target/arm: hide aliased MIDR from gdbstub
[qemu/ar7.git] / target / arm / helper.c
blobff1970981ee70a2d262a90166be941c912ca4e1f
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36 static void switch_mode(CPUARMState *env, int mode);
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 assert(ri->fieldoffset);
41 if (cpreg_field_is_64bit(ri)) {
42 return CPREG_FIELD64(env, ri);
43 } else {
44 return CPREG_FIELD32(env, ri);
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 assert(ri->fieldoffset);
51 if (cpreg_field_is_64bit(ri)) {
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 return (char *)env + ri->fieldoffset;
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 /* Raw read of a coprocessor register (as needed for migration, etc). */
66 if (ri->type & ARM_CP_CONST) {
67 return ri->resetvalue;
68 } else if (ri->raw_readfn) {
69 return ri->raw_readfn(env, ri);
70 } else if (ri->readfn) {
71 return ri->readfn(env, ri);
72 } else {
73 return raw_read(env, ri);
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78 uint64_t v)
81 * Raw write of a coprocessor register (as needed for migration, etc).
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
86 if (ri->type & ARM_CP_CONST) {
87 return;
88 } else if (ri->raw_writefn) {
89 ri->raw_writefn(env, ri, v);
90 } else if (ri->writefn) {
91 ri->writefn(env, ri, v);
92 } else {
93 raw_write(env, ri, v);
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
100 * Return true if the regdef would cause an assertion if you called
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
116 return true;
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
128 uint64_t newval;
130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131 if (!ri) {
132 ok = false;
133 continue;
135 if (ri->type & ARM_CP_NO_RAW) {
136 continue;
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
147 uint64_t oldval = cpu->cpreg_values[i];
149 if (oldval == newval) {
150 continue;
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
158 write_raw_cp_reg(&cpu->env, ri, newval);
160 cpu->cpreg_values[i] = newval;
162 return ok;
165 bool write_list_to_cpustate(ARMCPU *cpu)
167 int i;
168 bool ok = true;
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
173 const ARMCPRegInfo *ri;
175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
180 if (ri->type & ARM_CP_NO_RAW) {
181 continue;
184 * Write value and confirm it reads back as written
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
190 ok = false;
193 return ok;
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 ARMCPU *cpu = opaque;
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
209 static void count_cpreg(gpointer key, gpointer opaque)
211 ARMCPU *cpu = opaque;
212 const ARMCPRegInfo *ri;
214 ri = g_hash_table_lookup(cpu->cp_regs, key);
216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217 cpu->cpreg_array_len++;
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226 if (aidx > bidx) {
227 return 1;
229 if (aidx < bidx) {
230 return -1;
232 return 0;
235 void init_cpreg_list(ARMCPU *cpu)
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
241 GList *keys;
242 int arraylen;
244 keys = g_hash_table_get_keys(cpu->cp_regs);
245 keys = g_list_sort(keys, cpreg_key_compare);
247 cpu->cpreg_array_len = 0;
249 g_list_foreach(keys, count_cpreg, cpu);
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
261 assert(cpu->cpreg_array_len == arraylen);
263 g_list_free(keys);
267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270 const ARMCPRegInfo *ri,
271 bool isread)
273 if (!is_a64(env) && arm_current_el(env) == 3 &&
274 arm_is_secure_below_el3(env)) {
275 return CP_ACCESS_TRAP_UNCATEGORIZED;
277 return CP_ACCESS_OK;
281 * Some secure-only AArch32 registers trap to EL3 if used from
282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284 * We assume that the .access field is set to PL1_RW.
286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287 const ARMCPRegInfo *ri,
288 bool isread)
290 if (arm_current_el(env) == 3) {
291 return CP_ACCESS_OK;
293 if (arm_is_secure_below_el3(env)) {
294 if (env->cp15.scr_el3 & SCR_EEL2) {
295 return CP_ACCESS_TRAP_EL2;
297 return CP_ACCESS_TRAP_EL3;
299 /* This will be EL1 NS and EL2 NS, which just UNDEF */
300 return CP_ACCESS_TRAP_UNCATEGORIZED;
304 * Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
319 return CP_ACCESS_OK;
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
342 return CP_ACCESS_OK;
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
352 return CP_ACCESS_OK;
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
362 return CP_ACCESS_OK;
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367 bool isread)
369 if (arm_current_el(env) == 1 &&
370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371 return CP_ACCESS_TRAP_EL2;
373 return CP_ACCESS_OK;
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383 return CP_ACCESS_TRAP_EL2;
385 return CP_ACCESS_OK;
387 #endif
389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
391 ARMCPU *cpu = env_archcpu(env);
393 raw_write(env, ri, value);
394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
399 ARMCPU *cpu = env_archcpu(env);
401 if (raw_read(env, ri) != value) {
403 * Unlike real hardware the qemu TLB uses virtual addresses,
404 * not modified virtual addresses, so this causes a TLB flush.
406 tlb_flush(CPU(cpu));
407 raw_write(env, ri, value);
411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
414 ARMCPU *cpu = env_archcpu(env);
416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417 && !extended_addresses_enabled(env)) {
419 * For VMSA (when not using the LPAE long descriptor page table
420 * format) this register includes the ASID, so do a TLB flush.
421 * For PMSA it is purely a process ID and no action is needed.
423 tlb_flush(CPU(cpu));
425 raw_write(env, ri, value);
428 static int alle1_tlbmask(CPUARMState *env)
431 * Note that the 'ALL' scope must invalidate both stage 1 and
432 * stage 2 translations, whereas most other scopes only invalidate
433 * stage 1 translations.
435 return (ARMMMUIdxBit_E10_1 |
436 ARMMMUIdxBit_E10_1_PAN |
437 ARMMMUIdxBit_E10_0 |
438 ARMMMUIdxBit_Stage2 |
439 ARMMMUIdxBit_Stage2_S);
443 /* IS variants of TLB operations must affect all cores */
444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 uint64_t value)
447 CPUState *cs = env_cpu(env);
449 tlb_flush_all_cpus_synced(cs);
452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453 uint64_t value)
455 CPUState *cs = env_cpu(env);
457 tlb_flush_all_cpus_synced(cs);
460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
463 CPUState *cs = env_cpu(env);
465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
471 CPUState *cs = env_cpu(env);
473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
477 * Non-IS variants of TLB operations are upgraded to
478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479 * force broadcast of these operations.
481 static bool tlb_force_broadcast(CPUARMState *env)
483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
489 /* Invalidate all (TLBIALL) */
490 CPUState *cs = env_cpu(env);
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_all_cpus_synced(cs);
494 } else {
495 tlb_flush(cs);
499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503 CPUState *cs = env_cpu(env);
505 value &= TARGET_PAGE_MASK;
506 if (tlb_force_broadcast(env)) {
507 tlb_flush_page_all_cpus_synced(cs, value);
508 } else {
509 tlb_flush_page(cs, value);
513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
516 /* Invalidate by ASID (TLBIASID) */
517 CPUState *cs = env_cpu(env);
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_all_cpus_synced(cs);
521 } else {
522 tlb_flush(cs);
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 CPUState *cs = env_cpu(env);
532 value &= TARGET_PAGE_MASK;
533 if (tlb_force_broadcast(env)) {
534 tlb_flush_page_all_cpus_synced(cs, value);
535 } else {
536 tlb_flush_page(cs, value);
540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
543 CPUState *cs = env_cpu(env);
545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549 uint64_t value)
551 CPUState *cs = env_cpu(env);
553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
560 CPUState *cs = env_cpu(env);
562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
568 CPUState *cs = env_cpu(env);
570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
576 CPUState *cs = env_cpu(env);
577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 CPUState *cs = env_cpu(env);
586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589 ARMMMUIdxBit_E2);
592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
595 CPUState *cs = env_cpu(env);
596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
604 CPUState *cs = env_cpu(env);
605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
610 static const ARMCPRegInfo cp_reginfo[] = {
612 * Define the secure and non-secure FCSE identifier CP registers
613 * separately because there is no secure bank in V8 (no _EL3). This allows
614 * the secure register to be properly reset and migrated. There is also no
615 * v8 EL1 version of the register so the non-secure instance stands alone.
617 { .name = "FCSEIDR",
618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622 { .name = "FCSEIDR_S",
623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
628 * Define the secure and non-secure context identifier CP registers
629 * separately because there is no secure bank in V8 (no _EL3). This allows
630 * the secure register to be properly reset and migrated. In the
631 * non-secure case, the 32-bit register will have reset and migration
632 * disabled during registration as it is handled by the 64-bit instance.
634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636 .access = PL1_RW, .accessfn = access_tvm_trvm,
637 .fgt = FGT_CONTEXTIDR_EL1,
638 .secure = ARM_CP_SECSTATE_NS,
639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643 .access = PL1_RW, .accessfn = access_tvm_trvm,
644 .secure = ARM_CP_SECSTATE_S,
645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
651 * NB: Some of these registers exist in v8 but with more precise
652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
654 /* MMU Domain access control / MPU write buffer control */
655 { .name = "DACR",
656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658 .writefn = dacr_write, .raw_writefn = raw_write,
659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663 * For v6 and v5, these mappings are overly broad.
665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673 /* Cache maintenance ops; some of this space may be overridden later. */
674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
681 * Not all pre-v6 cores implemented this WFI, so this is slightly
682 * over-broad.
684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685 .access = PL1_W, .type = ARM_CP_WFI },
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691 * is UNPREDICTABLE; we choose to NOP as most implementations do).
693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694 .access = PL1_W, .type = ARM_CP_WFI },
696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698 * OMAPCP will override this space.
700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702 .resetvalue = 0 },
703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705 .resetvalue = 0 },
706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709 .resetvalue = 0 },
711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712 * implementing it as RAZ means the "debug architecture version" bits
713 * will read as a reserved value, which should cause Linux to not try
714 * to use the debug hardware.
716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
719 * MMU TLB control. Note that the wildcarding means we cover not just
720 * the unified TLB ops but also the dside/iside/inner-shareable variants.
722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724 .type = ARM_CP_NO_RAW },
725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727 .type = ARM_CP_NO_RAW },
728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730 .type = ARM_CP_NO_RAW },
731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733 .type = ARM_CP_NO_RAW },
734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
743 uint32_t mask = 0;
745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746 if (!arm_feature(env, ARM_FEATURE_V8)) {
748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753 /* VFP coprocessor: cp10 & cp11 [23:20] */
754 mask |= R_CPACR_ASEDIS_MASK |
755 R_CPACR_D32DIS_MASK |
756 R_CPACR_CP11_MASK |
757 R_CPACR_CP10_MASK;
759 if (!arm_feature(env, ARM_FEATURE_NEON)) {
760 /* ASEDIS [31] bit is RAO/WI */
761 value |= R_CPACR_ASEDIS_MASK;
765 * VFPv3 and upwards with NEON implement 32 double precision
766 * registers (D0-D31).
768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770 value |= R_CPACR_D32DIS_MASK;
773 value &= mask;
777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
786 env->cp15.cpacr_el1 = value;
789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
795 uint64_t value = env->cp15.cpacr_el1;
797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
801 return value;
805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
808 * Call cpacr_write() so that we reset with the correct RAO bits set
809 * for our CPU features.
811 cpacr_write(env, ri, 0);
814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815 bool isread)
817 if (arm_feature(env, ARM_FEATURE_V8)) {
818 /* Check if CPACR accesses are to be trapped to EL2 */
819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821 return CP_ACCESS_TRAP_EL2;
822 /* Check if CPACR accesses are to be trapped to EL3 */
823 } else if (arm_current_el(env) < 3 &&
824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825 return CP_ACCESS_TRAP_EL3;
829 return CP_ACCESS_OK;
832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833 bool isread)
835 /* Check if CPTR accesses are set to trap to EL3 */
836 if (arm_current_el(env) == 2 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
841 return CP_ACCESS_OK;
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845 /* prefetch by MVA in v6, NOP in v7 */
846 { .name = "MVA_prefetch",
847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848 .access = PL1_W, .type = ARM_CP_NOP },
850 * We need to break the TB after ISB to execute self-modifying code
851 * correctly and also to take any pending interrupts immediately.
852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NOP },
858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861 .access = PL1_RW, .accessfn = access_tvm_trvm,
862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863 offsetof(CPUARMState, cp15.ifar_ns) },
864 .resetvalue = 0, },
866 * Watchpoint Fault Address Register : should actually only be present
867 * for 1136, 1176, 11MPCore.
869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873 .fgt = FGT_CPACR_EL1,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
878 typedef struct pm_event {
879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881 bool (*supported)(CPUARMState *);
883 * Retrieve the current count of the underlying event. The programmed
884 * counters hold a difference from the return value from this function
886 uint64_t (*get_count)(CPUARMState *);
888 * Return how many nanoseconds it will take (at a minimum) for count events
889 * to occur. A negative value indicates the counter will never overflow, or
890 * that the counter has otherwise arranged for the overflow bit to be set
891 * and the PMU interrupt to be raised on overflow.
893 int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
896 static bool event_always_supported(CPUARMState *env)
898 return true;
901 static uint64_t swinc_get_count(CPUARMState *env)
904 * SW_INCR events are written directly to the pmevcntr's by writes to
905 * PMSWINC, so there is no underlying count maintained by the PMU itself
907 return 0;
910 static int64_t swinc_ns_per(uint64_t ignored)
912 return -1;
916 * Return the underlying cycle count for the PMU cycle counters. If we're in
917 * usermode, simply return 0.
919 static uint64_t cycles_get_count(CPUARMState *env)
921 #ifndef CONFIG_USER_ONLY
922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925 return cpu_get_host_ticks();
926 #endif
929 #ifndef CONFIG_USER_ONLY
930 static int64_t cycles_ns_per(uint64_t cycles)
932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
935 static bool instructions_supported(CPUARMState *env)
937 return icount_enabled() == 1; /* Precise instruction counting */
940 static uint64_t instructions_get_count(CPUARMState *env)
942 return (uint64_t)icount_get_raw();
945 static int64_t instructions_ns_per(uint64_t icount)
947 return icount_to_ns((int64_t)icount);
949 #endif
951 static bool pmuv3p1_events_supported(CPUARMState *env)
953 /* For events which are supported in any v8.1 PMU */
954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
957 static bool pmuv3p4_events_supported(CPUARMState *env)
959 /* For events which are supported in any v8.1 PMU */
960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
963 static uint64_t zero_event_get_count(CPUARMState *env)
965 /* For events which on QEMU never fire, so their count is always zero */
966 return 0;
969 static int64_t zero_event_ns_per(uint64_t cycles)
971 /* An event which never fires can never overflow */
972 return -1;
975 static const pm_event pm_events[] = {
976 { .number = 0x000, /* SW_INCR */
977 .supported = event_always_supported,
978 .get_count = swinc_get_count,
979 .ns_per_count = swinc_ns_per,
981 #ifndef CONFIG_USER_ONLY
982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983 .supported = instructions_supported,
984 .get_count = instructions_get_count,
985 .ns_per_count = instructions_ns_per,
987 { .number = 0x011, /* CPU_CYCLES, Cycle */
988 .supported = event_always_supported,
989 .get_count = cycles_get_count,
990 .ns_per_count = cycles_ns_per,
992 #endif
993 { .number = 0x023, /* STALL_FRONTEND */
994 .supported = pmuv3p1_events_supported,
995 .get_count = zero_event_get_count,
996 .ns_per_count = zero_event_ns_per,
998 { .number = 0x024, /* STALL_BACKEND */
999 .supported = pmuv3p1_events_supported,
1000 .get_count = zero_event_get_count,
1001 .ns_per_count = zero_event_ns_per,
1003 { .number = 0x03c, /* STALL */
1004 .supported = pmuv3p4_events_supported,
1005 .get_count = zero_event_get_count,
1006 .ns_per_count = zero_event_ns_per,
1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012 * events (i.e. the statistical profiling extension), this implementation
1013 * should first be updated to something sparse instead of the current
1014 * supported_event_map[] array.
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022 * of ARM event numbers to indices in our pm_events array.
1024 * Note: Events in the 0x40XX range are not currently supported.
1026 void pmu_init(ARMCPU *cpu)
1028 unsigned int i;
1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032 * events to them
1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035 supported_event_map[i] = UNSUPPORTED_EVENT;
1037 cpu->pmceid0 = 0;
1038 cpu->pmceid1 = 0;
1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041 const pm_event *cnt = &pm_events[i];
1042 assert(cnt->number <= MAX_EVENT_ID);
1043 /* We do not currently support events in the 0x40xx range */
1044 assert(cnt->number <= 0x3f);
1046 if (cnt->supported(&cpu->env)) {
1047 supported_event_map[cnt->number] = i;
1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049 if (cnt->number & 0x20) {
1050 cpu->pmceid1 |= event_mask;
1051 } else {
1052 cpu->pmceid0 |= event_mask;
1059 * Check at runtime whether a PMU event is supported for the current machine
1061 static bool event_supported(uint16_t number)
1063 if (number > MAX_EVENT_ID) {
1064 return false;
1066 return supported_event_map[number] != UNSUPPORTED_EVENT;
1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070 bool isread)
1073 * Performance monitor registers user accessibility is controlled
1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075 * trapping to EL2 or EL3 for other accesses.
1077 int el = arm_current_el(env);
1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081 return CP_ACCESS_TRAP;
1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084 return CP_ACCESS_TRAP_EL2;
1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087 return CP_ACCESS_TRAP_EL3;
1090 return CP_ACCESS_OK;
1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094 const ARMCPRegInfo *ri,
1095 bool isread)
1097 /* ER: event counter read trap control */
1098 if (arm_feature(env, ARM_FEATURE_V8)
1099 && arm_current_el(env) == 0
1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101 && isread) {
1102 return CP_ACCESS_OK;
1105 return pmreg_access(env, ri, isread);
1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109 const ARMCPRegInfo *ri,
1110 bool isread)
1112 /* SW: software increment write trap control */
1113 if (arm_feature(env, ARM_FEATURE_V8)
1114 && arm_current_el(env) == 0
1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116 && !isread) {
1117 return CP_ACCESS_OK;
1120 return pmreg_access(env, ri, isread);
1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124 const ARMCPRegInfo *ri,
1125 bool isread)
1127 /* ER: event counter read trap control */
1128 if (arm_feature(env, ARM_FEATURE_V8)
1129 && arm_current_el(env) == 0
1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131 return CP_ACCESS_OK;
1134 return pmreg_access(env, ri, isread);
1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138 const ARMCPRegInfo *ri,
1139 bool isread)
1141 /* CR: cycle counter read trap control */
1142 if (arm_feature(env, ARM_FEATURE_V8)
1143 && arm_current_el(env) == 0
1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145 && isread) {
1146 return CP_ACCESS_OK;
1149 return pmreg_access(env, ri, isread);
1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154 * We use these to decide whether we need to wrap a write to MDCR_EL2
1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163 * the current EL, security state, and register configuration.
