target/arm: Add sve-max-vq cpu property to -cpu max
[qemu/ar7.git] / target / arm / cpu.c
bloba4d46db13ae2c2ca20c630f7d0ca60e2a6b3d7a0
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 ARMCPU *cpu = ARM_CPU(cs);
44 cpu->env.regs[15] = value;
47 static bool arm_cpu_has_work(CPUState *cs)
49 ARMCPU *cpu = ARM_CPU(cs);
51 return (cpu->power_state != PSCI_OFF)
52 && cs->interrupt_request &
53 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB);
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59 void *opaque)
61 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
63 entry->hook = hook;
64 entry->opaque = opaque;
66 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70 void *opaque)
72 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
74 entry->hook = hook;
75 entry->opaque = opaque;
77 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo *ri = value;
84 ARMCPU *cpu = opaque;
86 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87 return;
90 if (ri->resetfn) {
91 ri->resetfn(&cpu->env, ri);
92 return;
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
100 if (!ri->fieldoffset) {
101 return;
104 if (cpreg_field_is_64bit(ri)) {
105 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106 } else {
107 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
111 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
118 ARMCPRegInfo *ri = value;
119 ARMCPU *cpu = opaque;
120 uint64_t oldvalue, newvalue;
122 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123 return;
126 oldvalue = read_raw_cp_reg(&cpu->env, ri);
127 cp_reg_reset(key, value, opaque);
128 newvalue = read_raw_cp_reg(&cpu->env, ri);
129 assert(oldvalue == newvalue);
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
135 ARMCPU *cpu = ARM_CPU(s);
136 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137 CPUARMState *env = &cpu->env;
139 acc->parent_reset(s);
141 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
143 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
146 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
148 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
149 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
151 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152 s->halted = cpu->start_powered_off;
154 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159 /* 64 bit CPUs always start in 64 bit mode */
160 env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162 env->pstate = PSTATE_MODE_EL0t;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165 /* and to the FP/Neon instructions */
166 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167 /* and to the SVE instructions */
168 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169 env->cp15.cptr_el[3] |= CPTR_EZ;
170 /* with maximum vector length */
171 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175 /* Reset into the highest available EL */
176 if (arm_feature(env, ARM_FEATURE_EL3)) {
177 env->pstate = PSTATE_MODE_EL3h;
178 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179 env->pstate = PSTATE_MODE_EL2h;
180 } else {
181 env->pstate = PSTATE_MODE_EL1h;
183 env->pc = cpu->rvbar;
184 #endif
185 } else {
186 #if defined(CONFIG_USER_ONLY)
187 /* Userspace expects access to cp10 and cp11 for FP/Neon */
188 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
192 #if defined(CONFIG_USER_ONLY)
193 env->uncached_cpsr = ARM_CPU_MODE_USR;
194 /* For user mode we must enable access to coprocessors */
195 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197 env->cp15.c15_cpar = 3;
198 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199 env->cp15.c15_cpar = 1;
201 #else
202 /* SVC mode with interrupts disabled. */
203 env->uncached_cpsr = ARM_CPU_MODE_SVC;
204 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
206 if (arm_feature(env, ARM_FEATURE_M)) {
207 uint32_t initial_msp; /* Loaded from 0x0 */
208 uint32_t initial_pc; /* Loaded from 0x4 */
209 uint8_t *rom;
210 uint32_t vecbase;
212 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
213 env->v7m.secure = true;
214 } else {
215 /* This bit resets to 0 if security is supported, but 1 if
216 * it is not. The bit is not present in v7M, but we set it
217 * here so we can avoid having to make checks on it conditional
218 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
220 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
223 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
224 * that it resets to 1, so QEMU always does that rather than making
225 * it dependent on CPU model. In v8M it is RES1.
227 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
228 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
229 if (arm_feature(env, ARM_FEATURE_V8)) {
230 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
231 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
232 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
234 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
235 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
236 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
239 /* Unlike A/R profile, M profile defines the reset LR value */
240 env->regs[14] = 0xffffffff;
242 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
244 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
245 vecbase = env->v7m.vecbase[env->v7m.secure];
246 rom = rom_ptr(vecbase, 8);
247 if (rom) {
248 /* Address zero is covered by ROM which hasn't yet been
249 * copied into physical memory.
251 initial_msp = ldl_p(rom);
252 initial_pc = ldl_p(rom + 4);
253 } else {
254 /* Address zero not covered by a ROM blob, or the ROM blob
255 * is in non-modifiable memory and this is a second reset after
256 * it got copied into memory. In the latter case, rom_ptr
257 * will return a NULL pointer and we should use ldl_phys instead.
259 initial_msp = ldl_phys(s->as, vecbase);
260 initial_pc = ldl_phys(s->as, vecbase + 4);
263 env->regs[13] = initial_msp & 0xFFFFFFFC;
264 env->regs[15] = initial_pc & ~1;
265 env->thumb = initial_pc & 1;
268 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
269 * executing as AArch32 then check if highvecs are enabled and
270 * adjust the PC accordingly.
272 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
273 env->regs[15] = 0xFFFF0000;
276 /* M profile requires that reset clears the exclusive monitor;
277 * A profile does not, but clearing it makes more sense than having it
278 * set with an exclusive access on address zero.
280 arm_clear_exclusive(env);
282 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
283 #endif
285 if (arm_feature(env, ARM_FEATURE_PMSA)) {
286 if (cpu->pmsav7_dregion > 0) {
287 if (arm_feature(env, ARM_FEATURE_V8)) {
288 memset(env->pmsav8.rbar[M_REG_NS], 0,
289 sizeof(*env->pmsav8.rbar[M_REG_NS])
290 * cpu->pmsav7_dregion);
291 memset(env->pmsav8.rlar[M_REG_NS], 0,
292 sizeof(*env->pmsav8.rlar[M_REG_NS])
293 * cpu->pmsav7_dregion);
294 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
295 memset(env->pmsav8.rbar[M_REG_S], 0,
296 sizeof(*env->pmsav8.rbar[M_REG_S])
297 * cpu->pmsav7_dregion);
298 memset(env->pmsav8.rlar[M_REG_S], 0,
299 sizeof(*env->pmsav8.rlar[M_REG_S])
300 * cpu->pmsav7_dregion);
302 } else if (arm_feature(env, ARM_FEATURE_V7)) {
303 memset(env->pmsav7.drbar, 0,
304 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
305 memset(env->pmsav7.drsr, 0,
306 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
307 memset(env->pmsav7.dracr, 0,
308 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
311 env->pmsav7.rnr[M_REG_NS] = 0;
312 env->pmsav7.rnr[M_REG_S] = 0;
313 env->pmsav8.mair0[M_REG_NS] = 0;
314 env->pmsav8.mair0[M_REG_S] = 0;
315 env->pmsav8.mair1[M_REG_NS] = 0;
316 env->pmsav8.mair1[M_REG_S] = 0;
319 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
320 if (cpu->sau_sregion > 0) {
321 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
322 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
324 env->sau.rnr = 0;
325 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
326 * the Cortex-M33 does.
