_size);
1086 #ifdef DEBUG_DISAS
1087 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1088 qemu_log_lock();
1089 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size);
1090 if (s->data_gen_ptr) {
1091 size_t code_size = s->data_gen_ptr - buf0;
1092 size_t data_size = prologue_size - code_size;
1093 size_t i;
1095 log_disas(buf0, code_size);
1097 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1098 if (sizeof(tcg_target_ulong) == 8) {
1099 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1100 (uintptr_t)s->data_gen_ptr + i,
1101 *(uint64_t *)(s->data_gen_ptr + i));
1102 } else {
1103 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1104 (uintptr_t)s->data_gen_ptr + i,
1105 *(uint32_t *)(s->data_gen_ptr + i));
1108 } else {
1109 log_disas(buf0, prologue_size);
1111 qemu_log("\n");
1112 qemu_log_flush();
1113 qemu_log_unlock();
1115 #endif
1117 /* Assert that goto_ptr is implemented completely. */
1118 if (TCG_TARGET_HAS_goto_ptr) {
1119 tcg_debug_assert(s->code_gen_epilogue != NULL);
1123 void tcg_func_start(TCGContext *s)
1125 tcg_pool_reset(s);
1126 s->nb_temps = s->nb_globals;
1128 /* No temps have been previously allocated for size or locality. */
1129 memset(s->free_temps, 0, sizeof(s->free_temps));
1131 s->nb_ops = 0;
1132 s->nb_labels = 0;
1133 s->current_frame_offset = s->frame_start;
1135 #ifdef CONFIG_DEBUG_TCG
1136 s->goto_tb_issue_mask = 0;
1137 #endif
1139 QTAILQ_INIT(&s->ops);
1140 QTAILQ_INIT(&s->free_ops);
1141 QSIMPLEQ_INIT(&s->labels);
1144 static inline TCGTemp *tcg_temp_alloc(TCGContext *s)
1146 int n = s->nb_temps++;
1147 tcg_debug_assert(n < TCG_MAX_TEMPS);
1148 return memset(&s->temps[n], 0, sizeof(TCGTemp));
1151 static inline TCGTemp *tcg_global_alloc(TCGContext *s)
1153 TCGTemp *ts;
1155 tcg_debug_assert(s->nb_globals == s->nb_temps);
1156 s->nb_globals++;
1157 ts = tcg_temp_alloc(s);
1158 ts->temp_global = 1;
1160 return ts;
1163 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
1164 TCGReg reg, const char *name)
1166 TCGTemp *ts;
1168 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) {
1169 tcg_abort();
1172 ts = tcg_global_alloc(s);
1173 ts->base_type = type;
1174 ts->type = type;
1175 ts->fixed_reg = 1;
1176 ts->reg = reg;
1177 ts->name = name;
1178 tcg_regset_set_reg(s->reserved_regs, reg);
1180 return ts;
1183 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size)
1185 s->frame_start = start;
1186 s->frame_end = start + size;
1187 s->frame_temp
1188 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame");
1191 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base,
1192 intptr_t offset, const char *name)
1194 TCGContext *s = tcg_ctx;
1195 TCGTemp *base_ts = tcgv_ptr_temp(base);
1196 TCGTemp *ts = tcg_global_alloc(s);
1197 int indirect_reg = 0, bigendian = 0;
1198 #ifdef HOST_WORDS_BIGENDIAN
1199 bigendian = 1;
1200 #endif
1202 if (!base_ts->fixed_reg) {
1203 /* We do not support double-indirect registers. */
1204 tcg_debug_assert(!base_ts->indirect_reg);
1205 base_ts->indirect_base = 1;
1206 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64
1207 ? 2 : 1);
1208 indirect_reg = 1;
1211 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1212 TCGTemp *ts2 = tcg_global_alloc(s);
1213 char buf[64];
1215 ts->base_type = TCG_TYPE_I64;
1216 ts->type = TCG_TYPE_I32;
1217 ts->indirect_reg = indirect_reg;
1218 ts->mem_allocated = 1;
1219 ts->mem_base = base_ts;
1220 ts->mem_offset = offset + bigendian * 4;
1221 pstrcpy(buf, sizeof(buf), name);
1222 pstrcat(buf, sizeof(buf), "_0");
1223 ts->name = strdup(buf);
1225 tcg_debug_assert(ts2 == ts + 1);
1226 ts2->base_type = TCG_TYPE_I64;
1227 ts2->type = TCG_TYPE_I32;
1228 ts2->indirect_reg = indirect_reg;
1229 ts2->mem_allocated = 1;
1230 ts2->mem_base = base_ts;
1231 ts2->mem_offset = offset + (1 - bigendian) * 4;
1232 pstrcpy(buf, sizeof(buf), name);
1233 pstrcat(buf, sizeof(buf), "_1");
1234 ts2->name = strdup(buf);
1235 } else {
1236 ts->base_type = type;
1237 ts->type = type;
1238 ts->indirect_reg = indirect_reg;
1239 ts->mem_allocated = 1;
1240 ts->mem_base = base_ts;
1241 ts->mem_offset = offset;
1242 ts->name = name;
1244 return ts;
1247 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local)
1249 TCGContext *s = tcg_ctx;
1250 TCGTemp *ts;
1251 int idx, k;
1253 k = type + (temp_local ? TCG_TYPE_COUNT : 0);
1254 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS);
1255 if (idx < TCG_MAX_TEMPS) {
1256 /* There is already an available temp with the right type. */
1257 clear_bit(idx, s->free_temps[k].l);
1259 ts = &s->temps[idx];
1260 ts->temp_allocated = 1;
1261 tcg_debug_assert(ts->base_type == type);
1262 tcg_debug_assert(ts->temp_local == temp_local);
1263 } else {
1264 ts = tcg_temp_alloc(s);
1265 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1266 TCGTemp *ts2 = tcg_temp_alloc(s);
1268 ts->base_type = type;
1269 ts->type = TCG_TYPE_I32;
1270 ts->temp_allocated = 1;
1271 ts->temp_local = temp_local;
1273 tcg_debug_assert(ts2 == ts + 1);
1274 ts2->base_type = TCG_TYPE_I64;
1275 ts2->type = TCG_TYPE_I32;
1276 ts2->temp_allocated = 1;
1277 ts2->temp_local = temp_local;
1278 } else {
1279 ts->base_type = type;
1280 ts->type = type;
1281 ts->temp_allocated = 1;
1282 ts->temp_local = temp_local;
1286 #if defined(CONFIG_DEBUG_TCG)
1287 s->temps_in_use++;
1288 #endif
1289 return ts;
1292 TCGv_vec tcg_temp_new_vec(TCGType type)
1294 TCGTemp *t;
1296 #ifdef CONFIG_DEBUG_TCG
1297 switch (type) {
1298 case TCG_TYPE_V64:
1299 assert(TCG_TARGET_HAS_v64);
1300 break;
1301 case TCG_TYPE_V128:
1302 assert(TCG_TARGET_HAS_v128);
1303 break;
1304 case TCG_TYPE_V256:
1305 assert(TCG_TARGET_HAS_v256);
1306 break;
1307 default:
1308 g_assert_not_reached();
1310 #endif
1312 t = tcg_temp_new_internal(type, 0);
1313 return temp_tcgv_vec(t);
1316 /* Create a new temp of the same type as an existing temp. */
1317 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match)
1319 TCGTemp *t = tcgv_vec_temp(match);
1321 tcg_debug_assert(t->temp_allocated != 0);
1323 t = tcg_temp_new_internal(t->base_type, 0);
1324 return temp_tcgv_vec(t);
1327 void tcg_temp_free_internal(TCGTemp *ts)
1329 TCGContext *s = tcg_ctx;
1330 int k, idx;
1332 #if defined(CONFIG_DEBUG_TCG)
1333 s->temps_in_use--;
1334 if (s->temps_in_use < 0) {
1335 fprintf(stderr, "More temporaries freed than allocated!\n");
1337 #endif
1339 tcg_debug_assert(ts->temp_global == 0);
1340 tcg_debug_assert(ts->temp_allocated != 0);
1341 ts->temp_allocated = 0;
1343 idx = temp_idx(ts);
1344 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0);
1345 set_bit(idx, s->free_temps[k].l);
1348 TCGv_i32 tcg_const_i32(int32_t val)
1350 TCGv_i32 t0;
1351 t0 = tcg_temp_new_i32();
1352 tcg_gen_movi_i32(t0, val);
1353 return t0;
1356 TCGv_i64 tcg_const_i64(int64_t val)
1358 TCGv_i64 t0;
1359 t0 = tcg_temp_new_i64();
1360 tcg_gen_movi_i64(t0, val);
1361 return t0;
1364 TCGv_i32 tcg_const_local_i32(int32_t val)
1366 TCGv_i32 t0;
1367 t0 = tcg_temp_local_new_i32();
1368 tcg_gen_movi_i32(t0, val);
1369 return t0;
1372 TCGv_i64 tcg_const_local_i64(int64_t val)
1374 TCGv_i64 t0;
1375 t0 = tcg_temp_local_new_i64();
1376 tcg_gen_movi_i64(t0, val);
1377 return t0;
1380 #if defined(CONFIG_DEBUG_TCG)
1381 void tcg_clear_temp_count(void)
1383 TCGContext *s = tcg_ctx;
1384 s->temps_in_use = 0;
1387 int tcg_check_temp_count(void)
1389 TCGContext *s = tcg_ctx;
1390 if (s->temps_in_use) {
1391 /* Clear the count so that we don't give another
1392 * warning immediately next time around.
1394 s->temps_in_use = 0;
1395 return 1;
1397 return 0;
1399 #endif
1401 /* Return true if OP may appear in the opcode stream.
1402 Test the runtime variable that controls each opcode. */
1403 bool tcg_op_supported(TCGOpcode op)
1405 const bool have_vec
1406 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256;
1408 switch (op) {
1409 case INDEX_op_discard:
1410 case INDEX_op_set_label:
1411 case INDEX_op_call:
1412 case INDEX_op_br:
1413 case INDEX_op_mb:
1414 case INDEX_op_insn_start:
1415 case INDEX_op_exit_tb:
1416 case INDEX_op_goto_tb:
1417 case INDEX_op_qemu_ld_i32:
1418 case INDEX_op_qemu_st_i32:
1419 case INDEX_op_qemu_ld_i64:
1420 case INDEX_op_qemu_st_i64:
1421 return true;
1423 case INDEX_op_goto_ptr:
1424 return TCG_TARGET_HAS_goto_ptr;
1426 case INDEX_op_mov_i32:
1427 case INDEX_op_movi_i32:
1428 case INDEX_op_setcond_i32:
1429 case INDEX_op_brcond_i32:
1430 case INDEX_op_ld8u_i32:
1431 case INDEX_op_ld8s_i32:
1432 case INDEX_op_ld16u_i32:
1433 case INDEX_op_ld16s_i32:
1434 case INDEX_op_ld_i32:
1435 case INDEX_op_st8_i32:
1436 case INDEX_op_st16_i32:
1437 case INDEX_op_st_i32:
1438 case INDEX_op_add_i32:
1439 case INDEX_op_sub_i32:
1440 case INDEX_op_mul_i32:
1441 case INDEX_op_and_i32:
1442 case INDEX_op_or_i32:
1443 case INDEX_op_xor_i32:
1444 case INDEX_op_shl_i32:
1445 case INDEX_op_shr_i32:
1446 case INDEX_op_sar_i32:
1447 return true;
1449 case INDEX_op_movcond_i32:
1450 return TCG_TARGET_HAS_movcond_i32;
1451 case INDEX_op_div_i32:
1452 case INDEX_op_divu_i32:
1453 return TCG_TARGET_HAS_div_i32;
1454 case INDEX_op_rem_i32:
1455 case INDEX_op_remu_i32:
1456 return TCG_TARGET_HAS_rem_i32;
1457 case INDEX_op_div2_i32:
1458 case INDEX_op_divu2_i32:
1459 return TCG_TARGET_HAS_div2_i32;
1460 case INDEX_op_rotl_i32:
1461 case INDEX_op_rotr_i32:
1462 return TCG_TARGET_HAS_rot_i32;
1463 case INDEX_op_deposit_i32:
1464 return TCG_TARGET_HAS_deposit_i32;
1465 case INDEX_op_extract_i32:
1466 return TCG_TARGET_HAS_extract_i32;
1467 case INDEX_op_sextract_i32:
1468 return TCG_TARGET_HAS_sextract_i32;
1469 case INDEX_op_extract2_i32:
1470 return TCG_TARGET_HAS_extract2_i32;
1471 case INDEX_op_add2_i32:
1472 return TCG_TARGET_HAS_add2_i32;
1473 case INDEX_op_sub2_i32:
1474 return TCG_TARGET_HAS_sub2_i32;
1475 case INDEX_op_mulu2_i32:
1476 return TCG_TARGET_HAS_mulu2_i32;
1477 case INDEX_op_muls2_i32:
1478 return TCG_TARGET_HAS_muls2_i32;
1479 case INDEX_op_muluh_i32:
1480 return TCG_TARGET_HAS_muluh_i32;
1481 case INDEX_op_mulsh_i32:
1482 return TCG_TARGET_HAS_mulsh_i32;
1483 case INDEX_op_ext8s_i32:
1484 return TCG_TARGET_HAS_ext8s_i32;
1485 case INDEX_op_ext16s_i32:
1486 return TCG_TARGET_HAS_ext16s_i32;
1487 case INDEX_op_ext8u_i32:
1488 return TCG_TARGET_HAS_ext8u_i32;
1489 case INDEX_op_ext16u_i32:
1490 return TCG_TARGET_HAS_ext16u_i32;
1491 case INDEX_op_bswap16_i32:
1492 return TCG_TARGET_HAS_bswap16_i32;
1493 case INDEX_op_bswap32_i32:
1494 return TCG_TARGET_HAS_bswap32_i32;
1495 case INDEX_op_not_i32:
1496 return TCG_TARGET_HAS_not_i32;
1497 case INDEX_op_neg_i32:
1498 return TCG_TARGET_HAS_neg_i32;
1499 case INDEX_op_andc_i32:
1500 return TCG_TARGET_HAS_andc_i32;
1501 case INDEX_op_orc_i32:
1502 return TCG_TARGET_HAS_orc_i32;
1503 case INDEX_op_eqv_i32:
1504 return TCG_TARGET_HAS_eqv_i32;
1505 case INDEX_op_nand_i32:
1506 return TCG_TARGET_HAS_nand_i32;
