Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / hw / arm / boot.c
blob2643b3f286ae2a22a4019da3ab4c89af527028aa
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
13 #include <libfdt.h>
14 #include "hw/hw.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
27 #include "qemu/units.h"
29 /* Kernel boot protocol is specified in the kernel docs
30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
31 * They have different preferred image load offsets from system RAM base.
33 #define KERNEL_ARGS_ADDR 0x100
34 #define KERNEL_LOAD_ADDR 0x00010000
35 #define KERNEL64_LOAD_ADDR 0x00080000
37 #define ARM64_TEXT_OFFSET_OFFSET 8
38 #define ARM64_MAGIC_OFFSET 56
40 #define BOOTLOADER_MAX_SIZE (4 * KiB)
42 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
43 const struct arm_boot_info *info)
45 /* Return the address space to use for bootloader reads and writes.
46 * We prefer the secure address space if the CPU has it and we're
47 * going to boot the guest into it.
49 int asidx;
50 CPUState *cs = CPU(cpu);
52 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
53 asidx = ARMASIdx_S;
54 } else {
55 asidx = ARMASIdx_NS;
58 return cpu_get_address_space(cs, asidx);
61 typedef enum {
62 FIXUP_NONE = 0, /* do nothing */
63 FIXUP_TERMINATOR, /* end of insns */
64 FIXUP_BOARDID, /* overwrite with board ID number */
65 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
66 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
67 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
68 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
69 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
70 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
71 FIXUP_BOOTREG, /* overwrite with boot register address */
72 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
73 FIXUP_MAX,
74 } FixupType;
76 typedef struct ARMInsnFixup {
77 uint32_t insn;
78 FixupType fixup;
79 } ARMInsnFixup;
81 static const ARMInsnFixup bootloader_aarch64[] = {
82 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
83 { 0xaa1f03e1 }, /* mov x1, xzr */
84 { 0xaa1f03e2 }, /* mov x2, xzr */
85 { 0xaa1f03e3 }, /* mov x3, xzr */
86 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
87 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
88 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
89 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
90 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
91 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
92 { 0, FIXUP_TERMINATOR }
95 /* A very small bootloader: call the board-setup code (if needed),
96 * set r0-r2, then jump to the kernel.
97 * If we're not calling boot setup code then we don't copy across
98 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
101 static const ARMInsnFixup bootloader[] = {
102 { 0xe28fe004 }, /* add lr, pc, #4 */
103 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
104 { 0, FIXUP_BOARD_SETUP },
105 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
106 { 0xe3a00000 }, /* mov r0, #0 */
107 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
108 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
109 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
110 { 0, FIXUP_BOARDID },
111 { 0, FIXUP_ARGPTR_LO },
112 { 0, FIXUP_ENTRYPOINT_LO },
113 { 0, FIXUP_TERMINATOR }
116 /* Handling for secondary CPU boot in a multicore system.
117 * Unlike the uniprocessor/primary CPU boot, this is platform
118 * dependent. The default code here is based on the secondary
119 * CPU boot protocol used on realview/vexpress boards, with
120 * some parameterisation to increase its flexibility.
121 * QEMU platform models for which this code is not appropriate
122 * should override write_secondary_boot and secondary_cpu_reset_hook
123 * instead.
125 * This code enables the interrupt controllers for the secondary
126 * CPUs and then puts all the secondary CPUs into a loop waiting
127 * for an interprocessor interrupt and polling a configurable
128 * location for the kernel secondary CPU entry point.
130 #define DSB_INSN 0xf57ff04f
131 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
133 static const ARMInsnFixup smpboot[] = {
134 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
135 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
136 { 0xe3a01001 }, /* mov r1, #1 */
137 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
138 { 0xe3a010ff }, /* mov r1, #0xff */
139 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
140 { 0, FIXUP_DSB }, /* dsb */
141 { 0xe320f003 }, /* wfi */
142 { 0xe5901000 }, /* ldr r1, [r0] */
143 { 0xe1110001 }, /* tst r1, r1 */
144 { 0x0afffffb }, /* beq <wfi> */
145 { 0xe12fff11 }, /* bx r1 */
146 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
147 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
148 { 0, FIXUP_TERMINATOR }
151 static void write_bootloader(const char *name, hwaddr addr,
152 const ARMInsnFixup *insns, uint32_t *fixupcontext,
153 AddressSpace *as)
155 /* Fix up the specified bootloader fragment and write it into
156 * guest memory using rom_add_blob_fixed(). fixupcontext is
157 * an array giving the values to write in for the fixup types
158 * which write a value into the code array.