1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1167 uint64_t filter;
1168 bool e, p, u, nsk, nsu, nsh, m;
1169 bool enabled, prohibited = false, filtered;
1170 bool secure = arm_is_secure(env);
1171 int el = arm_current_el(env);
1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1175 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176 return false;
1179 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180 (counter < hpmn || counter == 31)) {
1181 e = env->cp15.c9_pmcr & PMCRE;
1182 } else {
1183 e = mdcr_el2 & MDCR_HPME;
1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1187 /* Is event counting prohibited? */
1188 if (el == 2 && (counter < hpmn || counter == 31)) {
1189 prohibited = mdcr_el2 & MDCR_HPMD;
1191 if (secure) {
1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1195 if (counter == 31) {
1197 * The cycle counter defaults to running. PMCR.DP says "disable
1198 * the cycle counter when event counting is prohibited".
1199 * Some MDCR bits disable the cycle counter specifically.
1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203 if (secure) {
1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1206 if (el == 2) {
1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1212 if (counter == 31) {
1213 filter = env->cp15.pmccfiltr_el0;
1214 } else {
1215 filter = env->cp15.c14_pmevtyper[counter];
1218 p = filter & PMXEVTYPER_P;
1219 u = filter & PMXEVTYPER_U;
1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223 m = arm_el_is_aa64(env, 1) &&
1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1226 if (el == 0) {
1227 filtered = secure ? u : u != nsu;
1228 } else if (el == 1) {
1229 filtered = secure ? p : p != nsk;
1230 } else if (el == 2) {
1231 filtered = !nsh;
1232 } else { /* EL3 */
1233 filtered = m != p;
1236 if (counter != 31) {
1238 * If not checking PMCCNTR, ensure the counter is setup to an event we
1239 * support
1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242 if (!event_supported(event)) {
1243 return false;
1247 return enabled && !prohibited && !filtered;
1250 static void pmu_update_irq(CPUARMState *env)
1252 ARMCPU *cpu = env_archcpu(env);
1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1260 * Return true if the clock divider is enabled and the cycle counter
1261 * is supposed to tick only once every 64 clock cycles. This is
1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263 * (64-bit) cycle counter PMCR.D has no effect.
1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1270 /* Return true if the specified event counter is configured to be 64 bit */
1272 /* This isn't intended to be used with the cycle counter */
1273 assert(counter < 31);
1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276 return false;
1279 if (arm_feature(env, ARM_FEATURE_EL2)) {
1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282 * current security state, so we don't use arm_mdcr_el2_eff() here.
1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1287 if (counter >= hpmn) {
1288 return hlp;
1291 return env->cp15.c9_pmcr & PMCRLP;
1295 * Ensure c15_ccnt is the guest-visible count so that operations such as
1296 * enabling/disabling the counter or filtering, modifying the count itself,
1297 * etc. can be done logically. This is essentially a no-op if the counter is
1298 * not enabled at the time of the call.
1300 static void pmccntr_op_start(CPUARMState *env)
1302 uint64_t cycles = cycles_get_count(env);
1304 if (pmu_counter_enabled(env, 31)) {
1305 uint64_t eff_cycles = cycles;
1306 if (pmccntr_clockdiv_enabled(env)) {
1307 eff_cycles /= 64;
1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313 1ull << 63 : 1ull << 31;
1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1315 env->cp15.c9_pmovsr |= (1ULL << 31);
1316 pmu_update_irq(env);
1319 env->cp15.c15_ccnt = new_pmccntr;
1321 env->cp15.c15_ccnt_delta = cycles;
1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327 * pmccntr_op_start.
1329 static void pmccntr_op_finish(CPUARMState *env)
1331 if (pmu_counter_enabled(env, 31)) {
1332 #ifndef CONFIG_USER_ONLY
1333 /* Calculate when the counter will next overflow */
1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336 remaining_cycles = (uint32_t)remaining_cycles;
1338 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1340 if (overflow_in > 0) {
1341 int64_t overflow_at;
1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344 overflow_in, &overflow_at)) {
1345 ARMCPU *cpu = env_archcpu(env);
1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1349 #endif
1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1352 if (pmccntr_clockdiv_enabled(env)) {
1353 prev_cycles /= 64;
1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363 uint64_t count = 0;
1364 if (event_supported(event)) {
1365 uint16_t event_idx = supported_event_map[event];
1366 count = pm_events[event_idx].get_count(env);
1369 if (pmu_counter_enabled(env, counter)) {
1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372 1ULL << 63 : 1ULL << 31;
1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1375 env->cp15.c9_pmovsr |= (1 << counter);
1376 pmu_update_irq(env);
1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1380 env->cp15.c14_pmevcntr_delta[counter] = count;
1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1385 if (pmu_counter_enabled(env, counter)) {
1386 #ifndef CONFIG_USER_ONLY
1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388 uint16_t event_idx = supported_event_map[event];
1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390 int64_t overflow_in;
1392 if (!pmevcntr_is_64_bit(env, counter)) {
1393 delta = (uint32_t)delta;
1395 overflow_in = pm_events[event_idx].ns_per_count(delta);
1397 if (overflow_in > 0) {
1398 int64_t overflow_at;
1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401 overflow_in, &overflow_at)) {
1402 ARMCPU *cpu = env_archcpu(env);
1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1406 #endif
1408 env->cp15.c14_pmevcntr_delta[counter] -=
1409 env->cp15.c14_pmevcntr[counter];
1413 void pmu_op_start(CPUARMState *env)
1415 unsigned int i;
1416 pmccntr_op_start(env);
1417 for (i = 0; i < pmu_num_counters(env); i++) {
1418 pmevcntr_op_start(env, i);
1422 void pmu_op_finish(CPUARMState *env)
1424 unsigned int i;
1425 pmccntr_op_finish(env);
1426 for (i = 0; i < pmu_num_counters(env); i++) {
1427 pmevcntr_op_finish(env, i);
1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1433 pmu_op_start(&cpu->env);
1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1438 pmu_op_finish(&cpu->env);
1441 void arm_pmu_timer_cb(void *opaque)
1443 ARMCPU *cpu = opaque;
1446 * Update all the counter values based on the current underlying counts,
1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449 * counter may expire.
1451 pmu_op_start(&cpu->env);
1452 pmu_op_finish(&cpu->env);
1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
1458 pmu_op_start(env);
1460 if (value & PMCRC) {
1461 /* The counter has been reset */
1462 env->cp15.c15_ccnt = 0;
1465 if (value & PMCRP) {
1466 unsigned int i;
1467 for (i = 0; i < pmu_num_counters(env); i++) {
1468 env->cp15.c14_pmevcntr[i] = 0;
1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1475 pmu_op_finish(env);
1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479 uint64_t value)
1481 unsigned int i;
1482 uint64_t overflow_mask, new_pmswinc;
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 /* Increment a counter's count iff: */
1486 if ((value & (1 << i)) && /* counter's bit is set */
1487 /* counter is enabled and not filtered */
1488 pmu_counter_enabled(env, i) &&
1489 /* counter is SW_INCR */
1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1491 pmevcntr_op_start(env, i);
1494 * Detect if this write causes an overflow since we can't predict
1495 * PMSWINC overflows like we can for other events
1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1499 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1500 1ULL << 63 : 1ULL << 31;
1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1503 env->cp15.c9_pmovsr |= (1 << i);
1504 pmu_update_irq(env);
1507 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1509 pmevcntr_op_finish(env, i);
1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1516 uint64_t ret;
1517 pmccntr_op_start(env);
1518 ret = env->cp15.c15_ccnt;
1519 pmccntr_op_finish(env);
1520 return ret;
1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524 uint64_t value)
1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1530 * accessed.
1532 env->cp15.c9_pmselr = value & 0x1f;
1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1536 uint64_t value)
1538 pmccntr_op_start(env);
1539 env->cp15.c15_ccnt = value;
1540 pmccntr_op_finish(env);
1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1544 uint64_t value)
1546 uint64_t cur_val = pmccntr_read(env, NULL);
1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552 uint64_t value)
1554 pmccntr_op_start(env);
1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1556 pmccntr_op_finish(env);
1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint64_t value)
1562 pmccntr_op_start(env);
1563 /* M is not accessible from AArch32 */
1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1565 (value & PMCCFILTR);
1566 pmccntr_op_finish(env);
1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1571 /* M is not visible in AArch32 */
1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1576 uint64_t value)
1578 pmu_op_start(env);
1579 value &= pmu_counter_mask(env);
1580 env->cp15.c9_pmcnten |= value;
1581 pmu_op_finish(env);
1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585 uint64_t value)
1587 pmu_op_start(env);
1588 value &= pmu_counter_mask(env);
1589 env->cp15.c9_pmcnten &= ~value;
1590 pmu_op_finish(env);
1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 value &= pmu_counter_mask(env);
1597 env->cp15.c9_pmovsr &= ~value;
1598 pmu_update_irq(env);
1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1604 value &= pmu_counter_mask(env);
1605 env->cp15.c9_pmovsr |= value;
1606 pmu_update_irq(env);
1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 uint64_t value, const uint8_t counter)
1612 if (counter == 31) {
1613 pmccfiltr_write(env, ri, value);
1614 } else if (counter < pmu_num_counters(env)) {
1615 pmevcntr_op_start(env, counter);
1618 * If this counter's event type is changing, store the current
1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1620 * pmevcntr_op_finish has the correct baseline when it converts back to
1621 * a delta.
1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1624 PMXEVTYPER_EVTCOUNT;
1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1626 if (old_event != new_event) {
1627 uint64_t count = 0;
1628 if (event_supported(new_event)) {
1629 uint16_t event_idx = supported_event_map[new_event];
1630 count = pm_events[event_idx].get_count(env);
1632 env->cp15.c14_pmevcntr_delta[counter] = count;
1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1636 pmevcntr_op_finish(env, counter);
1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1640 * PMSELR value is equal to or greater than the number of implemented
1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1646 const uint8_t counter)
1648 if (counter == 31) {
1649 return env->cp15.pmccfiltr_el0;
1650 } else if (counter < pmu_num_counters(env)) {
1651 return env->cp15.c14_pmevtyper[counter];
1652 } else {
1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1657 return 0;
1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1662 uint64_t value)
1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1665 pmevtyper_write(env, ri, value, counter);
1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1669 uint64_t value)
1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1672 env->cp15.c14_pmevtyper[counter] = value;
1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1676 * pmu_op_finish calls when loading saved state for a migration. Because
1677 * we're potentially updating the type of event here, the value written to
1678 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1679 * different counter type. Therefore, we need to set this value to the
1680 * current count for the counter type we're writing so that pmu_op_finish
1681 * has the correct count for its calculation.
1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1684 if (event_supported(event)) {
1685 uint16_t event_idx = supported_event_map[event];
1686 env->cp15.c14_pmevcntr_delta[counter] =
1687 pm_events[event_idx].get_count(env);
1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1694 return pmevtyper_read(env, ri, counter);
1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1698 uint64_t value)
1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value, uint8_t counter)
1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1713 value &= MAKE_64BIT_MASK(0, 32);
1715 if (counter < pmu_num_counters(env)) {
1716 pmevcntr_op_start(env, counter);
1717 env->cp15.c14_pmevcntr[counter] = value;
1718 pmevcntr_op_finish(env, counter);
1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1722 * are CONSTRAINED UNPREDICTABLE.
1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1727 uint8_t counter)
1729 if (counter < pmu_num_counters(env)) {
1730 uint64_t ret;
1731 pmevcntr_op_start(env, counter);
1732 ret = env->cp15.c14_pmevcntr[counter];
1733 pmevcntr_op_finish(env, counter);
1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1736 ret &= MAKE_64BIT_MASK(0, 32);
1738 return ret;
1739 } else {
1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1742 * are CONSTRAINED UNPREDICTABLE.
1744 return 0;
1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1749 uint64_t value)
1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752 pmevcntr_write(env, ri, value, counter);
1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758 return pmevcntr_read(env, ri, counter);
1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1765 assert(counter < pmu_num_counters(env));
1766 env->cp15.c14_pmevcntr[counter] = value;
1767 pmevcntr_write(env, ri, value, counter);
1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773 assert(counter < pmu_num_counters(env));
1774 return env->cp15.c14_pmevcntr[counter];
1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789 uint64_t value)
1791 if (arm_feature(env, ARM_FEATURE_V8)) {
1792 env->cp15.c9_pmuserenr = value & 0xf;
1793 } else {
1794 env->cp15.c9_pmuserenr = value & 1;
1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1801 /* We have no event counters so only the C bit can be changed */
1802 value &= pmu_counter_mask(env);
1803 env->cp15.c9_pminten |= value;
1804 pmu_update_irq(env);
1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808 uint64_t value)
1810 value &= pmu_counter_mask(env);
1811 env->cp15.c9_pminten &= ~value;
1812 pmu_update_irq(env);
1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816 uint64_t value)
1819 * Note that even though the AArch64 view of this register has bits
1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1821 * architectural requirements for bits which are RES0 only in some
1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1825 raw_write(env, ri, value & ~0x1FULL);
1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1830 /* Begin with base v8.0 state. */
1831 uint64_t valid_mask = 0x3fff;
1832 ARMCPU *cpu = env_archcpu(env);
1833 uint64_t changed;
1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1838 * Instead, choose the format based on the mode of EL3.
1840 if (arm_el_is_aa64(env, 3)) {
1841 value |= SCR_FW | SCR_AW; /* RES1 */
1842 valid_mask &= ~SCR_NET; /* RES0 */
1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1846 value |= SCR_RW; /* RAO/WI */
1848 if (cpu_isar_feature(aa64_ras, cpu)) {
1849 valid_mask |= SCR_TERR;
1851 if (cpu_isar_feature(aa64_lor, cpu)) {
1852 valid_mask |= SCR_TLOR;
1854 if (cpu_isar_feature(aa64_pauth, cpu)) {
1855 valid_mask |= SCR_API | SCR_APK;
1857 if (cpu_isar_feature(aa64_sel2, cpu)) {
1858 valid_mask |= SCR_EEL2;
1859 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1860 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1861 value |= SCR_NS;
1863 if (cpu_isar_feature(aa64_mte, cpu)) {
1864 valid_mask |= SCR_ATA;
1866 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1867 valid_mask |= SCR_ENSCXT;
1869 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1870 valid_mask |= SCR_EASE | SCR_NMEA;
1872 if (cpu_isar_feature(aa64_sme, cpu)) {
1873 valid_mask |= SCR_ENTP2;
1875 if (cpu_isar_feature(aa64_hcx, cpu)) {
1876 valid_mask |= SCR_HXEN;
1878 if (cpu_isar_feature(aa64_fgt, cpu)) {
1879 valid_mask |= SCR_FGTEN;
1881 if (cpu_isar_feature(aa64_rme, cpu)) {
1882 valid_mask |= SCR_NSE | SCR_GPF;
1884 } else {
1885 valid_mask &= ~(SCR_RW | SCR_ST);
1886 if (cpu_isar_feature(aa32_ras, cpu)) {
1887 valid_mask |= SCR_TERR;
1891 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1892 valid_mask &= ~SCR_HCE;
1895 * On ARMv7, SMD (or SCD as it is called in v7) is only
1896 * supported if EL2 exists. The bit is UNK/SBZP when
1897 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1898 * when EL2 is unavailable.
1899 * On ARMv8, this bit is always available.
1901 if (arm_feature(env, ARM_FEATURE_V7) &&
1902 !arm_feature(env, ARM_FEATURE_V8)) {
1903 valid_mask &= ~SCR_SMD;
1907 /* Clear all-context RES0 bits. */
1908 value &= valid_mask;
1909 changed = env->cp15.scr_el3 ^ value;
1910 env->cp15.scr_el3 = value;
1913 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1914 * we must invalidate all TLBs below EL3.
1916 if (changed & (SCR_NS | SCR_NSE)) {
1917 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1918 ARMMMUIdxBit_E20_0 |
1919 ARMMMUIdxBit_E10_1 |
1920 ARMMMUIdxBit_E20_2 |
1921 ARMMMUIdxBit_E10_1_PAN |
1922 ARMMMUIdxBit_E20_2_PAN |
1923 ARMMMUIdxBit_E2));
1927 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1930 * scr_write will set the RES1 bits on an AArch64-only CPU.
1931 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1933 scr_write(env, ri, 0);
1936 static CPAccessResult access_tid4(CPUARMState *env,
1937 const ARMCPRegInfo *ri,
1938 bool isread)
1940 if (arm_current_el(env) == 1 &&
1941 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1942 return CP_ACCESS_TRAP_EL2;
1945 return CP_ACCESS_OK;
1948 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1950 ARMCPU *cpu = env_archcpu(env);
1953 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1954 * bank
1956 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1957 ri->secure & ARM_CP_SECSTATE_S);
1959 return cpu->ccsidr[index];
1962 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963 uint64_t value)
1965 raw_write(env, ri, value & 0xf);
1968 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1970 CPUState *cs = env_cpu(env);
1971 bool el1 = arm_current_el(env) == 1;
1972 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1973 uint64_t ret = 0;
1975 if (hcr_el2 & HCR_IMO) {
1976 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1977 ret |= CPSR_I;
1979 } else {
1980 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1981 ret |= CPSR_I;
1985 if (hcr_el2 & HCR_FMO) {
1986 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1987 ret |= CPSR_F;
1989 } else {
1990 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1991 ret |= CPSR_F;
1995 if (hcr_el2 & HCR_AMO) {
1996 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1997 ret |= CPSR_A;
2001 return ret;
2004 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2005 bool isread)
2007 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2008 return CP_ACCESS_TRAP_EL2;
2011 return CP_ACCESS_OK;
2014 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2015 bool isread)
2017 if (arm_feature(env, ARM_FEATURE_V8)) {
2018 return access_aa64_tid1(env, ri, isread);
2021 return CP_ACCESS_OK;
2024 static const ARMCPRegInfo v7_cp_reginfo[] = {
2025 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2026 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2027 .access = PL1_W, .type = ARM_CP_NOP },
2029 * Performance monitors are implementation defined in v7,
2030 * but with an ARM recommended set of registers, which we
2031 * follow.