1507 case INDEX_op_nor_i32:
1508 return TCG_TARGET_HAS_nor_i32;
1509 case INDEX_op_clz_i32:
1510 return TCG_TARGET_HAS_clz_i32;
1511 case INDEX_op_ctz_i32:
1512 return TCG_TARGET_HAS_ctz_i32;
1513 case INDEX_op_ctpop_i32:
1514 return TCG_TARGET_HAS_ctpop_i32;
1516 case INDEX_op_brcond2_i32:
1517 case INDEX_op_setcond2_i32:
1518 return TCG_TARGET_REG_BITS == 32;
1520 case INDEX_op_mov_i64:
1521 case INDEX_op_movi_i64:
1522 case INDEX_op_setcond_i64:
1523 case INDEX_op_brcond_i64:
1524 case INDEX_op_ld8u_i64:
1525 case INDEX_op_ld8s_i64:
1526 case INDEX_op_ld16u_i64:
1527 case INDEX_op_ld16s_i64:
1528 case INDEX_op_ld32u_i64:
1529 case INDEX_op_ld32s_i64:
1530 case INDEX_op_ld_i64:
1531 case INDEX_op_st8_i64:
1532 case INDEX_op_st16_i64:
1533 case INDEX_op_st32_i64:
1534 case INDEX_op_st_i64:
1535 case INDEX_op_add_i64:
1536 case INDEX_op_sub_i64:
1537 case INDEX_op_mul_i64:
1538 case INDEX_op_and_i64:
1539 case INDEX_op_or_i64:
1540 case INDEX_op_xor_i64:
1541 case INDEX_op_shl_i64:
1542 case INDEX_op_shr_i64:
1543 case INDEX_op_sar_i64:
1544 case INDEX_op_ext_i32_i64:
1545 case INDEX_op_extu_i32_i64:
1546 return TCG_TARGET_REG_BITS == 64;
1548 case INDEX_op_movcond_i64:
1549 return TCG_TARGET_HAS_movcond_i64;
1550 case INDEX_op_div_i64:
1551 case INDEX_op_divu_i64:
1552 return TCG_TARGET_HAS_div_i64;
1553 case INDEX_op_rem_i64:
1554 case INDEX_op_remu_i64:
1555 return TCG_TARGET_HAS_rem_i64;
1556 case INDEX_op_div2_i64:
1557 case INDEX_op_divu2_i64:
1558 return TCG_TARGET_HAS_div2_i64;
1559 case INDEX_op_rotl_i64:
1560 case INDEX_op_rotr_i64:
1561 return TCG_TARGET_HAS_rot_i64;
1562 case INDEX_op_deposit_i64:
1563 return TCG_TARGET_HAS_deposit_i64;
1564 case INDEX_op_extract_i64:
1565 return TCG_TARGET_HAS_extract_i64;
1566 case INDEX_op_sextract_i64:
1567 return TCG_TARGET_HAS_sextract_i64;
1568 case INDEX_op_extract2_i64:
1569 return TCG_TARGET_HAS_extract2_i64;
1570 case INDEX_op_extrl_i64_i32:
1571 return TCG_TARGET_HAS_extrl_i64_i32;
1572 case INDEX_op_extrh_i64_i32:
1573 return TCG_TARGET_HAS_extrh_i64_i32;
1574 case INDEX_op_ext8s_i64:
1575 return TCG_TARGET_HAS_ext8s_i64;
1576 case INDEX_op_ext16s_i64:
1577 return TCG_TARGET_HAS_ext16s_i64;
1578 case INDEX_op_ext32s_i64:
1579 return TCG_TARGET_HAS_ext32s_i64;
1580 case INDEX_op_ext8u_i64:
1581 return TCG_TARGET_HAS_ext8u_i64;
1582 case INDEX_op_ext16u_i64:
1583 return TCG_TARGET_HAS_ext16u_i64;
1584 case INDEX_op_ext32u_i64:
1585 return TCG_TARGET_HAS_ext32u_i64;
1586 case INDEX_op_bswap16_i64:
1587 return TCG_TARGET_HAS_bswap16_i64;
1588 case INDEX_op_bswap32_i64:
1589 return TCG_TARGET_HAS_bswap32_i64;
1590 case INDEX_op_bswap64_i64:
1591 return TCG_TARGET_HAS_bswap64_i64;
1592 case INDEX_op_not_i64:
1593 return TCG_TARGET_HAS_not_i64;
1594 case INDEX_op_neg_i64:
1595 return TCG_TARGET_HAS_neg_i64;
1596 case INDEX_op_andc_i64:
1597 return TCG_TARGET_HAS_andc_i64;
1598 case INDEX_op_orc_i64:
1599 return TCG_TARGET_HAS_orc_i64;
1600 case INDEX_op_eqv_i64:
1601 return TCG_TARGET_HAS_eqv_i64;
1602 case INDEX_op_nand_i64:
1603 return TCG_TARGET_HAS_nand_i64;
1604 case INDEX_op_nor_i64:
1605 return TCG_TARGET_HAS_nor_i64;
1606 case INDEX_op_clz_i64:
1607 return TCG_TARGET_HAS_clz_i64;
1608 case INDEX_op_ctz_i64:
1609 return TCG_TARGET_HAS_ctz_i64;
1610 case INDEX_op_ctpop_i64:
1611 return TCG_TARGET_HAS_ctpop_i64;
1612 case INDEX_op_add2_i64:
1613 return TCG_TARGET_HAS_add2_i64;
1614 case INDEX_op_sub2_i64:
1615 return TCG_TARGET_HAS_sub2_i64;
1616 case INDEX_op_mulu2_i64:
1617 return TCG_TARGET_HAS_mulu2_i64;
1618 case INDEX_op_muls2_i64:
1619 return TCG_TARGET_HAS_muls2_i64;
1620 case INDEX_op_muluh_i64:
1621 return TCG_TARGET_HAS_muluh_i64;
1622 case INDEX_op_mulsh_i64:
1623 return TCG_TARGET_HAS_mulsh_i64;
1625 case INDEX_op_mov_vec:
1626 case INDEX_op_dup_vec:
1627 case INDEX_op_dupi_vec:
1628 case INDEX_op_dupm_vec:
1629 case INDEX_op_ld_vec:
1630 case INDEX_op_st_vec:
1631 case INDEX_op_add_vec:
1632 case INDEX_op_sub_vec:
1633 case INDEX_op_and_vec:
1634 case INDEX_op_or_vec:
1635 case INDEX_op_xor_vec:
1636 case INDEX_op_cmp_vec:
1637 return have_vec;
1638 case INDEX_op_dup2_vec:
1639 return have_vec && TCG_TARGET_REG_BITS == 32;
1640 case INDEX_op_not_vec:
1641 return have_vec && TCG_TARGET_HAS_not_vec;
1642 case INDEX_op_neg_vec:
1643 return have_vec && TCG_TARGET_HAS_neg_vec;
1644 case INDEX_op_abs_vec:
1645 return have_vec && TCG_TARGET_HAS_abs_vec;
1646 case INDEX_op_andc_vec:
1647 return have_vec && TCG_TARGET_HAS_andc_vec;
1648 case INDEX_op_orc_vec:
1649 return have_vec && TCG_TARGET_HAS_orc_vec;
1650 case INDEX_op_mul_vec:
1651 return have_vec && TCG_TARGET_HAS_mul_vec;
1652 case INDEX_op_shli_vec:
1653 case INDEX_op_shri_vec:
1654 case INDEX_op_sari_vec:
1655 return have_vec && TCG_TARGET_HAS_shi_vec;
1656 case INDEX_op_shls_vec:
1657 case INDEX_op_shrs_vec:
1658 case INDEX_op_sars_vec:
1659 return have_vec && TCG_TARGET_HAS_shs_vec;
1660 case INDEX_op_shlv_vec:
1661 case INDEX_op_shrv_vec:
1662 case INDEX_op_sarv_vec:
1663 return have_vec && TCG_TARGET_HAS_shv_vec;
1664 case INDEX_op_ssadd_vec:
1665 case INDEX_op_usadd_vec:
1666 case INDEX_op_sssub_vec:
1667 case INDEX_op_ussub_vec:
1668 return have_vec && TCG_TARGET_HAS_sat_vec;
1669 case INDEX_op_smin_vec:
1670 case INDEX_op_umin_vec:
1671 case INDEX_op_smax_vec:
1672 case INDEX_op_umax_vec:
1673 return have_vec && TCG_TARGET_HAS_minmax_vec;
1674 case INDEX_op_bitsel_vec:
1675 return have_vec && TCG_TARGET_HAS_bitsel_vec;
1676 case INDEX_op_cmpsel_vec:
1677 return have_vec && TCG_TARGET_HAS_cmpsel_vec;
1679 default:
1680 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS);
1681 return true;
1685 /* Note: we convert the 64 bit args to 32 bit and do some alignment
1686 and endian swap. Maybe it would be better to do the alignment
1687 and endian swap in tcg_reg_alloc_call(). */
1688 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args)
1690 int i, real_args, nb_rets, pi;
1691 unsigned sizemask, flags;
1692 TCGHelperInfo *info;
1693 TCGOp *op;
1695 info = g_hash_table_lookup(helper_table, (gpointer)func);
1696 flags = info->flags;
1697 sizemask = info->sizemask;
1699 #ifdef CONFIG_PLUGIN
1700 /* detect non-plugin helpers */
1701 if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) {
1702 tcg_ctx->plugin_insn->calls_helpers = true;
1704 #endif
1706 #if defined(__sparc__) && !defined(__arch64__) \
1707 && !defined(CONFIG_TCG_INTERPRETER)
1708 /* We have 64-bit values in one register, but need to pass as two
1709 separate parameters. Split them. */
1710 int orig_sizemask = sizemask;
1711 int orig_nargs = nargs;
1712 TCGv_i64 retl, reth;
1713 TCGTemp *split_args[MAX_OPC_PARAM];
1715 retl = NULL;
1716 reth = NULL;
1717 if (sizemask != 0) {
1718 for (i = real_args = 0; i < nargs; ++i) {
1719 int is_64bit = sizemask & (1 << (i+1)*2);
1720 if (is_64bit) {
1721 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1722 TCGv_i32 h = tcg_temp_new_i32();
1723 TCGv_i32 l = tcg_temp_new_i32();
1724 tcg_gen_extr_i64_i32(l, h, orig);
1725 split_args[real_args++] = tcgv_i32_temp(h);
1726 split_args[real_args++] = tcgv_i32_temp(l);
1727 } else {
1728 split_args[real_args++] = args[i];
1731 nargs = real_args;
1732 args = split_args;
1733 sizemask = 0;
1735 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1736 for (i = 0; i < nargs; ++i) {
1737 int is_64bit = sizemask & (1 << (i+1)*2);
1738 int is_signed = sizemask & (2 << (i+1)*2);
1739 if (!is_64bit) {
1740 TCGv_i64 temp = tcg_temp_new_i64();
1741 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1742 if (is_signed) {
1743 tcg_gen_ext32s_i64(temp, orig);
1744 } else {
1745 tcg_gen_ext32u_i64(temp, orig);
1747 args[i] = tcgv_i64_temp(temp);
1750 #endif /* TCG_TARGET_EXTEND_ARGS */
1752 op = tcg_emit_op(INDEX_op_call);
1754 pi = 0;
1755 if (ret != NULL) {
1756 #if defined(__sparc__) && !defined(__arch64__) \
1757 && !defined(CONFIG_TCG_INTERPRETER)
1758 if (orig_sizemask & 1) {
1759 /* The 32-bit ABI is going to return the 64-bit value in
1760 the %o0/%o1 register pair. Prepare for this by using
1761 two return temporaries, and reassemble below. */
1762 retl = tcg_temp_new_i64();
1763 reth = tcg_temp_new_i64();
1764 op->args[pi++] = tcgv_i64_arg(reth);
1765 op->args[pi++] = tcgv_i64_arg(retl);
1766 nb_rets = 2;
1767 } else {
1768 op->args[pi++] = temp_arg(ret);
1769 nb_rets = 1;
1771 #else
1772 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) {
1773 #ifdef HOST_WORDS_BIGENDIAN
1774 op->args[pi++] = temp_arg(ret + 1);
1775 op->args[pi++] = temp_arg(ret);
1776 #else
1777 op->args[pi++] = temp_arg(ret);
1778 op->args[pi++] = temp_arg(ret + 1);
1779 #endif
1780 nb_rets = 2;
1781 } else {
1782 op->args[pi++] = temp_arg(ret);
1783 nb_rets = 1;
1785 #endif
1786 } else {
1787 nb_rets = 0;
1789 TCGOP_CALLO(op) = nb_rets;
1791 real_args = 0;
1792 for (i = 0; i < nargs; i++) {
1793 int is_64bit = sizemask & (1 << (i+1)*2);
1794 if (TCG_TARGET_REG_BITS < 64 && is_64bit) {
1795 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
1796 /* some targets want aligned 64 bit args */
1797 if (real_args & 1) {
1798 op->args[pi++] = TCG_CALL_DUMMY_ARG;
1799 real_args++;
1801 #endif
1802 /* If stack grows up, then we will be placing successive
1803 arguments at lower addresses, which means we need to
1804 reverse the order compared to how we would normally
1805 treat either big or little-endian. For those arguments
1806 that will wind up in registers, this still works for
1807 HPPA (the only current STACK_GROWSUP target) since the
1808 argument registers are *also* allocated in decreasing
1809 order. If another such target is added, this logic may
1810 have to get more complicated to differentiate between
1811 stack arguments and register arguments. */
1812 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP)
1813 op->args[pi++] = temp_arg(args[i] + 1);
1814 op->args[pi++] = temp_arg(args[i]);
1815 #else
1816 op->args[pi++] = temp_arg(args[i]);
1817 op->args[pi++] = temp_arg(args[i] + 1);
1818 #endif
1819 real_args += 2;
1820 continue;
1823 op->args[pi++] = temp_arg(args[i]);
1824 real_args++;
1826 op->args[pi++] = (uintptr_t)func;
1827 op->args[pi++] = flags;
1828 TCGOP_CALLI(op) = real_args;
1830 /* Make sure the fields didn't overflow. */
1831 tcg_debug_assert(TCGOP_CALLI(op) == real_args);
1832 tcg_debug_assert(pi <= ARRAY_SIZE(op->args));
1834 #if defined(__sparc__) && !defined(__arch64__) \
1835 && !defined(CONFIG_TCG_INTERPRETER)
1836 /* Free all of the parts we allocated above. */
1837 for (i = real_args = 0; i < orig_nargs; ++i) {
1838 int is_64bit = orig_sizemask & (1 << (i+1)*2);
1839 if (is_64bit) {
1840 tcg_temp_free_internal(args[real_args++]);
1841 tcg_temp_free_internal(args[real_args++]);
1842 } else {
1843 real_args++;
1846 if (orig_sizemask & 1) {
1847 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them.