160 int i, len;
161 uint32_t *code;
163 len = 0;
164 while (insns[len].fixup != FIXUP_TERMINATOR) {
165 len++;
168 code = g_new0(uint32_t, len);
170 for (i = 0; i < len; i++) {
171 uint32_t insn = insns[i].insn;
172 FixupType fixup = insns[i].fixup;
174 switch (fixup) {
175 case FIXUP_NONE:
176 break;
177 case FIXUP_BOARDID:
178 case FIXUP_BOARD_SETUP:
179 case FIXUP_ARGPTR_LO:
180 case FIXUP_ARGPTR_HI:
181 case FIXUP_ENTRYPOINT_LO:
182 case FIXUP_ENTRYPOINT_HI:
183 case FIXUP_GIC_CPU_IF:
184 case FIXUP_BOOTREG:
185 case FIXUP_DSB:
186 insn = fixupcontext[fixup];
187 break;
188 default:
189 abort();
191 code[i] = tswap32(insn);
194 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
196 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
198 g_free(code);
201 static void default_write_secondary(ARMCPU *cpu,
202 const struct arm_boot_info *info)
204 uint32_t fixupcontext[FIXUP_MAX];
205 AddressSpace *as = arm_boot_address_space(cpu, info);
207 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
208 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
209 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
210 fixupcontext[FIXUP_DSB] = DSB_INSN;
211 } else {
212 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
215 write_bootloader("smpboot", info->smp_loader_start,
216 smpboot, fixupcontext, as);
219 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
220 const struct arm_boot_info *info,
221 hwaddr mvbar_addr)
223 AddressSpace *as = arm_boot_address_space(cpu, info);
224 int n;
225 uint32_t mvbar_blob[] = {
226 /* mvbar_addr: secure monitor vectors
227 * Default unimplemented and unused vectors to spin. Makes it
228 * easier to debug (as opposed to the CPU running away).
230 0xeafffffe, /* (spin) */
231 0xeafffffe, /* (spin) */
232 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
233 0xeafffffe, /* (spin) */
234 0xeafffffe, /* (spin) */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
239 uint32_t board_setup_blob[] = {
240 /* board setup addr */
241 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
242 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
243 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
244 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
245 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
246 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
247 0xe1600070, /* smc #0 ;call monitor to flush SCR */
248 0xe1a0f001, /* mov pc, r1 ;return */
251 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
252 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
254 /* check that these blobs don't overlap */
255 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
256 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
258 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
259 mvbar_blob[n] = tswap32(mvbar_blob[n]);
261 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
262 mvbar_addr, as);
264 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
265 board_setup_blob[n] = tswap32(board_setup_blob[n]);
267 rom_add_blob_fixed_as("board-setup", board_setup_blob,
268 sizeof(board_setup_blob), info->board_setup_addr, as);
271 static void default_reset_secondary(ARMCPU *cpu,
272 const struct arm_boot_info *info)
274 AddressSpace *as = arm_boot_address_space(cpu, info);
275 CPUState *cs = CPU(cpu);
277 address_space_stl_notdirty(as, info->smp_bootreg_addr,
278 0, MEMTXATTRS_UNSPECIFIED, NULL);
279 cpu_set_pc(cs, info->smp_loader_start);
282 static inline bool have_dtb(const struct arm_boot_info *info)
284 return info->dtb_filename || info->get_dtb;
287 #define WRITE_WORD(p, value) do { \
288 address_space_stl_notdirty(as, p, value, \
289 MEMTXATTRS_UNSPECIFIED, NULL); \
290 p += 4; \
291 } while (0)
293 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
295 int initrd_size = info->initrd_size;
296 hwaddr base = info->loader_start;
297 hwaddr p;
299 p = base + KERNEL_ARGS_ADDR;
300 /* ATAG_CORE */
301 WRITE_WORD(p, 5);
302 WRITE_WORD(p, 0x54410001);
303 WRITE_WORD(p, 1);
304 WRITE_WORD(p, 0x1000);
305 WRITE_WORD(p, 0);
306 /* ATAG_MEM */
307 /* TODO: handle multiple chips on one ATAG list */
308 WRITE_WORD(p, 4);
309 WRITE_WORD(p, 0x54410002);
310 WRITE_WORD(p, info->ram_size);
311 WRITE_WORD(p, info->loader_start);
312 if (initrd_size) {
313 /* ATAG_INITRD2 */
314 WRITE_WORD(p, 4);
315 WRITE_WORD(p, 0x54420005);
316 WRITE_WORD(p, info->initrd_start);
317 WRITE_WORD(p, initrd_size);
319 if (info->atag_revision) {
320 /* ATAG REVISION. */
321 WRITE_WORD(p, 3);
322 WRITE_WORD(p, 0x54410007);
323 WRITE_WORD(p, info->atag_revision);
325 if (info->kernel_cmdline && *info->kernel_cmdline) {