328 env->sau.ctrl = 0;
331 set_flush_to_zero(1, &env->vfp.standard_fp_status);
332 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
333 set_default_nan_mode(1, &env->vfp.standard_fp_status);
334 set_float_detect_tininess(float_tininess_before_rounding,
335 &env->vfp.fp_status);
336 set_float_detect_tininess(float_tininess_before_rounding,
337 &env->vfp.standard_fp_status);
338 set_float_detect_tininess(float_tininess_before_rounding,
339 &env->vfp.fp_status_f16);
340 #ifndef CONFIG_USER_ONLY
341 if (kvm_enabled()) {
342 kvm_arm_reset_vcpu(cpu);
344 #endif
346 hw_breakpoint_update_all(cpu);
347 hw_watchpoint_update_all(cpu);
350 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
352 CPUClass *cc = CPU_GET_CLASS(cs);
353 CPUARMState *env = cs->env_ptr;
354 uint32_t cur_el = arm_current_el(env);
355 bool secure = arm_is_secure(env);
356 uint32_t target_el;
357 uint32_t excp_idx;
358 bool ret = false;
360 if (interrupt_request & CPU_INTERRUPT_FIQ) {
361 excp_idx = EXCP_FIQ;
362 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
363 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
364 cs->exception_index = excp_idx;
365 env->exception.target_el = target_el;
366 cc->do_interrupt(cs);
367 ret = true;
370 if (interrupt_request & CPU_INTERRUPT_HARD) {
371 excp_idx = EXCP_IRQ;
372 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374 cs->exception_index = excp_idx;
375 env->exception.target_el = target_el;
376 cc->do_interrupt(cs);
377 ret = true;
380 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
381 excp_idx = EXCP_VIRQ;
382 target_el = 1;
383 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384 cs->exception_index = excp_idx;
385 env->exception.target_el = target_el;
386 cc->do_interrupt(cs);
387 ret = true;
390 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
391 excp_idx = EXCP_VFIQ;
392 target_el = 1;
393 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394 cs->exception_index = excp_idx;
395 env->exception.target_el = target_el;
396 cc->do_interrupt(cs);
397 ret = true;
401 return ret;
404 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
405 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
407 CPUClass *cc = CPU_GET_CLASS(cs);
408 ARMCPU *cpu = ARM_CPU(cs);
409 CPUARMState *env = &cpu->env;
410 bool ret = false;
412 /* ARMv7-M interrupt masking works differently than -A or -R.
413 * There is no FIQ/IRQ distinction. Instead of I and F bits
414 * masking FIQ and IRQ interrupts, an exception is taken only
415 * if it is higher priority than the current execution priority
416 * (which depends on state like BASEPRI, FAULTMASK and the
417 * currently active exception).
419 if (interrupt_request & CPU_INTERRUPT_HARD
420 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
421 cs->exception_index = EXCP_IRQ;
422 cc->do_interrupt(cs);
423 ret = true;
425 return ret;
427 #endif
429 #ifndef CONFIG_USER_ONLY
430 static void arm_cpu_set_irq(void *opaque, int irq, int level)
432 ARMCPU *cpu = opaque;
433 CPUARMState *env = &cpu->env;
434 CPUState *cs = CPU(cpu);
435 static const int mask[] = {
436 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
437 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
438 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
439 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
442 switch (irq) {
443 case ARM_CPU_VIRQ:
444 case ARM_CPU_VFIQ:
445 assert(arm_feature(env, ARM_FEATURE_EL2));
446 /* fall through */
447 case ARM_CPU_IRQ:
448 case ARM_CPU_FIQ:
449 if (level) {
450 cpu_interrupt(cs, mask[irq]);
451 } else {
452 cpu_reset_interrupt(cs, mask[irq]);
454 break;
455 default:
456 g_assert_not_reached();
460 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
462 #ifdef CONFIG_KVM
463 ARMCPU *cpu = opaque;
464 CPUState *cs = CPU(cpu);
465 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
467 switch (irq) {
468 case ARM_CPU_IRQ:
469 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
470 break;
471 case ARM_CPU_FIQ:
472 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
473 break;
474 default:
475 g_assert_not_reached();
477 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
478 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
479 #endif
482 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
484 ARMCPU *cpu = ARM_CPU(cs);
485 CPUARMState *env = &cpu->env;
487 cpu_synchronize_state(cs);
488 return arm_cpu_data_is_big_endian(env);
491 #endif
493 static inline void set_feature(CPUARMState *env, int feature)
495 env->features |= 1ULL << feature;
498 static inline void unset_feature(CPUARMState *env, int feature)
500 env->features &= ~(1ULL << feature);
503 static int
504 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
506 return print_insn_arm(pc | 1, info);
509 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
511 ARMCPU *ac = ARM_CPU(cpu);
512 CPUARMState *env = &ac->env;
513 bool sctlr_b;
515 if (is_a64(env)) {
516 /* We might not be compiled with the A64 disassembler
517 * because it needs a C++ compiler. Leave print_insn
518 * unset in this case to use the caller default behaviour.
520 #if defined(CONFIG_ARM_A64_DIS)
521 info->print_insn = print_insn_arm_a64;
522 #endif
523 info->cap_arch = CS_ARCH_ARM64;
524 info->cap_insn_unit = 4;
525 info->cap_insn_split = 4;
526 } else {
527 int cap_mode;
528 if (env->thumb) {
529 info->print_insn = print_insn_thumb1;
530 info->cap_insn_unit = 2;
531 info->cap_insn_split = 4;
532 cap_mode = CS_MODE_THUMB;
533 } else {
534 info->print_insn = print_insn_arm;
535 info->cap_insn_unit = 4;
536 info->cap_insn_split = 4;
537 cap_mode = CS_MODE_ARM;
539 if (arm_feature(env, ARM_FEATURE_V8)) {
540 cap_mode |= CS_MODE_V8;
542 if (arm_feature(env, ARM_FEATURE_M)) {
543 cap_mode |= CS_MODE_MCLASS;
545 info->cap_arch = CS_ARCH_ARM;
546 info->cap_mode = cap_mode;
549 sctlr_b = arm_sctlr_b(env);
550 if (bswap_code(sctlr_b)) {
551 #ifdef TARGET_WORDS_BIGENDIAN
552 info->endian = BFD_ENDIAN_LITTLE;
553 #else
554 info->endian = BFD_ENDIAN_BIG;
555 #endif
557 info->flags &= ~INSN_ARM_BE32;
558 #ifndef CONFIG_USER_ONLY
559 if (sctlr_b) {
560 info->flags |= INSN_ARM_BE32;
562 #endif
565 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
567 uint32_t Aff1 = idx / clustersz;
568 uint32_t Aff0 = idx % clustersz;
569 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
572 static void arm_cpu_initfn(Object *obj)
574 CPUState *cs = CPU(obj);
575 ARMCPU *cpu = ARM_CPU(obj);
577 cs->env_ptr = &cpu->env;
578 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
579 g_free, g_free);
581 QLIST_INIT(&cpu->pre_el_change_hooks);
582 QLIST_INIT(&cpu->el_change_hooks);
584 #ifndef CONFIG_USER_ONLY
585 /* Our inbound IRQ and FIQ lines */
586 if (kvm_enabled()) {
587 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
588 * the same interface as non-KVM CPUs.
590 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
591 } else {
592 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
595 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
596 arm_gt_ptimer_cb, cpu);
597 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
598 arm_gt_vtimer_cb, cpu);
599 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
600 arm_gt_htimer_cb, cpu);
601 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
602 arm_gt_stimer_cb, cpu);
603 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
604 ARRAY_SIZE(cpu->gt_timer_outputs));
606 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
607 "gicv3-maintenance-interrupt", 1);
608 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
609 "pmu-interrupt", 1);
610 #endif
612 /* DTB consumers generally don't in fact care what the 'compatible'
613 * string is, so always provide some string and trust that a hypothetical
614 * picky DTB consumer will also provide a helpful error message.
616 cpu->dtb_compatible = "qemu,unknown";
617 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
618 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
620 if (tcg_enabled()) {
621 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
625 static Property arm_cpu_reset_cbar_property =
626 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
628 static Property arm_cpu_reset_hivecs_property =
629 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
631 static Property arm_cpu_rvbar_property =
632 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
634 static Property arm_cpu_has_el2_property =
635 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
637 static Property arm_cpu_has_el3_property =
638 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
640 static Property arm_cpu_cfgend_property =
641 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
643 /* use property name "pmu" to match other archs and virt tools */
644 static Property arm_cpu_has_pmu_property =
645 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
647 static Property arm_cpu_has_mpu_property =
648 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
650 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
651 * because the CPU initfn will have already set cpu->pmsav7_dregion to
652 * the right value for that particular CPU type, and we don't want
653 * to override that with an incorrect constant value.