1848 Note that describing these as TCGv_i64 eliminates an unnecessary
1849 zero-extension that tcg_gen_concat_i32_i64 would create. */
1850 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth);
1851 tcg_temp_free_i64(retl);
1852 tcg_temp_free_i64(reth);
1854 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1855 for (i = 0; i < nargs; ++i) {
1856 int is_64bit = sizemask & (1 << (i+1)*2);
1857 if (!is_64bit) {
1858 tcg_temp_free_internal(args[i]);
1861 #endif /* TCG_TARGET_EXTEND_ARGS */
1864 static void tcg_reg_alloc_start(TCGContext *s)
1866 int i, n;
1867 TCGTemp *ts;
1869 for (i = 0, n = s->nb_globals; i < n; i++) {
1870 ts = &s->temps[i];
1871 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM);
1873 for (n = s->nb_temps; i < n; i++) {
1874 ts = &s->temps[i];
1875 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
1876 ts->mem_allocated = 0;
1877 ts->fixed_reg = 0;
1880 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp));
1883 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size,
1884 TCGTemp *ts)
1886 int idx = temp_idx(ts);
1888 if (ts->temp_global) {
1889 pstrcpy(buf, buf_size, ts->name);
1890 } else if (ts->temp_local) {
1891 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals);
1892 } else {
1893 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals);
1895 return buf;
1898 static char *tcg_get_arg_str(TCGContext *s, char *buf,
1899 int buf_size, TCGArg arg)
1901 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg));
1904 /* Find helper name. */
1905 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val)
1907 const char *ret = NULL;
1908 if (helper_table) {
1909 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val);
1910 if (info) {
1911 ret = info->name;
1914 return ret;
1917 static const char * const cond_name[] =
1919 [TCG_COND_NEVER] = "never",
1920 [TCG_COND_ALWAYS] = "always",
1921 [TCG_COND_EQ] = "eq",
1922 [TCG_COND_NE] = "ne",
1923 [TCG_COND_LT] = "lt",
1924 [TCG_COND_GE] = "ge",
1925 [TCG_COND_LE] = "le",
1926 [TCG_COND_GT] = "gt",
1927 [TCG_COND_LTU] = "ltu",
1928 [TCG_COND_GEU] = "geu",
1929 [TCG_COND_LEU] = "leu",
1930 [TCG_COND_GTU] = "gtu"
1933 static const char * const ldst_name[] =
1935 [MO_UB] = "ub",
1936 [MO_SB] = "sb",
1937 [MO_LEUW] = "leuw",
1938 [MO_LESW] = "lesw",
1939 [MO_LEUL] = "leul",
1940 [MO_LESL] = "lesl",
1941 [MO_LEQ] = "leq",
1942 [MO_BEUW] = "beuw",
1943 [MO_BESW] = "besw",
1944 [MO_BEUL] = "beul",
1945 [MO_BESL] = "besl",
1946 [MO_BEQ] = "beq",
1949 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = {
1950 #ifdef TARGET_ALIGNED_ONLY
1951 [MO_UNALN >> MO_ASHIFT] = "un+",
1952 [MO_ALIGN >> MO_ASHIFT] = "",
1953 #else
1954 [MO_UNALN >> MO_ASHIFT] = "",
1955 [MO_ALIGN >> MO_ASHIFT] = "al+",
1956 #endif
1957 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+",
1958 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+",
1959 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+",
1960 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+",
1961 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+",
1962 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+",
1965 static inline bool tcg_regset_single(TCGRegSet d)
1967 return (d & (d - 1)) == 0;
1970 static inline TCGReg tcg_regset_first(TCGRegSet d)
1972 if (TCG_TARGET_NB_REGS <= 32) {
1973 return ctz32(d);
1974 } else {
1975 return ctz64(d);
1979 static void tcg_dump_ops(TCGContext *s, bool have_prefs)
1981 char buf[128];
1982 TCGOp *op;
1984 QTAILQ_FOREACH(op, &s->ops, link) {
1985 int i, k, nb_oargs, nb_iargs, nb_cargs;
1986 const TCGOpDef *def;
1987 TCGOpcode c;
1988 int col = 0;
1990 c = op->opc;
1991 def = &tcg_op_defs[c];
1993 if (c == INDEX_op_insn_start) {
1994 nb_oargs = 0;
1995 col += qemu_log("\n ----");
1997 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
1998 target_ulong a;
1999 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
2000 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
2001 #else
2002 a = op->args[i];
2003 #endif
2004 col += qemu_log(" " TARGET_FMT_lx, a);
2006 } else if (c == INDEX_op_call) {
2007 /* variable number of arguments */
2008 nb_oargs = TCGOP_CALLO(op);
2009 nb_iargs = TCGOP_CALLI(op);
2010 nb_cargs = def->nb_cargs;
2012 /* function name, flags, out args */
2013 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name,
2014 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]),
2015 op->args[nb_oargs + nb_iargs + 1], nb_oargs);
2016 for (i = 0; i < nb_oargs; i++) {
2017 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf),
2018 op->args[i]));
2020 for (i = 0; i < nb_iargs; i++) {
2021 TCGArg arg = op->args[nb_oargs + i];
2022 const char *t = "<dummy>";
2023 if (arg != TCG_CALL_DUMMY_ARG) {
2024 t = tcg_get_arg_str(s, buf, sizeof(buf), arg);
2026 col += qemu_log(",%s", t);
2028 } else {
2029 col += qemu_log(" %s ", def->name);
2031 nb_oargs = def->nb_oargs;
2032 nb_iargs = def->nb_iargs;
2033 nb_cargs = def->nb_cargs;
2035 if (def->flags & TCG_OPF_VECTOR) {
2036 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op),
2037 8 << TCGOP_VECE(op));
2040 k = 0;
2041 for (i = 0; i < nb_oargs; i++) {
2042 if (k != 0) {
2043 col += qemu_log(",");
2045 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
2046 op->args[k++]));
2048 for (i = 0; i < nb_iargs; i++) {
2049 if (k != 0) {
2050 col += qemu_log(",");
2052 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
2053 op->args[k++]));
2055 switch (c) {
2056 case INDEX_op_brcond_i32:
2057 case INDEX_op_setcond_i32:
2058 case INDEX_op_movcond_i32:
2059 case INDEX_op_brcond2_i32:
2060 case INDEX_op_setcond2_i32:
2061 case INDEX_op_brcond_i64:
2062 case INDEX_op_setcond_i64:
2063 case INDEX_op_movcond_i64:
2064 case INDEX_op_cmp_vec:
2065 case INDEX_op_cmpsel_vec:
2066 if (op->args[k] < ARRAY_SIZE(cond_name)
2067 && cond_name[op->args[k]]) {
2068 col += qemu_log(",%s", cond_name[op->args[k++]]);
2069 } else {
2070 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]);
2072 i = 1;
2073 break;
2074 case INDEX_op_qemu_ld_i32:
2075 case INDEX_op_qemu_st_i32:
2076 case INDEX_op_qemu_ld_i64:
2077 case INDEX_op_qemu_st_i64:
2079 TCGMemOpIdx oi = op->args[k++];
2080 MemOp op = get_memop(oi);
2081 unsigned ix = get_mmuidx(oi);
2083 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) {
2084 col += qemu_log(",$0x%x,%u", op, ix);
2085 } else {
2086 const char *s_al, *s_op;
2087 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT];
2088 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)];
2089 col += qemu_log(",%s%s,%u", s_al, s_op, ix);
2091 i = 1;
2093 break;
2094 default:
2095 i = 0;
2096 break;
2098 switch (c) {
2099 case INDEX_op_set_label:
2100 case INDEX_op_br:
2101 case INDEX_op_brcond_i32:
2102 case INDEX_op_brcond_i64:
2103 case INDEX_op_brcond2_i32:
2104 col += qemu_log("%s$L%d", k ? "," : "",
2105 arg_label(op->args[k])->id);
2106 i++, k++;
2107 break;
2108 default:
2109 break;
2111 for (; i < nb_cargs; i++, k++) {
2112 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]);
2116 if (have_prefs || op->life) {
2117 for (; col < 40; ++col) {
2118 putc(' ', qemu_logfile);
2122 if (op->life) {
2123 unsigned life = op->life;
2125 if (life & (SYNC_ARG * 3)) {
2126 qemu_log(" sync:");
2127 for (i = 0; i < 2; ++i) {
2128 if (life & (SYNC_ARG << i)) {
2129 qemu_log(" %d", i);
2133 life /= DEAD_ARG;
2134 if (life) {
2135 qemu_log(" dead:");
2136 for (i = 0; life; ++i, life >>= 1) {
2137 if (life & 1) {
2138 qemu_log(" %d", i);
2144 if (have_prefs) {
2145 for (i = 0; i < nb_oargs; ++i) {
2146 TCGRegSet set = op->output_pref[i];
2148 if (i == 0) {
2149 qemu_log(" pref=");
2150 } else {
2151 qemu_log(",");
2153 if (set == 0) {
2154 qemu_log("none");
2155 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) {
2156 qemu_log("all");
2157 #ifdef CONFIG_DEBUG_TCG
2158 } else if (tcg_regset_single(set)) {
2159 TCGReg reg = tcg_regset_first(set);
2160 qemu_log("%s", tcg_target_reg_names[reg]);
2161 #endif
2162 } else if (TCG_TARGET_NB_REGS <= 32) {
2163 qemu_log("%#x", (uint32_t)set);
2164 } else {
2165 qemu_log("%#" PRIx64, (uint64_t)set);
2170 qemu_log("\n");
2174 /* we give more priority to constraints with less registers */
2175 static int get_constraint_priority(const TCGOpDef *def, int k)
2177 const TCGArgConstraint *arg_ct;
2179 int i, n;
2180 arg_ct = &def->args_ct[k];
2181 if (arg_ct->ct & TCG_CT_ALIAS) {
2182 /* an alias is equivalent to a single register */
2183 n = 1;
2184 } else {
2185 if (!(arg_ct->ct & TCG_CT_REG))
2186 return 0;
2187 n = 0;
2188 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2189 if (tcg_regset_test_reg(arg_ct->u.regs, i))
2190 n++;
2193 return TCG_TARGET_NB_REGS - n + 1;
2196 /* sort from highest priority to lowest */
2197 static void sort_constraints(TCGOpDef *def, int start, int n)
2199 int i, j, p1, p2, tmp;
2201 for(i = 0; i < n; i++)
2202 def->sorted_args[start + i] = start + i;
2203 if (n <= 1)
2204 return;
2205 for(i = 0; i < n - 1; i++) {
2206 for(j = i + 1; j < n; j++) {
2207 p1 = get_constraint_priority(def, def->sorted_args[start + i]);
2208 p2 = get_constraint_priority(def, def->sorted_args[start + j]);
2209 if (p1 < p2) {
2210 tmp = def->sorted_args[start + i];
2211 def->sorted_args[start + i] = def->sorted_args[start + j];
2212 def->sorted_args[start + j] = tmp;
2218 static void process_op_defs(TCGContext *s)
2220 TCGOpcode op;
2222 for (op = 0; op < NB_OPS; op++) {
2223 TCGOpDef *def = &tcg_op_defs[op];
2224 const TCGTargetOpDef *tdefs;
2225 TCGType type;
2226 int i, nb_args;
2228 if (def->flags & TCG_OPF_NOT_PRESENT) {
2229 continue;
2232 nb_args = def->nb_iargs + def->nb_oargs;
2233 if (nb_args == 0) {
2234 continue;
2237 tdefs = tcg_target_op_def(op);
2238 /* Missing TCGTargetOpDef entry. */
2239 tcg_debug_assert(tdefs != NULL);
2241 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32);
2242 for (i = 0; i < nb_args; i++) {
2243 const char *ct_str = tdefs->args_ct_str[i];
2244 /* Incomplete TCGTargetOpDef entry. */
2245 tcg_debug_assert(ct_str != NULL);
2247 def->args_ct[i].u.regs = 0;
2248 def->args_ct[i].ct = 0;
2249 while (*ct_str != '\0') {
2250 switch(*ct_str) {
2251 case '0' ... '9':
2253 int oarg = *ct_str - '0';
2254 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]);
2255 tcg_debug_assert(oarg < def->nb_oargs);
2256 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG);
2257 /* TCG_CT_ALIAS is for the output arguments.
2258 The input is tagged with TCG_CT_IALIAS. */
2259 def->args_ct[i] = def->args_ct[oarg];
2260 def->args_ct[oarg].ct |= TCG_CT_ALIAS;
2261 def->args_ct[oarg].alias_index = i;
2262 def->args_ct[i].ct |= TCG_CT_IALIAS;
2263 def->args_ct[i].alias_index = oarg;
2265 ct_str++;
2266 break;
2267 case '&':
2268 def->args_ct[i].ct |= TCG_CT_NEWREG;
2269 ct_str++;
2270 break;
2271 case 'i':
2272 def->args_ct[i].ct |= TCG_CT_CONST;
2273 ct_str++;
2274 break;
2275 default:
2276 ct_str = target_parse_constraint(&def->args_ct[i],
2277 ct_str, type);
2278 /* Typo in TCGTargetOpDef constraint. */
2279 tcg_debug_assert(ct_str != NULL);
2284 /* TCGTargetOpDef entry with too much information? */
2285 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL);
2287 /* sort the constraints (XXX: this is just an heuristic) */
2288 sort_constraints(def, 0, def->nb_oargs);
2289 sort_constraints(def, def->nb_oargs, def->nb_iargs);
2293 void tcg_op_remove(TCGContext *s, TCGOp *op)
2295 TCGLabel *label;
2297 switch (op->opc) {
2298 case INDEX_op_br:
2299 label = arg_label(op->args[0]);
2300 label->refs--;
2301 break;
2302 case INDEX_op_brcond_i32:
2303 case INDEX_op_brcond_i64:
2304 label = arg_label(op->args[3]);
2305 label->refs--;
2306 break;
2307 case INDEX_op_brcond2_i32:
2308 label = arg_label(op->args[5]);
2309 label->refs--;
2310 break;
2311 default:
2312 break;
2315 QTAILQ_REMOVE(&s->ops, op, link);
2316 QTAILQ_INSERT_TAIL(&s->free_ops, op, link);
2317 s->nb_ops--;
2319 #ifdef CONFIG_PROFILER
2320 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1);
2321 #endif
2324 static TCGOp *tcg_op_alloc(TCGOpcode opc)
2326 TCGContext *s = tcg_ctx;
2327 TCGOp *op;
2329 if (likely(QTAILQ_EMPTY(&s->free_ops))) {
2330 op = tcg_malloc(sizeof(TCGOp));
2331 } else {
2332 op = QTAILQ_FIRST(&s->free_ops);
2333 QTAILQ_REMOVE(&s->free_ops, op, link);
2335 memset(op, 0, offsetof(TCGOp, link));
2336 op->opc = opc;
2337 s->nb_ops++;
2339 return op;
2342 TCGOp *tcg_emit_op(TCGOpcode opc)
2344 TCGOp *op = tcg_op_alloc(opc);
2345 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link);
2346 return op;
2349 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2351 TCGOp *new_op = tcg_op_alloc(opc);
2352 QTAILQ_INSERT_BEFORE(old_op, new_op, link);
2353 return new_op;
2356 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2358 TCGOp *new_op = tcg_op_alloc(opc);
2359 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link);
2360 return new_op;
2363 /* Reachable analysis : remove unreachable code. */
2364 static void reachable_code_pass(TCGContext *s)
2366 TCGOp *op, *op_next;
2367 bool dead = false;
2369 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2370 bool remove = dead;
2371 TCGLabel *label;
2372 int call_flags;
2374 switch (op->opc) {
2375 case INDEX_op_set_label:
2376 label = arg_label(op->args[0]);
2377 if (label->refs == 0) {
2379 * While there is an occasional backward branch, virtually
2380 * all branches generated by the translators are forward.