326 /* ATAG_CMDLINE */
327 int cmdline_size;
329 cmdline_size = strlen(info->kernel_cmdline);
330 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
331 (const uint8_t *)info->kernel_cmdline,
332 cmdline_size + 1);
333 cmdline_size = (cmdline_size >> 2) + 1;
334 WRITE_WORD(p, cmdline_size + 2);
335 WRITE_WORD(p, 0x54410009);
336 p += cmdline_size * 4;
338 if (info->atag_board) {
339 /* ATAG_BOARD */
340 int atag_board_len;
341 uint8_t atag_board_buf[0x1000];
343 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
344 WRITE_WORD(p, (atag_board_len + 8) >> 2);
345 WRITE_WORD(p, 0x414f4d50);
346 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
347 atag_board_buf, atag_board_len);
348 p += atag_board_len;
350 /* ATAG_END */
351 WRITE_WORD(p, 0);
352 WRITE_WORD(p, 0);
355 static void set_kernel_args_old(const struct arm_boot_info *info,
356 AddressSpace *as)
358 hwaddr p;
359 const char *s;
360 int initrd_size = info->initrd_size;
361 hwaddr base = info->loader_start;
363 /* see linux/include/asm-arm/setup.h */
364 p = base + KERNEL_ARGS_ADDR;
365 /* page_size */
366 WRITE_WORD(p, 4096);
367 /* nr_pages */
368 WRITE_WORD(p, info->ram_size / 4096);
369 /* ramdisk_size */
370 WRITE_WORD(p, 0);
371 #define FLAG_READONLY 1
372 #define FLAG_RDLOAD 4
373 #define FLAG_RDPROMPT 8
374 /* flags */
375 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
376 /* rootdev */
377 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
378 /* video_num_cols */
379 WRITE_WORD(p, 0);
380 /* video_num_rows */
381 WRITE_WORD(p, 0);
382 /* video_x */
383 WRITE_WORD(p, 0);
384 /* video_y */
385 WRITE_WORD(p, 0);
386 /* memc_control_reg */
387 WRITE_WORD(p, 0);
388 /* unsigned char sounddefault */
389 /* unsigned char adfsdrives */
390 /* unsigned char bytes_per_char_h */
391 /* unsigned char bytes_per_char_v */
392 WRITE_WORD(p, 0);
393 /* pages_in_bank[4] */
394 WRITE_WORD(p, 0);
395 WRITE_WORD(p, 0);
396 WRITE_WORD(p, 0);
397 WRITE_WORD(p, 0);
398 /* pages_in_vram */
399 WRITE_WORD(p, 0);
400 /* initrd_start */
401 if (initrd_size) {
402 WRITE_WORD(p, info->initrd_start);
403 } else {
404 WRITE_WORD(p, 0);
406 /* initrd_size */
407 WRITE_WORD(p, initrd_size);
408 /* rd_start */
409 WRITE_WORD(p, 0);
410 /* system_rev */
411 WRITE_WORD(p, 0);
412 /* system_serial_low */
413 WRITE_WORD(p, 0);
414 /* system_serial_high */
415 WRITE_WORD(p, 0);
416 /* mem_fclk_21285 */
417 WRITE_WORD(p, 0);
418 /* zero unused fields */
419 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
420 WRITE_WORD(p, 0);
422 s = info->kernel_cmdline;
423 if (s) {
424 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
425 (const uint8_t *)s, strlen(s) + 1);
426 } else {
427 WRITE_WORD(p, 0);
431 static void fdt_add_psci_node(void *fdt)
433 uint32_t cpu_suspend_fn;
434 uint32_t cpu_off_fn;
435 uint32_t cpu_on_fn;
436 uint32_t migrate_fn;
437 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
438 const char *psci_method;
439 int64_t psci_conduit;
440 int rc;
442 psci_conduit = object_property_get_int(OBJECT(armcpu),
443 "psci-conduit",
444 &error_abort);
445 switch (psci_conduit) {
446 case QEMU_PSCI_CONDUIT_DISABLED:
447 return;
448 case QEMU_PSCI_CONDUIT_HVC:
449 psci_method = "hvc";
450 break;
451 case QEMU_PSCI_CONDUIT_SMC:
452 psci_method = "smc";
453 break;
454 default:
455 g_assert_not_reached();
459 * If /psci node is present in provided DTB, assume that no fixup
460 * is necessary and all PSCI configuration should be taken as-is
462 rc = fdt_path_offset(fdt, "/psci");
463 if (rc >= 0) {
464 return;
467 qemu_fdt_add_subnode(fdt, "/psci");
468 if (armcpu->psci_version == 2) {
469 const char comp[] = "arm,psci-0.2\0arm,psci";
470 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
472 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
473 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
474 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
475 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
476 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
477 } else {
478 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
479 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
480 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
482 } else {
483 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
485 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
486 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
487 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
488 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
491 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
492 * to the instruction that should be used to invoke PSCI functions.