655 static Property arm_cpu_pmsav7_dregion_property =
656 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
657 pmsav7_dregion,
658 qdev_prop_uint32, uint32_t);
660 /* M profile: initial value of the Secure VTOR */
661 static Property arm_cpu_initsvtor_property =
662 DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
664 static void arm_cpu_post_init(Object *obj)
666 ARMCPU *cpu = ARM_CPU(obj);
668 /* M profile implies PMSA. We have to do this here rather than
669 * in realize with the other feature-implication checks because
670 * we look at the PMSA bit to see if we should add some properties.
672 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
673 set_feature(&cpu->env, ARM_FEATURE_PMSA);
676 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
677 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
678 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
679 &error_abort);
682 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
683 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
684 &error_abort);
687 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
688 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
689 &error_abort);
692 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
693 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
694 * prevent "has_el3" from existing on CPUs which cannot support EL3.
696 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
697 &error_abort);
699 #ifndef CONFIG_USER_ONLY
700 object_property_add_link(obj, "secure-memory",
701 TYPE_MEMORY_REGION,
702 (Object **)&cpu->secure_memory,
703 qdev_prop_allow_set_link_before_realize,
704 OBJ_PROP_LINK_STRONG,
705 &error_abort);
706 #endif
709 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
710 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
711 &error_abort);
714 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
715 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
716 &error_abort);
719 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
720 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
721 &error_abort);
722 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
723 qdev_property_add_static(DEVICE(obj),
724 &arm_cpu_pmsav7_dregion_property,
725 &error_abort);
729 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
730 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
731 qdev_prop_allow_set_link_before_realize,
732 OBJ_PROP_LINK_STRONG,
733 &error_abort);
734 qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
735 &error_abort);
738 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
739 &error_abort);
742 static void arm_cpu_finalizefn(Object *obj)
744 ARMCPU *cpu = ARM_CPU(obj);
745 ARMELChangeHook *hook, *next;
747 g_hash_table_destroy(cpu->cp_regs);
749 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
750 QLIST_REMOVE(hook, node);
751 g_free(hook);
753 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
754 QLIST_REMOVE(hook, node);
755 g_free(hook);
759 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
761 CPUState *cs = CPU(dev);
762 ARMCPU *cpu = ARM_CPU(dev);
763 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
764 CPUARMState *env = &cpu->env;
765 int pagebits;
766 Error *local_err = NULL;
768 /* If we needed to query the host kernel for the CPU features
769 * then it's possible that might have failed in the initfn, but
770 * this is the first point where we can report it.
772 if (cpu->host_cpu_probe_failed) {
773 if (!kvm_enabled()) {
774 error_setg(errp, "The 'host' CPU type can only be used with KVM");
775 } else {
776 error_setg(errp, "Failed to retrieve host CPU features");
778 return;
781 #ifndef CONFIG_USER_ONLY
782 /* The NVIC and M-profile CPU are two halves of a single piece of
783 * hardware; trying to use one without the other is a command line
784 * error and will result in segfaults if not caught here.
786 if (arm_feature(env, ARM_FEATURE_M)) {
787 if (!env->nvic) {
788 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
789 return;
791 } else {
792 if (env->nvic) {
793 error_setg(errp, "This board can only be used with Cortex-M CPUs");
794 return;
797 #endif
799 cpu_exec_realizefn(cs, &local_err);
800 if (local_err != NULL) {
801 error_propagate(errp, local_err);
802 return;
805 /* Some features automatically imply others: */
806 if (arm_feature(env, ARM_FEATURE_V8)) {
807 set_feature(env, ARM_FEATURE_V7VE);
809 if (arm_feature(env, ARM_FEATURE_V7VE)) {
810 /* v7 Virtualization Extensions. In real hardware this implies
811 * EL2 and also the presence of the Security Extensions.
812 * For QEMU, for backwards-compatibility we implement some
813 * CPUs or CPU configs which have no actual EL2 or EL3 but do
814 * include the various other features that V7VE implies.
815 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
816 * Security Extensions is ARM_FEATURE_EL3.
818 set_feature(env, ARM_FEATURE_ARM_DIV);
819 set_feature(env, ARM_FEATURE_LPAE);
820 set_feature(env, ARM_FEATURE_V7);
822 if (arm_feature(env, ARM_FEATURE_V7)) {
823 set_feature(env, ARM_FEATURE_VAPA);
824 set_feature(env, ARM_FEATURE_THUMB2);
825 set_feature(env, ARM_FEATURE_MPIDR);
826 if (!arm_feature(env, ARM_FEATURE_M)) {
827 set_feature(env, ARM_FEATURE_V6K);
828 } else {
829 set_feature(env, ARM_FEATURE_V6);
832 /* Always define VBAR for V7 CPUs even if it doesn't exist in
833 * non-EL3 configs. This is needed by some legacy boards.
835 set_feature(env, ARM_FEATURE_VBAR);
837 if (arm_feature(env, ARM_FEATURE_V6K)) {
838 set_feature(env, ARM_FEATURE_V6);
839 set_feature(env, ARM_FEATURE_MVFR);
841 if (arm_feature(env, ARM_FEATURE_V6)) {
842 set_feature(env, ARM_FEATURE_V5);
843 set_feature(env, ARM_FEATURE_JAZELLE);
844 if (!arm_feature(env, ARM_FEATURE_M)) {
845 set_feature(env, ARM_FEATURE_AUXCR);
848 if (arm_feature(env, ARM_FEATURE_V5)) {
849 set_feature(env, ARM_FEATURE_V4T);
851 if (arm_feature(env, ARM_FEATURE_M)) {
852 set_feature(env, ARM_FEATURE_THUMB_DIV);
854 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
855 set_feature(env, ARM_FEATURE_THUMB_DIV);
857 if (arm_feature(env, ARM_FEATURE_VFP4)) {
858 set_feature(env, ARM_FEATURE_VFP3);
859 set_feature(env, ARM_FEATURE_VFP_FP16);
861 if (arm_feature(env, ARM_FEATURE_VFP3)) {
862 set_feature(env, ARM_FEATURE_VFP);
864 if (arm_feature(env, ARM_FEATURE_LPAE)) {
865 set_feature(env, ARM_FEATURE_V7MP);
866 set_feature(env, ARM_FEATURE_PXN);
868 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
869 set_feature(env, ARM_FEATURE_CBAR);
871 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
872 !arm_feature(env, ARM_FEATURE_M)) {
873 set_feature(env, ARM_FEATURE_THUMB_DSP);
876 if (arm_feature(env, ARM_FEATURE_V7) &&
877 !arm_feature(env, ARM_FEATURE_M) &&
878 !arm_feature(env, ARM_FEATURE_PMSA)) {
879 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
880 * can use 4K pages.
882 pagebits = 12;
883 } else {
884 /* For CPUs which might have tiny 1K pages, or which have an
885 * MPU and might have small region sizes, stick with 1K pages.
887 pagebits = 10;
889 if (!set_preferred_target_page_bits(pagebits)) {
890 /* This can only ever happen for hotplugging a CPU, or if
891 * the board code incorrectly creates a CPU which it has
892 * promised via minimum_page_size that it will not.
894 error_setg(errp, "This CPU requires a smaller page size than the "
895 "system is using");
896 return;
899 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
900 * We don't support setting cluster ID ([16..23]) (known as Aff2
901 * in later ARM ARM versions), or any of the higher affinity level fields,
902 * so these bits always RAZ.