2381 * Which means that generally we will have already removed
2382 * all references to the label that will be, and there is
2383 * little to be gained by iterating.
2385 remove = true;
2386 } else {
2387 /* Once we see a label, insns become live again. */
2388 dead = false;
2389 remove = false;
2392 * Optimization can fold conditional branches to unconditional.
2393 * If we find a label with one reference which is preceded by
2394 * an unconditional branch to it, remove both. This needed to
2395 * wait until the dead code in between them was removed.
2397 if (label->refs == 1) {
2398 TCGOp *op_prev = QTAILQ_PREV(op, link);
2399 if (op_prev->opc == INDEX_op_br &&
2400 label == arg_label(op_prev->args[0])) {
2401 tcg_op_remove(s, op_prev);
2402 remove = true;
2406 break;
2408 case INDEX_op_br:
2409 case INDEX_op_exit_tb:
2410 case INDEX_op_goto_ptr:
2411 /* Unconditional branches; everything following is dead. */
2412 dead = true;
2413 break;
2415 case INDEX_op_call:
2416 /* Notice noreturn helper calls, raising exceptions. */
2417 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1];
2418 if (call_flags & TCG_CALL_NO_RETURN) {
2419 dead = true;
2421 break;
2423 case INDEX_op_insn_start:
2424 /* Never remove -- we need to keep these for unwind. */
2425 remove = false;
2426 break;
2428 default:
2429 break;
2432 if (remove) {
2433 tcg_op_remove(s, op);
2438 #define TS_DEAD 1
2439 #define TS_MEM 2
2441 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n)))
2442 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n)))
2444 /* For liveness_pass_1, the register preferences for a given temp. */
2445 static inline TCGRegSet *la_temp_pref(TCGTemp *ts)
2447 return ts->state_ptr;
2450 /* For liveness_pass_1, reset the preferences for a given temp to the
2451 * maximal regset for its type.
2453 static inline void la_reset_pref(TCGTemp *ts)
2455 *la_temp_pref(ts)
2456 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]);
2459 /* liveness analysis: end of function: all temps are dead, and globals
2460 should be in memory. */
2461 static void la_func_end(TCGContext *s, int ng, int nt)
2463 int i;
2465 for (i = 0; i < ng; ++i) {
2466 s->temps[i].state = TS_DEAD | TS_MEM;
2467 la_reset_pref(&s->temps[i]);
2469 for (i = ng; i < nt; ++i) {
2470 s->temps[i].state = TS_DEAD;
2471 la_reset_pref(&s->temps[i]);
2475 /* liveness analysis: end of basic block: all temps are dead, globals
2476 and local temps should be in memory. */
2477 static void la_bb_end(TCGContext *s, int ng, int nt)
2479 int i;
2481 for (i = 0; i < ng; ++i) {
2482 s->temps[i].state = TS_DEAD | TS_MEM;
2483 la_reset_pref(&s->temps[i]);
2485 for (i = ng; i < nt; ++i) {
2486 s->temps[i].state = (s->temps[i].temp_local
2487 ? TS_DEAD | TS_MEM
2488 : TS_DEAD);
2489 la_reset_pref(&s->temps[i]);
2493 /* liveness analysis: sync globals back to memory. */
2494 static void la_global_sync(TCGContext *s, int ng)
2496 int i;
2498 for (i = 0; i < ng; ++i) {
2499 int state = s->temps[i].state;
2500 s->temps[i].state = state | TS_MEM;
2501 if (state == TS_DEAD) {
2502 /* If the global was previously dead, reset prefs. */
2503 la_reset_pref(&s->temps[i]);
2508 /* liveness analysis: sync globals back to memory and kill. */
2509 static void la_global_kill(TCGContext *s, int ng)
2511 int i;
2513 for (i = 0; i < ng; i++) {
2514 s->temps[i].state = TS_DEAD | TS_MEM;
2515 la_reset_pref(&s->temps[i]);
2519 /* liveness analysis: note live globals crossing calls. */
2520 static void la_cross_call(TCGContext *s, int nt)
2522 TCGRegSet mask = ~tcg_target_call_clobber_regs;
2523 int i;
2525 for (i = 0; i < nt; i++) {
2526 TCGTemp *ts = &s->temps[i];
2527 if (!(ts->state & TS_DEAD)) {
2528 TCGRegSet *pset = la_temp_pref(ts);
2529 TCGRegSet set = *pset;
2531 set &= mask;
2532 /* If the combination is not possible, restart. */
2533 if (set == 0) {
2534 set = tcg_target_available_regs[ts->type] & mask;
2536 *pset = set;
2541 /* Liveness analysis : update the opc_arg_life array to tell if a
2542 given input arguments is dead. Instructions updating dead
2543 temporaries are removed. */
2544 static void liveness_pass_1(TCGContext *s)
2546 int nb_globals = s->nb_globals;
2547 int nb_temps = s->nb_temps;
2548 TCGOp *op, *op_prev;
2549 TCGRegSet *prefs;
2550 int i;
2552 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps);
2553 for (i = 0; i < nb_temps; ++i) {
2554 s->temps[i].state_ptr = prefs + i;
2557 /* ??? Should be redundant with the exit_tb that ends the TB. */
2558 la_func_end(s, nb_globals, nb_temps);
2560 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) {
2561 int nb_iargs, nb_oargs;
2562 TCGOpcode opc_new, opc_new2;
2563 bool have_opc_new2;
2564 TCGLifeData arg_life = 0;
2565 TCGTemp *ts;
2566 TCGOpcode opc = op->opc;
2567 const TCGOpDef *def = &tcg_op_defs[opc];
2569 switch (opc) {
2570 case INDEX_op_call:
2572 int call_flags;
2573 int nb_call_regs;
2575 nb_oargs = TCGOP_CALLO(op);
2576 nb_iargs = TCGOP_CALLI(op);
2577 call_flags = op->args[nb_oargs + nb_iargs + 1];
2579 /* pure functions can be removed if their result is unused */
2580 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) {
2581 for (i = 0; i < nb_oargs; i++) {
2582 ts = arg_temp(op->args[i]);
2583 if (ts->state != TS_DEAD) {
2584 goto do_not_remove_call;
2587 goto do_remove;
2589 do_not_remove_call:
2591 /* Output args are dead. */
2592 for (i = 0; i < nb_oargs; i++) {
2593 ts = arg_temp(op->args[i]);
2594 if (ts->state & TS_DEAD) {
2595 arg_life |= DEAD_ARG << i;
2597 if (ts->state & TS_MEM) {
2598 arg_life |= SYNC_ARG << i;
2600 ts->state = TS_DEAD;
2601 la_reset_pref(ts);
2603 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */
2604 op->output_pref[i] = 0;
2607 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS |
2608 TCG_CALL_NO_READ_GLOBALS))) {
2609 la_global_kill(s, nb_globals);
2610 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) {
2611 la_global_sync(s, nb_globals);
2614 /* Record arguments that die in this helper. */
2615 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2616 ts = arg_temp(op->args[i]);
2617 if (ts && ts->state & TS_DEAD) {
2618 arg_life |= DEAD_ARG << i;
2622 /* For all live registers, remove call-clobbered prefs. */
2623 la_cross_call(s, nb_temps);
2625 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
2627 /* Input arguments are live for preceding opcodes. */
2628 for (i = 0; i < nb_iargs; i++) {
2629 ts = arg_temp(op->args[i + nb_oargs]);
2630 if (ts && ts->state & TS_DEAD) {
2631 /* For those arguments that die, and will be allocated
2632 * in registers, clear the register set for that arg,
2633 * to be filled in below. For args that will be on
2634 * the stack, reset to any available reg.
2636 *la_temp_pref(ts)
2637 = (i < nb_call_regs ? 0 :
2638 tcg_target_available_regs[ts->type]);
2639 ts->state &= ~TS_DEAD;
2643 /* For each input argument, add its input register to prefs.
2644 If a temp is used once, this produces a single set bit. */
2645 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) {
2646 ts = arg_temp(op->args[i + nb_oargs]);
2647 if (ts) {
2648 tcg_regset_set_reg(*la_temp_pref(ts),
2649 tcg_target_call_iarg_regs[i]);
2653 break;
2654 case INDEX_op_insn_start:
2655 break;
2656 case INDEX_op_discard:
2657 /* mark the temporary as dead */
2658 ts = arg_temp(op->args[0]);
2659 ts->state = TS_DEAD;
2660 la_reset_pref(ts);
2661 break;
2663 case INDEX_op_add2_i32:
2664 opc_new = INDEX_op_add_i32;
2665 goto do_addsub2;
2666 case INDEX_op_sub2_i32:
2667 opc_new = INDEX_op_sub_i32;
2668 goto do_addsub2;
2669 case INDEX_op_add2_i64:
2670 opc_new = INDEX_op_add_i64;
2671 goto do_addsub2;
2672 case INDEX_op_sub2_i64:
2673 opc_new = INDEX_op_sub_i64;
2674 do_addsub2:
2675 nb_iargs = 4;
2676 nb_oargs = 2;
2677 /* Test if the high part of the operation is dead, but not
2678 the low part. The result can be optimized to a simple
2679 add or sub. This happens often for x86_64 guest when the
2680 cpu mode is set to 32 bit. */
2681 if (arg_temp(op->args[1])->state == TS_DEAD) {
2682 if (arg_temp(op->args[0])->state == TS_DEAD) {
2683 goto do_remove;
2685 /* Replace the opcode and adjust the args in place,
2686 leaving 3 unused args at the end. */
2687 op->opc = opc = opc_new;
2688 op->args[1] = op->args[2];
2689 op->args[2] = op->args[4];
2690 /* Fall through and mark the single-word operation live. */
2691 nb_iargs = 2;
2692 nb_oargs = 1;
2694 goto do_not_remove;
2696 case INDEX_op_mulu2_i32:
2697 opc_new = INDEX_op_mul_i32;
2698 opc_new2 = INDEX_op_muluh_i32;
2699 have_opc_new2 = TCG_TARGET_HAS_muluh_i32;
2700 goto do_mul2;
2701 case INDEX_op_muls2_i32:
2702 opc_new = INDEX_op_mul_i32;
2703 opc_new2 = INDEX_op_mulsh_i32;
2704 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32;
2705 goto do_mul2;
2706 case INDEX_op_mulu2_i64:
2707 opc_new = INDEX_op_mul_i64;
2708 opc_new2 = INDEX_op_muluh_i64;
2709 have_opc_new2 = TCG_TARGET_HAS_muluh_i64;
2710 goto do_mul2;
2711 case INDEX_op_muls2_i64:
2712 opc_new = INDEX_op_mul_i64;
2713 opc_new2 = INDEX_op_mulsh_i64;
2714 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64;
2715 goto do_mul2;
2716 do_mul2:
2717 nb_iargs = 2;
2718 nb_oargs = 2;
2719 if (arg_temp(op->args[1])->state == TS_DEAD) {
2720 if (arg_temp(op->args[0])->state == TS_DEAD) {
2721 /* Both parts of the operation are dead. */
2722 goto do_remove;
2724 /* The high part of the operation is dead; generate the low. */
2725 op->opc = opc = opc_new;
2726 op->args[1] = op->args[2];
2727 op->args[2] = op->args[3];
2728 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) {
2729 /* The low part of the operation is dead; generate the high. */
2730 op->opc = opc = opc_new2;
2731 op->args[0] = op->args[1];
2732 op->args[1] = op->args[2];
2733 op->args[2] = op->args[3];
2734 } else {
2735 goto do_not_remove;
2737 /* Mark the single-word operation live. */
2738 nb_oargs = 1;
2739 goto do_not_remove;
2741 default:
2742 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
2743 nb_iargs = def->nb_iargs;
2744 nb_oargs = def->nb_oargs;
2746 /* Test if the operation can be removed because all
2747 its outputs are dead. We assume that nb_oargs == 0
2748 implies side effects */
2749 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) {
2750 for (i = 0; i < nb_oargs; i++) {
2751 if (arg_temp(op->args[i])->state != TS_DEAD) {
2752 goto do_not_remove;
2755 goto do_remove;
2757 goto do_not_remove;
2759 do_remove:
2760 tcg_op_remove(s, op);
2761 break;
2763 do_not_remove:
2764 for (i = 0; i < nb_oargs; i++) {
2765 ts = arg_temp(op->args[i]);
2767 /* Remember the preference of the uses that followed. */
2768 op->output_pref[i] = *la_temp_pref(ts);
2770 /* Output args are dead. */
2771 if (ts->state & TS_DEAD) {
2772 arg_life |= DEAD_ARG << i;
2774 if (ts->state & TS_MEM) {
2775 arg_life |= SYNC_ARG << i;
2777 ts->state = TS_DEAD;
2778 la_reset_pref(ts);
2781 /* If end of basic block, update. */
2782 if (def->flags & TCG_OPF_BB_EXIT) {
2783 la_func_end(s, nb_globals, nb_temps);