2033 * Performance registers fall into three categories:
2034 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2035 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2036 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2037 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2038 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2040 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2041 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2043 .writefn = pmcntenset_write,
2044 .accessfn = pmreg_access,
2045 .fgt = FGT_PMCNTEN,
2046 .raw_writefn = raw_write },
2047 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2049 .access = PL0_RW, .accessfn = pmreg_access,
2050 .fgt = FGT_PMCNTEN,
2051 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2052 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2053 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2054 .access = PL0_RW,
2055 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2056 .accessfn = pmreg_access,
2057 .fgt = FGT_PMCNTEN,
2058 .writefn = pmcntenclr_write,
2059 .type = ARM_CP_ALIAS | ARM_CP_IO },
2060 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2062 .access = PL0_RW, .accessfn = pmreg_access,
2063 .fgt = FGT_PMCNTEN,
2064 .type = ARM_CP_ALIAS | ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2066 .writefn = pmcntenclr_write },
2067 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2068 .access = PL0_RW, .type = ARM_CP_IO,
2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2070 .accessfn = pmreg_access,
2071 .fgt = FGT_PMOVS,
2072 .writefn = pmovsr_write,
2073 .raw_writefn = raw_write },
2074 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2075 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2076 .access = PL0_RW, .accessfn = pmreg_access,
2077 .fgt = FGT_PMOVS,
2078 .type = ARM_CP_ALIAS | ARM_CP_IO,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2080 .writefn = pmovsr_write,
2081 .raw_writefn = raw_write },
2082 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2083 .access = PL0_W, .accessfn = pmreg_access_swinc,
2084 .fgt = FGT_PMSWINC_EL0,
2085 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2086 .writefn = pmswinc_write },
2087 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2089 .access = PL0_W, .accessfn = pmreg_access_swinc,
2090 .fgt = FGT_PMSWINC_EL0,
2091 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2092 .writefn = pmswinc_write },
2093 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2094 .access = PL0_RW, .type = ARM_CP_ALIAS,
2095 .fgt = FGT_PMSELR_EL0,
2096 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2097 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2098 .raw_writefn = raw_write},
2099 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2101 .access = PL0_RW, .accessfn = pmreg_access_selr,
2102 .fgt = FGT_PMSELR_EL0,
2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2104 .writefn = pmselr_write, .raw_writefn = raw_write, },
2105 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2106 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2107 .fgt = FGT_PMCCNTR_EL0,
2108 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2109 .accessfn = pmreg_access_ccntr },
2110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2112 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2113 .fgt = FGT_PMCCNTR_EL0,
2114 .type = ARM_CP_IO,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2116 .readfn = pmccntr_read, .writefn = pmccntr_write,
2117 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2118 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2119 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2120 .access = PL0_RW, .accessfn = pmreg_access,
2121 .fgt = FGT_PMCCFILTR_EL0,
2122 .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .resetvalue = 0, },
2124 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2126 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2127 .access = PL0_RW, .accessfn = pmreg_access,
2128 .fgt = FGT_PMCCFILTR_EL0,
2129 .type = ARM_CP_IO,
2130 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2131 .resetvalue = 0, },
2132 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134 .accessfn = pmreg_access,
2135 .fgt = FGT_PMEVTYPERN_EL0,
2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2140 .accessfn = pmreg_access,
2141 .fgt = FGT_PMEVTYPERN_EL0,
2142 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2143 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145 .accessfn = pmreg_access_xevcntr,
2146 .fgt = FGT_PMEVCNTRN_EL0,
2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2148 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2150 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2151 .accessfn = pmreg_access_xevcntr,
2152 .fgt = FGT_PMEVCNTRN_EL0,
2153 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2154 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2157 .resetvalue = 0,
2158 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2159 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2161 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2163 .resetvalue = 0,
2164 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2165 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2166 .access = PL1_RW, .accessfn = access_tpm,
2167 .fgt = FGT_PMINTEN,
2168 .type = ARM_CP_ALIAS | ARM_CP_IO,
2169 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2170 .resetvalue = 0,
2171 .writefn = pmintenset_write, .raw_writefn = raw_write },
2172 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2173 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2174 .access = PL1_RW, .accessfn = access_tpm,
2175 .fgt = FGT_PMINTEN,
2176 .type = ARM_CP_IO,
2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178 .writefn = pmintenset_write, .raw_writefn = raw_write,
2179 .resetvalue = 0x0 },
2180 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2181 .access = PL1_RW, .accessfn = access_tpm,
2182 .fgt = FGT_PMINTEN,
2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185 .writefn = pmintenclr_write, },
2186 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2187 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2188 .access = PL1_RW, .accessfn = access_tpm,
2189 .fgt = FGT_PMINTEN,
2190 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2192 .writefn = pmintenclr_write },
2193 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2195 .access = PL1_R,
2196 .accessfn = access_tid4,
2197 .fgt = FGT_CCSIDR_EL1,
2198 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2199 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2200 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2201 .access = PL1_RW,
2202 .accessfn = access_tid4,
2203 .fgt = FGT_CSSELR_EL1,
2204 .writefn = csselr_write, .resetvalue = 0,
2205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2206 offsetof(CPUARMState, cp15.csselr_ns) } },
2208 * Auxiliary ID register: this actually has an IMPDEF value but for now
2209 * just RAZ for all cores:
2211 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2212 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2213 .access = PL1_R, .type = ARM_CP_CONST,
2214 .accessfn = access_aa64_tid1,
2215 .fgt = FGT_AIDR_EL1,
2216 .resetvalue = 0 },
2218 * Auxiliary fault status registers: these also are IMPDEF, and we
2219 * choose to RAZ/WI for all cores.
2221 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2222 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2223 .access = PL1_RW, .accessfn = access_tvm_trvm,
2224 .fgt = FGT_AFSR0_EL1,
2225 .type = ARM_CP_CONST, .resetvalue = 0 },
2226 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2228 .access = PL1_RW, .accessfn = access_tvm_trvm,
2229 .fgt = FGT_AFSR1_EL1,
2230 .type = ARM_CP_CONST, .resetvalue = 0 },
2232 * MAIR can just read-as-written because we don't implement caches
2233 * and so don't need to care about memory attributes.
2235 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2236 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2237 .access = PL1_RW, .accessfn = access_tvm_trvm,
2238 .fgt = FGT_MAIR_EL1,
2239 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2240 .resetvalue = 0 },
2241 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2242 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2243 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2244 .resetvalue = 0 },
2246 * For non-long-descriptor page tables these are PRRR and NMRR;
2247 * regardless they still act as reads-as-written for QEMU.
2250 * MAIR0/1 are defined separately from their 64-bit counterpart which
2251 * allows them to assign the correct fieldoffset based on the endianness
2252 * handled in the field definitions.
2254 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2256 .access = PL1_RW, .accessfn = access_tvm_trvm,
2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2258 offsetof(CPUARMState, cp15.mair0_ns) },
2259 .resetfn = arm_cp_reset_ignore },
2260 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2261 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2262 .access = PL1_RW, .accessfn = access_tvm_trvm,
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2264 offsetof(CPUARMState, cp15.mair1_ns) },
2265 .resetfn = arm_cp_reset_ignore },
2266 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2267 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2268 .fgt = FGT_ISR_EL1,
2269 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2270 /* 32 bit ITLB invalidates */
2271 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2273 .writefn = tlbiall_write },
2274 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276 .writefn = tlbimva_write },
2277 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279 .writefn = tlbiasid_write },
2280 /* 32 bit DTLB invalidates */
2281 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2283 .writefn = tlbiall_write },
2284 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286 .writefn = tlbimva_write },
2287 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbiasid_write },
2290 /* 32 bit TLB invalidates */
2291 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2293 .writefn = tlbiall_write },
2294 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2296 .writefn = tlbimva_write },
2297 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2299 .writefn = tlbiasid_write },
2300 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2302 .writefn = tlbimvaa_write },
2305 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2306 /* 32 bit TLB invalidates, Inner Shareable */
2307 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2309 .writefn = tlbiall_is_write },
2310 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2312 .writefn = tlbimva_is_write },
2313 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2315 .writefn = tlbiasid_is_write },
2316 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2318 .writefn = tlbimvaa_is_write },
2321 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2322 /* PMOVSSET is not implemented in v7 before v7ve */
2323 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2324 .access = PL0_RW, .accessfn = pmreg_access,
2325 .fgt = FGT_PMOVS,
2326 .type = ARM_CP_ALIAS | ARM_CP_IO,
2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2328 .writefn = pmovsset_write,
2329 .raw_writefn = raw_write },
2330 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2332 .access = PL0_RW, .accessfn = pmreg_access,
2333 .fgt = FGT_PMOVS,
2334 .type = ARM_CP_ALIAS | ARM_CP_IO,
2335 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2336 .writefn = pmovsset_write,
2337 .raw_writefn = raw_write },
2340 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341 uint64_t value)
2343 value &= 1;
2344 env->teecr = value;
2347 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2348 bool isread)
2351 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2352 * at all, so we don't need to check whether we're v8A.
2354 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2355 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2356 return CP_ACCESS_TRAP_EL2;
2358 return CP_ACCESS_OK;
2361 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2362 bool isread)
2364 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2365 return CP_ACCESS_TRAP;
2367 return teecr_access(env, ri, isread);
2370 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2371 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2373 .resetvalue = 0,
2374 .writefn = teecr_write, .accessfn = teecr_access },
2375 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2376 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2377 .accessfn = teehbr_access, .resetvalue = 0 },
2380 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2381 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2382 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2383 .access = PL0_RW,
2384 .fgt = FGT_TPIDR_EL0,
2385 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2386 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2387 .access = PL0_RW,
2388 .fgt = FGT_TPIDR_EL0,
2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2391 .resetfn = arm_cp_reset_ignore },
2392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2394 .access = PL0_R | PL1_W,
2395 .fgt = FGT_TPIDRRO_EL0,
2396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2397 .resetvalue = 0},
2398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2399 .access = PL0_R | PL1_W,
2400 .fgt = FGT_TPIDRRO_EL0,
2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2402 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2403 .resetfn = arm_cp_reset_ignore },
2404 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2405 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2406 .access = PL1_RW,
2407 .fgt = FGT_TPIDR_EL1,
2408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2409 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2410 .access = PL1_RW,
2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2412 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2413 .resetvalue = 0 },
2416 #ifndef CONFIG_USER_ONLY
2418 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2419 bool isread)
2422 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2423 * Writable only at the highest implemented exception level.
2425 int el = arm_current_el(env);
2426 uint64_t hcr;
2427 uint32_t cntkctl;
2429 switch (el) {
2430 case 0:
2431 hcr = arm_hcr_el2_eff(env);
2432 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2433 cntkctl = env->cp15.cnthctl_el2;
2434 } else {
2435 cntkctl = env->cp15.c14_cntkctl;
2437 if (!extract32(cntkctl, 0, 2)) {
2438 return CP_ACCESS_TRAP;
2440 break;
2441 case 1:
2442 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2443 arm_is_secure_below_el3(env)) {
2444 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2445 return CP_ACCESS_TRAP_UNCATEGORIZED;
2447 break;
2448 case 2:
2449 case 3:
2450 break;
2453 if (!isread && el < arm_highest_el(env)) {
2454 return CP_ACCESS_TRAP_UNCATEGORIZED;
2457 return CP_ACCESS_OK;
2460 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2461 bool isread)
2463 unsigned int cur_el = arm_current_el(env);
2464 bool has_el2 = arm_is_el2_enabled(env);
2465 uint64_t hcr = arm_hcr_el2_eff(env);
2467 switch (cur_el) {
2468 case 0:
2469 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2470 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2471 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2475 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2476 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2477 return CP_ACCESS_TRAP;
2479 /* fall through */
2480 case 1:
2481 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2482 if (has_el2 && timeridx == GTIMER_PHYS &&
2483 (hcr & HCR_E2H
2484 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2485 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2486 return CP_ACCESS_TRAP_EL2;
2488 break;
2490 return CP_ACCESS_OK;
2493 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2494 bool isread)
2496 unsigned int cur_el = arm_current_el(env);
2497 bool has_el2 = arm_is_el2_enabled(env);
2498 uint64_t hcr = arm_hcr_el2_eff(env);
2500 switch (cur_el) {
2501 case 0:
2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2503 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2504 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2509 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2510 * EL0 if EL0[PV]TEN is zero.
2512 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2513 return CP_ACCESS_TRAP;
2515 /* fall through */
2517 case 1:
2518 if (has_el2 && timeridx == GTIMER_PHYS) {
2519 if (hcr & HCR_E2H) {
2520 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2521 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2522 return CP_ACCESS_TRAP_EL2;
2524 } else {
2525 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2526 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2527 return CP_ACCESS_TRAP_EL2;
2531 break;
2533 return CP_ACCESS_OK;
2536 static CPAccessResult gt_pct_access(CPUARMState *env,
2537 const ARMCPRegInfo *ri,
2538 bool isread)
2540 return gt_counter_access(env, GTIMER_PHYS, isread);
2543 static CPAccessResult gt_vct_access(CPUARMState *env,
2544 const ARMCPRegInfo *ri,
2545 bool isread)
2547 return gt_counter_access(env, GTIMER_VIRT, isread);
2550 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2551 bool isread)
2553 return gt_timer_access(env, GTIMER_PHYS, isread);
2556 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2557 bool isread)
2559 return gt_timer_access(env, GTIMER_VIRT, isread);
2562 static CPAccessResult gt_stimer_access(CPUARMState *env,
2563 const ARMCPRegInfo *ri,
2564 bool isread)
2567 * The AArch64 register view of the secure physical timer is
2568 * always accessible from EL3, and configurably accessible from
2569 * Secure EL1.
2571 switch (arm_current_el(env)) {
2572 case 1:
2573 if (!arm_is_secure(env)) {
2574 return CP_ACCESS_TRAP;
2576 if (!(env->cp15.scr_el3 & SCR_ST)) {
2577 return CP_ACCESS_TRAP_EL3;
2579 return CP_ACCESS_OK;
2580 case 0:
2581 case 2:
2582 return CP_ACCESS_TRAP;
2583 case 3:
2584 return CP_ACCESS_OK;
2585 default:
2586 g_assert_not_reached();
2590 static uint64_t gt_get_countervalue(CPUARMState *env)
2592 ARMCPU *cpu = env_archcpu(env);
2594 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2597 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2599 CPUARMState *env = &cpu->env;
2600 uint64_t cnthctl = env->cp15.cnthctl_el2;
2601 ARMSecuritySpace ss = arm_security_space(env);
2602 /* ISTATUS && !IMASK */
2603 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2606 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2607 * It is RES0 in Secure and NonSecure state.
2609 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2610 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2611 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2612 irqstate = 0;
2615 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2616 trace_arm_gt_update_irq(timeridx, irqstate);
2619 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2622 * Changing security state between Root and Secure/NonSecure, which may
2623 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2624 * mask bits. Update the IRQ state accordingly.
2626 gt_update_irq(cpu, GTIMER_VIRT);
2627 gt_update_irq(cpu, GTIMER_PHYS);
2630 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2632 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2634 if (gt->ctl & 1) {
2636 * Timer enabled: calculate and set current ISTATUS, irq, and
2637 * reset timer to when ISTATUS next has to change
2639 uint64_t offset = timeridx == GTIMER_VIRT ?
2640 cpu->env.cp15.cntvoff_el2 : 0;
2641 uint64_t count = gt_get_countervalue(&cpu->env);
2642 /* Note that this must be unsigned 64 bit arithmetic: */
2643 int istatus = count - offset >= gt->cval;
2644 uint64_t nexttick;
2646 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2648 if (istatus) {
2649 /* Next transition is when count rolls back over to zero */
2650 nexttick = UINT64_MAX;
2651 } else {
2652 /* Next transition is when we hit cval */
2653 nexttick = gt->cval + offset;
2656 * Note that the desired next expiry time might be beyond the
2657 * signed-64-bit range of a QEMUTimer -- in this case we just
2658 * set the timer for as far in the future as possible. When the
2659 * timer expires we will reset the timer for any remaining period.