904 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
905 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
906 ARM_DEFAULT_CPUS_PER_CLUSTER);
909 if (cpu->reset_hivecs) {
910 cpu->reset_sctlr |= (1 << 13);
913 if (cpu->cfgend) {
914 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
915 cpu->reset_sctlr |= SCTLR_EE;
916 } else {
917 cpu->reset_sctlr |= SCTLR_B;
921 if (!cpu->has_el3) {
922 /* If the has_el3 CPU property is disabled then we need to disable the
923 * feature.
925 unset_feature(env, ARM_FEATURE_EL3);
927 /* Disable the security extension feature bits in the processor feature
928 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
930 cpu->id_pfr1 &= ~0xf0;
931 cpu->id_aa64pfr0 &= ~0xf000;
934 if (!cpu->has_el2) {
935 unset_feature(env, ARM_FEATURE_EL2);
938 if (!cpu->has_pmu) {
939 unset_feature(env, ARM_FEATURE_PMU);
940 cpu->id_aa64dfr0 &= ~0xf00;
943 if (!arm_feature(env, ARM_FEATURE_EL2)) {
944 /* Disable the hypervisor feature bits in the processor feature
945 * registers if we don't have EL2. These are id_pfr1[15:12] and
946 * id_aa64pfr0_el1[11:8].
948 cpu->id_aa64pfr0 &= ~0xf00;
949 cpu->id_pfr1 &= ~0xf000;
952 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
953 * to false or by setting pmsav7-dregion to 0.
955 if (!cpu->has_mpu) {
956 cpu->pmsav7_dregion = 0;
958 if (cpu->pmsav7_dregion == 0) {
959 cpu->has_mpu = false;
962 if (arm_feature(env, ARM_FEATURE_PMSA) &&
963 arm_feature(env, ARM_FEATURE_V7)) {
964 uint32_t nr = cpu->pmsav7_dregion;
966 if (nr > 0xff) {
967 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
968 return;
971 if (nr) {
972 if (arm_feature(env, ARM_FEATURE_V8)) {
973 /* PMSAv8 */
974 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
975 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
976 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
977 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
978 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
980 } else {
981 env->pmsav7.drbar = g_new0(uint32_t, nr);
982 env->pmsav7.drsr = g_new0(uint32_t, nr);
983 env->pmsav7.dracr = g_new0(uint32_t, nr);
988 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
989 uint32_t nr = cpu->sau_sregion;
991 if (nr > 0xff) {
992 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
993 return;
996 if (nr) {
997 env->sau.rbar = g_new0(uint32_t, nr);
998 env->sau.rlar = g_new0(uint32_t, nr);
1002 if (arm_feature(env, ARM_FEATURE_EL3)) {
1003 set_feature(env, ARM_FEATURE_VBAR);
1006 register_cp_regs_for_features(cpu);
1007 arm_cpu_register_gdb_regs_for_features(cpu);
1009 init_cpreg_list(cpu);
1011 #ifndef CONFIG_USER_ONLY
1012 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1013 cs->num_ases = 2;
1015 if (!cpu->secure_memory) {
1016 cpu->secure_memory = cs->memory;
1018 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1019 cpu->secure_memory);
1020 } else {
1021 cs->num_ases = 1;
1023 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1025 /* No core_count specified, default to smp_cpus. */
1026 if (cpu->core_count == -1) {
1027 cpu->core_count = smp_cpus;
1029 #endif
1031 qemu_init_vcpu(cs);
1032 cpu_reset(cs);
1034 acc->parent_realize(dev, errp);
1037 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1039 ObjectClass *oc;
1040 char *typename;
1041 char **cpuname;
1042 const char *cpunamestr;
1044 cpuname = g_strsplit(cpu_model, ",", 1);
1045 cpunamestr = cpuname[0];
1046 #ifdef CONFIG_USER_ONLY
1047 /* For backwards compatibility usermode emulation allows "-cpu any",
1048 * which has the same semantics as "-cpu max".
1050 if (!strcmp(cpunamestr, "any")) {
1051 cpunamestr = "max";
1053 #endif
1054 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1055 oc = object_class_by_name(typename);
1056 g_strfreev(cpuname);
1057 g_free(typename);
1058 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1059 object_class_is_abstract(oc)) {
1060 return NULL;
1062 return oc;
1065 /* CPU models. These are not needed for the AArch64 linux-user build. */
1066 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1068 static void arm926_initfn(Object *obj)
1070 ARMCPU *cpu = ARM_CPU(obj);
1072 cpu->dtb_compatible = "arm,arm926";
1073 set_feature(&cpu->env, ARM_FEATURE_V5);
1074 set_feature(&cpu->env, ARM_FEATURE_VFP);
1075 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1076 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1077 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1078 cpu->midr = 0x41069265;
1079 cpu->reset_fpsid = 0x41011090;
1080 cpu->ctr = 0x1dd20d2;
1081 cpu->reset_sctlr = 0x00090078;
1084 static void arm946_initfn(Object *obj)
1086 ARMCPU *cpu = ARM_CPU(obj);
1088 cpu->dtb_compatible = "arm,arm946";
1089 set_feature(&cpu->env, ARM_FEATURE_V5);
1090 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1091 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1092 cpu->midr = 0x41059461;
1093 cpu->ctr = 0x0f004006;
1094 cpu->reset_sctlr = 0x00000078;
1097 static void arm1026_initfn(Object *obj)
1099 ARMCPU *cpu = ARM_CPU(obj);
1101 cpu->dtb_compatible = "arm,arm1026";
1102 set_feature(&cpu->env, ARM_FEATURE_V5);
1103 set_feature(&cpu->env, ARM_FEATURE_VFP);
1104 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1105 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1106 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1107 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1108 cpu->midr = 0x4106a262;
1109 cpu->reset_fpsid = 0x410110a0;
1110 cpu->ctr = 0x1dd20d2;
1111 cpu->reset_sctlr = 0x00090078;
1112 cpu->reset_auxcr = 1;
1114 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1115 ARMCPRegInfo ifar = {
1116 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1117 .access = PL1_RW,
1118 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1119 .resetvalue = 0
1121 define_one_arm_cp_reg(cpu, &ifar);
1125 static void arm1136_r2_initfn(Object *obj)
1127 ARMCPU *cpu = ARM_CPU(obj);
1128 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1129 * older core than plain "arm1136". In particular this does not
1130 * have the v6K features.
1131 * These ID register values are correct for 1136 but may be wrong
1132 * for 1136_r2 (in particular r0p2 does not actually implement most
1133 * of the ID registers).