2784 } else if (def->flags & TCG_OPF_BB_END) {
2785 la_bb_end(s, nb_globals, nb_temps);
2786 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2787 la_global_sync(s, nb_globals);
2788 if (def->flags & TCG_OPF_CALL_CLOBBER) {
2789 la_cross_call(s, nb_temps);
2793 /* Record arguments that die in this opcode. */
2794 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2795 ts = arg_temp(op->args[i]);
2796 if (ts->state & TS_DEAD) {
2797 arg_life |= DEAD_ARG << i;
2801 /* Input arguments are live for preceding opcodes. */
2802 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2803 ts = arg_temp(op->args[i]);
2804 if (ts->state & TS_DEAD) {
2805 /* For operands that were dead, initially allow
2806 all regs for the type. */
2807 *la_temp_pref(ts) = tcg_target_available_regs[ts->type];
2808 ts->state &= ~TS_DEAD;
2812 /* Incorporate constraints for this operand. */
2813 switch (opc) {
2814 case INDEX_op_mov_i32:
2815 case INDEX_op_mov_i64:
2816 /* Note that these are TCG_OPF_NOT_PRESENT and do not
2817 have proper constraints. That said, special case
2818 moves to propagate preferences backward. */
2819 if (IS_DEAD_ARG(1)) {
2820 *la_temp_pref(arg_temp(op->args[0]))
2821 = *la_temp_pref(arg_temp(op->args[1]));
2823 break;
2825 default:
2826 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2827 const TCGArgConstraint *ct = &def->args_ct[i];
2828 TCGRegSet set, *pset;
2830 ts = arg_temp(op->args[i]);
2831 pset = la_temp_pref(ts);
2832 set = *pset;
2834 set &= ct->u.regs;
2835 if (ct->ct & TCG_CT_IALIAS) {
2836 set &= op->output_pref[ct->alias_index];
2838 /* If the combination is not possible, restart. */
2839 if (set == 0) {
2840 set = ct->u.regs;
2842 *pset = set;
2844 break;
2846 break;
2848 op->life = arg_life;
2852 /* Liveness analysis: Convert indirect regs to direct temporaries. */
2853 static bool liveness_pass_2(TCGContext *s)
2855 int nb_globals = s->nb_globals;
2856 int nb_temps, i;
2857 bool changes = false;
2858 TCGOp *op, *op_next;
2860 /* Create a temporary for each indirect global. */
2861 for (i = 0; i < nb_globals; ++i) {
2862 TCGTemp *its = &s->temps[i];
2863 if (its->indirect_reg) {
2864 TCGTemp *dts = tcg_temp_alloc(s);
2865 dts->type = its->type;
2866 dts->base_type = its->base_type;
2867 its->state_ptr = dts;
2868 } else {
2869 its->state_ptr = NULL;
2871 /* All globals begin dead. */
2872 its->state = TS_DEAD;
2874 for (nb_temps = s->nb_temps; i < nb_temps; ++i) {
2875 TCGTemp *its = &s->temps[i];
2876 its->state_ptr = NULL;
2877 its->state = TS_DEAD;
2880 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2881 TCGOpcode opc = op->opc;
2882 const TCGOpDef *def = &tcg_op_defs[opc];
2883 TCGLifeData arg_life = op->life;
2884 int nb_iargs, nb_oargs, call_flags;
2885 TCGTemp *arg_ts, *dir_ts;
2887 if (opc == INDEX_op_call) {
2888 nb_oargs = TCGOP_CALLO(op);
2889 nb_iargs = TCGOP_CALLI(op);
2890 call_flags = op->args[nb_oargs + nb_iargs + 1];
2891 } else {
2892 nb_iargs = def->nb_iargs;
2893 nb_oargs = def->nb_oargs;
2895 /* Set flags similar to how calls require. */
2896 if (def->flags & TCG_OPF_BB_END) {
2897 /* Like writing globals: save_globals */
2898 call_flags = 0;
2899 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2900 /* Like reading globals: sync_globals */
2901 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2902 } else {
2903 /* No effect on globals. */
2904 call_flags = (TCG_CALL_NO_READ_GLOBALS |
2905 TCG_CALL_NO_WRITE_GLOBALS);
2909 /* Make sure that input arguments are available. */
2910 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2911 arg_ts = arg_temp(op->args[i]);
2912 if (arg_ts) {
2913 dir_ts = arg_ts->state_ptr;
2914 if (dir_ts && arg_ts->state == TS_DEAD) {
2915 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32
2916 ? INDEX_op_ld_i32
2917 : INDEX_op_ld_i64);
2918 TCGOp *lop = tcg_op_insert_before(s, op, lopc);
2920 lop->args[0] = temp_arg(dir_ts);
2921 lop->args[1] = temp_arg(arg_ts->mem_base);
2922 lop->args[2] = arg_ts->mem_offset;
2924 /* Loaded, but synced with memory. */
2925 arg_ts->state = TS_MEM;
2930 /* Perform input replacement, and mark inputs that became dead.
2931 No action is required except keeping temp_state up to date
2932 so that we reload when needed. */
2933 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2934 arg_ts = arg_temp(op->args[i]);
2935 if (arg_ts) {
2936 dir_ts = arg_ts->state_ptr;
2937 if (dir_ts) {
2938 op->args[i] = temp_arg(dir_ts);
2939 changes = true;
2940 if (IS_DEAD_ARG(i)) {
2941 arg_ts->state = TS_DEAD;
2947 /* Liveness analysis should ensure that the following are
2948 all correct, for call sites and basic block end points. */
2949 if (call_flags & TCG_CALL_NO_READ_GLOBALS) {
2950 /* Nothing to do */
2951 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) {
2952 for (i = 0; i < nb_globals; ++i) {
2953 /* Liveness should see that globals are synced back,
2954 that is, either TS_DEAD or TS_MEM. */
2955 arg_ts = &s->temps[i];
2956 tcg_debug_assert(arg_ts->state_ptr == 0
2957 || arg_ts->state != 0);
2959 } else {
2960 for (i = 0; i < nb_globals; ++i) {
2961 /* Liveness should see that globals are saved back,
2962 that is, TS_DEAD, waiting to be reloaded. */
2963 arg_ts = &s->temps[i];
2964 tcg_debug_assert(arg_ts->state_ptr == 0
2965 || arg_ts->state == TS_DEAD);
2969 /* Outputs become available. */
2970 for (i = 0; i < nb_oargs; i++) {
2971 arg_ts = arg_temp(op->args[i]);
2972 dir_ts = arg_ts->state_ptr;
2973 if (!dir_ts) {
2974 continue;
2976 op->args[i] = temp_arg(dir_ts);
2977 changes = true;
2979 /* The output is now live and modified. */
2980 arg_ts->state = 0;
2982 /* Sync outputs upon their last write. */
2983 if (NEED_SYNC_ARG(i)) {
2984 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
2985 ? INDEX_op_st_i32
2986 : INDEX_op_st_i64);
2987 TCGOp *sop = tcg_op_insert_after(s, op, sopc);
2989 sop->args[0] = temp_arg(dir_ts);
2990 sop->args[1] = temp_arg(arg_ts->mem_base);
2991 sop->args[2] = arg_ts->mem_offset;
2993 arg_ts->state = TS_MEM;
2995 /* Drop outputs that are dead. */
2996 if (IS_DEAD_ARG(i)) {
2997 arg_ts->state = TS_DEAD;
3002 return changes;
3005 #ifdef CONFIG_DEBUG_TCG
3006 static void dump_regs(TCGContext *s)
3008 TCGTemp *ts;
3009 int i;
3010 char buf[64];
3012 for(i = 0; i < s->nb_temps; i++) {
3013 ts = &s->temps[i];
3014 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
3015 switch(ts->val_type) {
3016 case TEMP_VAL_REG:
3017 printf("%s", tcg_target_reg_names[ts->reg]);
3018 break;
3019 case TEMP_VAL_MEM:
3020 printf("%d(%s)", (int)ts->mem_offset,
3021 tcg_target_reg_names[ts->mem_base->reg]);
3022 break;
3023 case TEMP_VAL_CONST:
3024 printf("$0x%" TCG_PRIlx, ts->val);
3025 break;
3026 case TEMP_VAL_DEAD:
3027 printf("D");
3028 break;
3029 default:
3030 printf("???");
3031 break;
3033 printf("\n");
3036 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
3037 if (s->reg_to_temp[i] != NULL) {
3038 printf("%s: %s\n",
3039 tcg_target_reg_names[i],
3040 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i]));
3045 static void check_regs(TCGContext *s)
3047 int reg;
3048 int k;
3049 TCGTemp *ts;
3050 char buf[64];
3052 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
3053 ts = s->reg_to_temp[reg];
3054 if (ts != NULL) {
3055 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) {
3056 printf("Inconsistency for register %s:\n",
3057 tcg_target_reg_names[reg]);
3058 goto fail;
3062 for (k = 0; k < s->nb_temps; k++) {
3063 ts = &s->temps[k];
3064 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg
3065 && s->reg_to_temp[ts->reg] != ts) {
3066 printf("Inconsistency for temp %s:\n",
3067 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
3068 fail:
3069 printf("reg state:\n");
3070 dump_regs(s);
3071 tcg_abort();
3075 #endif
3077 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts)
3079 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64)
3080 /* Sparc64 stack is accessed with offset of 2047 */
3081 s->current_frame_offset = (s->current_frame_offset +
3082 (tcg_target_long)sizeof(tcg_target_long) - 1) &
3083 ~(sizeof(tcg_target_long) - 1);
3084 #endif
3085 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) >
3086 s->frame_end) {
3087 tcg_abort();
3089 ts->mem_offset = s->current_frame_offset;
3090 ts->mem_base = s->frame_temp;
3091 ts->mem_allocated = 1;
3092 s->current_frame_offset += sizeof(tcg_target_long);
3095 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet);
3097 /* Mark a temporary as free or dead. If 'free_or_dead' is negative,
3098 mark it free; otherwise mark it dead. */
3099 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead)
3101 if (ts->fixed_reg) {
3102 return;
3104 if (ts->val_type == TEMP_VAL_REG) {
3105 s->reg_to_temp[ts->reg] = NULL;
3107 ts->val_type = (free_or_dead < 0
3108 || ts->temp_local
3109 || ts->temp_global
3110 ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
3113 /* Mark a temporary as dead. */
3114 static inline void temp_dead(TCGContext *s, TCGTemp *ts)
3116 temp_free_or_dead(s, ts, 1);
3119 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary
3120 registers needs to be allocated to store a constant. If 'free_or_dead'
3121 is non-zero, subsequently release the temporary; if it is positive, the
3122 temp is dead; if it is negative, the temp is free. */
3123 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs,
3124 TCGRegSet preferred_regs, int free_or_dead)
3126 if (ts->fixed_reg) {
3127 return;
3129 if (!ts->mem_coherent) {
3130 if (!ts->mem_allocated) {
3131 temp_allocate_frame(s, ts);
3133 switch (ts->val_type) {
3134 case TEMP_VAL_CONST:
3135 /* If we're going to free the temp immediately, then we won't
3136 require it later in a register, so attempt to store the
3137 constant to memory directly. */
3138 if (free_or_dead
3139 && tcg_out_sti(s, ts->type, ts->val,
3140 ts->mem_base->reg, ts->mem_offset)) {
3141 break;
3143 temp_load(s, ts, tcg_target_available_regs[ts->type],
3144 allocated_regs, preferred_regs);
3145 /* fallthrough */
3147 case TEMP_VAL_REG:
3148 tcg_out_st(s, ts->type, ts->reg,
3149 ts->mem_base->reg, ts->mem_offset);
3150 break;
3152 case TEMP_VAL_MEM:
3153 break;
3155 case TEMP_VAL_DEAD:
3156 default:
3157 tcg_abort();
3159 ts->mem_coherent = 1;
3161 if (free_or_dead) {
3162 temp_free_or_dead(s, ts, free_or_dead);
3166 /* free register 'reg' by spilling the corresponding temporary if necessary */
3167 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs)
3169 TCGTemp *ts = s->reg_to_temp[reg];
3170 if (ts != NULL) {
3171 temp_sync(s, ts, allocated_regs, 0, -1);
3176 * tcg_reg_alloc:
3177 * @required_regs: Set of registers in which we must allocate.
3178 * @allocated_regs: Set of registers which must be avoided.
3179 * @preferred_regs: Set of registers we should prefer.
3180 * @rev: True if we search the registers in "indirect" order.
3182 * The allocated register must be in @required_regs & ~@allocated_regs,
3183 * but if we can put it in @preferred_regs we may save a move later.