2661 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2662 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2663 } else {
2664 timer_mod(cpu->gt_timer[timeridx], nexttick);
2666 trace_arm_gt_recalc(timeridx, nexttick);
2667 } else {
2668 /* Timer disabled: ISTATUS and timer output always clear */
2669 gt->ctl &= ~4;
2670 timer_del(cpu->gt_timer[timeridx]);
2671 trace_arm_gt_recalc_disabled(timeridx);
2673 gt_update_irq(cpu, timeridx);
2676 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2677 int timeridx)
2679 ARMCPU *cpu = env_archcpu(env);
2681 timer_del(cpu->gt_timer[timeridx]);
2684 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2686 return gt_get_countervalue(env);
2689 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2691 uint64_t hcr;
2693 switch (arm_current_el(env)) {
2694 case 2:
2695 hcr = arm_hcr_el2_eff(env);
2696 if (hcr & HCR_E2H) {
2697 return 0;
2699 break;
2700 case 0:
2701 hcr = arm_hcr_el2_eff(env);
2702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2703 return 0;
2705 break;
2708 return env->cp15.cntvoff_el2;
2711 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2713 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2716 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2717 int timeridx,
2718 uint64_t value)
2720 trace_arm_gt_cval_write(timeridx, value);
2721 env->cp15.c14_timer[timeridx].cval = value;
2722 gt_recalc_timer(env_archcpu(env), timeridx);
2725 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2726 int timeridx)
2728 uint64_t offset = 0;
2730 switch (timeridx) {
2731 case GTIMER_VIRT:
2732 case GTIMER_HYPVIRT:
2733 offset = gt_virt_cnt_offset(env);
2734 break;
2737 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2738 (gt_get_countervalue(env) - offset));
2741 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742 int timeridx,
2743 uint64_t value)
2745 uint64_t offset = 0;
2747 switch (timeridx) {
2748 case GTIMER_VIRT:
2749 case GTIMER_HYPVIRT:
2750 offset = gt_virt_cnt_offset(env);
2751 break;
2754 trace_arm_gt_tval_write(timeridx, value);
2755 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2756 sextract64(value, 0, 32);
2757 gt_recalc_timer(env_archcpu(env), timeridx);
2760 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2761 int timeridx,
2762 uint64_t value)
2764 ARMCPU *cpu = env_archcpu(env);
2765 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2767 trace_arm_gt_ctl_write(timeridx, value);
2768 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2769 if ((oldval ^ value) & 1) {
2770 /* Enable toggled */
2771 gt_recalc_timer(cpu, timeridx);
2772 } else if ((oldval ^ value) & 2) {
2774 * IMASK toggled: don't need to recalculate,
2775 * just set the interrupt line based on ISTATUS
2777 trace_arm_gt_imask_toggle(timeridx);
2778 gt_update_irq(cpu, timeridx);
2782 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2784 gt_timer_reset(env, ri, GTIMER_PHYS);
2787 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2788 uint64_t value)
2790 gt_cval_write(env, ri, GTIMER_PHYS, value);
2793 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2795 return gt_tval_read(env, ri, GTIMER_PHYS);
2798 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799 uint64_t value)
2801 gt_tval_write(env, ri, GTIMER_PHYS, value);
2804 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2805 uint64_t value)
2807 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2810 static int gt_phys_redir_timeridx(CPUARMState *env)
2812 switch (arm_mmu_idx(env)) {
2813 case ARMMMUIdx_E20_0:
2814 case ARMMMUIdx_E20_2:
2815 case ARMMMUIdx_E20_2_PAN:
2816 return GTIMER_HYP;
2817 default:
2818 return GTIMER_PHYS;
2822 static int gt_virt_redir_timeridx(CPUARMState *env)
2824 switch (arm_mmu_idx(env)) {
2825 case ARMMMUIdx_E20_0:
2826 case ARMMMUIdx_E20_2:
2827 case ARMMMUIdx_E20_2_PAN:
2828 return GTIMER_HYPVIRT;
2829 default:
2830 return GTIMER_VIRT;
2834 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2835 const ARMCPRegInfo *ri)
2837 int timeridx = gt_phys_redir_timeridx(env);
2838 return env->cp15.c14_timer[timeridx].cval;
2841 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842 uint64_t value)
2844 int timeridx = gt_phys_redir_timeridx(env);
2845 gt_cval_write(env, ri, timeridx, value);
2848 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2849 const ARMCPRegInfo *ri)
2851 int timeridx = gt_phys_redir_timeridx(env);
2852 return gt_tval_read(env, ri, timeridx);
2855 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 int timeridx = gt_phys_redir_timeridx(env);
2859 gt_tval_write(env, ri, timeridx, value);
2862 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2863 const ARMCPRegInfo *ri)
2865 int timeridx = gt_phys_redir_timeridx(env);
2866 return env->cp15.c14_timer[timeridx].ctl;
2869 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870 uint64_t value)
2872 int timeridx = gt_phys_redir_timeridx(env);
2873 gt_ctl_write(env, ri, timeridx, value);
2876 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2878 gt_timer_reset(env, ri, GTIMER_VIRT);
2881 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2882 uint64_t value)
2884 gt_cval_write(env, ri, GTIMER_VIRT, value);
2887 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2889 return gt_tval_read(env, ri, GTIMER_VIRT);
2892 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2893 uint64_t value)
2895 gt_tval_write(env, ri, GTIMER_VIRT, value);
2898 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899 uint64_t value)
2901 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2904 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905 uint64_t value)
2907 ARMCPU *cpu = env_archcpu(env);
2908 uint32_t oldval = env->cp15.cnthctl_el2;
2910 raw_write(env, ri, value);
2912 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2913 gt_update_irq(cpu, GTIMER_VIRT);
2914 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2915 gt_update_irq(cpu, GTIMER_PHYS);
2919 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2920 uint64_t value)
2922 ARMCPU *cpu = env_archcpu(env);
2924 trace_arm_gt_cntvoff_write(value);
2925 raw_write(env, ri, value);
2926 gt_recalc_timer(cpu, GTIMER_VIRT);
2929 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2930 const ARMCPRegInfo *ri)
2932 int timeridx = gt_virt_redir_timeridx(env);
2933 return env->cp15.c14_timer[timeridx].cval;
2936 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937 uint64_t value)
2939 int timeridx = gt_virt_redir_timeridx(env);
2940 gt_cval_write(env, ri, timeridx, value);
2943 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2944 const ARMCPRegInfo *ri)
2946 int timeridx = gt_virt_redir_timeridx(env);
2947 return gt_tval_read(env, ri, timeridx);
2950 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951 uint64_t value)
2953 int timeridx = gt_virt_redir_timeridx(env);
2954 gt_tval_write(env, ri, timeridx, value);
2957 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2958 const ARMCPRegInfo *ri)
2960 int timeridx = gt_virt_redir_timeridx(env);
2961 return env->cp15.c14_timer[timeridx].ctl;
2964 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965 uint64_t value)
2967 int timeridx = gt_virt_redir_timeridx(env);
2968 gt_ctl_write(env, ri, timeridx, value);
2971 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2973 gt_timer_reset(env, ri, GTIMER_HYP);
2976 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2979 gt_cval_write(env, ri, GTIMER_HYP, value);
2982 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2984 return gt_tval_read(env, ri, GTIMER_HYP);
2987 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
2990 gt_tval_write(env, ri, GTIMER_HYP, value);
2993 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994 uint64_t value)
2996 gt_ctl_write(env, ri, GTIMER_HYP, value);
2999 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3001 gt_timer_reset(env, ri, GTIMER_SEC);
3004 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3007 gt_cval_write(env, ri, GTIMER_SEC, value);
3010 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3012 return gt_tval_read(env, ri, GTIMER_SEC);
3015 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3018 gt_tval_write(env, ri, GTIMER_SEC, value);
3021 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3024 gt_ctl_write(env, ri, GTIMER_SEC, value);
3027 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3029 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3032 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3035 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3038 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3040 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3043 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3044 uint64_t value)
3046 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3049 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3052 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3055 void arm_gt_ptimer_cb(void *opaque)
3057 ARMCPU *cpu = opaque;
3059 gt_recalc_timer(cpu, GTIMER_PHYS);
3062 void arm_gt_vtimer_cb(void *opaque)
3064 ARMCPU *cpu = opaque;
3066 gt_recalc_timer(cpu, GTIMER_VIRT);
3069 void arm_gt_htimer_cb(void *opaque)
3071 ARMCPU *cpu = opaque;
3073 gt_recalc_timer(cpu, GTIMER_HYP);
3076 void arm_gt_stimer_cb(void *opaque)
3078 ARMCPU *cpu = opaque;
3080 gt_recalc_timer(cpu, GTIMER_SEC);
3083 void arm_gt_hvtimer_cb(void *opaque)
3085 ARMCPU *cpu = opaque;
3087 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3090 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3092 ARMCPU *cpu = env_archcpu(env);
3094 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3097 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3099 * Note that CNTFRQ is purely reads-as-written for the benefit
3100 * of software; writing it doesn't actually change the timer frequency.
3101 * Our reset value matches the fixed frequency we implement the timer at.
3103 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3104 .type = ARM_CP_ALIAS,
3105 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3106 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3108 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3109 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3110 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3112 .resetfn = arm_gt_cntfrq_reset,
3114 /* overall control: mostly access permissions */
3115 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3116 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3117 .access = PL1_RW,
3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3119 .resetvalue = 0,
3121 /* per-timer control */
3122 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3123 .secure = ARM_CP_SECSTATE_NS,
3124 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3125 .accessfn = gt_ptimer_access,
3126 .fieldoffset = offsetoflow32(CPUARMState,
3127 cp15.c14_timer[GTIMER_PHYS].ctl),
3128 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3129 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3131 { .name = "CNTP_CTL_S",
3132 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3133 .secure = ARM_CP_SECSTATE_S,
3134 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3135 .accessfn = gt_ptimer_access,
3136 .fieldoffset = offsetoflow32(CPUARMState,
3137 cp15.c14_timer[GTIMER_SEC].ctl),
3138 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3140 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3142 .type = ARM_CP_IO, .access = PL0_RW,
3143 .accessfn = gt_ptimer_access,
3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3145 .resetvalue = 0,
3146 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3147 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3149 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3150 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3151 .accessfn = gt_vtimer_access,
3152 .fieldoffset = offsetoflow32(CPUARMState,
3153 cp15.c14_timer[GTIMER_VIRT].ctl),
3154 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3155 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3157 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3159 .type = ARM_CP_IO, .access = PL0_RW,
3160 .accessfn = gt_vtimer_access,
3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3162 .resetvalue = 0,
3163 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3164 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3166 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3167 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3168 .secure = ARM_CP_SECSTATE_NS,
3169 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3170 .accessfn = gt_ptimer_access,
3171 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3173 { .name = "CNTP_TVAL_S",
3174 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3175 .secure = ARM_CP_SECSTATE_S,
3176 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3177 .accessfn = gt_ptimer_access,
3178 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3180 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3181 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3182 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3183 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3184 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3186 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3187 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3188 .accessfn = gt_vtimer_access,
3189 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3191 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3192 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3194 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3195 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3197 /* The counter itself */
3198 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3199 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3200 .accessfn = gt_pct_access,
3201 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3203 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3205 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3206 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3208 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3209 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3210 .accessfn = gt_vct_access,
3211 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3213 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3215 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3216 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3218 /* Comparison value, indicating when the timer goes off */
3219 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3220 .secure = ARM_CP_SECSTATE_NS,
3221 .access = PL0_RW,
3222 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3224 .accessfn = gt_ptimer_access,
3225 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3226 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3228 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3229 .secure = ARM_CP_SECSTATE_S,
3230 .access = PL0_RW,
3231 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3232 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3233 .accessfn = gt_ptimer_access,
3234 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3236 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3238 .access = PL0_RW,
3239 .type = ARM_CP_IO,
3240 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3241 .resetvalue = 0, .accessfn = gt_ptimer_access,
3242 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3243 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3245 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3246 .access = PL0_RW,
3247 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3249 .accessfn = gt_vtimer_access,
3250 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3251 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3253 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3254 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3255 .access = PL0_RW,
3256 .type = ARM_CP_IO,
3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3258 .resetvalue = 0, .accessfn = gt_vtimer_access,
3259 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3260 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3263 * Secure timer -- this is actually restricted to only EL3
3264 * and configurably Secure-EL1 via the accessfn.
3266 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3267 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3268 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3269 .accessfn = gt_stimer_access,
3270 .readfn = gt_sec_tval_read,
3271 .writefn = gt_sec_tval_write,
3272 .resetfn = gt_sec_timer_reset,
3274 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3275 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3276 .type = ARM_CP_IO, .access = PL1_RW,
3277 .accessfn = gt_stimer_access,
3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3279 .resetvalue = 0,
3280 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3282 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3283 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3284 .type = ARM_CP_IO, .access = PL1_RW,
3285 .accessfn = gt_stimer_access,
3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3287 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3291 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3292 bool isread)
3294 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3295 return CP_ACCESS_TRAP;
3297 return CP_ACCESS_OK;
3300 #else
3303 * In user-mode most of the generic timer registers are inaccessible
3304 * however modern kernels (4.12+) allow access to cntvct_el0
3307 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3309 ARMCPU *cpu = env_archcpu(env);
3312 * Currently we have no support for QEMUTimer in linux-user so we
3313 * can't call gt_get_countervalue(env), instead we directly
3314 * call the lower level functions.
3316 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3319 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3320 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3322 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3323 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3324 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3326 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3327 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3328 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3329 .readfn = gt_virt_cnt_read,
3333 #endif
3335 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3337 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3338 raw_write(env, ri, value);
3339 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3340 raw_write(env, ri, value & 0xfffff6ff);
3341 } else {
3342 raw_write(env, ri, value & 0xfffff1ff);
3346 #ifndef CONFIG_USER_ONLY
3347 /* get_phys_addr() isn't present for user-mode-only targets */
3349 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350 bool isread)
3352 if (ri->opc2 & 4) {
3354 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3355 * Secure EL1 (which can only happen if EL3 is AArch64).
3356 * They are simply UNDEF if executed from NS EL1.
3357 * They function normally from EL2 or EL3.
3359 if (arm_current_el(env) == 1) {
3360 if (arm_is_secure_below_el3(env)) {
3361 if (env->cp15.scr_el3 & SCR_EEL2) {
3362 return CP_ACCESS_TRAP_EL2;
3364 return CP_ACCESS_TRAP_EL3;
3366 return CP_ACCESS_TRAP_UNCATEGORIZED;
3369 return CP_ACCESS_OK;
3372 #ifdef CONFIG_TCG
3373 static int par_el1_shareability(GetPhysAddrResult *res)
3376 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3377 * memory -- see pseudocode PAREncodeShareability().
3379 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3380 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3381 return 2;
3383 return res->cacheattrs.shareability;
3386 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3387 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3388 ARMSecuritySpace ss)
3390 bool ret;
3391 uint64_t par64;
3392 bool format64 = false;
3393 ARMMMUFaultInfo fi = {};
3394 GetPhysAddrResult res = {};
3397 * I_MXTJT: Granule protection checks are not performed on the final address
3398 * of a successful translation.
3400 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3401 &res, &fi);
3404 * ATS operations only do S1 or S1+S2 translations, so we never
3405 * have to deal with the ARMCacheAttrs format for S2 only.
3407 assert(!res.cacheattrs.is_s2_format);
3409 if (ret) {
3411 * Some kinds of translation fault must cause exceptions rather
3412 * than being reported in the PAR.
3414 int current_el = arm_current_el(env);
3415 int target_el;
3416 uint32_t syn, fsr, fsc;
3417 bool take_exc = false;
3419 if (fi.s1ptw && current_el == 1
3420 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3422 * Synchronous stage 2 fault on an access made as part of the
3423 * translation table walk for AT S1E0* or AT S1E1* insn
3424 * executed from NS EL1. If this is a synchronous external abort
3425 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3426 * to EL3. Otherwise the fault is taken as an exception to EL2,
3427 * and HPFAR_EL2 holds the faulting IPA.
3429 if (fi.type == ARMFault_SyncExternalOnWalk &&
3430 (env->cp15.scr_el3 & SCR_EA)) {
3431 target_el = 3;
3432 } else {
3433 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3434 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3435 env->cp15.hpfar_el2 |= HPFAR_NS;
3437 target_el = 2;
3439 take_exc = true;
3440 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3442 * Synchronous external aborts during a translation table walk
3443 * are taken as Data Abort exceptions.
3445 if (fi.stage2) {
3446 if (current_el == 3) {
3447 target_el = 3;
3448 } else {
3449 target_el = 2;
3451 } else {
3452 target_el = exception_target_el(env);
3454 take_exc = true;
3457 if (take_exc) {
3458 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3459 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3460 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3461 fsr = arm_fi_to_lfsc(&fi);
3462 fsc = extract32(fsr, 0, 6);
3463 } else {
3464 fsr = arm_fi_to_sfsc(&fi);
3465 fsc = 0x3f;
3468 * Report exception with ESR indicating a fault due to a
3469 * translation table walk for a cache maintenance instruction.
3471 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3472 fi.ea, 1, fi.s1ptw, 1, fsc);
3473 env->exception.vaddress = value;
3474 env->exception.fsr = fsr;
3475 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3479 if (is_a64(env)) {
3480 format64 = true;
3481 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3483 * ATS1Cxx:
3484 * * TTBCR.EAE determines whether the result is returned using the
3485 * 32-bit or the 64-bit PAR format
3486 * * Instructions executed in Hyp mode always use the 64bit format
3488 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3489 * * The Non-secure TTBCR.EAE bit is set to 1
3490 * * The implementation includes EL2, and the value of HCR.VM is 1
3492 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3494 * ATS1Hx always uses the 64bit format.
3496 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3498 if (arm_feature(env, ARM_FEATURE_EL2)) {
3499 if (mmu_idx == ARMMMUIdx_E10_0 ||
3500 mmu_idx == ARMMMUIdx_E10_1 ||
3501 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3502 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3503 } else {
3504 format64 |= arm_current_el(env) == 2;
3509 if (format64) {
3510 /* Create a 64-bit PAR */
3511 par64 = (1 << 11); /* LPAE bit always set */
3512 if (!ret) {
3513 par64 |= res.f.phys_addr & ~0xfffULL;
3514 if (!res.f.attrs.secure) {
3515 par64 |= (1 << 9); /* NS */
3517 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3518 par64 |= par_el1_shareability(&res) << 7; /* SH */
3519 } else {
3520 uint32_t fsr = arm_fi_to_lfsc(&fi);
3522 par64 |= 1; /* F */
3523 par64 |= (fsr & 0x3f) << 1; /* FS */
3524 if (fi.stage2) {
3525 par64 |= (1 << 9); /* S */
3527 if (fi.s1ptw) {
3528 par64 |= (1 << 8); /* PTW */
3531 } else {
3533 * fsr is a DFSR/IFSR value for the short descriptor
3534 * translation table format (with WnR always clear).
3535 * Convert it to a 32-bit PAR.
3537 if (!ret) {
3538 /* We do not set any attribute bits in the PAR */
3539 if (res.f.lg_page_size == 24
3540 && arm_feature(env, ARM_FEATURE_V7)) {
3541 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3542 } else {
3543 par64 = res.f.phys_addr & 0xfffff000;
3545 if (!res.f.attrs.secure) {
3546 par64 |= (1 << 9); /* NS */
3548 } else {
3549 uint32_t fsr = arm_fi_to_sfsc(&fi);
3551 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3552 ((fsr & 0xf) << 1) | 1;
3555 return par64;
3557 #endif /* CONFIG_TCG */
3559 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3561 #ifdef CONFIG_TCG
3562 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3563 uint64_t par64;
3564 ARMMMUIdx mmu_idx;
3565 int el = arm_current_el(env);
3566 ARMSecuritySpace ss = arm_security_space(env);
3568 switch (ri->opc2 & 6) {
3569 case 0:
3570 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3571 switch (el) {
3572 case 3:
3573 mmu_idx = ARMMMUIdx_E3;
3574 break;
3575 case 2:
3576 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3577 /* fall through */
3578 case 1:
3579 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3580 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3581 } else {
3582 mmu_idx = ARMMMUIdx_Stage1_E1;
3584 break;
3585 default:
3586 g_assert_not_reached();
3588 break;
3589 case 2:
3590 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3591 switch (el) {
3592 case 3:
3593 mmu_idx = ARMMMUIdx_E10_0;
3594 break;
3595 case 2:
3596 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3597 mmu_idx = ARMMMUIdx_Stage1_E0;
3598 break;
3599 case 1:
3600 mmu_idx = ARMMMUIdx_Stage1_E0;
3601 break;
3602 default:
3603 g_assert_not_reached();
3605 break;
3606 case 4:
3607 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3608 mmu_idx = ARMMMUIdx_E10_1;
3609 ss = ARMSS_NonSecure;
3610 break;
3611 case 6:
3612 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3613 mmu_idx = ARMMMUIdx_E10_0;
3614 ss = ARMSS_NonSecure;
3615 break;
3616 default:
3617 g_assert_not_reached();
3620 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3622 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3623 #else
3624 /* Handled by hardware accelerator. */
3625 g_assert_not_reached();
3626 #endif /* CONFIG_TCG */
3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3630 uint64_t value)
3632 #ifdef CONFIG_TCG
3633 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3634 uint64_t par64;
3636 /* There is no SecureEL2 for AArch32. */
3637 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3638 ARMSS_NonSecure);
3640 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3641 #else
3642 /* Handled by hardware accelerator. */
3643 g_assert_not_reached();
3644 #endif /* CONFIG_TCG */
3647 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3648 bool isread)
3651 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3652 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3653 * only happen when executing at EL3 because that combination also causes an
3654 * illegal exception return. We don't need to check FEAT_RME either, because
3655 * scr_write() ensures that the NSE bit is not set otherwise.