493 * However, the device tree binding uses 'method' instead, so that is
494 * what we should use here.
496 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
498 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
499 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
500 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
501 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
504 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
505 hwaddr addr_limit, AddressSpace *as)
507 void *fdt = NULL;
508 int size, rc, n = 0;
509 uint32_t acells, scells;
510 char *nodename;
511 unsigned int i;
512 hwaddr mem_base, mem_len;
513 char **node_path;
514 Error *err = NULL;
516 if (binfo->dtb_filename) {
517 char *filename;
518 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
519 if (!filename) {
520 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
521 goto fail;
524 fdt = load_device_tree(filename, &size);
525 if (!fdt) {
526 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
527 g_free(filename);
528 goto fail;
530 g_free(filename);
531 } else {
532 fdt = binfo->get_dtb(binfo, &size);
533 if (!fdt) {
534 fprintf(stderr, "Board was unable to create a dtb blob\n");
535 goto fail;
539 if (addr_limit > addr && size > (addr_limit - addr)) {
540 /* Installing the device tree blob at addr would exceed addr_limit.
541 * Whether this constitutes failure is up to the caller to decide,
542 * so just return 0 as size, i.e., no error.
544 g_free(fdt);
545 return 0;
548 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
549 NULL, &error_fatal);
550 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
551 NULL, &error_fatal);
552 if (acells == 0 || scells == 0) {
553 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
554 goto fail;
557 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
558 /* This is user error so deserves a friendlier error message
559 * than the failure of setprop_sized_cells would provide
561 fprintf(stderr, "qemu: dtb file not compatible with "
562 "RAM size > 4GB\n");
563 goto fail;
566 /* nop all root nodes matching /memory or /memory@unit-address */
567 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
568 if (err) {
569 error_report_err(err);
570 goto fail;
572 while (node_path[n]) {
573 if (g_str_has_prefix(node_path[n], "/memory")) {
574 qemu_fdt_nop_node(fdt, node_path[n]);
576 n++;
578 g_strfreev(node_path);
580 if (nb_numa_nodes > 0) {
581 mem_base = binfo->loader_start;
582 for (i = 0; i < nb_numa_nodes; i++) {
583 mem_len = numa_info[i].node_mem;
584 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
585 qemu_fdt_add_subnode(fdt, nodename);
586 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
587 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
588 acells, mem_base,
589 scells, mem_len);
590 if (rc < 0) {
591 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
593 goto fail;
596 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
597 mem_base += mem_len;
598 g_free(nodename);
600 } else {
601 nodename = g_strdup_printf("/memory@%" PRIx64, binfo->loader_start);
602 qemu_fdt_add_subnode(fdt, nodename);
603 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
605 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
606 acells, binfo->loader_start,
607 scells, binfo->ram_size);
608 if (rc < 0) {
609 fprintf(stderr, "couldn't set %s reg\n", nodename);
610 goto fail;
612 g_free(nodename);
615 rc = fdt_path_offset(fdt, "/chosen");
616 if (rc < 0) {
617 qemu_fdt_add_subnode(fdt, "/chosen");
620 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
621 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
622 binfo->kernel_cmdline);
623 if (rc < 0) {
624 fprintf(stderr, "couldn't set /chosen/bootargs\n");
625 goto fail;
629 if (binfo->initrd_size) {
630 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
631 binfo->initrd_start);
632 if (rc < 0) {
633 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
634 goto fail;
637 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
638 binfo->initrd_start + binfo->initrd_size);
639 if (rc < 0) {
640 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
641 goto fail;
645 fdt_add_psci_node(fdt);
647 if (binfo->modify_dtb) {
648 binfo->modify_dtb(binfo, fdt);
651 qemu_fdt_dumpdtb(fdt, size);
653 /* Put the DTB into the memory map as a ROM image: this will ensure
654 * the DTB is copied again upon reset, even if addr points into RAM.