3185 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs,
3186 TCGRegSet allocated_regs,
3187 TCGRegSet preferred_regs, bool rev)
3189 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order);
3190 TCGRegSet reg_ct[2];
3191 const int *order;
3193 reg_ct[1] = required_regs & ~allocated_regs;
3194 tcg_debug_assert(reg_ct[1] != 0);
3195 reg_ct[0] = reg_ct[1] & preferred_regs;
3197 /* Skip the preferred_regs option if it cannot be satisfied,
3198 or if the preference made no difference. */
3199 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1];
3201 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
3203 /* Try free registers, preferences first. */
3204 for (j = f; j < 2; j++) {
3205 TCGRegSet set = reg_ct[j];
3207 if (tcg_regset_single(set)) {
3208 /* One register in the set. */
3209 TCGReg reg = tcg_regset_first(set);
3210 if (s->reg_to_temp[reg] == NULL) {
3211 return reg;
3213 } else {
3214 for (i = 0; i < n; i++) {
3215 TCGReg reg = order[i];
3216 if (s->reg_to_temp[reg] == NULL &&
3217 tcg_regset_test_reg(set, reg)) {
3218 return reg;
3224 /* We must spill something. */
3225 for (j = f; j < 2; j++) {
3226 TCGRegSet set = reg_ct[j];
3228 if (tcg_regset_single(set)) {
3229 /* One register in the set. */
3230 TCGReg reg = tcg_regset_first(set);
3231 tcg_reg_free(s, reg, allocated_regs);
3232 return reg;
3233 } else {
3234 for (i = 0; i < n; i++) {
3235 TCGReg reg = order[i];
3236 if (tcg_regset_test_reg(set, reg)) {
3237 tcg_reg_free(s, reg, allocated_regs);
3238 return reg;
3244 tcg_abort();
3247 /* Make sure the temporary is in a register. If needed, allocate the register
3248 from DESIRED while avoiding ALLOCATED. */
3249 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs,
3250 TCGRegSet allocated_regs, TCGRegSet preferred_regs)
3252 TCGReg reg;
3254 switch (ts->val_type) {
3255 case TEMP_VAL_REG:
3256 return;
3257 case TEMP_VAL_CONST:
3258 reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3259 preferred_regs, ts->indirect_base);
3260 tcg_out_movi(s, ts->type, reg, ts->val);
3261 ts->mem_coherent = 0;
3262 break;
3263 case TEMP_VAL_MEM:
3264 reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3265 preferred_regs, ts->indirect_base);
3266 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset);
3267 ts->mem_coherent = 1;
3268 break;
3269 case TEMP_VAL_DEAD:
3270 default:
3271 tcg_abort();
3273 ts->reg = reg;
3274 ts->val_type = TEMP_VAL_REG;
3275 s->reg_to_temp[reg] = ts;
3278 /* Save a temporary to memory. 'allocated_regs' is used in case a
3279 temporary registers needs to be allocated to store a constant. */
3280 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs)
3282 /* The liveness analysis already ensures that globals are back
3283 in memory. Keep an tcg_debug_assert for safety. */
3284 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg);
3287 /* save globals to their canonical location and assume they can be
3288 modified be the following code. 'allocated_regs' is used in case a
3289 temporary registers needs to be allocated to store a constant. */
3290 static void save_globals(TCGContext *s, TCGRegSet allocated_regs)
3292 int i, n;
3294 for (i = 0, n = s->nb_globals; i < n; i++) {
3295 temp_save(s, &s->temps[i], allocated_regs);
3299 /* sync globals to their canonical location and assume they can be
3300 read by the following code. 'allocated_regs' is used in case a
3301 temporary registers needs to be allocated to store a constant. */
3302 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs)
3304 int i, n;
3306 for (i = 0, n = s->nb_globals; i < n; i++) {
3307 TCGTemp *ts = &s->temps[i];
3308 tcg_debug_assert(ts->val_type != TEMP_VAL_REG
3309 || ts->fixed_reg
3310 || ts->mem_coherent);
3314 /* at the end of a basic block, we assume all temporaries are dead and
3315 all globals are stored at their canonical location. */
3316 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs)
3318 int i;
3320 for (i = s->nb_globals; i < s->nb_temps; i++) {
3321 TCGTemp *ts = &s->temps[i];
3322 if (ts->temp_local) {
3323 temp_save(s, ts, allocated_regs);
3324 } else {
3325 /* The liveness analysis already ensures that temps are dead.
3326 Keep an tcg_debug_assert for safety. */
3327 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
3331 save_globals(s, allocated_regs);
3335 * Specialized code generation for INDEX_op_movi_*.
3337 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots,
3338 tcg_target_ulong val, TCGLifeData arg_life,
3339 TCGRegSet preferred_regs)
3341 /* ENV should not be modified. */
3342 tcg_debug_assert(!ots->fixed_reg);
3344 /* The movi is not explicitly generated here. */
3345 if (ots->val_type == TEMP_VAL_REG) {
3346 s->reg_to_temp[ots->reg] = NULL;
3348 ots->val_type = TEMP_VAL_CONST;
3349 ots->val = val;
3350 ots->mem_coherent = 0;
3351 if (NEED_SYNC_ARG(0)) {
3352 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0));
3353 } else if (IS_DEAD_ARG(0)) {
3354 temp_dead(s, ots);
3358 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op)
3360 TCGTemp *ots = arg_temp(op->args[0]);
3361 tcg_target_ulong val = op->args[1];
3363 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]);
3367 * Specialized code generation for INDEX_op_mov_*.
3369 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op)
3371 const TCGLifeData arg_life = op->life;
3372 TCGRegSet allocated_regs, preferred_regs;
3373 TCGTemp *ts, *ots;
3374 TCGType otype, itype;
3376 allocated_regs = s->reserved_regs;
3377 preferred_regs = op->output_pref[0];
3378 ots = arg_temp(op->args[0]);
3379 ts = arg_temp(op->args[1]);
3381 /* ENV should not be modified. */
3382 tcg_debug_assert(!ots->fixed_reg);
3384 /* Note that otype != itype for no-op truncation. */
3385 otype = ots->type;
3386 itype = ts->type;
3388 if (ts->val_type == TEMP_VAL_CONST) {
3389 /* propagate constant or generate sti */
3390 tcg_target_ulong val = ts->val;
3391 if (IS_DEAD_ARG(1)) {
3392 temp_dead(s, ts);
3394 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs);
3395 return;
3398 /* If the source value is in memory we're going to be forced
3399 to have it in a register in order to perform the copy. Copy
3400 the SOURCE value into its own register first, that way we
3401 don't have to reload SOURCE the next time it is used. */
3402 if (ts->val_type == TEMP_VAL_MEM) {
3403 temp_load(s, ts, tcg_target_available_regs[itype],
3404 allocated_regs, preferred_regs);
3407 tcg_debug_assert(ts->val_type == TEMP_VAL_REG);
3408 if (IS_DEAD_ARG(0)) {
3409 /* mov to a non-saved dead register makes no sense (even with
3410 liveness analysis disabled). */
3411 tcg_debug_assert(NEED_SYNC_ARG(0));
3412 if (!ots->mem_allocated) {
3413 temp_allocate_frame(s, ots);
3415 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset);
3416 if (IS_DEAD_ARG(1)) {
3417 temp_dead(s, ts);
3419 temp_dead(s, ots);
3420 } else {
3421 if (IS_DEAD_ARG(1) && !ts->fixed_reg) {
3422 /* the mov can be suppressed */
3423 if (ots->val_type == TEMP_VAL_REG) {
3424 s->reg_to_temp[ots->reg] = NULL;
3426 ots->reg = ts->reg;
3427 temp_dead(s, ts);
3428 } else {
3429 if (ots->val_type != TEMP_VAL_REG) {
3430 /* When allocating a new register, make sure to not spill the
3431 input one. */
3432 tcg_regset_set_reg(allocated_regs, ts->reg);
3433 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype],
3434 allocated_regs, preferred_regs,
3435 ots->indirect_base);
3437 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) {
3439 * Cross register class move not supported.
3440 * Store the source register into the destination slot
3441 * and leave the destination temp as TEMP_VAL_MEM.
3443 assert(!ots->fixed_reg);
3444 if (!ts->mem_allocated) {
3445 temp_allocate_frame(s, ots);
3447 tcg_out_st(s, ts->type, ts->reg,
3448 ots->mem_base->reg, ots->mem_offset);
3449 ots->mem_coherent = 1;
3450 temp_free_or_dead(s, ots, -1);
3451 return;
3454 ots->val_type = TEMP_VAL_REG;
3455 ots->mem_coherent = 0;
3456 s->reg_to_temp[ots->reg] = ots;
3457 if (NEED_SYNC_ARG(0)) {
3458 temp_sync(s, ots, allocated_regs, 0, 0);
3464 * Specialized code generation for INDEX_op_dup_vec.
3466 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op)
3468 const TCGLifeData arg_life = op->life;
3469 TCGRegSet dup_out_regs, dup_in_regs;
3470 TCGTemp *its, *ots;
3471 TCGType itype, vtype;
3472 intptr_t endian_fixup;
3473 unsigned vece;
3474 bool ok;
3476 ots = arg_temp(op->args[0]);
3477 its = arg_temp(op->args[1]);
3479 /* ENV should not be modified. */
3480 tcg_debug_assert(!ots->fixed_reg);
3482 itype = its->type;
3483 vece = TCGOP_VECE(op);
3484 vtype = TCGOP_VECL(op) + TCG_TYPE_V64;
3486 if (its->val_type == TEMP_VAL_CONST) {
3487 /* Propagate constant via movi -> dupi. */
3488 tcg_target_ulong val = its->val;
3489 if (IS_DEAD_ARG(1)) {
3490 temp_dead(s, its);
3492 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]);
3493 return;
3496 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].u.regs;
3497 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].u.regs;
3499 /* Allocate the output register now. */
3500 if (ots->val_type != TEMP_VAL_REG) {
3501 TCGRegSet allocated_regs = s->reserved_regs;
3503 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) {
3504 /* Make sure to not spill the input register. */
3505 tcg_regset_set_reg(allocated_regs, its->reg);
3507 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs,
3508 op->output_pref[0], ots->indirect_base);
3509 ots->val_type = TEMP_VAL_REG;
3510 ots->mem_coherent = 0;
3511 s->reg_to_temp[ots->reg] = ots;
3514 switch (its->val_type) {
3515 case TEMP_VAL_REG:
3517 * The dup constriaints must be broad, covering all possible VECE.
3518 * However, tcg_op_dup_vec() gets to see the VECE and we allow it
3519 * to fail, indicating that extra moves are required for that case.
3521 if (tcg_regset_test_reg(dup_in_regs, its->reg)) {
3522 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) {
3523 goto done;
3525 /* Try again from memory or a vector input register. */
3527 if (!its->mem_coherent) {
3529 * The input register is not synced, and so an extra store
3530 * would be required to use memory. Attempt an integer-vector
3531 * register move first. We do not have a TCGRegSet for this.
3533 if (tcg_out_mov(s, itype, ots->reg, its->reg)) {
3534 break;
3536 /* Sync the temp back to its slot and load from there. */
3537 temp_sync(s, its, s->reserved_regs, 0, 0);
3539 /* fall through */
3541 case TEMP_VAL_MEM:
3542 #ifdef HOST_WORDS_BIGENDIAN
3543 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8;
3544 endian_fixup -= 1 << vece;
3545 #else
3546 endian_fixup = 0;
3547 #endif
3548 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg,
3549 its->mem_offset + endian_fixup)) {
3550 goto done;
3552 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset);
3553 break;
3555 default:
3556 g_assert_not_reached();
3559 /* We now have a vector input register, so dup must succeed. */
3560 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg);
3561 tcg_debug_assert(ok);
3563 done:
3564 if (IS_DEAD_ARG(1)) {
3565 temp_dead(s, its);
3567 if (NEED_SYNC_ARG(0)) {
3568 temp_sync(s, ots, s->reserved_regs, 0, 0);
3570 if (IS_DEAD_ARG(0)) {
3571 temp_dead(s, ots);
3575 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op)
3577 const TCGLifeData arg_life = op->life;
3578 const TCGOpDef * const def = &tcg_op_defs[op->opc];
3579 TCGRegSet i_allocated_regs;
3580 TCGRegSet o_allocated_regs;
3581 int i, k, nb_iargs, nb_oargs;
3582 TCGReg reg;
3583 TCGArg arg;
3584 const TCGArgConstraint *arg_ct;
3585 TCGTemp *ts;
3586 TCGArg new_args[TCG_MAX_OP_ARGS];
3587 int const_args[TCG_MAX_OP_ARGS];
3589 nb_oargs = def->nb_oargs;
3590 nb_iargs = def->nb_iargs;
3592 /* copy constants */
3593 memcpy(new_args + nb_oargs + nb_iargs,
3594 op->args + nb_oargs + nb_iargs,
3595 sizeof(TCGArg) * def->nb_cargs);
3597 i_allocated_regs = s->reserved_regs;
3598 o_allocated_regs = s->reserved_regs;
3600 /* satisfy input constraints */
3601 for (k = 0; k < nb_iargs; k++) {
3602 TCGRegSet i_preferred_regs, o_preferred_regs;
3604 i = def->sorted_args[nb_oargs + k];
3605 arg = op->args[i];
3606 arg_ct = &def->args_ct[i];
3607 ts = arg_temp(arg);
3609 if (ts->val_type == TEMP_VAL_CONST
3610 && tcg_target_const_match(ts->val, ts->type, arg_ct)) {
3611 /* constant is OK for instruction */
3612 const_args[i] = 1;
3613 new_args[i] = ts->val;
3614 continue;
3617 i_preferred_regs = o_preferred_regs = 0;
3618 if (arg_ct->ct & TCG_CT_IALIAS) {
3619 o_preferred_regs = op->output_pref[arg_ct->alias_index];
3620 if (ts->fixed_reg) {
3621 /* if fixed register, we must allocate a new register
3622 if the alias is not the same register */
3623 if (arg != op->args[arg_ct->alias_index]) {
3624 goto allocate_in_reg;
3626 } else {
3627 /* if the input is aliased to an output and if it is
3628 not dead after the instruction, we must allocate
3629 a new register and move it */
3630 if (!IS_DEAD_ARG(i)) {
3631 goto allocate_in_reg;
3634 /* check if the current register has already been allocated
3635 for another input aliased to an output */
3636 if (ts->val_type == TEMP_VAL_REG) {
3637 int k2, i2;
3638 reg = ts->reg;
3639 for (k2 = 0 ; k2 < k ; k2++) {
3640 i2 = def->sorted_args[nb_oargs + k2];
3641 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) &&
3642 reg == new_args[i2]) {
3643 goto allocate_in_reg;
3647 i_preferred_regs = o_preferred_regs;
3651 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs);
3652 reg = ts->reg;
3654 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) {
3655 /* nothing to do : the constraint is satisfied */
3656 } else {
3657 allocate_in_reg:
3658 /* allocate a new register matching the constraint
3659 and move the temporary register into it */
3660 temp_load(s, ts, tcg_target_available_regs[ts->type],
3661 i_allocated_regs, 0);
3662 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs,
3663 o_preferred_regs, ts->indirect_base);
3664 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3666 * Cross register class move not supported. Sync the
3667 * temp back to its slot and load from there.