1136 cpu->dtb_compatible = "arm,arm1136";
1137 set_feature(&cpu->env, ARM_FEATURE_V6);
1138 set_feature(&cpu->env, ARM_FEATURE_VFP);
1139 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1140 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1141 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1142 cpu->midr = 0x4107b362;
1143 cpu->reset_fpsid = 0x410120b4;
1144 cpu->mvfr0 = 0x11111111;
1145 cpu->mvfr1 = 0x00000000;
1146 cpu->ctr = 0x1dd20d2;
1147 cpu->reset_sctlr = 0x00050078;
1148 cpu->id_pfr0 = 0x111;
1149 cpu->id_pfr1 = 0x1;
1150 cpu->id_dfr0 = 0x2;
1151 cpu->id_afr0 = 0x3;
1152 cpu->id_mmfr0 = 0x01130003;
1153 cpu->id_mmfr1 = 0x10030302;
1154 cpu->id_mmfr2 = 0x01222110;
1155 cpu->id_isar0 = 0x00140011;
1156 cpu->id_isar1 = 0x12002111;
1157 cpu->id_isar2 = 0x11231111;
1158 cpu->id_isar3 = 0x01102131;
1159 cpu->id_isar4 = 0x141;
1160 cpu->reset_auxcr = 7;
1163 static void arm1136_initfn(Object *obj)
1165 ARMCPU *cpu = ARM_CPU(obj);
1167 cpu->dtb_compatible = "arm,arm1136";
1168 set_feature(&cpu->env, ARM_FEATURE_V6K);
1169 set_feature(&cpu->env, ARM_FEATURE_V6);
1170 set_feature(&cpu->env, ARM_FEATURE_VFP);
1171 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1172 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1173 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1174 cpu->midr = 0x4117b363;
1175 cpu->reset_fpsid = 0x410120b4;
1176 cpu->mvfr0 = 0x11111111;
1177 cpu->mvfr1 = 0x00000000;
1178 cpu->ctr = 0x1dd20d2;
1179 cpu->reset_sctlr = 0x00050078;
1180 cpu->id_pfr0 = 0x111;
1181 cpu->id_pfr1 = 0x1;
1182 cpu->id_dfr0 = 0x2;
1183 cpu->id_afr0 = 0x3;
1184 cpu->id_mmfr0 = 0x01130003;
1185 cpu->id_mmfr1 = 0x10030302;
1186 cpu->id_mmfr2 = 0x01222110;
1187 cpu->id_isar0 = 0x00140011;
1188 cpu->id_isar1 = 0x12002111;
1189 cpu->id_isar2 = 0x11231111;
1190 cpu->id_isar3 = 0x01102131;
1191 cpu->id_isar4 = 0x141;
1192 cpu->reset_auxcr = 7;
1195 static void arm1176_initfn(Object *obj)
1197 ARMCPU *cpu = ARM_CPU(obj);
1199 cpu->dtb_compatible = "arm,arm1176";
1200 set_feature(&cpu->env, ARM_FEATURE_V6K);
1201 set_feature(&cpu->env, ARM_FEATURE_VFP);
1202 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1203 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1204 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1205 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1206 set_feature(&cpu->env, ARM_FEATURE_EL3);
1207 cpu->midr = 0x410fb767;
1208 cpu->reset_fpsid = 0x410120b5;
1209 cpu->mvfr0 = 0x11111111;
1210 cpu->mvfr1 = 0x00000000;
1211 cpu->ctr = 0x1dd20d2;
1212 cpu->reset_sctlr = 0x00050078;
1213 cpu->id_pfr0 = 0x111;
1214 cpu->id_pfr1 = 0x11;
1215 cpu->id_dfr0 = 0x33;
1216 cpu->id_afr0 = 0;
1217 cpu->id_mmfr0 = 0x01130003;
1218 cpu->id_mmfr1 = 0x10030302;
1219 cpu->id_mmfr2 = 0x01222100;
1220 cpu->id_isar0 = 0x0140011;
1221 cpu->id_isar1 = 0x12002111;
1222 cpu->id_isar2 = 0x11231121;
1223 cpu->id_isar3 = 0x01102131;
1224 cpu->id_isar4 = 0x01141;
1225 cpu->reset_auxcr = 7;
1228 static void arm11mpcore_initfn(Object *obj)
1230 ARMCPU *cpu = ARM_CPU(obj);
1232 cpu->dtb_compatible = "arm,arm11mpcore";
1233 set_feature(&cpu->env, ARM_FEATURE_V6K);
1234 set_feature(&cpu->env, ARM_FEATURE_VFP);
1235 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1236 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1237 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1238 cpu->midr = 0x410fb022;
1239 cpu->reset_fpsid = 0x410120b4;
1240 cpu->mvfr0 = 0x11111111;
1241 cpu->mvfr1 = 0x00000000;
1242 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1243 cpu->id_pfr0 = 0x111;
1244 cpu->id_pfr1 = 0x1;
1245 cpu->id_dfr0 = 0;
1246 cpu->id_afr0 = 0x2;
1247 cpu->id_mmfr0 = 0x01100103;
1248 cpu->id_mmfr1 = 0x10020302;
1249 cpu->id_mmfr2 = 0x01222000;
1250 cpu->id_isar0 = 0x00100011;
1251 cpu->id_isar1 = 0x12002111;
1252 cpu->id_isar2 = 0x11221011;
1253 cpu->id_isar3 = 0x01102131;
1254 cpu->id_isar4 = 0x141;
1255 cpu->reset_auxcr = 1;
1258 static void cortex_m3_initfn(Object *obj)
1260 ARMCPU *cpu = ARM_CPU(obj);
1261 set_feature(&cpu->env, ARM_FEATURE_V7);
1262 set_feature(&cpu->env, ARM_FEATURE_M);
1263 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1264 cpu->midr = 0x410fc231;
1265 cpu->pmsav7_dregion = 8;
1266 cpu->id_pfr0 = 0x00000030;
1267 cpu->id_pfr1 = 0x00000200;
1268 cpu->id_dfr0 = 0x00100000;
1269 cpu->id_afr0 = 0x00000000;
1270 cpu->id_mmfr0 = 0x00000030;
1271 cpu->id_mmfr1 = 0x00000000;
1272 cpu->id_mmfr2 = 0x00000000;
1273 cpu->id_mmfr3 = 0x00000000;
1274 cpu->id_isar0 = 0x01141110;
1275 cpu->id_isar1 = 0x02111000;
1276 cpu->id_isar2 = 0x21112231;
1277 cpu->id_isar3 = 0x01111110;
1278 cpu->id_isar4 = 0x01310102;
1279 cpu->id_isar5 = 0x00000000;
1280 cpu->id_isar6 = 0x00000000;
1283 static void cortex_m4_initfn(Object *obj)
1285 ARMCPU *cpu = ARM_CPU(obj);
1287 set_feature(&cpu->env, ARM_FEATURE_V7);
1288 set_feature(&cpu->env, ARM_FEATURE_M);
1289 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1290 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1291 cpu->midr = 0x410fc240; /* r0p0 */
1292 cpu->pmsav7_dregion = 8;
1293 cpu->id_pfr0 = 0x00000030;
1294 cpu->id_pfr1 = 0x00000200;
1295 cpu->id_dfr0 = 0x00100000;
1296 cpu->id_afr0 = 0x00000000;
1297 cpu->id_mmfr0 = 0x00000030;
1298 cpu->id_mmfr1 = 0x00000000;
1299 cpu->id_mmfr2 = 0x00000000;
1300 cpu->id_mmfr3 = 0x00000000;
1301 cpu->id_isar0 = 0x01141110;
1302 cpu->id_isar1 = 0x02111000;
1303 cpu->id_isar2 = 0x21112231;
1304 cpu->id_isar3 = 0x01111110;
1305 cpu->id_isar4 = 0x01310102;
1306 cpu->id_isar5 = 0x00000000;
1307 cpu->id_isar6 = 0x00000000;
1310 static void cortex_m33_initfn(Object *obj)
1312 ARMCPU *cpu = ARM_CPU(obj);
1314 set_feature(&cpu->env, ARM_FEATURE_V8);
1315 set_feature(&cpu->env, ARM_FEATURE_M);
1316 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1317 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1318 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1319 cpu->midr = 0x410fd213; /* r0p3 */
1320 cpu->pmsav7_dregion = 16;
1321 cpu->sau_sregion = 8;
1322 cpu->id_pfr0 = 0x00000030;
1323 cpu->id_pfr1 = 0x00000210;
1324 cpu->id_dfr0 = 0x00200000;
1325 cpu->id_afr0 = 0x00000000;
1326 cpu->id_mmfr0 = 0x00101F40;
1327 cpu->id_mmfr1 = 0x00000000;
1328 cpu->id_mmfr2 = 0x01000000;
1329 cpu->id_mmfr3 = 0x00000000;
1330 cpu->id_isar0 = 0x01101110;
1331 cpu->id_isar1 = 0x02212000;
1332 cpu->id_isar2 = 0x20232232;
1333 cpu->id_isar3 = 0x01111131;
1334 cpu->id_isar4 = 0x01310132;
1335 cpu->id_isar5 = 0x00000000;
1336 cpu->id_isar6 = 0x00000000;
1337 cpu->clidr = 0x00000000;
1338 cpu->ctr = 0x8000c000;
1341 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1343 CPUClass *cc = CPU_CLASS(oc);