656 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
658 g_free(fdt);
660 return size;
662 fail:
663 g_free(fdt);
664 return -1;
667 static void do_cpu_reset(void *opaque)
669 ARMCPU *cpu = opaque;
670 CPUState *cs = CPU(cpu);
671 CPUARMState *env = &cpu->env;
672 const struct arm_boot_info *info = env->boot_info;
674 cpu_reset(cs);
675 if (info) {
676 if (!info->is_linux) {
677 int i;
678 /* Jump to the entry point. */
679 uint64_t entry = info->entry;
681 switch (info->endianness) {
682 case ARM_ENDIANNESS_LE:
683 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
684 for (i = 1; i < 4; ++i) {
685 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
687 env->uncached_cpsr &= ~CPSR_E;
688 break;
689 case ARM_ENDIANNESS_BE8:
690 env->cp15.sctlr_el[1] |= SCTLR_E0E;
691 for (i = 1; i < 4; ++i) {
692 env->cp15.sctlr_el[i] |= SCTLR_EE;
694 env->uncached_cpsr |= CPSR_E;
695 break;
696 case ARM_ENDIANNESS_BE32:
697 env->cp15.sctlr_el[1] |= SCTLR_B;
698 break;
699 case ARM_ENDIANNESS_UNKNOWN:
700 break; /* Board's decision */
701 default:
702 g_assert_not_reached();
705 if (!env->aarch64) {
706 env->thumb = info->entry & 1;
707 entry &= 0xfffffffe;
709 cpu_set_pc(cs, entry);
710 } else {
711 /* If we are booting Linux then we need to check whether we are
712 * booting into secure or non-secure state and adjust the state
713 * accordingly. Out of reset, ARM is defined to be in secure state
714 * (SCR.NS = 0), we change that here if non-secure boot has been
715 * requested.
717 if (arm_feature(env, ARM_FEATURE_EL3)) {
718 /* AArch64 is defined to come out of reset into EL3 if enabled.
719 * If we are booting Linux then we need to adjust our EL as
720 * Linux expects us to be in EL2 or EL1. AArch32 resets into
721 * SVC, which Linux expects, so no privilege/exception level to
722 * adjust.
724 if (env->aarch64) {
725 env->cp15.scr_el3 |= SCR_RW;
726 if (arm_feature(env, ARM_FEATURE_EL2)) {
727 env->cp15.hcr_el2 |= HCR_RW;
728 env->pstate = PSTATE_MODE_EL2h;
729 } else {
730 env->pstate = PSTATE_MODE_EL1h;
732 /* AArch64 kernels never boot in secure mode */
733 assert(!info->secure_boot);
734 /* This hook is only supported for AArch32 currently:
735 * bootloader_aarch64[] will not call the hook, and
736 * the code above has already dropped us into EL2 or EL1.
738 assert(!info->secure_board_setup);
741 if (arm_feature(env, ARM_FEATURE_EL2)) {
742 /* If we have EL2 then Linux expects the HVC insn to work */
743 env->cp15.scr_el3 |= SCR_HCE;
746 /* Set to non-secure if not a secure boot */
747 if (!info->secure_boot &&
748 (cs != first_cpu || !info->secure_board_setup)) {
749 /* Linux expects non-secure state */
750 env->cp15.scr_el3 |= SCR_NS;
754 if (!env->aarch64 && !info->secure_boot &&
755 arm_feature(env, ARM_FEATURE_EL2)) {
757 * This is an AArch32 boot not to Secure state, and
758 * we have Hyp mode available, so boot the kernel into
759 * Hyp mode. This is not how the CPU comes out of reset,
760 * so we need to manually put it there.