3657 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3658 return CP_ACCESS_TRAP;
3660 return CP_ACCESS_OK;
3663 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3664 bool isread)
3666 if (arm_current_el(env) == 3 &&
3667 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3668 return CP_ACCESS_TRAP;
3670 return at_e012_access(env, ri, isread);
3673 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3674 uint64_t value)
3676 #ifdef CONFIG_TCG
3677 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3678 ARMMMUIdx mmu_idx;
3679 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3680 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3682 switch (ri->opc2 & 6) {
3683 case 0:
3684 switch (ri->opc1) {
3685 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3686 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3687 mmu_idx = regime_e20 ?
3688 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3689 } else {
3690 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3692 break;
3693 case 4: /* AT S1E2R, AT S1E2W */
3694 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3695 break;
3696 case 6: /* AT S1E3R, AT S1E3W */
3697 mmu_idx = ARMMMUIdx_E3;
3698 break;
3699 default:
3700 g_assert_not_reached();
3702 break;
3703 case 2: /* AT S1E0R, AT S1E0W */
3704 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3705 break;
3706 case 4: /* AT S12E1R, AT S12E1W */
3707 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3708 break;
3709 case 6: /* AT S12E0R, AT S12E0W */
3710 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3711 break;
3712 default:
3713 g_assert_not_reached();
3716 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3717 mmu_idx, arm_security_space(env));
3718 #else
3719 /* Handled by hardware accelerator. */
3720 g_assert_not_reached();
3721 #endif /* CONFIG_TCG */
3723 #endif
3725 /* Return basic MPU access permission bits. */
3726 static uint32_t simple_mpu_ap_bits(uint32_t val)
3728 uint32_t ret;
3729 uint32_t mask;
3730 int i;
3731 ret = 0;
3732 mask = 3;
3733 for (i = 0; i < 16; i += 2) {
3734 ret |= (val >> i) & mask;
3735 mask <<= 2;
3737 return ret;
3740 /* Pad basic MPU access permission bits to extended format. */
3741 static uint32_t extended_mpu_ap_bits(uint32_t val)
3743 uint32_t ret;
3744 uint32_t mask;
3745 int i;
3746 ret = 0;
3747 mask = 3;
3748 for (i = 0; i < 16; i += 2) {
3749 ret |= (val & mask) << i;
3750 mask <<= 2;
3752 return ret;
3755 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3756 uint64_t value)
3758 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3761 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3763 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3766 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3767 uint64_t value)
3769 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3772 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3774 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3777 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3779 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3781 if (!u32p) {
3782 return 0;
3785 u32p += env->pmsav7.rnr[M_REG_NS];
3786 return *u32p;
3789 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3790 uint64_t value)
3792 ARMCPU *cpu = env_archcpu(env);
3793 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3795 if (!u32p) {
3796 return;
3799 u32p += env->pmsav7.rnr[M_REG_NS];
3800 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3801 *u32p = value;
3804 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805 uint64_t value)
3807 ARMCPU *cpu = env_archcpu(env);
3808 uint32_t nrgs = cpu->pmsav7_dregion;
3810 if (value >= nrgs) {
3811 qemu_log_mask(LOG_GUEST_ERROR,
3812 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3813 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3814 return;
3817 raw_write(env, ri, value);
3820 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821 uint64_t value)
3823 ARMCPU *cpu = env_archcpu(env);
3825 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3826 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3829 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3831 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3834 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835 uint64_t value)
3837 ARMCPU *cpu = env_archcpu(env);
3839 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3840 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3843 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3845 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3848 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849 uint64_t value)
3851 ARMCPU *cpu = env_archcpu(env);
3854 * Ignore writes that would select not implemented region.
3855 * This is architecturally UNPREDICTABLE.
3857 if (value >= cpu->pmsav7_dregion) {
3858 return;
3861 env->pmsav7.rnr[M_REG_NS] = value;
3864 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3865 uint64_t value)
3867 ARMCPU *cpu = env_archcpu(env);
3869 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3870 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3873 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3875 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3878 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879 uint64_t value)
3881 ARMCPU *cpu = env_archcpu(env);
3883 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3884 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3887 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3889 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3892 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3895 uint32_t n;
3896 uint32_t bit;
3897 ARMCPU *cpu = env_archcpu(env);
3899 /* Ignore writes to unimplemented regions */
3900 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3901 value &= MAKE_64BIT_MASK(0, rmax);
3903 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3905 /* Register alias is only valid for first 32 indexes */
3906 for (n = 0; n < rmax; ++n) {
3907 bit = extract32(value, n, 1);
3908 env->pmsav8.hprlar[n] = deposit32(
3909 env->pmsav8.hprlar[n], 0, 1, bit);
3913 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3915 uint32_t n;
3916 uint32_t result = 0x0;
3917 ARMCPU *cpu = env_archcpu(env);
3919 /* Register alias is only valid for first 32 indexes */
3920 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3921 if (env->pmsav8.hprlar[n] & 0x1) {
3922 result |= (0x1 << n);
3925 return result;
3928 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929 uint64_t value)
3931 ARMCPU *cpu = env_archcpu(env);
3934 * Ignore writes that would select not implemented region.
3935 * This is architecturally UNPREDICTABLE.
3937 if (value >= cpu->pmsav8r_hdregion) {
3938 return;
3941 env->pmsav8.hprselr = value;
3944 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3945 uint64_t value)
3947 ARMCPU *cpu = env_archcpu(env);
3948 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3949 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3951 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3953 if (ri->opc1 & 4) {
3954 if (index >= cpu->pmsav8r_hdregion) {
3955 return;
3957 if (ri->opc2 & 0x1) {
3958 env->pmsav8.hprlar[index] = value;
3959 } else {
3960 env->pmsav8.hprbar[index] = value;
3962 } else {
3963 if (index >= cpu->pmsav7_dregion) {
3964 return;
3966 if (ri->opc2 & 0x1) {
3967 env->pmsav8.rlar[M_REG_NS][index] = value;
3968 } else {
3969 env->pmsav8.rbar[M_REG_NS][index] = value;
3974 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3976 ARMCPU *cpu = env_archcpu(env);
3977 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3978 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3980 if (ri->opc1 & 4) {
3981 if (index >= cpu->pmsav8r_hdregion) {
3982 return 0x0;
3984 if (ri->opc2 & 0x1) {
3985 return env->pmsav8.hprlar[index];
3986 } else {
3987 return env->pmsav8.hprbar[index];
3989 } else {
3990 if (index >= cpu->pmsav7_dregion) {
3991 return 0x0;
3993 if (ri->opc2 & 0x1) {
3994 return env->pmsav8.rlar[M_REG_NS][index];
3995 } else {
3996 return env->pmsav8.rbar[M_REG_NS][index];
4001 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4002 { .name = "PRBAR",
4003 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4004 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4005 .accessfn = access_tvm_trvm,
4006 .readfn = prbar_read, .writefn = prbar_write },
4007 { .name = "PRLAR",
4008 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4009 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4010 .accessfn = access_tvm_trvm,
4011 .readfn = prlar_read, .writefn = prlar_write },
4012 { .name = "PRSELR", .resetvalue = 0,
4013 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4014 .access = PL1_RW, .accessfn = access_tvm_trvm,
4015 .writefn = prselr_write,
4016 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4017 { .name = "HPRBAR", .resetvalue = 0,
4018 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4019 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4020 .readfn = hprbar_read, .writefn = hprbar_write },
4021 { .name = "HPRLAR",
4022 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4023 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4024 .readfn = hprlar_read, .writefn = hprlar_write },
4025 { .name = "HPRSELR", .resetvalue = 0,
4026 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4027 .access = PL2_RW,
4028 .writefn = hprselr_write,
4029 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4030 { .name = "HPRENR",
4031 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4032 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4033 .readfn = hprenr_read, .writefn = hprenr_write },
4036 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4038 * Reset for all these registers is handled in arm_cpu_reset(),
4039 * because the PMSAv7 is also used by M-profile CPUs, which do
4040 * not register cpregs but still need the state to be reset.
4042 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4043 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4044 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4045 .readfn = pmsav7_read, .writefn = pmsav7_write,
4046 .resetfn = arm_cp_reset_ignore },
4047 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4048 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4049 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4050 .readfn = pmsav7_read, .writefn = pmsav7_write,
4051 .resetfn = arm_cp_reset_ignore },
4052 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4053 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4054 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4055 .readfn = pmsav7_read, .writefn = pmsav7_write,
4056 .resetfn = arm_cp_reset_ignore },
4057 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4058 .access = PL1_RW,
4059 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4060 .writefn = pmsav7_rgnr_write,
4061 .resetfn = arm_cp_reset_ignore },
4064 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4065 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4066 .access = PL1_RW, .type = ARM_CP_ALIAS,
4067 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4068 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4069 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4070 .access = PL1_RW, .type = ARM_CP_ALIAS,
4071 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4072 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4073 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4074 .access = PL1_RW,
4075 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4076 .resetvalue = 0, },
4077 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4078 .access = PL1_RW,
4079 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4080 .resetvalue = 0, },
4081 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4082 .access = PL1_RW,
4083 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4084 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4085 .access = PL1_RW,
4086 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4087 /* Protection region base and size registers */
4088 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4089 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4090 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4091 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4092 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4093 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4094 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4095 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4096 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4097 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4098 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4099 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4100 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4101 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4102 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4103 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4104 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4105 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4106 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4107 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4108 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4109 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4110 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4111 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4114 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4117 ARMCPU *cpu = env_archcpu(env);
4119 if (!arm_feature(env, ARM_FEATURE_V8)) {
4120 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4122 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4123 * using Long-descriptor translation table format
4125 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4126 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4128 * In an implementation that includes the Security Extensions
4129 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4130 * Short-descriptor translation table format.
4132 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4133 } else {
4134 value &= TTBCR_N;
4138 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4140 * With LPAE the TTBCR could result in a change of ASID
4141 * via the TTBCR.A1 bit, so do a TLB flush.
4143 tlb_flush(CPU(cpu));
4145 raw_write(env, ri, value);
4148 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4149 uint64_t value)
4151 ARMCPU *cpu = env_archcpu(env);
4153 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4154 tlb_flush(CPU(cpu));
4155 raw_write(env, ri, value);
4158 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4159 uint64_t value)
4161 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4162 if (cpreg_field_is_64bit(ri) &&
4163 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4164 ARMCPU *cpu = env_archcpu(env);
4165 tlb_flush(CPU(cpu));
4167 raw_write(env, ri, value);
4170 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4171 uint64_t value)
4174 * If we are running with E2&0 regime, then an ASID is active.
4175 * Flush if that might be changing. Note we're not checking
4176 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4177 * holds the active ASID, only checking the field that might.
4179 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4180 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4181 uint16_t mask = ARMMMUIdxBit_E20_2 |
4182 ARMMMUIdxBit_E20_2_PAN |
4183 ARMMMUIdxBit_E20_0;
4184 tlb_flush_by_mmuidx(env_cpu(env), mask);
4186 raw_write(env, ri, value);
4189 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4190 uint64_t value)
4192 ARMCPU *cpu = env_archcpu(env);
4193 CPUState *cs = CPU(cpu);
4196 * A change in VMID to the stage2 page table (Stage2) invalidates
4197 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4199 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4200 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4202 raw_write(env, ri, value);
4205 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4206 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4207 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4209 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4210 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4211 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4212 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4213 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4214 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4215 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4216 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4217 offsetof(CPUARMState, cp15.dfar_ns) } },
4218 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4219 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4220 .access = PL1_RW, .accessfn = access_tvm_trvm,
4221 .fgt = FGT_FAR_EL1,
4222 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4223 .resetvalue = 0, },
4226 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4227 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4228 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4229 .access = PL1_RW, .accessfn = access_tvm_trvm,
4230 .fgt = FGT_ESR_EL1,
4231 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4232 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4233 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4234 .access = PL1_RW, .accessfn = access_tvm_trvm,
4235 .fgt = FGT_TTBR0_EL1,
4236 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4237 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4238 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4239 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4240 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4241 .access = PL1_RW, .accessfn = access_tvm_trvm,
4242 .fgt = FGT_TTBR1_EL1,
4243 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4244 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4245 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4246 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4247 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4248 .access = PL1_RW, .accessfn = access_tvm_trvm,
4249 .fgt = FGT_TCR_EL1,
4250 .writefn = vmsa_tcr_el12_write,
4251 .raw_writefn = raw_write,
4252 .resetvalue = 0,
4253 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4254 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4255 .access = PL1_RW, .accessfn = access_tvm_trvm,
4256 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4257 .raw_writefn = raw_write,
4258 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4259 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4263 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4264 * qemu tlbs nor adjusting cached masks.
4266 static const ARMCPRegInfo ttbcr2_reginfo = {
4267 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4268 .access = PL1_RW, .accessfn = access_tvm_trvm,
4269 .type = ARM_CP_ALIAS,
4270 .bank_fieldoffsets = {
4271 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4272 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4276 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4277 uint64_t value)
4279 env->cp15.c15_ticonfig = value & 0xe7;
4280 /* The OS_TYPE bit in this register changes the reported CPUID! */
4281 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4282 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4285 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4286 uint64_t value)
4288 env->cp15.c15_threadid = value & 0xffff;
4291 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4292 uint64_t value)
4294 /* Wait-for-interrupt (deprecated) */
4295 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4298 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4299 uint64_t value)
4302 * On OMAP there are registers indicating the max/min index of dcache lines
4303 * containing a dirty line; cache flush operations have to reset these.
4305 env->cp15.c15_i_max = 0x000;
4306 env->cp15.c15_i_min = 0xff0;
4309 static const ARMCPRegInfo omap_cp_reginfo[] = {
4310 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4311 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4312 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4313 .resetvalue = 0, },
4314 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4315 .access = PL1_RW, .type = ARM_CP_NOP },
4316 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4317 .access = PL1_RW,
4318 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4319 .writefn = omap_ticonfig_write },
4320 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4321 .access = PL1_RW,
4322 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4323 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4324 .access = PL1_RW, .resetvalue = 0xff0,
4325 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4326 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4327 .access = PL1_RW,
4328 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4329 .writefn = omap_threadid_write },
4330 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4331 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4332 .type = ARM_CP_NO_RAW,
4333 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4335 * TODO: Peripheral port remap register:
4336 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4337 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4338 * when MMU is off.
4340 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4341 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4342 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4343 .writefn = omap_cachemaint_write },
4344 { .name = "C9", .cp = 15, .crn = 9,
4345 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4346 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4349 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4350 uint64_t value)
4352 env->cp15.c15_cpar = value & 0x3fff;
4355 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4356 { .name = "XSCALE_CPAR",
4357 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4358 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4359 .writefn = xscale_cpar_write, },
4360 { .name = "XSCALE_AUXCR",
4361 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4362 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4363 .resetvalue = 0, },
4365 * XScale specific cache-lockdown: since we have no cache we NOP these
4366 * and hope the guest does not really rely on cache behaviour.
4368 { .name = "XSCALE_LOCK_ICACHE_LINE",
4369 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4370 .access = PL1_W, .type = ARM_CP_NOP },
4371 { .name = "XSCALE_UNLOCK_ICACHE",
4372 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4373 .access = PL1_W, .type = ARM_CP_NOP },
4374 { .name = "XSCALE_DCACHE_LOCK",
4375 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4376 .access = PL1_RW, .type = ARM_CP_NOP },
4377 { .name = "XSCALE_UNLOCK_DCACHE",
4378 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4379 .access = PL1_W, .type = ARM_CP_NOP },
4382 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4384 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4385 * implementation of this implementation-defined space.
4386 * Ideally this should eventually disappear in favour of actually
4387 * implementing the correct behaviour for all cores.
4389 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4390 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4391 .access = PL1_RW,
4392 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4393 .resetvalue = 0 },
4396 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4397 /* Cache status: RAZ because we have no cache so it's always clean */
4398 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4399 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4400 .resetvalue = 0 },
4403 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4404 /* We never have a block transfer operation in progress */
4405 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4406 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4407 .resetvalue = 0 },
4408 /* The cache ops themselves: these all NOP for QEMU */
4409 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4410 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4411 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4412 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4413 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4414 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4415 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4416 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4417 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4418 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4419 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4420 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4423 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4425 * The cache test-and-clean instructions always return (1 << 30)
4426 * to indicate that there are no dirty cache lines.
4428 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4429 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4430 .resetvalue = (1 << 30) },
4431 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4432 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4433 .resetvalue = (1 << 30) },
4436 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4437 /* Ignore ReadBuffer accesses */
4438 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4439 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4440 .access = PL1_RW, .resetvalue = 0,
4441 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4444 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4446 unsigned int cur_el = arm_current_el(env);
4448 if (arm_is_el2_enabled(env) && cur_el == 1) {
4449 return env->cp15.vpidr_el2;
4451 return raw_read(env, ri);
4454 static uint64_t mpidr_read_val(CPUARMState *env)
4456 ARMCPU *cpu = env_archcpu(env);
4457 uint64_t mpidr = cpu->mp_affinity;
4459 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4460 mpidr |= (1U << 31);
4462 * Cores which are uniprocessor (non-coherent)
4463 * but still implement the MP extensions set
4464 * bit 30. (For instance, Cortex-R5).