1345 #ifndef CONFIG_USER_ONLY
1346 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1347 #endif
1349 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1352 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1353 /* Dummy the TCM region regs for the moment */
1354 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1355 .access = PL1_RW, .type = ARM_CP_CONST },
1356 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1357 .access = PL1_RW, .type = ARM_CP_CONST },
1358 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1359 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1360 REGINFO_SENTINEL
1363 static void cortex_r5_initfn(Object *obj)
1365 ARMCPU *cpu = ARM_CPU(obj);
1367 set_feature(&cpu->env, ARM_FEATURE_V7);
1368 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1369 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1370 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1371 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1372 cpu->midr = 0x411fc153; /* r1p3 */
1373 cpu->id_pfr0 = 0x0131;
1374 cpu->id_pfr1 = 0x001;
1375 cpu->id_dfr0 = 0x010400;
1376 cpu->id_afr0 = 0x0;
1377 cpu->id_mmfr0 = 0x0210030;
1378 cpu->id_mmfr1 = 0x00000000;
1379 cpu->id_mmfr2 = 0x01200000;
1380 cpu->id_mmfr3 = 0x0211;
1381 cpu->id_isar0 = 0x2101111;
1382 cpu->id_isar1 = 0x13112111;
1383 cpu->id_isar2 = 0x21232141;
1384 cpu->id_isar3 = 0x01112131;
1385 cpu->id_isar4 = 0x0010142;
1386 cpu->id_isar5 = 0x0;
1387 cpu->id_isar6 = 0x0;
1388 cpu->mp_is_up = true;
1389 cpu->pmsav7_dregion = 16;
1390 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1393 static void cortex_r5f_initfn(Object *obj)
1395 ARMCPU *cpu = ARM_CPU(obj);
1397 cortex_r5_initfn(obj);
1398 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1401 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1402 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1403 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1404 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1405 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1406 REGINFO_SENTINEL
1409 static void cortex_a8_initfn(Object *obj)
1411 ARMCPU *cpu = ARM_CPU(obj);
1413 cpu->dtb_compatible = "arm,cortex-a8";
1414 set_feature(&cpu->env, ARM_FEATURE_V7);
1415 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1416 set_feature(&cpu->env, ARM_FEATURE_NEON);
1417 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1418 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1419 set_feature(&cpu->env, ARM_FEATURE_EL3);
1420 cpu->midr = 0x410fc080;
1421 cpu->reset_fpsid = 0x410330c0;
1422 cpu->mvfr0 = 0x11110222;
1423 cpu->mvfr1 = 0x00011111;
1424 cpu->ctr = 0x82048004;
1425 cpu->reset_sctlr = 0x00c50078;
1426 cpu->id_pfr0 = 0x1031;
1427 cpu->id_pfr1 = 0x11;
1428 cpu->id_dfr0 = 0x400;
1429 cpu->id_afr0 = 0;
1430 cpu->id_mmfr0 = 0x31100003;
1431 cpu->id_mmfr1 = 0x20000000;
1432 cpu->id_mmfr2 = 0x01202000;
1433 cpu->id_mmfr3 = 0x11;
1434 cpu->id_isar0 = 0x00101111;
1435 cpu->id_isar1 = 0x12112111;
1436 cpu->id_isar2 = 0x21232031;
1437 cpu->id_isar3 = 0x11112131;
1438 cpu->id_isar4 = 0x00111142;
1439 cpu->dbgdidr = 0x15141000;
1440 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1441 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1442 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1443 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1444 cpu->reset_auxcr = 2;
1445 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1448 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1449 /* power_control should be set to maximum latency. Again,
1450 * default to 0 and set by private hook
1452 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1453 .access = PL1_RW, .resetvalue = 0,
1454 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1455 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1456 .access = PL1_RW, .resetvalue = 0,
1457 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1458 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1459 .access = PL1_RW, .resetvalue = 0,
1460 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1461 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1462 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1463 /* TLB lockdown control */
1464 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1465 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1466 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1467 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1468 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1469 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1470 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1471 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1472 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1473 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1474 REGINFO_SENTINEL
1477 static void cortex_a9_initfn(Object *obj)
1479 ARMCPU *cpu = ARM_CPU(obj);
1481 cpu->dtb_compatible = "arm,cortex-a9";
1482 set_feature(&cpu->env, ARM_FEATURE_V7);
1483 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1484 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1485 set_feature(&cpu->env, ARM_FEATURE_NEON);
1486 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1487 set_feature(&cpu->env, ARM_FEATURE_EL3);
1488 /* Note that A9 supports the MP extensions even for
1489 * A9UP and single-core A9MP (which are both different
1490 * and valid configurations; we don't model A9UP).
1492 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1493 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1494 cpu->midr = 0x410fc090;
1495 cpu->reset_fpsid = 0x41033090;
1496 cpu->mvfr0 = 0x11110222;
1497 cpu->mvfr1 = 0x01111111;
1498 cpu->ctr = 0x80038003;
1499 cpu->reset_sctlr = 0x00c50078;
1500 cpu->id_pfr0 = 0x1031;
1501 cpu->id_pfr1 = 0x11;
1502 cpu->id_dfr0 = 0x000;
1503 cpu->id_afr0 = 0;
1504 cpu->id_mmfr0 = 0x00100103;
1505 cpu->id_mmfr1 = 0x20000000;
1506 cpu->id_mmfr2 = 0x01230000;
1507 cpu->id_mmfr3 = 0x00002111;
1508 cpu->id_isar0 = 0x00101111;
1509 cpu->id_isar1 = 0x13112111;
1510 cpu->id_isar2 = 0x21232041;
1511 cpu->id_isar3 = 0x11112131;
1512 cpu->id_isar4 = 0x00111142;
1513 cpu->dbgdidr = 0x35141000;
1514 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1515 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1516 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1517 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1520 #ifndef CONFIG_USER_ONLY
1521 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1523 /* Linux wants the number of processors from here.
1524 * Might as well set the interrupt-controller bit too.