762 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
765 if (cs == first_cpu) {
766 AddressSpace *as = arm_boot_address_space(cpu, info);
768 cpu_set_pc(cs, info->loader_start);
770 if (!have_dtb(info)) {
771 if (old_param) {
772 set_kernel_args_old(info, as);
773 } else {
774 set_kernel_args(info, as);
777 } else {
778 info->secondary_cpu_reset_hook(cpu, info);
785 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
786 * by key.
787 * @fw_cfg: The firmware config instance to store the data in.
788 * @size_key: The firmware config key to store the size of the loaded
789 * data under, with fw_cfg_add_i32().
790 * @data_key: The firmware config key to store the loaded data under,
791 * with fw_cfg_add_bytes().
792 * @image_name: The name of the image file to load. If it is NULL, the
793 * function returns without doing anything.
794 * @try_decompress: Whether the image should be decompressed (gunzipped) before
795 * adding it to fw_cfg. If decompression fails, the image is
796 * loaded as-is.
798 * In case of failure, the function prints an error message to stderr and the
799 * process exits with status 1.
801 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
802 uint16_t data_key, const char *image_name,
803 bool try_decompress)
805 size_t size = -1;
806 uint8_t *data;
808 if (image_name == NULL) {
809 return;
812 if (try_decompress) {
813 size = load_image_gzipped_buffer(image_name,
814 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
817 if (size == (size_t)-1) {
818 gchar *contents;
819 gsize length;
821 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
822 error_report("failed to load \"%s\"", image_name);
823 exit(1);
825 size = length;
826 data = (uint8_t *)contents;
829 fw_cfg_add_i32(fw_cfg, size_key, size);
830 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
833 static int do_arm_linux_init(Object *obj, void *opaque)
835 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
836 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
837 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
838 struct arm_boot_info *info = opaque;
840 if (albifc->arm_linux_init) {
841 albifc->arm_linux_init(albif, info->secure_boot);
844 return 0;
847 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
848 uint64_t *lowaddr, uint64_t *highaddr,
849 int elf_machine, AddressSpace *as)
851 bool elf_is64;
852 union {
853 Elf32_Ehdr h32;
854 Elf64_Ehdr h64;
855 } elf_header;
856 int data_swab = 0;
857 bool big_endian;
858 int64_t ret = -1;
859 Error *err = NULL;
862 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
863 if (err) {
864 error_free(err);
865 return ret;
868 if (elf_is64) {
869 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
870 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
871 : ARM_ENDIANNESS_LE;
872 } else {
873 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
874 if (big_endian) {
875 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
876 info->endianness = ARM_ENDIANNESS_BE8;
877 } else {
878 info->endianness = ARM_ENDIANNESS_BE32;
879 /* In BE32, the CPU has a different view of the per-byte
880 * address map than the rest of the system. BE32 ELF files
881 * are organised such that they can be programmed through
882 * the CPU's per-word byte-reversed view of the world. QEMU
883 * however loads ELF files independently of the CPU. So
884 * tell the ELF loader to byte reverse the data for us.
886 data_swab = 2;
888 } else {
889 info->endianness = ARM_ENDIANNESS_LE;
893 ret = load_elf_as(info->kernel_filename, NULL, NULL,
894 pentry, lowaddr, highaddr, big_endian, elf_machine,
895 1, data_swab, as);
896 if (ret <= 0) {
897 /* The header loaded but the image didn't */
898 exit(1);
901 return ret;
904 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
905 hwaddr *entry, AddressSpace *as)
907 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
908 uint8_t *buffer;
909 int size;
911 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
912 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
913 &buffer);
915 if (size < 0) {
916 gsize len;
918 /* Load as raw file otherwise */
919 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
920 return -1;
922 size = len;
925 /* check the arm64 magic header value -- very old kernels may not have it */
926 if (size > ARM64_MAGIC_OFFSET + 4 &&
927 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
928 uint64_t hdrvals[2];
930 /* The arm64 Image header has text_offset and image_size fields at 8 and
931 * 16 bytes into the Image header, respectively. The text_offset field
932 * is only valid if the image_size is non-zero.
934 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
935 if (hdrvals[1] != 0) {
936 kernel_load_offset = le64_to_cpu(hdrvals[0]);
939 * We write our startup "bootloader" at the very bottom of RAM,
940 * so that bit can't be used for the image. Luckily the Image
941 * format specification is that the image requests only an offset
942 * from a 2MB boundary, not an absolute load address. So if the
943 * image requests an offset that might mean it overlaps with the
944 * bootloader, we can just load it starting at 2MB+offset rather
945 * than 0MB + offset.