3669 temp_sync(s, ts, i_allocated_regs, 0, 0);
3670 tcg_out_ld(s, ts->type, reg,
3671 ts->mem_base->reg, ts->mem_offset);
3674 new_args[i] = reg;
3675 const_args[i] = 0;
3676 tcg_regset_set_reg(i_allocated_regs, reg);
3679 /* mark dead temporaries and free the associated registers */
3680 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
3681 if (IS_DEAD_ARG(i)) {
3682 temp_dead(s, arg_temp(op->args[i]));
3686 if (def->flags & TCG_OPF_BB_END) {
3687 tcg_reg_alloc_bb_end(s, i_allocated_regs);
3688 } else {
3689 if (def->flags & TCG_OPF_CALL_CLOBBER) {
3690 /* XXX: permit generic clobber register list ? */
3691 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3692 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3693 tcg_reg_free(s, i, i_allocated_regs);
3697 if (def->flags & TCG_OPF_SIDE_EFFECTS) {
3698 /* sync globals if the op has side effects and might trigger
3699 an exception. */
3700 sync_globals(s, i_allocated_regs);
3703 /* satisfy the output constraints */
3704 for(k = 0; k < nb_oargs; k++) {
3705 i = def->sorted_args[k];
3706 arg = op->args[i];
3707 arg_ct = &def->args_ct[i];
3708 ts = arg_temp(arg);
3710 /* ENV should not be modified. */
3711 tcg_debug_assert(!ts->fixed_reg);
3713 if ((arg_ct->ct & TCG_CT_ALIAS)
3714 && !const_args[arg_ct->alias_index]) {
3715 reg = new_args[arg_ct->alias_index];
3716 } else if (arg_ct->ct & TCG_CT_NEWREG) {
3717 reg = tcg_reg_alloc(s, arg_ct->u.regs,
3718 i_allocated_regs | o_allocated_regs,
3719 op->output_pref[k], ts->indirect_base);
3720 } else {
3721 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs,
3722 op->output_pref[k], ts->indirect_base);
3724 tcg_regset_set_reg(o_allocated_regs, reg);
3725 if (ts->val_type == TEMP_VAL_REG) {
3726 s->reg_to_temp[ts->reg] = NULL;
3728 ts->val_type = TEMP_VAL_REG;
3729 ts->reg = reg;
3731 * Temp value is modified, so the value kept in memory is
3732 * potentially not the same.
3734 ts->mem_coherent = 0;
3735 s->reg_to_temp[reg] = ts;
3736 new_args[i] = reg;
3740 /* emit instruction */
3741 if (def->flags & TCG_OPF_VECTOR) {
3742 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op),
3743 new_args, const_args);
3744 } else {
3745 tcg_out_op(s, op->opc, new_args, const_args);
3748 /* move the outputs in the correct register if needed */
3749 for(i = 0; i < nb_oargs; i++) {
3750 ts = arg_temp(op->args[i]);
3752 /* ENV should not be modified. */
3753 tcg_debug_assert(!ts->fixed_reg);
3755 if (NEED_SYNC_ARG(i)) {
3756 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i));
3757 } else if (IS_DEAD_ARG(i)) {
3758 temp_dead(s, ts);
3763 #ifdef TCG_TARGET_STACK_GROWSUP
3764 #define STACK_DIR(x) (-(x))
3765 #else
3766 #define STACK_DIR(x) (x)
3767 #endif
3769 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op)
3771 const int nb_oargs = TCGOP_CALLO(op);
3772 const int nb_iargs = TCGOP_CALLI(op);
3773 const TCGLifeData arg_life = op->life;
3774 int flags, nb_regs, i;
3775 TCGReg reg;
3776 TCGArg arg;
3777 TCGTemp *ts;
3778 intptr_t stack_offset;
3779 size_t call_stack_size;
3780 tcg_insn_unit *func_addr;
3781 int allocate_args;
3782 TCGRegSet allocated_regs;
3784 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs];
3785 flags = op->args[nb_oargs + nb_iargs + 1];
3787 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
3788 if (nb_regs > nb_iargs) {
3789 nb_regs = nb_iargs;
3792 /* assign stack slots first */
3793 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long);
3794 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
3795 ~(TCG_TARGET_STACK_ALIGN - 1);
3796 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE);
3797 if (allocate_args) {
3798 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed,
3799 preallocate call stack */
3800 tcg_abort();
3803 stack_offset = TCG_TARGET_CALL_STACK_OFFSET;
3804 for (i = nb_regs; i < nb_iargs; i++) {
3805 arg = op->args[nb_oargs + i];
3806 #ifdef TCG_TARGET_STACK_GROWSUP
3807 stack_offset -= sizeof(tcg_target_long);
3808 #endif
3809 if (arg != TCG_CALL_DUMMY_ARG) {
3810 ts = arg_temp(arg);
3811 temp_load(s, ts, tcg_target_available_regs[ts->type],
3812 s->reserved_regs, 0);
3813 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset);
3815 #ifndef TCG_TARGET_STACK_GROWSUP
3816 stack_offset += sizeof(tcg_target_long);
3817 #endif
3820 /* assign input registers */
3821 allocated_regs = s->reserved_regs;
3822 for (i = 0; i < nb_regs; i++) {
3823 arg = op->args[nb_oargs + i];
3824 if (arg != TCG_CALL_DUMMY_ARG) {
3825 ts = arg_temp(arg);
3826 reg = tcg_target_call_iarg_regs[i];
3828 if (ts->val_type == TEMP_VAL_REG) {
3829 if (ts->reg != reg) {
3830 tcg_reg_free(s, reg, allocated_regs);
3831 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3833 * Cross register class move not supported. Sync the
3834 * temp back to its slot and load from there.
3836 temp_sync(s, ts, allocated_regs, 0, 0);
3837 tcg_out_ld(s, ts->type, reg,
3838 ts->mem_base->reg, ts->mem_offset);
3841 } else {
3842 TCGRegSet arg_set = 0;
3844 tcg_reg_free(s, reg, allocated_regs);
3845 tcg_regset_set_reg(arg_set, reg);
3846 temp_load(s, ts, arg_set, allocated_regs, 0);
3849 tcg_regset_set_reg(allocated_regs, reg);
3853 /* mark dead temporaries and free the associated registers */
3854 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
3855 if (IS_DEAD_ARG(i)) {
3856 temp_dead(s, arg_temp(op->args[i]));
3860 /* clobber call registers */
3861 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3862 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3863 tcg_reg_free(s, i, allocated_regs);
3867 /* Save globals if they might be written by the helper, sync them if
3868 they might be read. */
3869 if (flags & TCG_CALL_NO_READ_GLOBALS) {
3870 /* Nothing to do */
3871 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) {
3872 sync_globals(s, allocated_regs);
3873 } else {
3874 save_globals(s, allocated_regs);
3877 tcg_out_call(s, func_addr);
3879 /* assign output registers and emit moves if needed */
3880 for(i = 0; i < nb_oargs; i++) {
3881 arg = op->args[i];
3882 ts = arg_temp(arg);
3884 /* ENV should not be modified. */
3885 tcg_debug_assert(!ts->fixed_reg);
3887 reg = tcg_target_call_oarg_regs[i];
3888 tcg_debug_assert(s->reg_to_temp[reg] == NULL);
3889 if (ts->val_type == TEMP_VAL_REG) {
3890 s->reg_to_temp[ts->reg] = NULL;
3892 ts->val_type = TEMP_VAL_REG;
3893 ts->reg = reg;
3894 ts->mem_coherent = 0;
3895 s->reg_to_temp[reg] = ts;
3896 if (NEED_SYNC_ARG(i)) {
3897 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i));
3898 } else if (IS_DEAD_ARG(i)) {
3899 temp_dead(s, ts);
3904 #ifdef CONFIG_PROFILER
3906 /* avoid copy/paste errors */
3907 #define PROF_ADD(to, from, field) \
3908 do { \
3909 (to)->field += atomic_read(&((from)->field)); \
3910 } while (0)
3912 #define PROF_MAX(to, from, field) \
3913 do { \
3914 typeof((from)->field) val__ = atomic_read(&((from)->field)); \
3915 if (val__ > (to)->field) { \
3916 (to)->field = val__; \
3918 } while (0)
3920 /* Pass in a zero'ed @prof */
3921 static inline
3922 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table)
3924 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3925 unsigned int i;
3927 for (i = 0; i < n_ctxs; i++) {
3928 TCGContext *s = atomic_read(&tcg_ctxs[i]);
3929 const TCGProfile *orig = &s->prof;
3931 if (counters) {
3932 PROF_ADD(prof, orig, cpu_exec_time);
3933 PROF_ADD(prof, orig, tb_count1);
3934 PROF_ADD(prof, orig, tb_count);
3935 PROF_ADD(prof, orig, op_count);
3936 PROF_MAX(prof, orig, op_count_max);
3937 PROF_ADD(prof, orig, temp_count);
3938 PROF_MAX(prof, orig, temp_count_max);
3939 PROF_ADD(prof, orig, del_op_count);
3940 PROF_ADD(prof, orig, code_in_len);
3941 PROF_ADD(prof, orig, code_out_len);
3942 PROF_ADD(prof, orig, search_out_len);
3943 PROF_ADD(prof, orig, interm_time);
3944 PROF_ADD(prof, orig, code_time);
3945 PROF_ADD(prof, orig, la_time);
3946 PROF_ADD(prof, orig, opt_time);
3947 PROF_ADD(prof, orig, restore_count);
3948 PROF_ADD(prof, orig, restore_time);
3950 if (table) {
3951 int i;
3953 for (i = 0; i < NB_OPS; i++) {
3954 PROF_ADD(prof, orig, table_op_count[i]);
3960 #undef PROF_ADD
3961 #undef PROF_MAX
3963 static void tcg_profile_snapshot_counters(TCGProfile *prof)
3965 tcg_profile_snapshot(prof, true, false);
3968 static void tcg_profile_snapshot_table(TCGProfile *prof)
3970 tcg_profile_snapshot(prof, false, true);
3973 void tcg_dump_op_count(void)
3975 TCGProfile prof = {};
3976 int i;
3978 tcg_profile_snapshot_table(&prof);
3979 for (i = 0; i < NB_OPS; i++) {
3980 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name,
3981 prof.table_op_count[i]);
3985 int64_t tcg_cpu_exec_time(void)
3987 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3988 unsigned int i;
3989 int64_t ret = 0;
3991 for (i = 0; i < n_ctxs; i++) {
3992 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
3993 const TCGProfile *prof = &s->prof;
3995 ret += atomic_read(&prof->cpu_exec_time);
3997 return ret;
3999 #else
4000 void tcg_dump_op_count(void)
4002 qemu_printf("[TCG profiler not compiled]\n");
4005 int64_t tcg_cpu_exec_time(void)
4007 error_report("%s: TCG profiler not compiled", __func__);
4008 exit(EXIT_FAILURE);
4010 #endif
4013 int tcg_gen_code(TCGContext *s, TranslationBlock *tb)
4015 #ifdef CONFIG_PROFILER
4016 TCGProfile *prof = &s->prof;
4017 #endif
4018 int i, num_insns;
4019 TCGOp *op;
4021 #ifdef CONFIG_PROFILER
4023 int n = 0;
4025 QTAILQ_FOREACH(op, &s->ops, link) {
4026 n++;
4028 atomic_set(&prof->op_count, prof->op_count + n);
4029 if (n > prof->op_count_max) {
4030 atomic_set(&prof->op_count_max, n);
4033 n = s->nb_temps;
4034 atomic_set(&prof->temp_count, prof->temp_count + n);
4035 if (n > prof->temp_count_max) {
4036 atomic_set(&prof->temp_count_max, n);
4039 #endif
4041 #ifdef DEBUG_DISAS
4042 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP)
4043 && qemu_log_in_addr_range(tb->pc))) {
4044 qemu_log_lock();
4045 qemu_log("OP:\n");
4046 tcg_dump_ops(s, false);
4047 qemu_log("\n");
4048 qemu_log_unlock();
4050 #endif
4052 #ifdef CONFIG_DEBUG_TCG
4053 /* Ensure all labels referenced have been emitted. */
4055 TCGLabel *l;
4056 bool error = false;
4058 QSIMPLEQ_FOREACH(l, &s->labels, next) {
4059 if (unlikely(!l->present) && l->refs) {
4060 qemu_log_mask(CPU_LOG_TB_OP,
4061 "$L%d referenced but not present.\n", l->id);
4062 error = true;
4065 assert(!error);
4067 #endif
4069 #ifdef CONFIG_PROFILER
4070 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock());
4071 #endif
4073 #ifdef USE_TCG_OPTIMIZATIONS
4074 tcg_optimize(s);
4075 #endif
4077 #ifdef CONFIG_PROFILER
4078 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock());
4079 atomic_set(&prof->la_time, prof->la_time - profile_getclock());
4080 #endif
4082 reachable_code_pass(s);
4083 liveness_pass_1(s);
4085 if (s->nb_indirects > 0) {
4086 #ifdef DEBUG_DISAS
4087 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND)
4088 && qemu_log_in_addr_range(tb->pc))) {
4089 qemu_log_lock();
4090 qemu_log("OP before indirect lowering:\n");
4091 tcg_dump_ops(s, false);
4092 qemu_log("\n");
4093 qemu_log_unlock();
4095 #endif
4096 /* Replace indirect temps with direct temps. */
4097 if (liveness_pass_2(s)) {
4098 /* If changes were made, re-run liveness. */
4099 liveness_pass_1(s);
4103 #ifdef CONFIG_PROFILER
4104 atomic_set(&prof->la_time, prof->la_time + profile_getclock());
4105 #endif
4107 #ifdef DEBUG_DISAS
4108 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT)
4109 && qemu_log_in_addr_range(tb->pc))) {
4110 qemu_log_lock();
4111 qemu_log("OP after optimization and liveness analysis:\n");
4112 tcg_dump_ops(s, true);
4113 qemu_log("\n");
4114 qemu_log_unlock();
4116 #endif
4118 tcg_reg_alloc_start(s);
4120 s->code_buf = tb->tc.ptr;
4121 s->code_ptr = tb->tc.ptr;
4123 #ifdef TCG_TARGET_NEED_LDST_LABELS
4124 QSIMPLEQ_INIT(&s->ldst_labels);
4125 #endif
4126 #ifdef TCG_TARGET_NEED_POOL_LABELS
4127 s->pool_labels = NULL;
4128 #endif
4130 num_insns = -1;
4131 QTAILQ_FOREACH(op, &s->ops, link) {
4132 TCGOpcode opc = op->opc;
4134 #ifdef CONFIG_PROFILER
4135 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1);
4136 #endif
4138 switch (opc) {
4139 case INDEX_op_mov_i32:
4140 case INDEX_op_mov_i64:
4141 case INDEX_op_mov_vec:
4142 tcg_reg_alloc_mov(s, op);
4143 break;
4144 case INDEX_op_movi_i32:
4145 case INDEX_op_movi_i64:
4146 case INDEX_op_dupi_vec:
4147 tcg_reg_alloc_movi(s, op);
4148 break;
4149 case INDEX_op_dup_vec:
4150 tcg_reg_alloc_dup(s, op);
4151 break;
4152 case INDEX_op_insn_start:
4153 if (num_insns >= 0) {
4154 size_t off = tcg_current_code_size(s);