4466 if (cpu->mp_is_up) {
4467 mpidr |= (1u << 30);
4470 return mpidr;
4473 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4475 unsigned int cur_el = arm_current_el(env);
4477 if (arm_is_el2_enabled(env) && cur_el == 1) {
4478 return env->cp15.vmpidr_el2;
4480 return mpidr_read_val(env);
4483 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4484 /* NOP AMAIR0/1 */
4485 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4486 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4487 .access = PL1_RW, .accessfn = access_tvm_trvm,
4488 .fgt = FGT_AMAIR_EL1,
4489 .type = ARM_CP_CONST, .resetvalue = 0 },
4490 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4491 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4492 .access = PL1_RW, .accessfn = access_tvm_trvm,
4493 .type = ARM_CP_CONST, .resetvalue = 0 },
4494 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4495 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4496 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4497 offsetof(CPUARMState, cp15.par_ns)} },
4498 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4499 .access = PL1_RW, .accessfn = access_tvm_trvm,
4500 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4501 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4502 offsetof(CPUARMState, cp15.ttbr0_ns) },
4503 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4504 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4505 .access = PL1_RW, .accessfn = access_tvm_trvm,
4506 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4507 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4508 offsetof(CPUARMState, cp15.ttbr1_ns) },
4509 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4512 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4514 return vfp_get_fpcr(env);
4517 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4518 uint64_t value)
4520 vfp_set_fpcr(env, value);
4523 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4525 return vfp_get_fpsr(env);
4528 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529 uint64_t value)
4531 vfp_set_fpsr(env, value);
4534 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4535 bool isread)
4537 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4538 return CP_ACCESS_TRAP;
4540 return CP_ACCESS_OK;
4543 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4544 uint64_t value)
4546 env->daif = value & PSTATE_DAIF;
4549 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4551 return env->pstate & PSTATE_PAN;
4554 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4555 uint64_t value)
4557 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4560 static const ARMCPRegInfo pan_reginfo = {
4561 .name = "PAN", .state = ARM_CP_STATE_AA64,
4562 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4563 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4564 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4567 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4569 return env->pstate & PSTATE_UAO;
4572 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4573 uint64_t value)
4575 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4578 static const ARMCPRegInfo uao_reginfo = {
4579 .name = "UAO", .state = ARM_CP_STATE_AA64,
4580 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4581 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4582 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4585 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4587 return env->pstate & PSTATE_DIT;
4590 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4591 uint64_t value)
4593 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4596 static const ARMCPRegInfo dit_reginfo = {
4597 .name = "DIT", .state = ARM_CP_STATE_AA64,
4598 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4599 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4600 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4603 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4605 return env->pstate & PSTATE_SSBS;
4608 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4609 uint64_t value)
4611 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4614 static const ARMCPRegInfo ssbs_reginfo = {
4615 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4616 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4617 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4618 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4621 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4622 const ARMCPRegInfo *ri,
4623 bool isread)
4625 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4626 switch (arm_current_el(env)) {
4627 case 0:
4628 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4629 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4630 return CP_ACCESS_TRAP;
4632 /* fall through */
4633 case 1:
4634 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4635 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4636 return CP_ACCESS_TRAP_EL2;
4638 break;
4640 return CP_ACCESS_OK;
4643 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4645 /* Cache invalidate/clean to Point of Unification... */
4646 switch (arm_current_el(env)) {
4647 case 0:
4648 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4649 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4650 return CP_ACCESS_TRAP;
4652 /* fall through */
4653 case 1:
4654 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4655 if (arm_hcr_el2_eff(env) & hcrflags) {
4656 return CP_ACCESS_TRAP_EL2;
4658 break;
4660 return CP_ACCESS_OK;
4663 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4664 bool isread)
4666 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4669 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4670 bool isread)
4672 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4676 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4677 * Page D4-1736 (DDI0487A.b)
4680 static int vae1_tlbmask(CPUARMState *env)
4682 uint64_t hcr = arm_hcr_el2_eff(env);
4683 uint16_t mask;
4685 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4686 mask = ARMMMUIdxBit_E20_2 |
4687 ARMMMUIdxBit_E20_2_PAN |
4688 ARMMMUIdxBit_E20_0;
4689 } else {
4690 mask = ARMMMUIdxBit_E10_1 |
4691 ARMMMUIdxBit_E10_1_PAN |
4692 ARMMMUIdxBit_E10_0;
4694 return mask;
4697 static int vae2_tlbmask(CPUARMState *env)
4699 uint64_t hcr = arm_hcr_el2_eff(env);
4700 uint16_t mask;
4702 if (hcr & HCR_E2H) {
4703 mask = ARMMMUIdxBit_E20_2 |
4704 ARMMMUIdxBit_E20_2_PAN |
4705 ARMMMUIdxBit_E20_0;
4706 } else {
4707 mask = ARMMMUIdxBit_E2;
4709 return mask;
4712 /* Return 56 if TBI is enabled, 64 otherwise. */
4713 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4714 uint64_t addr)
4716 uint64_t tcr = regime_tcr(env, mmu_idx);
4717 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4718 int select = extract64(addr, 55, 1);
4720 return (tbi >> select) & 1 ? 56 : 64;
4723 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4725 uint64_t hcr = arm_hcr_el2_eff(env);
4726 ARMMMUIdx mmu_idx;
4728 /* Only the regime of the mmu_idx below is significant. */
4729 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4730 mmu_idx = ARMMMUIdx_E20_0;
4731 } else {
4732 mmu_idx = ARMMMUIdx_E10_0;
4735 return tlbbits_for_regime(env, mmu_idx, addr);
4738 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4740 uint64_t hcr = arm_hcr_el2_eff(env);
4741 ARMMMUIdx mmu_idx;
4744 * Only the regime of the mmu_idx below is significant.
4745 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4746 * only has one.
4748 if (hcr & HCR_E2H) {
4749 mmu_idx = ARMMMUIdx_E20_2;
4750 } else {
4751 mmu_idx = ARMMMUIdx_E2;
4754 return tlbbits_for_regime(env, mmu_idx, addr);
4757 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4758 uint64_t value)
4760 CPUState *cs = env_cpu(env);
4761 int mask = vae1_tlbmask(env);
4763 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4766 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4767 uint64_t value)
4769 CPUState *cs = env_cpu(env);
4770 int mask = vae1_tlbmask(env);
4772 if (tlb_force_broadcast(env)) {
4773 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4774 } else {
4775 tlb_flush_by_mmuidx(cs, mask);
4779 static int e2_tlbmask(CPUARMState *env)
4781 return (ARMMMUIdxBit_E20_0 |
4782 ARMMMUIdxBit_E20_2 |
4783 ARMMMUIdxBit_E20_2_PAN |
4784 ARMMMUIdxBit_E2);
4787 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4788 uint64_t value)
4790 CPUState *cs = env_cpu(env);
4791 int mask = alle1_tlbmask(env);
4793 tlb_flush_by_mmuidx(cs, mask);
4796 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4797 uint64_t value)
4799 CPUState *cs = env_cpu(env);
4800 int mask = e2_tlbmask(env);
4802 tlb_flush_by_mmuidx(cs, mask);
4805 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4806 uint64_t value)
4808 ARMCPU *cpu = env_archcpu(env);
4809 CPUState *cs = CPU(cpu);
4811 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4814 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4815 uint64_t value)
4817 CPUState *cs = env_cpu(env);
4818 int mask = alle1_tlbmask(env);
4820 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4823 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4824 uint64_t value)
4826 CPUState *cs = env_cpu(env);
4827 int mask = e2_tlbmask(env);
4829 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4832 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4833 uint64_t value)
4835 CPUState *cs = env_cpu(env);
4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4840 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4841 uint64_t value)
4844 * Invalidate by VA, EL2
4845 * Currently handles both VAE2 and VALE2, since we don't support
4846 * flush-last-level-only.
4848 CPUState *cs = env_cpu(env);
4849 int mask = vae2_tlbmask(env);
4850 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4851 int bits = vae2_tlbbits(env, pageaddr);
4853 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4856 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4857 uint64_t value)
4860 * Invalidate by VA, EL3
4861 * Currently handles both VAE3 and VALE3, since we don't support
4862 * flush-last-level-only.
4864 ARMCPU *cpu = env_archcpu(env);
4865 CPUState *cs = CPU(cpu);
4866 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4868 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4871 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4872 uint64_t value)
4874 CPUState *cs = env_cpu(env);
4875 int mask = vae1_tlbmask(env);
4876 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4877 int bits = vae1_tlbbits(env, pageaddr);
4879 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4882 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4883 uint64_t value)
4886 * Invalidate by VA, EL1&0 (AArch64 version).
4887 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4888 * since we don't support flush-for-specific-ASID-only or
4889 * flush-last-level-only.
4891 CPUState *cs = env_cpu(env);
4892 int mask = vae1_tlbmask(env);
4893 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4894 int bits = vae1_tlbbits(env, pageaddr);
4896 if (tlb_force_broadcast(env)) {
4897 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4898 } else {
4899 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4903 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4904 uint64_t value)
4906 CPUState *cs = env_cpu(env);
4907 int mask = vae2_tlbmask(env);
4908 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4909 int bits = vae2_tlbbits(env, pageaddr);
4911 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4914 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4915 uint64_t value)
4917 CPUState *cs = env_cpu(env);
4918 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4919 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4921 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4922 ARMMMUIdxBit_E3, bits);
4925 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4928 * The MSB of value is the NS field, which only applies if SEL2
4929 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4931 return (value >= 0
4932 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4933 && arm_is_secure_below_el3(env)
4934 ? ARMMMUIdxBit_Stage2_S
4935 : ARMMMUIdxBit_Stage2);
4938 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4939 uint64_t value)
4941 CPUState *cs = env_cpu(env);
4942 int mask = ipas2e1_tlbmask(env, value);
4943 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4945 if (tlb_force_broadcast(env)) {
4946 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4947 } else {
4948 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4952 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4953 uint64_t value)
4955 CPUState *cs = env_cpu(env);
4956 int mask = ipas2e1_tlbmask(env, value);
4957 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4959 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4962 #ifdef TARGET_AARCH64
4963 typedef struct {
4964 uint64_t base;
4965 uint64_t length;
4966 } TLBIRange;
4968 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4971 * Note that the TLBI range TG field encoding differs from both
4972 * TG0 and TG1 encodings.
4974 switch (tg) {
4975 case 1:
4976 return Gran4K;
4977 case 2:
4978 return Gran16K;
4979 case 3:
4980 return Gran64K;
4981 default:
4982 return GranInvalid;
4986 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4987 uint64_t value)
4989 unsigned int page_size_granule, page_shift, num, scale, exponent;
4990 /* Extract one bit to represent the va selector in use. */
4991 uint64_t select = sextract64(value, 36, 1);
4992 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4993 TLBIRange ret = { };
4994 ARMGranuleSize gran;
4996 page_size_granule = extract64(value, 46, 2);
4997 gran = tlbi_range_tg_to_gran_size(page_size_granule);
4999 /* The granule encoded in value must match the granule in use. */
5000 if (gran != param.gran) {
5001 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5002 page_size_granule);
5003 return ret;
5006 page_shift = arm_granule_bits(gran);
5007 num = extract64(value, 39, 5);
5008 scale = extract64(value, 44, 2);
5009 exponent = (5 * scale) + 1;
5011 ret.length = (num + 1) << (exponent + page_shift);
5013 if (param.select) {
5014 ret.base = sextract64(value, 0, 37);
5015 } else {
5016 ret.base = extract64(value, 0, 37);
5018 if (param.ds) {
5020 * With DS=1, BaseADDR is always shifted 16 so that it is able
5021 * to address all 52 va bits. The input address is perforce
5022 * aligned on a 64k boundary regardless of translation granule.
5024 page_shift = 16;
5026 ret.base <<= page_shift;
5028 return ret;
5031 static void do_rvae_write(CPUARMState *env, uint64_t value,
5032 int idxmap, bool synced)
5034 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5035 TLBIRange range;
5036 int bits;
5038 range = tlbi_aa64_get_range(env, one_idx, value);
5039 bits = tlbbits_for_regime(env, one_idx, range.base);
5041 if (synced) {
5042 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5043 range.base,
5044 range.length,
5045 idxmap,
5046 bits);
5047 } else {
5048 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5049 range.length, idxmap, bits);
5053 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5054 const ARMCPRegInfo *ri,
5055 uint64_t value)
5058 * Invalidate by VA range, EL1&0.
5059 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5060 * since we don't support flush-for-specific-ASID-only or
5061 * flush-last-level-only.
5064 do_rvae_write(env, value, vae1_tlbmask(env),
5065 tlb_force_broadcast(env));
5068 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5069 const ARMCPRegInfo *ri,
5070 uint64_t value)
5073 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5074 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5075 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5076 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5077 * shareable specific flushes.
5080 do_rvae_write(env, value, vae1_tlbmask(env), true);
5083 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5084 const ARMCPRegInfo *ri,
5085 uint64_t value)
5088 * Invalidate by VA range, EL2.
5089 * Currently handles all of RVAE2 and RVALE2,
5090 * since we don't support flush-for-specific-ASID-only or
5091 * flush-last-level-only.
5094 do_rvae_write(env, value, vae2_tlbmask(env),
5095 tlb_force_broadcast(env));
5100 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5101 const ARMCPRegInfo *ri,
5102 uint64_t value)
5105 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5106 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5107 * since we don't support flush-for-specific-ASID-only,
5108 * flush-last-level-only or inner/outer shareable specific flushes.
5111 do_rvae_write(env, value, vae2_tlbmask(env), true);
5115 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5116 const ARMCPRegInfo *ri,
5117 uint64_t value)
5120 * Invalidate by VA range, EL3.
5121 * Currently handles all of RVAE3 and RVALE3,
5122 * since we don't support flush-for-specific-ASID-only or
5123 * flush-last-level-only.
5126 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5129 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5130 const ARMCPRegInfo *ri,
5131 uint64_t value)
5134 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5135 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5136 * since we don't support flush-for-specific-ASID-only,
5137 * flush-last-level-only or inner/outer specific flushes.
5140 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5143 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5144 uint64_t value)
5146 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5147 tlb_force_broadcast(env));
5150 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5151 const ARMCPRegInfo *ri,
5152 uint64_t value)
5154 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5156 #endif
5158 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5159 bool isread)
5161 int cur_el = arm_current_el(env);
5163 if (cur_el < 2) {
5164 uint64_t hcr = arm_hcr_el2_eff(env);
5166 if (cur_el == 0) {
5167 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5168 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5169 return CP_ACCESS_TRAP_EL2;
5171 } else {
5172 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5173 return CP_ACCESS_TRAP;
5175 if (hcr & HCR_TDZ) {
5176 return CP_ACCESS_TRAP_EL2;
5179 } else if (hcr & HCR_TDZ) {
5180 return CP_ACCESS_TRAP_EL2;
5183 return CP_ACCESS_OK;
5186 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5188 ARMCPU *cpu = env_archcpu(env);
5189 int dzp_bit = 1 << 4;
5191 /* DZP indicates whether DC ZVA access is allowed */
5192 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5193 dzp_bit = 0;
5195 return cpu->dcz_blocksize | dzp_bit;
5198 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5199 bool isread)
5201 if (!(env->pstate & PSTATE_SP)) {
5203 * Access to SP_EL0 is undefined if it's being used as
5204 * the stack pointer.
5206 return CP_ACCESS_TRAP_UNCATEGORIZED;
5208 return CP_ACCESS_OK;
5211 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5213 return env->pstate & PSTATE_SP;
5216 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5218 update_spsel(env, val);
5221 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5222 uint64_t value)
5224 ARMCPU *cpu = env_archcpu(env);
5226 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5227 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5228 value &= ~SCTLR_M;
5231 /* ??? Lots of these bits are not implemented. */
5233 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5234 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5235 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5236 } else {
5237 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5238 SCTLR_ATA0 | SCTLR_ATA);
5242 if (raw_read(env, ri) == value) {
5244 * Skip the TLB flush if nothing actually changed; Linux likes
5245 * to do a lot of pointless SCTLR writes.
5247 return;
5250 raw_write(env, ri, value);
5252 /* This may enable/disable the MMU, so do a TLB flush. */
5253 tlb_flush(CPU(cpu));
5255 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5257 * Normally we would always end the TB on an SCTLR write; see the
5258 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5259 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5260 * of hflags from the translator, so do it here.
5262 arm_rebuild_hflags(env);
5266 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5267 uint64_t value)
5270 * Some MDCR_EL3 bits affect whether PMU counters are running:
5271 * if we are trying to change any of those then we must
5272 * bracket this update with PMU start/finish calls.
5274 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5276 if (pmu_op) {
5277 pmu_op_start(env);
5279 env->cp15.mdcr_el3 = value;
5280 if (pmu_op) {
5281 pmu_op_finish(env);
5285 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5286 uint64_t value)
5288 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5289 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5292 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5293 uint64_t value)
5296 * Some MDCR_EL2 bits affect whether PMU counters are running:
5297 * if we are trying to change any of those then we must
5298 * bracket this update with PMU start/finish calls.
5300 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5302 if (pmu_op) {
5303 pmu_op_start(env);
5305 env->cp15.mdcr_el2 = value;
5306 if (pmu_op) {
5307 pmu_op_finish(env);
5311 #ifdef CONFIG_USER_ONLY
5313 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5314 * code to get around W^X restrictions, where one region is writable and the
5315 * other is executable.
5317 * Since the executable region is never written to we cannot detect code
5318 * changes when running in user mode, and rely on the emulated JIT telling us
5319 * that the code has changed by executing this instruction.
5321 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5322 uint64_t value)
5324 uint64_t icache_line_mask, start_address, end_address;
5325 const ARMCPU *cpu;
5327 cpu = env_archcpu(env);
5329 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5330 start_address = value & ~icache_line_mask;
5331 end_address = value | icache_line_mask;
5333 mmap_lock();
5335 tb_invalidate_phys_range(start_address, end_address);
5337 mmap_unlock();
5339 #endif
5341 static const ARMCPRegInfo v8_cp_reginfo[] = {
5343 * Minimal set of EL0-visible registers. This will need to be expanded
5344 * significantly for system emulation of AArch64 CPUs.
5346 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5347 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5348 .access = PL0_RW, .type = ARM_CP_NZCV },
5349 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5350 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5351 .type = ARM_CP_NO_RAW,
5352 .access = PL0_RW, .accessfn = aa64_daif_access,
5353 .fieldoffset = offsetof(CPUARMState, daif),
5354 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5355 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5356 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5357 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5358 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5359 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5360 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5361 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5362 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5363 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5364 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5365 .access = PL0_R, .type = ARM_CP_NO_RAW,
5366 .fgt = FGT_DCZID_EL0,
5367 .readfn = aa64_dczid_read },
5368 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5369 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5370 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5371 #ifndef CONFIG_USER_ONLY
5372 /* Avoid overhead of an access check that always passes in user-mode */
5373 .accessfn = aa64_zva_access,
5374 .fgt = FGT_DCZVA,
5375 #endif
5377 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5378 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5379 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5381 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5382 * don't emulate caches.