947 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
948 kernel_load_offset += 2 * MiB;
953 *entry = mem_base + kernel_load_offset;
954 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
956 g_free(buffer);
958 return size;
961 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
963 CPUState *cs;
964 int kernel_size;
965 int initrd_size;
966 int is_linux = 0;
967 uint64_t elf_entry, elf_low_addr, elf_high_addr;
968 int elf_machine;
969 hwaddr entry;
970 static const ARMInsnFixup *primary_loader;
971 AddressSpace *as = arm_boot_address_space(cpu, info);
973 /* CPU objects (unlike devices) are not automatically reset on system
974 * reset, so we must always register a handler to do so. If we're
975 * actually loading a kernel, the handler is also responsible for
976 * arranging that we start it correctly.
978 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
979 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
982 /* The board code is not supposed to set secure_board_setup unless
983 * running its code in secure mode is actually possible, and KVM
984 * doesn't support secure.
986 assert(!(info->secure_board_setup && kvm_enabled()));
988 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
989 info->dtb_limit = 0;
991 /* Load the kernel. */
992 if (!info->kernel_filename || info->firmware_loaded) {
994 if (have_dtb(info)) {
995 /* If we have a device tree blob, but no kernel to supply it to (or
996 * the kernel is supposed to be loaded by the bootloader), copy the
997 * DTB to the base of RAM for the bootloader to pick up.
999 info->dtb_start = info->loader_start;
1002 if (info->kernel_filename) {
1003 FWCfgState *fw_cfg;
1004 bool try_decompressing_kernel;
1006 fw_cfg = fw_cfg_find();
1007 try_decompressing_kernel = arm_feature(&cpu->env,
1008 ARM_FEATURE_AARCH64);
1010 /* Expose the kernel, the command line, and the initrd in fw_cfg.
1011 * We don't process them here at all, it's all left to the
1012 * firmware.
1014 load_image_to_fw_cfg(fw_cfg,
1015 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1016 info->kernel_filename,
1017 try_decompressing_kernel);
1018 load_image_to_fw_cfg(fw_cfg,
1019 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1020 info->initrd_filename, false);
1022 if (info->kernel_cmdline) {
1023 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1024 strlen(info->kernel_cmdline) + 1);
1025 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1026 info->kernel_cmdline);
1030 /* We will start from address 0 (typically a boot ROM image) in the
1031 * same way as hardware.
1033 return;
1036 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1037 primary_loader = bootloader_aarch64;
1038 elf_machine = EM_AARCH64;
1039 } else {
1040 primary_loader = bootloader;
1041 if (!info->write_board_setup) {
1042 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1044 elf_machine = EM_ARM;
1047 if (!info->secondary_cpu_reset_hook) {
1048 info->secondary_cpu_reset_hook = default_reset_secondary;
1050 if (!info->write_secondary_boot) {
1051 info->write_secondary_boot = default_write_secondary;
1054 if (info->nb_cpus == 0)
1055 info->nb_cpus = 1;
1057 /* We want to put the initrd far enough into RAM that when the
1058 * kernel is uncompressed it will not clobber the initrd. However
1059 * on boards without much RAM we must ensure that we still leave
1060 * enough room for a decent sized initrd, and on boards with large
1061 * amounts of RAM we must avoid the initrd being so far up in RAM
1062 * that it is outside lowmem and inaccessible to the kernel.
1063 * So for boards with less than 256MB of RAM we put the initrd
1064 * halfway into RAM, and for boards with 256MB of RAM or more we put
1065 * the initrd at 128MB.
1067 info->initrd_start = info->loader_start +
1068 MIN(info->ram_size / 2, 128 * 1024 * 1024);
1070 /* Assume that raw images are linux kernels, and ELF images are not. */
1071 /* If the filename contains 'vmlinux', assume ELF images are linux, too. */
1072 is_linux = (strstr(info->kernel_filename, "vmlinux") != NULL);
1073 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1074 &elf_high_addr, elf_machine, as);
1075 if (kernel_size > 0 && have_dtb(info)) {
1076 /* If there is still some room left at the base of RAM, try and put
1077 * the DTB there like we do for images loaded with -bios or -pflash.