4155 s->gen_insn_end_off[num_insns] = off;
4156 /* Assert that we do not overflow our stored offset. */
4157 assert(s->gen_insn_end_off[num_insns] == off);
4159 num_insns++;
4160 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
4161 target_ulong a;
4162 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
4163 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
4164 #else
4165 a = op->args[i];
4166 #endif
4167 s->gen_insn_data[num_insns][i] = a;
4169 break;
4170 case INDEX_op_discard:
4171 temp_dead(s, arg_temp(op->args[0]));
4172 break;
4173 case INDEX_op_set_label:
4174 tcg_reg_alloc_bb_end(s, s->reserved_regs);
4175 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr);
4176 break;
4177 case INDEX_op_call:
4178 tcg_reg_alloc_call(s, op);
4179 break;
4180 default:
4181 /* Sanity check that we've not introduced any unhandled opcodes. */
4182 tcg_debug_assert(tcg_op_supported(opc));
4183 /* Note: in order to speed up the code, it would be much
4184 faster to have specialized register allocator functions for
4185 some common argument patterns */
4186 tcg_reg_alloc_op(s, op);
4187 break;
4189 #ifdef CONFIG_DEBUG_TCG
4190 check_regs(s);
4191 #endif
4192 /* Test for (pending) buffer overflow. The assumption is that any
4193 one operation beginning below the high water mark cannot overrun
4194 the buffer completely. Thus we can test for overflow after
4195 generating code without having to check during generation. */
4196 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) {
4197 return -1;
4199 /* Test for TB overflow, as seen by gen_insn_end_off. */
4200 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) {
4201 return -2;
4204 tcg_debug_assert(num_insns >= 0);
4205 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
4207 /* Generate TB finalization at the end of block */
4208 #ifdef TCG_TARGET_NEED_LDST_LABELS
4209 i = tcg_out_ldst_finalize(s);
4210 if (i < 0) {
4211 return i;
4213 #endif
4214 #ifdef TCG_TARGET_NEED_POOL_LABELS
4215 i = tcg_out_pool_finalize(s);
4216 if (i < 0) {
4217 return i;
4219 #endif
4220 if (!tcg_resolve_relocs(s)) {
4221 return -2;
4224 /* flush instruction cache */
4225 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr);
4227 return tcg_current_code_size(s);
4230 #ifdef CONFIG_PROFILER
4231 void tcg_dump_info(void)
4233 TCGProfile prof = {};
4234 const TCGProfile *s;
4235 int64_t tb_count;
4236 int64_t tb_div_count;
4237 int64_t tot;
4239 tcg_profile_snapshot_counters(&prof);
4240 s = &prof;
4241 tb_count = s->tb_count;
4242 tb_div_count = tb_count ? tb_count : 1;
4243 tot = s->interm_time + s->code_time;
4245 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
4246 tot, tot / 2.4e9);
4247 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64
4248 " %0.1f%%)\n",
4249 tb_count, s->tb_count1 - tb_count,
4250 (double)(s->tb_count1 - s->tb_count)
4251 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0);
4252 qemu_printf("avg ops/TB %0.1f max=%d\n",
4253 (double)s->op_count / tb_div_count, s->op_count_max);
4254 qemu_printf("deleted ops/TB %0.2f\n",
4255 (double)s->del_op_count / tb_div_count);
4256 qemu_printf("avg temps/TB %0.2f max=%d\n",
4257 (double)s->temp_count / tb_div_count, s->temp_count_max);
4258 qemu_printf("avg host code/TB %0.1f\n",
4259 (double)s->code_out_len / tb_div_count);
4260 qemu_printf("avg search data/TB %0.1f\n",
4261 (double)s->search_out_len / tb_div_count);
4263 qemu_printf("cycles/op %0.1f\n",
4264 s->op_count ? (double)tot / s->op_count : 0);
4265 qemu_printf("cycles/in byte %0.1f\n",
4266 s->code_in_len ? (double)tot / s->code_in_len : 0);
4267 qemu_printf("cycles/out byte %0.1f\n",
4268 s->code_out_len ? (double)tot / s->code_out_len : 0);
4269 qemu_printf("cycles/search byte %0.1f\n",
4270 s->search_out_len ? (double)tot / s->search_out_len : 0);
4271 if (tot == 0) {
4272 tot = 1;
4274 qemu_printf(" gen_interm time %0.1f%%\n",
4275 (double)s->interm_time / tot * 100.0);
4276 qemu_printf(" gen_code time %0.1f%%\n",
4277 (double)s->code_time / tot * 100.0);
4278 qemu_printf("optim./code time %0.1f%%\n",
4279 (double)s->opt_time / (s->code_time ? s->code_time : 1)
4280 * 100.0);
4281 qemu_printf("liveness/code time %0.1f%%\n",
4282 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0);
4283 qemu_printf("cpu_restore count %" PRId64 "\n",
4284 s->restore_count);
4285 qemu_printf(" avg cycles %0.1f\n",
4286 s->restore_count ? (double)s->restore_time / s->restore_count : 0);
4288 #else
4289 void tcg_dump_info(void)
4291 qemu_printf("[TCG profiler not compiled]\n");
4293 #endif
4295 #ifdef ELF_HOST_MACHINE
4296 /* In order to use this feature, the backend needs to do three things:
4298 (1) Define ELF_HOST_MACHINE to indicate both what value to
4299 put into the ELF image and to indicate support for the feature.
4301 (2) Define tcg_register_jit. This should create a buffer containing
4302 the contents of a .debug_frame section that describes the post-
4303 prologue unwind info for the tcg machine.
4305 (3) Call tcg_register_jit_int, with the constructed .debug_frame.
4308 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */
4309 typedef enum {
4310 JIT_NOACTION = 0,
4311 JIT_REGISTER_FN,
4312 JIT_UNREGISTER_FN
4313 } jit_actions_t;
4315 struct jit_code_entry {
4316 struct jit_code_entry *next_entry;
4317 struct jit_code_entry *prev_entry;
4318 const void *symfile_addr;
4319 uint64_t symfile_size;
4322 struct jit_descriptor {
4323 uint32_t version;
4324 uint32_t action_flag;
4325 struct jit_code_entry *relevant_entry;
4326 struct jit_code_entry *first_entry;
4329 void __jit_debug_register_code(void) __attribute__((noinline));
4330 void __jit_debug_register_code(void)
4332 asm("");
4335 /* Must statically initialize the version, because GDB may check
4336 the version before we can set it. */
4337 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
4339 /* End GDB interface. */
4341 static int find_string(const char *strtab, const char *str)
4343 const char *p = strtab + 1;
4345 while (1) {
4346 if (strcmp(p, str) == 0) {
4347 return p - strtab;
4349 p += strlen(p) + 1;
4353 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size,
4354 const void *debug_frame,
4355 size_t debug_frame_size)
4357 struct __attribute__((packed)) DebugInfo {
4358 uint32_t len;
4359 uint16_t version;
4360 uint32_t abbrev;
4361 uint8_t ptr_size;
4362 uint8_t cu_die;
4363 uint16_t cu_lang;
4364 uintptr_t cu_low_pc;
4365 uintptr_t cu_high_pc;
4366 uint8_t fn_die;
4367 char fn_name[16];
4368 uintptr_t fn_low_pc;
4369 uintptr_t fn_high_pc;
4370 uint8_t cu_eoc;
4373 struct ElfImage {
4374 ElfW(Ehdr) ehdr;
4375 ElfW(Phdr) phdr;
4376 ElfW(Shdr) shdr[7];
4377 ElfW(Sym) sym[2];
4378 struct DebugInfo di;
4379 uint8_t da[24];
4380 char str[80];
4383 struct ElfImage *img;
4385 static const struct ElfImage img_template = {
4386 .ehdr = {
4387 .e_ident[EI_MAG0] = ELFMAG0,
4388 .e_ident[EI_MAG1] = ELFMAG1,
4389 .e_ident[EI_MAG2] = ELFMAG2,
4390 .e_ident[EI_MAG3] = ELFMAG3,
4391 .e_ident[EI_CLASS] = ELF_CLASS,
4392 .e_ident[EI_DATA] = ELF_DATA,
4393 .e_ident[EI_VERSION] = EV_CURRENT,
4394 .e_type = ET_EXEC,
4395 .e_machine = ELF_HOST_MACHINE,
4396 .e_version = EV_CURRENT,
4397 .e_phoff = offsetof(struct ElfImage, phdr),
4398 .e_shoff = offsetof(struct ElfImage, shdr),
4399 .e_ehsize = sizeof(ElfW(Shdr)),
4400 .e_phentsize = sizeof(ElfW(Phdr)),
4401 .e_phnum = 1,
4402 .e_shentsize = sizeof(ElfW(Shdr)),
4403 .e_shnum = ARRAY_SIZE(img->shdr),
4404 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1,
4405 #ifdef ELF_HOST_FLAGS
4406 .e_flags = ELF_HOST_FLAGS,
4407 #endif
4408 #ifdef ELF_OSABI
4409 .e_ident[EI_OSABI] = ELF_OSABI,
4410 #endif
4412 .phdr = {
4413 .p_type = PT_LOAD,
4414 .p_flags = PF_X,
4416 .shdr = {
4417 [0] = { .sh_type = SHT_NULL },
4418 /* Trick: The contents of code_gen_buffer are not present in
4419 this fake ELF file; that got allocated elsewhere. Therefore
4420 we mark .text as SHT_NOBITS (similar to .bss) so that readers
4421 will not look for contents. We can record any address. */
4422 [1] = { /* .text */
4423 .sh_type = SHT_NOBITS,
4424 .sh_flags = SHF_EXECINSTR | SHF_ALLOC,
4426 [2] = { /* .debug_info */
4427 .sh_type = SHT_PROGBITS,
4428 .sh_offset = offsetof(struct ElfImage, di),
4429 .sh_size = sizeof(struct DebugInfo),
4431 [3] = { /* .debug_abbrev */
4432 .sh_type = SHT_PROGBITS,
4433 .sh_offset = offsetof(struct ElfImage, da),
4434 .sh_size = sizeof(img->da),
4436 [4] = { /* .debug_frame */
4437 .sh_type = SHT_PROGBITS,
4438 .sh_offset = sizeof(struct ElfImage),
4440 [5] = { /* .symtab */
4441 .sh_type = SHT_SYMTAB,
4442 .sh_offset = offsetof(struct ElfImage, sym),
4443 .sh_size = sizeof(img->sym),
4444 .sh_info = 1,
4445 .sh_link = ARRAY_SIZE(img->shdr) - 1,
4446 .sh_entsize = sizeof(ElfW(Sym)),
4448 [6] = { /* .strtab */
4449 .sh_type = SHT_STRTAB,
4450 .sh_offset = offsetof(struct ElfImage, str),
4451 .sh_size = sizeof(img->str),
4454 .sym = {
4455 [1] = { /* code_gen_buffer */
4456 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC),
4457 .st_shndx = 1,
4460 .di = {
4461 .len = sizeof(struct DebugInfo) - 4,
4462 .version = 2,
4463 .ptr_size = sizeof(void *),
4464 .cu_die = 1,
4465 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */
4466 .fn_die = 2,
4467 .fn_name = "code_gen_buffer"
4469 .da = {
4470 1, /* abbrev number (the cu) */
4471 0x11, 1, /* DW_TAG_compile_unit, has children */
4472 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */
4473 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
4474 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
4475 0, 0, /* end of abbrev */
4476 2, /* abbrev number (the fn) */
4477 0x2e, 0, /* DW_TAG_subprogram, no children */
4478 0x3, 0x8, /* DW_AT_name, DW_FORM_string */
4479 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
4480 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
4481 0, 0, /* end of abbrev */
4482 0 /* no more abbrev */
4484 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0"
4485 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer",
4488 /* We only need a single jit entry; statically allocate it. */
4489 static struct jit_code_entry one_entry;
4491 uintptr_t buf = (uintptr_t)buf_ptr;
4492 size_t img_size = sizeof(struct ElfImage) + debug_frame_size;
4493 DebugFrameHeader *dfh;
4495 img = g_malloc(img_size);
4496 *img = img_template;
4498 img->phdr.p_vaddr = buf;
4499 img->phdr.p_paddr = buf;
4500 img->phdr.p_memsz = buf_size;
4502 img->shdr[1].sh_name = find_string(img->str, ".text");
4503 img->shdr[1].sh_addr = buf;
4504 img->shdr[1].sh_size = buf_size;
4506 img->shdr[2].sh_name = find_string(img->str, ".debug_info");
4507 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev");
4509 img->shdr[4].sh_name = find_string(img->str, ".debug_frame");
4510 img->shdr[4].sh_size = debug_frame_size;
4512 img->shdr[5].sh_name = find_string(img->str, ".symtab");
4513 img->shdr[6].sh_name = find_string(img->str, ".strtab");
4515 img->sym[1].st_name = find_string(img->str, "code_gen_buffer");
4516 img->sym[1].st_value = buf;
4517 img->sym[1].st_size = buf_size;
4519 img->di.cu_low_pc = buf;
4520 img->di.cu_high_pc = buf + buf_size;
4521 img->di.fn_low_pc = buf;
4522 img->di.fn_high_pc = buf + buf_size;
4524 dfh = (DebugFrameHeader *)(img + 1);
4525 memcpy(dfh, debug_frame, debug_frame_size);
4526 dfh->fde.func_start = buf;
4527 dfh->fde.func_len = buf_size;
4529 #ifdef DEBUG_JIT
4530 /* Enable this block to be able to debug the ELF image file creation.
4531 One can use readelf, objdump, or other inspection utilities. */
4533 FILE *f = fopen("/tmp/qemu.jit", "w+b");
4534 if (f) {
4535 if (fwrite(img, img_size, 1, f) != img_size) {
4536 /* Avoid stupid unused return value warning for fwrite. */
4538 fclose(f);
4541 #endif
4543 one_entry.symfile_addr = img;
4544 one_entry.symfile_size = img_size;
4546 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
4547 __jit_debug_descriptor.relevant_entry = &one_entry;
4548 __jit_debug_descriptor.first_entry = &one_entry;
4549 __jit_debug_register_code();
4551 #else
4552 /* No support for the feature. Provide the entry point expected by exec.c,
4553 and implement the internal function we declared earlier. */
4555 static void tcg_register_jit_int(void *buf, size_t size,
4556 const void *debug_frame,
4557 size_t debug_frame_size)
4561 void tcg_register_jit(void *buf, size_t buf_size)
4564 #endif /* ELF_HOST_MACHINE */
4566 #if !TCG_TARGET_MAYBE_vec
4567 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...)
4569 g_assert_not_reached();
4571 #endif