5384 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5385 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5386 .access = PL1_W, .type = ARM_CP_NOP,
5387 .fgt = FGT_ICIALLUIS,
5388 .accessfn = access_ticab },
5389 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5390 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5391 .access = PL1_W, .type = ARM_CP_NOP,
5392 .fgt = FGT_ICIALLU,
5393 .accessfn = access_tocu },
5394 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5395 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5396 .access = PL0_W,
5397 .fgt = FGT_ICIVAU,
5398 .accessfn = access_tocu,
5399 #ifdef CONFIG_USER_ONLY
5400 .type = ARM_CP_NO_RAW,
5401 .writefn = ic_ivau_write
5402 #else
5403 .type = ARM_CP_NOP
5404 #endif
5406 /* Cache ops: all NOPs since we don't emulate caches */
5407 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5408 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5409 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5410 .fgt = FGT_DCIVAC,
5411 .type = ARM_CP_NOP },
5412 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5414 .fgt = FGT_DCISW,
5415 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5416 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5417 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5418 .access = PL0_W, .type = ARM_CP_NOP,
5419 .fgt = FGT_DCCVAC,
5420 .accessfn = aa64_cacheop_poc_access },
5421 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5423 .fgt = FGT_DCCSW,
5424 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5425 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5426 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5427 .access = PL0_W, .type = ARM_CP_NOP,
5428 .fgt = FGT_DCCVAU,
5429 .accessfn = access_tocu },
5430 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5431 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5432 .access = PL0_W, .type = ARM_CP_NOP,
5433 .fgt = FGT_DCCIVAC,
5434 .accessfn = aa64_cacheop_poc_access },
5435 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5437 .fgt = FGT_DCCISW,
5438 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5439 /* TLBI operations */
5440 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5441 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5442 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5443 .fgt = FGT_TLBIVMALLE1IS,
5444 .writefn = tlbi_aa64_vmalle1is_write },
5445 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5446 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5447 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5448 .fgt = FGT_TLBIVAE1IS,
5449 .writefn = tlbi_aa64_vae1is_write },
5450 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5452 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5453 .fgt = FGT_TLBIASIDE1IS,
5454 .writefn = tlbi_aa64_vmalle1is_write },
5455 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5456 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5457 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5458 .fgt = FGT_TLBIVAAE1IS,
5459 .writefn = tlbi_aa64_vae1is_write },
5460 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5461 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5462 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5463 .fgt = FGT_TLBIVALE1IS,
5464 .writefn = tlbi_aa64_vae1is_write },
5465 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5466 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5467 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5468 .fgt = FGT_TLBIVAALE1IS,
5469 .writefn = tlbi_aa64_vae1is_write },
5470 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5471 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5472 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5473 .fgt = FGT_TLBIVMALLE1,
5474 .writefn = tlbi_aa64_vmalle1_write },
5475 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5476 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5477 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5478 .fgt = FGT_TLBIVAE1,
5479 .writefn = tlbi_aa64_vae1_write },
5480 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5481 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5482 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5483 .fgt = FGT_TLBIASIDE1,
5484 .writefn = tlbi_aa64_vmalle1_write },
5485 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5486 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5487 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5488 .fgt = FGT_TLBIVAAE1,
5489 .writefn = tlbi_aa64_vae1_write },
5490 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5491 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5492 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5493 .fgt = FGT_TLBIVALE1,
5494 .writefn = tlbi_aa64_vae1_write },
5495 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5496 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5497 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5498 .fgt = FGT_TLBIVAALE1,
5499 .writefn = tlbi_aa64_vae1_write },
5500 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5501 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5502 .access = PL2_W, .type = ARM_CP_NO_RAW,
5503 .writefn = tlbi_aa64_ipas2e1is_write },
5504 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5505 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5506 .access = PL2_W, .type = ARM_CP_NO_RAW,
5507 .writefn = tlbi_aa64_ipas2e1is_write },
5508 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5509 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5510 .access = PL2_W, .type = ARM_CP_NO_RAW,
5511 .writefn = tlbi_aa64_alle1is_write },
5512 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5513 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5514 .access = PL2_W, .type = ARM_CP_NO_RAW,
5515 .writefn = tlbi_aa64_alle1is_write },
5516 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5517 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5518 .access = PL2_W, .type = ARM_CP_NO_RAW,
5519 .writefn = tlbi_aa64_ipas2e1_write },
5520 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5521 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5522 .access = PL2_W, .type = ARM_CP_NO_RAW,
5523 .writefn = tlbi_aa64_ipas2e1_write },
5524 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5525 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5526 .access = PL2_W, .type = ARM_CP_NO_RAW,
5527 .writefn = tlbi_aa64_alle1_write },
5528 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5529 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5530 .access = PL2_W, .type = ARM_CP_NO_RAW,
5531 .writefn = tlbi_aa64_alle1is_write },
5532 #ifndef CONFIG_USER_ONLY
5533 /* 64 bit address translation operations */
5534 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5535 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5536 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5537 .fgt = FGT_ATS1E1R,
5538 .accessfn = at_e012_access, .writefn = ats_write64 },
5539 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5540 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5541 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5542 .fgt = FGT_ATS1E1W,
5543 .accessfn = at_e012_access, .writefn = ats_write64 },
5544 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5545 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5546 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5547 .fgt = FGT_ATS1E0R,
5548 .accessfn = at_e012_access, .writefn = ats_write64 },
5549 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5550 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5551 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5552 .fgt = FGT_ATS1E0W,
5553 .accessfn = at_e012_access, .writefn = ats_write64 },
5554 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5556 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5557 .accessfn = at_e012_access, .writefn = ats_write64 },
5558 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5561 .accessfn = at_e012_access, .writefn = ats_write64 },
5562 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5565 .accessfn = at_e012_access, .writefn = ats_write64 },
5566 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5568 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5569 .accessfn = at_e012_access, .writefn = ats_write64 },
5570 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5571 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5572 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5573 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5574 .writefn = ats_write64 },
5575 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5576 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5577 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5578 .writefn = ats_write64 },
5579 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5580 .type = ARM_CP_ALIAS,
5581 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5582 .access = PL1_RW, .resetvalue = 0,
5583 .fgt = FGT_PAR_EL1,
5584 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5585 .writefn = par_write },
5586 #endif
5587 /* TLB invalidate last level of translation table walk */
5588 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5589 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5590 .writefn = tlbimva_is_write },
5591 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5592 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5593 .writefn = tlbimvaa_is_write },
5594 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5595 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5596 .writefn = tlbimva_write },
5597 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5598 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5599 .writefn = tlbimvaa_write },
5600 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5601 .type = ARM_CP_NO_RAW, .access = PL2_W,
5602 .writefn = tlbimva_hyp_write },
5603 { .name = "TLBIMVALHIS",
5604 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5605 .type = ARM_CP_NO_RAW, .access = PL2_W,
5606 .writefn = tlbimva_hyp_is_write },
5607 { .name = "TLBIIPAS2",
5608 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5609 .type = ARM_CP_NO_RAW, .access = PL2_W,
5610 .writefn = tlbiipas2_hyp_write },
5611 { .name = "TLBIIPAS2IS",
5612 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5613 .type = ARM_CP_NO_RAW, .access = PL2_W,
5614 .writefn = tlbiipas2is_hyp_write },
5615 { .name = "TLBIIPAS2L",
5616 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5617 .type = ARM_CP_NO_RAW, .access = PL2_W,
5618 .writefn = tlbiipas2_hyp_write },
5619 { .name = "TLBIIPAS2LIS",
5620 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5621 .type = ARM_CP_NO_RAW, .access = PL2_W,
5622 .writefn = tlbiipas2is_hyp_write },
5623 /* 32 bit cache operations */
5624 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5625 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5626 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5627 .type = ARM_CP_NOP, .access = PL1_W },
5628 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5629 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5630 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5631 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5632 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5633 .type = ARM_CP_NOP, .access = PL1_W },
5634 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5635 .type = ARM_CP_NOP, .access = PL1_W },
5636 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5637 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5638 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5639 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5640 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5641 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5642 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5643 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5644 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5645 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5646 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5647 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5648 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5649 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5650 /* MMU Domain access control / MPU write buffer control */
5651 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5652 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5653 .writefn = dacr_write, .raw_writefn = raw_write,
5654 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5655 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5656 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5657 .type = ARM_CP_ALIAS,
5658 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5659 .access = PL1_RW,
5660 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5661 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5662 .type = ARM_CP_ALIAS,
5663 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5664 .access = PL1_RW,
5665 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5667 * We rely on the access checks not allowing the guest to write to the
5668 * state field when SPSel indicates that it's being used as the stack
5669 * pointer.
5671 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5672 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5673 .access = PL1_RW, .accessfn = sp_el0_access,
5674 .type = ARM_CP_ALIAS,
5675 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5676 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5677 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5678 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5679 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5680 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5681 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5682 .type = ARM_CP_NO_RAW,
5683 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5684 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5686 .access = PL2_RW,
5687 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5688 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5689 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5690 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5691 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5692 .writefn = dacr_write, .raw_writefn = raw_write,
5693 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5694 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5696 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5697 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5698 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5699 .type = ARM_CP_ALIAS,
5700 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5701 .access = PL2_RW,
5702 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5703 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5704 .type = ARM_CP_ALIAS,
5705 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5706 .access = PL2_RW,
5707 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5708 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5709 .type = ARM_CP_ALIAS,
5710 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5711 .access = PL2_RW,
5712 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5713 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5714 .type = ARM_CP_ALIAS,
5715 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5716 .access = PL2_RW,
5717 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5718 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5719 .type = ARM_CP_IO,
5720 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5721 .resetvalue = 0,
5722 .access = PL3_RW,
5723 .writefn = mdcr_el3_write,
5724 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5725 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5726 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5727 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5728 .writefn = sdcr_write,
5729 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5732 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5734 ARMCPU *cpu = env_archcpu(env);
5736 if (arm_feature(env, ARM_FEATURE_V8)) {
5737 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5738 } else {
5739 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5742 if (arm_feature(env, ARM_FEATURE_EL3)) {
5743 valid_mask &= ~HCR_HCD;
5744 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5746 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5747 * However, if we're using the SMC PSCI conduit then QEMU is
5748 * effectively acting like EL3 firmware and so the guest at
5749 * EL2 should retain the ability to prevent EL1 from being
5750 * able to make SMC calls into the ersatz firmware, so in
5751 * that case HCR.TSC should be read/write.
5753 valid_mask &= ~HCR_TSC;
5756 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5757 if (cpu_isar_feature(aa64_vh, cpu)) {
5758 valid_mask |= HCR_E2H;
5760 if (cpu_isar_feature(aa64_ras, cpu)) {
5761 valid_mask |= HCR_TERR | HCR_TEA;
5763 if (cpu_isar_feature(aa64_lor, cpu)) {
5764 valid_mask |= HCR_TLOR;
5766 if (cpu_isar_feature(aa64_pauth, cpu)) {
5767 valid_mask |= HCR_API | HCR_APK;
5769 if (cpu_isar_feature(aa64_mte, cpu)) {
5770 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5772 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5773 valid_mask |= HCR_ENSCXT;
5775 if (cpu_isar_feature(aa64_fwb, cpu)) {
5776 valid_mask |= HCR_FWB;
5778 if (cpu_isar_feature(aa64_rme, cpu)) {
5779 valid_mask |= HCR_GPF;
5783 if (cpu_isar_feature(any_evt, cpu)) {
5784 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5785 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5786 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5789 /* Clear RES0 bits. */
5790 value &= valid_mask;
5793 * These bits change the MMU setup:
5794 * HCR_VM enables stage 2 translation
5795 * HCR_PTW forbids certain page-table setups
5796 * HCR_DC disables stage1 and enables stage2 translation
5797 * HCR_DCT enables tagging on (disabled) stage1 translation
5798 * HCR_FWB changes the interpretation of stage2 descriptor bits
5800 if ((env->cp15.hcr_el2 ^ value) &
5801 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5802 tlb_flush(CPU(cpu));
5804 env->cp15.hcr_el2 = value;
5807 * Updates to VI and VF require us to update the status of
5808 * virtual interrupts, which are the logical OR of these bits
5809 * and the state of the input lines from the GIC. (This requires
5810 * that we have the iothread lock, which is done by marking the
5811 * reginfo structs as ARM_CP_IO.)
5812 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5813 * possible for it to be taken immediately, because VIRQ and
5814 * VFIQ are masked unless running at EL0 or EL1, and HCR
5815 * can only be written at EL2.
5817 g_assert(qemu_mutex_iothread_locked());
5818 arm_cpu_update_virq(cpu);
5819 arm_cpu_update_vfiq(cpu);
5820 arm_cpu_update_vserr(cpu);
5823 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5825 do_hcr_write(env, value, 0);
5828 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5829 uint64_t value)
5831 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5832 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5833 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5836 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5837 uint64_t value)
5839 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5840 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5841 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5845 * Return the effective value of HCR_EL2, at the given security state.
5846 * Bits that are not included here:
5847 * RW (read from SCR_EL3.RW as needed)
5849 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5851 uint64_t ret = env->cp15.hcr_el2;
5853 assert(space != ARMSS_Root);
5855 if (!arm_is_el2_enabled_secstate(env, space)) {
5857 * "This register has no effect if EL2 is not enabled in the
5858 * current Security state". This is ARMv8.4-SecEL2 speak for
5859 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5861 * Prior to that, the language was "In an implementation that
5862 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5863 * as if this field is 0 for all purposes other than a direct
5864 * read or write access of HCR_EL2". With lots of enumeration
5865 * on a per-field basis. In current QEMU, this is condition
5866 * is arm_is_secure_below_el3.
5868 * Since the v8.4 language applies to the entire register, and
5869 * appears to be backward compatible, use that.
5871 return 0;
5875 * For a cpu that supports both aarch64 and aarch32, we can set bits
5876 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5877 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5879 if (!arm_el_is_aa64(env, 2)) {
5880 uint64_t aa32_valid;
5883 * These bits are up-to-date as of ARMv8.6.
5884 * For HCR, it's easiest to list just the 2 bits that are invalid.
5885 * For HCR2, list those that are valid.
5887 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5888 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5889 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5890 ret &= aa32_valid;
5893 if (ret & HCR_TGE) {
5894 /* These bits are up-to-date as of ARMv8.6. */
5895 if (ret & HCR_E2H) {
5896 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5897 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5898 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5899 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5900 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5901 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5902 } else {
5903 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5905 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5906 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5907 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5908 HCR_TLOR);
5911 return ret;
5914 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5916 if (arm_feature(env, ARM_FEATURE_M)) {
5917 return 0;
5919 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5923 * Corresponds to ARM pseudocode function ELIsInHost().
5925 bool el_is_in_host(CPUARMState *env, int el)
5927 uint64_t mask;
5930 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5931 * Perform the simplest bit tests first, and validate EL2 afterward.
5933 if (el & 1) {
5934 return false; /* EL1 or EL3 */
5938 * Note that hcr_write() checks isar_feature_aa64_vh(),
5939 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5941 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5942 if ((env->cp15.hcr_el2 & mask) != mask) {
5943 return false;
5946 /* TGE and/or E2H set: double check those bits are currently legal. */
5947 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5950 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5951 uint64_t value)
5953 uint64_t valid_mask = 0;
5955 /* FEAT_MOPS adds MSCEn and MCE2 */
5956 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5957 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5960 /* Clear RES0 bits. */
5961 env->cp15.hcrx_el2 = value & valid_mask;
5964 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5965 bool isread)
5967 if (arm_current_el(env) < 3
5968 && arm_feature(env, ARM_FEATURE_EL3)
5969 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5970 return CP_ACCESS_TRAP_EL3;
5972 return CP_ACCESS_OK;
5975 static const ARMCPRegInfo hcrx_el2_reginfo = {
5976 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5977 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5978 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5979 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5982 /* Return the effective value of HCRX_EL2. */
5983 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5986 * The bits in this register behave as 0 for all purposes other than
5987 * direct reads of the register if SCR_EL3.HXEn is 0.
5988 * If EL2 is not enabled in the current security state, then the
5989 * bit may behave as if 0, or as if 1, depending on the bit.
5990 * For the moment, we treat the EL2-disabled case as taking
5991 * priority over the HXEn-disabled case. This is true for the only
5992 * bit for a feature which we implement where the answer is different
5993 * for the two cases (MSCEn for FEAT_MOPS).
5994 * This may need to be revisited for future bits.
5996 if (!arm_is_el2_enabled(env)) {
5997 uint64_t hcrx = 0;
5998 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5999 /* MSCEn behaves as 1 if EL2 is not enabled */
6000 hcrx |= HCRX_MSCEN;
6002 return hcrx;
6004 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6005 return 0;
6007 return env->cp15.hcrx_el2;
6010 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6011 uint64_t value)
6014 * For A-profile AArch32 EL3, if NSACR.CP10
6015 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6017 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6018 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6019 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6020 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6022 env->cp15.cptr_el[2] = value;
6025 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6028 * For A-profile AArch32 EL3, if NSACR.CP10
6029 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6031 uint64_t value = env->cp15.cptr_el[2];
6033 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6034 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6035 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6037 return value;
6040 static const ARMCPRegInfo el2_cp_reginfo[] = {
6041 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6042 .type = ARM_CP_IO,
6043 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6044 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6045 .writefn = hcr_write, .raw_writefn = raw_write },
6046 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6047 .type = ARM_CP_ALIAS | ARM_CP_IO,
6048 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6049 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6050 .writefn = hcr_writelow },
6051 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6052 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6053 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6054 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6055 .type = ARM_CP_ALIAS,
6056 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6057 .access = PL2_RW,
6058 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6059 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6060 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6061 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6062 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6063 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6064 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6065 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6066 .type = ARM_CP_ALIAS,
6067 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6068 .access = PL2_RW,
6069 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6070 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6071 .type = ARM_CP_ALIAS,
6072 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6073 .access = PL2_RW,
6074 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6075 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6076 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6077 .access = PL2_RW, .writefn = vbar_write,
6078 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6079 .resetvalue = 0 },
6080 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6081 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6082 .access = PL3_RW, .type = ARM_CP_ALIAS,
6083 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6084 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6085 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6086 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6087 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6088 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6089 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6090 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6091 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6092 .resetvalue = 0 },
6093 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6094 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6095 .access = PL2_RW, .type = ARM_CP_ALIAS,
6096 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6097 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6098 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6099 .access = PL2_RW, .type = ARM_CP_CONST,
6100 .resetvalue = 0 },
6101 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6102 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6103 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6104 .access = PL2_RW, .type = ARM_CP_CONST,
6105 .resetvalue = 0 },
6106 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6107 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6108 .access = PL2_RW, .type = ARM_CP_CONST,
6109 .resetvalue = 0 },
6110 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6111 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6112 .access = PL2_RW, .type = ARM_CP_CONST,
6113 .resetvalue = 0 },
6114 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6115 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6116 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6117 .raw_writefn = raw_write,
6118 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6119 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6120 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6121 .type = ARM_CP_ALIAS,
6122 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6123 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6124 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6125 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6126 .access = PL2_RW,
6127 /* no .writefn needed as this can't cause an ASID change */
6128 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6129 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6130 .cp = 15, .opc1 = 6, .crm = 2,
6131 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6132 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6133 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6134 .writefn = vttbr_write, .raw_writefn = raw_write },
6135 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6136 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6137 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6138 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6139 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6140 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6141 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6142 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6143 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6144 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6145 .access = PL2_RW, .resetvalue = 0,
6146 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6147 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6148 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6149 .access = PL2_RW, .resetvalue = 0,
6150 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6151 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6152 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6153 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6154 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6155 { .name = "TLBIALLNSNH",
6156 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6157 .type = ARM_CP_NO_RAW, .access = PL2_W,
6158 .writefn = tlbiall_nsnh_write },
6159 { .name = "TLBIALLNSNHIS",
6160 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6161 .type = ARM_CP_NO_RAW, .access = PL2_W,
6162 .writefn = tlbiall_nsnh_is_write },
6163 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6164 .type = ARM_CP_NO_RAW, .access = PL2_W,
6165 .writefn = tlbiall_hyp_write },
6166 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6167 .type = ARM_CP_NO_RAW, .access = PL2_W,
6168 .writefn = tlbiall_hyp_is_write },
6169 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6170 .type = ARM_CP_NO_RAW, .access = PL2_W,
6171 .writefn = tlbimva_hyp_write },
6172 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6173 .type = ARM_CP_NO_RAW, .access = PL2_W,
6174 .writefn = tlbimva_hyp_is_write },
6175 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6176 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6177 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6178 .writefn = tlbi_aa64_alle2_write },
6179 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6180 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6181 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6182 .writefn = tlbi_aa64_vae2_write },
6183 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6184 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6185 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6186 .writefn = tlbi_aa64_vae2_write },
6187 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6188 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6189 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6190 .writefn = tlbi_aa64_alle2is_write },
6191 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6192 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6193 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6194 .writefn = tlbi_aa64_vae2is_write },
6195 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6197 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6198 .writefn = tlbi_aa64_vae2is_write },
6199 #ifndef CONFIG_USER_ONLY
6201 * Unlike the other EL2-related AT operations, these must
6202 * UNDEF from EL3 if EL2 is not implemented, which is why we
6203 * define them here rather than with the rest of the AT ops.