1526 return ((smp_cpus - 1) << 24) | (1 << 23);
1528 #endif
1530 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1531 #ifndef CONFIG_USER_ONLY
1532 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1533 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1534 .writefn = arm_cp_write_ignore, },
1535 #endif
1536 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1537 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1538 REGINFO_SENTINEL
1541 static void cortex_a7_initfn(Object *obj)
1543 ARMCPU *cpu = ARM_CPU(obj);
1545 cpu->dtb_compatible = "arm,cortex-a7";
1546 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1547 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1548 set_feature(&cpu->env, ARM_FEATURE_NEON);
1549 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1550 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1551 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1552 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1553 set_feature(&cpu->env, ARM_FEATURE_EL3);
1554 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1555 cpu->midr = 0x410fc075;
1556 cpu->reset_fpsid = 0x41023075;
1557 cpu->mvfr0 = 0x10110222;
1558 cpu->mvfr1 = 0x11111111;
1559 cpu->ctr = 0x84448003;
1560 cpu->reset_sctlr = 0x00c50078;
1561 cpu->id_pfr0 = 0x00001131;
1562 cpu->id_pfr1 = 0x00011011;
1563 cpu->id_dfr0 = 0x02010555;
1564 cpu->pmceid0 = 0x00000000;
1565 cpu->pmceid1 = 0x00000000;
1566 cpu->id_afr0 = 0x00000000;
1567 cpu->id_mmfr0 = 0x10101105;
1568 cpu->id_mmfr1 = 0x40000000;
1569 cpu->id_mmfr2 = 0x01240000;
1570 cpu->id_mmfr3 = 0x02102211;
1571 cpu->id_isar0 = 0x01101110;
1572 cpu->id_isar1 = 0x13112111;
1573 cpu->id_isar2 = 0x21232041;
1574 cpu->id_isar3 = 0x11112131;
1575 cpu->id_isar4 = 0x10011142;
1576 cpu->dbgdidr = 0x3515f005;
1577 cpu->clidr = 0x0a200023;
1578 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1579 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1580 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1581 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1584 static void cortex_a15_initfn(Object *obj)
1586 ARMCPU *cpu = ARM_CPU(obj);
1588 cpu->dtb_compatible = "arm,cortex-a15";
1589 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1590 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1591 set_feature(&cpu->env, ARM_FEATURE_NEON);
1592 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1593 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1594 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1595 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1596 set_feature(&cpu->env, ARM_FEATURE_EL3);
1597 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1598 cpu->midr = 0x412fc0f1;
1599 cpu->reset_fpsid = 0x410430f0;
1600 cpu->mvfr0 = 0x10110222;
1601 cpu->mvfr1 = 0x11111111;
1602 cpu->ctr = 0x8444c004;
1603 cpu->reset_sctlr = 0x00c50078;
1604 cpu->id_pfr0 = 0x00001131;
1605 cpu->id_pfr1 = 0x00011011;
1606 cpu->id_dfr0 = 0x02010555;
1607 cpu->pmceid0 = 0x0000000;
1608 cpu->pmceid1 = 0x00000000;
1609 cpu->id_afr0 = 0x00000000;
1610 cpu->id_mmfr0 = 0x10201105;
1611 cpu->id_mmfr1 = 0x20000000;
1612 cpu->id_mmfr2 = 0x01240000;
1613 cpu->id_mmfr3 = 0x02102211;
1614 cpu->id_isar0 = 0x02101110;
1615 cpu->id_isar1 = 0x13112111;
1616 cpu->id_isar2 = 0x21232041;
1617 cpu->id_isar3 = 0x11112131;
1618 cpu->id_isar4 = 0x10011142;
1619 cpu->dbgdidr = 0x3515f021;
1620 cpu->clidr = 0x0a200023;
1621 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1622 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1623 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1624 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1627 static void ti925t_initfn(Object *obj)
1629 ARMCPU *cpu = ARM_CPU(obj);
1630 set_feature(&cpu->env, ARM_FEATURE_V4T);
1631 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1632 cpu->midr = ARM_CPUID_TI925T;
1633 cpu->ctr = 0x5109149;
1634 cpu->reset_sctlr = 0x00000070;
1637 static void sa1100_initfn(Object *obj)
1639 ARMCPU *cpu = ARM_CPU(obj);
1641 cpu->dtb_compatible = "intel,sa1100";
1642 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1643 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1644 cpu->midr = 0x4401A11B;
1645 cpu->reset_sctlr = 0x00000070;
1648 static void sa1110_initfn(Object *obj)
1650 ARMCPU *cpu = ARM_CPU(obj);
1651 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1652 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1653 cpu->midr = 0x6901B119;
1654 cpu->reset_sctlr = 0x00000070;
1657 static void pxa250_initfn(Object *obj)
1659 ARMCPU *cpu = ARM_CPU(obj);
1661 cpu->dtb_compatible = "marvell,xscale";
1662 set_feature(&cpu->env, ARM_FEATURE_V5);
1663 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1664 cpu->midr = 0x69052100;
1665 cpu->ctr = 0xd172172;
1666 cpu->reset_sctlr = 0x00000078;
1669 static void pxa255_initfn(Object *obj)
1671 ARMCPU *cpu = ARM_CPU(obj);
1673 cpu->dtb_compatible = "marvell,xscale";
1674 set_feature(&cpu->env, ARM_FEATURE_V5);
1675 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1676 cpu->midr = 0x69052d00;
1677 cpu->ctr = 0xd172172;
1678 cpu->reset_sctlr = 0x00000078;
1681 static void pxa260_initfn(Object *obj)
1683 ARMCPU *cpu = ARM_CPU(obj);
1685 cpu->dtb_compatible = "marvell,xscale";
1686 set_feature(&cpu->env, ARM_FEATURE_V5);
1687 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1688 cpu->midr = 0x69052903;
1689 cpu->ctr = 0xd172172;
1690 cpu->reset_sctlr = 0x00000078;
1693 static void pxa261_initfn(Object *obj)
1695 ARMCPU *cpu = ARM_CPU(obj);
1697 cpu->dtb_compatible = "marvell,xscale";
1698 set_feature(&cpu->env, ARM_FEATURE_V5);
1699 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1700 cpu->midr = 0x69052d05;
1701 cpu->ctr = 0xd172172;
1702 cpu->reset_sctlr = 0x00000078;
1705 static void pxa262_initfn(Object *obj)
1707 ARMCPU *cpu = ARM_CPU(obj);
1709 cpu->dtb_compatible = "marvell,xscale";
1710 set_feature(&cpu->env, ARM_FEATURE_V5);
1711 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1712 cpu->midr = 0x69052d06;
1713 cpu->ctr = 0xd172172;
1714 cpu->reset_sctlr = 0x00000078;
1717 static void pxa270a0_initfn(Object *obj)
1719 ARMCPU *cpu = ARM_CPU(obj);
1721 cpu->dtb_compatible = "marvell,xscale";
1722 set_feature(&cpu->env, ARM_FEATURE_V5);
1723 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1724 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1725 cpu->midr = 0x69054110;
1726 cpu->ctr = 0xd172172;
1727 cpu->reset_sctlr = 0x00000078;
1730 static void pxa270a1_initfn(Object *obj)
1732 ARMCPU *cpu = ARM_CPU(obj);
1734 cpu->dtb_compatible = "marvell,xscale";
1735 set_feature(&cpu->env, ARM_FEATURE_V5);
1736 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1737 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1738 cpu->midr = 0x69054111;
1739 cpu->ctr = 0xd172172;
1740 cpu->reset_sctlr = 0x00000078;
1743 static void pxa270b0_initfn(Object *obj)
1745 ARMCPU *cpu = ARM_CPU(obj);
1747 cpu->dtb_compatible = "marvell,xscale";
1748 set_feature(&cpu->env, ARM_FEATURE_V5);
1749 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1750 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1751 cpu->midr = 0x69054112;
1752 cpu->ctr = 0xd172172;
1753 cpu->reset_sctlr = 0x00000078;
1756 static void pxa270b1_initfn(Object *obj)
1758 ARMCPU *cpu = ARM_CPU(obj);
1760 cpu->dtb_compatible = "marvell,xscale";
1761 set_feature(&cpu->env, ARM_FEATURE_V5);
1762 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1763 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1764 cpu->midr = 0x69054113;
1765 cpu->ctr = 0xd172172;
1766 cpu->reset_sctlr = 0x00000078;
1769 static void pxa270c0_initfn(Object *obj)
1771 ARMCPU *cpu = ARM_CPU(obj);
1773 cpu->dtb_compatible = "marvell,xscale";
1774 set_feature(&cpu->env, ARM_FEATURE_V5);
1775 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1776 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1777 cpu->midr = 0x69054114;
1778 cpu->ctr = 0xd172172;
1779 cpu->reset_sctlr = 0x00000078;
1782 static void pxa270c5_initfn(Object *obj)
1784 ARMCPU *cpu = ARM_CPU(obj);
1786 cpu->dtb_compatible = "marvell,xscale";
1787 set_feature(&cpu->env, ARM_FEATURE_V5);
1788 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1789 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1790 cpu->midr = 0x69054117;
1791 cpu->ctr = 0xd172172;
1792 cpu->reset_sctlr = 0x00000078;
1795 #ifndef TARGET_AARCH64
1796 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1797 * otherwise, a CPU with as many features enabled as our emulation supports.
1798 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1799 * this only needs to handle 32 bits.