1079 if (elf_low_addr > info->loader_start
1080 || elf_high_addr < info->loader_start) {
1081 /* Set elf_low_addr as address limit for arm_load_dtb if it may be
1082 * pointing into RAM, otherwise pass '0' (no limit)
1084 if (elf_low_addr < info->loader_start) {
1085 elf_low_addr = 0;
1087 info->dtb_start = info->loader_start;
1088 info->dtb_limit = elf_low_addr;
1091 entry = elf_entry;
1092 if (kernel_size < 0) {
1093 kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
1094 &is_linux, NULL, NULL, as);
1096 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1097 kernel_size = load_aarch64_image(info->kernel_filename,
1098 info->loader_start, &entry, as);
1099 is_linux = 1;
1100 } else if (entry == info->loader_start) {
1101 /* Don't map bootloader memory if it conflicts with the kernel image. */
1102 /* TODO */
1103 } else if (kernel_size < 0) {
1104 /* 32-bit ARM */
1105 entry = info->loader_start + KERNEL_LOAD_ADDR;
1106 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1107 info->ram_size - KERNEL_LOAD_ADDR,
1108 as);
1109 is_linux = 1;
1111 if (kernel_size < 0) {
1112 error_report("could not load kernel '%s'", info->kernel_filename);
1113 exit(1);
1115 info->entry = entry;
1116 if (is_linux) {
1117 uint32_t fixupcontext[FIXUP_MAX];
1119 if (info->initrd_filename) {
1120 initrd_size = load_ramdisk_as(info->initrd_filename,
1121 info->initrd_start,
1122 info->ram_size - info->initrd_start,
1123 as);
1124 if (initrd_size < 0) {
1125 initrd_size = load_image_targphys_as(info->initrd_filename,
1126 info->initrd_start,
1127 info->ram_size -
1128 info->initrd_start,
1129 as);
1131 if (initrd_size < 0) {
1132 error_report("could not load initrd '%s'",
1133 info->initrd_filename);
1134 exit(1);
1136 } else {
1137 initrd_size = 0;
1139 info->initrd_size = initrd_size;
1141 fixupcontext[FIXUP_BOARDID] = info->board_id;
1142 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1144 /* for device tree boot, we pass the DTB directly in r2. Otherwise
1145 * we point to the kernel args.
1147 if (have_dtb(info)) {
1148 hwaddr align;
1150 if (elf_machine == EM_AARCH64) {
1152 * Some AArch64 kernels on early bootup map the fdt region as
1154 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1156 * Let's play safe and prealign it to 2MB to give us some space.
1158 align = 2 * 1024 * 1024;
1159 } else {
1161 * Some 32bit kernels will trash anything in the 4K page the
1162 * initrd ends in, so make sure the DTB isn't caught up in that.
1164 align = 4096;
1167 /* Place the DTB after the initrd in memory with alignment. */
1168 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1169 align);
1170 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1171 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1172 } else {
1173 fixupcontext[FIXUP_ARGPTR_LO] =
1174 info->loader_start + KERNEL_ARGS_ADDR;
1175 fixupcontext[FIXUP_ARGPTR_HI] =
1176 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1177 if (info->ram_size >= (1ULL << 32)) {
1178 error_report("RAM size must be less than 4GB to boot"
1179 " Linux kernel using ATAGS (try passing a device tree"
1180 " using -dtb)");
1181 exit(1);
1184 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1185 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1187 write_bootloader("bootloader", info->loader_start,
1188 primary_loader, fixupcontext, as);
1190 if (info->nb_cpus > 1) {
1191 info->write_secondary_boot(cpu, info);
1193 if (info->write_board_setup) {
1194 info->write_board_setup(cpu, info);
1197 /* Notify devices which need to fake up firmware initialization
1198 * that we're doing a direct kernel boot.
1200 object_child_foreach_recursive(object_get_root(),
1201 do_arm_linux_init, info);
1203 info->is_linux = is_linux;
1205 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1206 ARM_CPU(cs)->env.boot_info = info;
1209 if (!info->skip_dtb_autoload && have_dtb(info)) {
1210 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1211 exit(1);
1216 static const TypeInfo arm_linux_boot_if_info = {
1217 .name = TYPE_ARM_LINUX_BOOT_IF,
1218 .parent = TYPE_INTERFACE,
1219 .class_size = sizeof(ARMLinuxBootIfClass),
1222 static void arm_linux_boot_register_types(void)
1224 type_register_static(&arm_linux_boot_if_info);
1227 type_init(arm_linux_boot_register_types)