1801 static void arm_max_initfn(Object *obj)
1803 ARMCPU *cpu = ARM_CPU(obj);
1805 if (kvm_enabled()) {
1806 kvm_arm_set_cpu_features_from_host(cpu);
1807 } else {
1808 cortex_a15_initfn(obj);
1809 #ifdef CONFIG_USER_ONLY
1810 /* We don't set these in system emulation mode for the moment,
1811 * since we don't correctly set the ID registers to advertise them,
1813 set_feature(&cpu->env, ARM_FEATURE_V8);
1814 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1815 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1816 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1817 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1818 set_feature(&cpu->env, ARM_FEATURE_CRC);
1819 set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
1820 set_feature(&cpu->env, ARM_FEATURE_V8_DOTPROD);
1821 set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
1822 #endif
1825 #endif
1827 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1829 typedef struct ARMCPUInfo {
1830 const char *name;
1831 void (*initfn)(Object *obj);
1832 void (*class_init)(ObjectClass *oc, void *data);
1833 } ARMCPUInfo;
1835 static const ARMCPUInfo arm_cpus[] = {
1836 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1837 { .name = "arm926", .initfn = arm926_initfn },
1838 { .name = "arm946", .initfn = arm946_initfn },
1839 { .name = "arm1026", .initfn = arm1026_initfn },
1840 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1841 * older core than plain "arm1136". In particular this does not
1842 * have the v6K features.
1844 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1845 { .name = "arm1136", .initfn = arm1136_initfn },
1846 { .name = "arm1176", .initfn = arm1176_initfn },
1847 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1848 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1849 .class_init = arm_v7m_class_init },
1850 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1851 .class_init = arm_v7m_class_init },
1852 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
1853 .class_init = arm_v7m_class_init },
1854 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1855 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
1856 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1857 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1858 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1859 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1860 { .name = "ti925t", .initfn = ti925t_initfn },
1861 { .name = "sa1100", .initfn = sa1100_initfn },
1862 { .name = "sa1110", .initfn = sa1110_initfn },
1863 { .name = "pxa250", .initfn = pxa250_initfn },
1864 { .name = "pxa255", .initfn = pxa255_initfn },
1865 { .name = "pxa260", .initfn = pxa260_initfn },
1866 { .name = "pxa261", .initfn = pxa261_initfn },
1867 { .name = "pxa262", .initfn = pxa262_initfn },
1868 /* "pxa270" is an alias for "pxa270-a0" */
1869 { .name = "pxa270", .initfn = pxa270a0_initfn },
1870 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1871 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1872 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1873 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1874 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1875 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1876 #ifndef TARGET_AARCH64
1877 { .name = "max", .initfn = arm_max_initfn },
1878 #endif
1879 #ifdef CONFIG_USER_ONLY
1880 { .name = "any", .initfn = arm_max_initfn },
1881 #endif
1882 #endif
1883 { .name = NULL }
1886 static Property arm_cpu_properties[] = {
1887 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1888 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1889 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1890 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1891 mp_affinity, ARM64_AFFINITY_INVALID),
1892 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1893 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1894 DEFINE_PROP_END_OF_LIST()
1897 #ifdef CONFIG_USER_ONLY
1898 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1899 int rw, int mmu_idx)
1901 ARMCPU *cpu = ARM_CPU(cs);
1902 CPUARMState *env = &cpu->env;
1904 env->exception.vaddress = address;
1905 if (rw == 2) {
1906 cs->exception_index = EXCP_PREFETCH_ABORT;
1907 } else {
1908 cs->exception_index = EXCP_DATA_ABORT;
1910 return 1;
1912 #endif
1914 static gchar *arm_gdb_arch_name(CPUState *cs)
1916 ARMCPU *cpu = ARM_CPU(cs);
1917 CPUARMState *env = &cpu->env;
1919 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1920 return g_strdup("iwmmxt");
1922 return g_strdup("arm");
1925 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1927 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1928 CPUClass *cc = CPU_CLASS(acc);
1929 DeviceClass *dc = DEVICE_CLASS(oc);
1931 device_class_set_parent_realize(dc, arm_cpu_realizefn,
1932 &acc->parent_realize);
1933 dc->props = arm_cpu_properties;
1935 acc->parent_reset = cc->reset;
1936 cc->reset = arm_cpu_reset;
1938 cc->class_by_name = arm_cpu_class_by_name;
1939 cc->has_work = arm_cpu_has_work;
1940 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1941 cc->dump_state = arm_cpu_dump_state;
1942 cc->set_pc = arm_cpu_set_pc;
1943 cc->gdb_read_register = arm_cpu_gdb_read_register;
1944 cc->gdb_write_register = arm_cpu_gdb_write_register;
1945 #ifdef CONFIG_USER_ONLY
1946 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1947 #else
1948 cc->do_interrupt = arm_cpu_do_interrupt;
1949 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1950 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1951 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1952 cc->asidx_from_attrs = arm_asidx_from_attrs;
1953 cc->vmsd = &vmstate_arm_cpu;
1954 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1955 cc->write_elf64_note = arm_cpu_write_elf64_note;
1956 cc->write_elf32_note = arm_cpu_write_elf32_note;
1957 #endif
1958 cc->gdb_num_core_regs = 26;
1959 cc->gdb_core_xml_file = "arm-core.xml";
1960 cc->gdb_arch_name = arm_gdb_arch_name;
1961 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1962 cc->gdb_stop_before_watchpoint = true;
1963 cc->debug_excp_handler = arm_debug_excp_handler;
1964 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1965 #if !defined(CONFIG_USER_ONLY)
1966 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1967 #endif
1969 cc->disas_set_info = arm_disas_set_info;
1970 #ifdef CONFIG_TCG
1971 cc->tcg_initialize = arm_translate_init;
1972 #endif
1975 #ifdef CONFIG_KVM
1976 static void arm_host_initfn(Object *obj)
1978 ARMCPU *cpu = ARM_CPU(obj);
1980 kvm_arm_set_cpu_features_from_host(cpu);
1983 static const TypeInfo host_arm_cpu_type_info = {
1984 .name = TYPE_ARM_HOST_CPU,
1985 #ifdef TARGET_AARCH64
1986 .parent = TYPE_AARCH64_CPU,
1987 #else
1988 .parent = TYPE_ARM_CPU,
1989 #endif
1990 .instance_init = arm_host_initfn,
1993 #endif
1995 static void cpu_register(const ARMCPUInfo *info)
1997 TypeInfo type_info = {
1998 .parent = TYPE_ARM_CPU,
1999 .instance_size = sizeof(ARMCPU),
2000 .instance_init = info->initfn,
2001 .class_size = sizeof(ARMCPUClass),
2002 .class_init = info->class_init,
2005 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2006 type_register(&type_info);
2007 g_free((void *)type_info.name);
2010 static const TypeInfo arm_cpu_type_info = {
2011 .name = TYPE_ARM_CPU,
2012 .parent = TYPE_CPU,
2013 .instance_size = sizeof(ARMCPU),
2014 .instance_init = arm_cpu_initfn,
2015 .instance_post_init = arm_cpu_post_init,
2016 .instance_finalize = arm_cpu_finalizefn,
2017 .abstract = true,
2018 .class_size = sizeof(ARMCPUClass),
2019 .class_init = arm_cpu_class_init,
2022 static const TypeInfo idau_interface_type_info = {
2023 .name = TYPE_IDAU_INTERFACE,
2024 .parent = TYPE_INTERFACE,
2025 .class_size = sizeof(IDAUInterfaceClass),
2028 static void arm_cpu_register_types(void)
2030 const ARMCPUInfo *info = arm_cpus;
2032 type_register_static(&arm_cpu_type_info);
2033 type_register_static(&idau_interface_type_info);
2035 while (info->name) {
2036 cpu_register(info);
2037 info++;
2040 #ifdef CONFIG_KVM
2041 type_register_static(&host_arm_cpu_type_info);
2042 #endif
2045 type_init(arm_cpu_register_types)