6205 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6206 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6207 .access = PL2_W, .accessfn = at_s1e2_access,
6208 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6209 .writefn = ats_write64 },
6210 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6211 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6212 .access = PL2_W, .accessfn = at_s1e2_access,
6213 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6214 .writefn = ats_write64 },
6216 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6217 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6218 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6219 * to behave as if SCR.NS was 1.
6221 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6222 .access = PL2_W,
6223 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6224 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6225 .access = PL2_W,
6226 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6227 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6228 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6230 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6231 * reset values as IMPDEF. We choose to reset to 3 to comply with
6232 * both ARMv7 and ARMv8.
6234 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6235 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6236 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6237 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6238 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6239 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6240 .writefn = gt_cntvoff_write,
6241 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6242 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6243 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6244 .writefn = gt_cntvoff_write,
6245 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6246 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6247 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6249 .type = ARM_CP_IO, .access = PL2_RW,
6250 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6251 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6253 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6254 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6255 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6256 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6257 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6258 .resetfn = gt_hyp_timer_reset,
6259 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6260 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6261 .type = ARM_CP_IO,
6262 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6263 .access = PL2_RW,
6264 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6265 .resetvalue = 0,
6266 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6267 #endif
6268 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6269 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6270 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6271 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6272 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6273 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6274 .access = PL2_RW,
6275 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6276 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6277 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6278 .access = PL2_RW,
6279 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6282 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6283 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6284 .type = ARM_CP_ALIAS | ARM_CP_IO,
6285 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6286 .access = PL2_RW,
6287 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6288 .writefn = hcr_writehigh },
6291 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6292 bool isread)
6294 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6295 return CP_ACCESS_OK;
6297 return CP_ACCESS_TRAP_UNCATEGORIZED;
6300 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6301 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6302 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6303 .access = PL2_RW, .accessfn = sel2_access,
6304 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6305 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6306 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6307 .access = PL2_RW, .accessfn = sel2_access,
6308 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6311 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6312 bool isread)
6315 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6316 * At Secure EL1 it traps to EL3 or EL2.
6318 if (arm_current_el(env) == 3) {
6319 return CP_ACCESS_OK;
6321 if (arm_is_secure_below_el3(env)) {
6322 if (env->cp15.scr_el3 & SCR_EEL2) {
6323 return CP_ACCESS_TRAP_EL2;
6325 return CP_ACCESS_TRAP_EL3;
6327 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6328 if (isread) {
6329 return CP_ACCESS_OK;
6331 return CP_ACCESS_TRAP_UNCATEGORIZED;
6334 static const ARMCPRegInfo el3_cp_reginfo[] = {
6335 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6336 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6337 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6338 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6339 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6340 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6341 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6342 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6343 .writefn = scr_write, .raw_writefn = raw_write },
6344 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6345 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6346 .access = PL3_RW, .resetvalue = 0,
6347 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6348 { .name = "SDER",
6349 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6350 .access = PL3_RW, .resetvalue = 0,
6351 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6352 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6353 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6354 .writefn = vbar_write, .resetvalue = 0,
6355 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6356 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6357 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6358 .access = PL3_RW, .resetvalue = 0,
6359 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6360 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6361 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6362 .access = PL3_RW,
6363 /* no .writefn needed as this can't cause an ASID change */
6364 .resetvalue = 0,
6365 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6366 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6367 .type = ARM_CP_ALIAS,
6368 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6369 .access = PL3_RW,
6370 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6371 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6372 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6373 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6374 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6375 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6376 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6377 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6378 .type = ARM_CP_ALIAS,
6379 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6380 .access = PL3_RW,
6381 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6382 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6383 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6384 .access = PL3_RW, .writefn = vbar_write,
6385 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6386 .resetvalue = 0 },
6387 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6388 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6389 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6390 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6391 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6392 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6393 .access = PL3_RW, .resetvalue = 0,
6394 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6395 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6396 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6397 .access = PL3_RW, .type = ARM_CP_CONST,
6398 .resetvalue = 0 },
6399 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6400 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6401 .access = PL3_RW, .type = ARM_CP_CONST,
6402 .resetvalue = 0 },
6403 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6404 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6405 .access = PL3_RW, .type = ARM_CP_CONST,
6406 .resetvalue = 0 },
6407 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6408 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6409 .access = PL3_W, .type = ARM_CP_NO_RAW,
6410 .writefn = tlbi_aa64_alle3is_write },
6411 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6412 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6413 .access = PL3_W, .type = ARM_CP_NO_RAW,
6414 .writefn = tlbi_aa64_vae3is_write },
6415 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6416 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6417 .access = PL3_W, .type = ARM_CP_NO_RAW,
6418 .writefn = tlbi_aa64_vae3is_write },
6419 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6420 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6421 .access = PL3_W, .type = ARM_CP_NO_RAW,
6422 .writefn = tlbi_aa64_alle3_write },
6423 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6424 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6425 .access = PL3_W, .type = ARM_CP_NO_RAW,
6426 .writefn = tlbi_aa64_vae3_write },
6427 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6428 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6429 .access = PL3_W, .type = ARM_CP_NO_RAW,
6430 .writefn = tlbi_aa64_vae3_write },
6433 #ifndef CONFIG_USER_ONLY
6434 /* Test if system register redirection is to occur in the current state. */
6435 static bool redirect_for_e2h(CPUARMState *env)
6437 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6440 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6442 CPReadFn *readfn;
6444 if (redirect_for_e2h(env)) {
6445 /* Switch to the saved EL2 version of the register. */
6446 ri = ri->opaque;
6447 readfn = ri->readfn;
6448 } else {
6449 readfn = ri->orig_readfn;
6451 if (readfn == NULL) {
6452 readfn = raw_read;
6454 return readfn(env, ri);
6457 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6458 uint64_t value)
6460 CPWriteFn *writefn;
6462 if (redirect_for_e2h(env)) {
6463 /* Switch to the saved EL2 version of the register. */
6464 ri = ri->opaque;
6465 writefn = ri->writefn;
6466 } else {
6467 writefn = ri->orig_writefn;
6469 if (writefn == NULL) {
6470 writefn = raw_write;
6472 writefn(env, ri, value);
6475 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6477 struct E2HAlias {
6478 uint32_t src_key, dst_key, new_key;
6479 const char *src_name, *dst_name, *new_name;
6480 bool (*feature)(const ARMISARegisters *id);
6483 #define K(op0, op1, crn, crm, op2) \
6484 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6486 static const struct E2HAlias aliases[] = {
6487 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6488 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6489 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6490 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6491 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6492 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6493 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6494 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6495 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6496 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6497 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6498 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6499 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6500 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6501 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6502 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6503 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6504 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6505 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6506 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6507 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6508 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6509 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6510 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6511 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6512 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6513 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6514 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6515 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6516 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6517 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6518 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6521 * Note that redirection of ZCR is mentioned in the description
6522 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6523 * not in the summary table.
6525 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6526 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6527 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6528 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6530 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6531 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6533 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6534 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6535 isar_feature_aa64_scxtnum },
6537 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6538 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6540 #undef K
6542 size_t i;
6544 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6545 const struct E2HAlias *a = &aliases[i];
6546 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6547 bool ok;
6549 if (a->feature && !a->feature(&cpu->isar)) {
6550 continue;
6553 src_reg = g_hash_table_lookup(cpu->cp_regs,
6554 (gpointer)(uintptr_t)a->src_key);
6555 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6556 (gpointer)(uintptr_t)a->dst_key);
6557 g_assert(src_reg != NULL);
6558 g_assert(dst_reg != NULL);
6560 /* Cross-compare names to detect typos in the keys. */
6561 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6562 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6564 /* None of the core system registers use opaque; we will. */
6565 g_assert(src_reg->opaque == NULL);
6567 /* Create alias before redirection so we dup the right data. */
6568 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6570 new_reg->name = a->new_name;
6571 new_reg->type |= ARM_CP_ALIAS;
6572 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6573 new_reg->access &= PL2_RW | PL3_RW;
6575 ok = g_hash_table_insert(cpu->cp_regs,
6576 (gpointer)(uintptr_t)a->new_key, new_reg);
6577 g_assert(ok);
6579 src_reg->opaque = dst_reg;
6580 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6581 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6582 if (!src_reg->raw_readfn) {
6583 src_reg->raw_readfn = raw_read;
6585 if (!src_reg->raw_writefn) {
6586 src_reg->raw_writefn = raw_write;
6588 src_reg->readfn = el2_e2h_read;
6589 src_reg->writefn = el2_e2h_write;
6592 #endif
6594 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6595 bool isread)
6597 int cur_el = arm_current_el(env);
6599 if (cur_el < 2) {
6600 uint64_t hcr = arm_hcr_el2_eff(env);
6602 if (cur_el == 0) {
6603 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6604 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6605 return CP_ACCESS_TRAP_EL2;
6607 } else {
6608 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6609 return CP_ACCESS_TRAP;
6611 if (hcr & HCR_TID2) {
6612 return CP_ACCESS_TRAP_EL2;
6615 } else if (hcr & HCR_TID2) {
6616 return CP_ACCESS_TRAP_EL2;
6620 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6621 return CP_ACCESS_TRAP_EL2;
6624 return CP_ACCESS_OK;
6628 * Check for traps to RAS registers, which are controlled
6629 * by HCR_EL2.TERR and SCR_EL3.TERR.
6631 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6632 bool isread)
6634 int el = arm_current_el(env);
6636 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6637 return CP_ACCESS_TRAP_EL2;
6639 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6640 return CP_ACCESS_TRAP_EL3;
6642 return CP_ACCESS_OK;
6645 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6647 int el = arm_current_el(env);
6649 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6650 return env->cp15.vdisr_el2;
6652 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6653 return 0; /* RAZ/WI */
6655 return env->cp15.disr_el1;
6658 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6660 int el = arm_current_el(env);
6662 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6663 env->cp15.vdisr_el2 = val;
6664 return;
6666 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6667 return; /* RAZ/WI */
6669 env->cp15.disr_el1 = val;
6673 * Minimal RAS implementation with no Error Records.
6674 * Which means that all of the Error Record registers:
6675 * ERXADDR_EL1
6676 * ERXCTLR_EL1
6677 * ERXFR_EL1
6678 * ERXMISC0_EL1
6679 * ERXMISC1_EL1
6680 * ERXMISC2_EL1
6681 * ERXMISC3_EL1
6682 * ERXPFGCDN_EL1 (RASv1p1)
6683 * ERXPFGCTL_EL1 (RASv1p1)
6684 * ERXPFGF_EL1 (RASv1p1)
6685 * ERXSTATUS_EL1
6686 * and
6687 * ERRSELR_EL1
6688 * may generate UNDEFINED, which is the effect we get by not
6689 * listing them at all.
6691 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6692 * is higher priority than FGT-to-EL2 so we do not need to list them
6693 * in order to check for an FGT.
6695 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6696 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6697 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6698 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6699 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6700 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6701 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6702 .access = PL1_R, .accessfn = access_terr,
6703 .fgt = FGT_ERRIDR_EL1,
6704 .type = ARM_CP_CONST, .resetvalue = 0 },
6705 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6706 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6707 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6708 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6709 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6710 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6714 * Return the exception level to which exceptions should be taken
6715 * via SVEAccessTrap. This excludes the check for whether the exception
6716 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6717 * be found by testing 0 < fp_exception_el < sve_exception_el.
6719 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6720 * pseudocode does *not* separate out the FP trap checks, but has them
6721 * all in one function.
6723 int sve_exception_el(CPUARMState *env, int el)
6725 #ifndef CONFIG_USER_ONLY
6726 if (el <= 1 && !el_is_in_host(env, el)) {
6727 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6728 case 1:
6729 if (el != 0) {
6730 break;
6732 /* fall through */
6733 case 0:
6734 case 2:
6735 return 1;
6739 if (el <= 2 && arm_is_el2_enabled(env)) {
6740 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6741 if (env->cp15.hcr_el2 & HCR_E2H) {
6742 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6743 case 1:
6744 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6745 break;
6747 /* fall through */
6748 case 0:
6749 case 2:
6750 return 2;
6752 } else {
6753 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6754 return 2;
6759 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6760 if (arm_feature(env, ARM_FEATURE_EL3)
6761 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6762 return 3;
6764 #endif
6765 return 0;
6769 * Return the exception level to which exceptions should be taken for SME.
6770 * C.f. the ARM pseudocode function CheckSMEAccess.
6772 int sme_exception_el(CPUARMState *env, int el)
6774 #ifndef CONFIG_USER_ONLY
6775 if (el <= 1 && !el_is_in_host(env, el)) {
6776 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6777 case 1:
6778 if (el != 0) {
6779 break;
6781 /* fall through */
6782 case 0:
6783 case 2:
6784 return 1;
6788 if (el <= 2 && arm_is_el2_enabled(env)) {
6789 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6790 if (env->cp15.hcr_el2 & HCR_E2H) {
6791 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6792 case 1:
6793 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6794 break;
6796 /* fall through */
6797 case 0:
6798 case 2:
6799 return 2;
6801 } else {
6802 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6803 return 2;
6808 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6809 if (arm_feature(env, ARM_FEATURE_EL3)
6810 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6811 return 3;
6813 #endif
6814 return 0;
6818 * Given that SVE is enabled, return the vector length for EL.
6820 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6822 ARMCPU *cpu = env_archcpu(env);
6823 uint64_t *cr = env->vfp.zcr_el;
6824 uint32_t map = cpu->sve_vq.map;
6825 uint32_t len = ARM_MAX_VQ - 1;
6827 if (sm) {
6828 cr = env->vfp.smcr_el;
6829 map = cpu->sme_vq.map;
6832 if (el <= 1 && !el_is_in_host(env, el)) {
6833 len = MIN(len, 0xf & (uint32_t)cr[1]);
6835 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6836 len = MIN(len, 0xf & (uint32_t)cr[2]);
6838 if (arm_feature(env, ARM_FEATURE_EL3)) {
6839 len = MIN(len, 0xf & (uint32_t)cr[3]);
6842 map &= MAKE_64BIT_MASK(0, len + 1);
6843 if (map != 0) {
6844 return 31 - clz32(map);
6847 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6848 assert(sm);
6849 return ctz32(cpu->sme_vq.map);
6852 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6854 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6857 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6858 uint64_t value)
6860 int cur_el = arm_current_el(env);
6861 int old_len = sve_vqm1_for_el(env, cur_el);
6862 int new_len;
6864 /* Bits other than [3:0] are RAZ/WI. */
6865 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6866 raw_write(env, ri, value & 0xf);
6869 * Because we arrived here, we know both FP and SVE are enabled;
6870 * otherwise we would have trapped access to the ZCR_ELn register.
6872 new_len = sve_vqm1_for_el(env, cur_el);
6873 if (new_len < old_len) {
6874 aarch64_sve_narrow_vq(env, new_len + 1);
6878 static const ARMCPRegInfo zcr_reginfo[] = {
6879 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6880 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6881 .access = PL1_RW, .type = ARM_CP_SVE,
6882 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6883 .writefn = zcr_write, .raw_writefn = raw_write },
6884 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6885 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6886 .access = PL2_RW, .type = ARM_CP_SVE,
6887 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6888 .writefn = zcr_write, .raw_writefn = raw_write },
6889 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6890 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6891 .access = PL3_RW, .type = ARM_CP_SVE,
6892 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6893 .writefn = zcr_write, .raw_writefn = raw_write },
6896 #ifdef TARGET_AARCH64
6897 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6898 bool isread)
6900 int el = arm_current_el(env);
6902 if (el == 0) {
6903 uint64_t sctlr = arm_sctlr(env, el);
6904 if (!(sctlr & SCTLR_EnTP2)) {
6905 return CP_ACCESS_TRAP;
6908 /* TODO: FEAT_FGT */
6909 if (el < 3
6910 && arm_feature(env, ARM_FEATURE_EL3)
6911 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6912 return CP_ACCESS_TRAP_EL3;
6914 return CP_ACCESS_OK;
6917 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6918 bool isread)
6920 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6921 if (arm_current_el(env) < 3
6922 && arm_feature(env, ARM_FEATURE_EL3)
6923 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6924 return CP_ACCESS_TRAP_EL3;
6926 return CP_ACCESS_OK;
6929 /* ResetSVEState */
6930 static void arm_reset_sve_state(CPUARMState *env)
6932 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6933 /* Recall that FFR is stored as pregs[16]. */
6934 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6935 vfp_set_fpcr(env, 0x0800009f);
6938 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6940 uint64_t change = (env->svcr ^ new) & mask;
6942 if (change == 0) {
6943 return;
6945 env->svcr ^= change;
6947 if (change & R_SVCR_SM_MASK) {
6948 arm_reset_sve_state(env);
6952 * ResetSMEState.
6954 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6955 * on enable: while disabled, the storage is inaccessible and the
6956 * value does not matter. We're not saving the storage in vmstate
6957 * when disabled either.
6959 if (change & new & R_SVCR_ZA_MASK) {
6960 memset(env->zarray, 0, sizeof(env->zarray));
6963 if (tcg_enabled()) {
6964 arm_rebuild_hflags(env);
6968 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6969 uint64_t value)
6971 aarch64_set_svcr(env, value, -1);
6974 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6975 uint64_t value)
6977 int cur_el = arm_current_el(env);
6978 int old_len = sve_vqm1_for_el(env, cur_el);
6979 int new_len;
6981 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6982 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6983 raw_write(env, ri, value);
6986 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6987 * when SVL is widened (old values kept, or zeros). Choose to keep the
6988 * current values for simplicity. But for QEMU internals, we must still
6989 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6990 * above aarch64_sve_narrow_vq.
6992 new_len = sve_vqm1_for_el(env, cur_el);
6993 if (new_len < old_len) {
6994 aarch64_sve_narrow_vq(env, new_len + 1);
6998 static const ARMCPRegInfo sme_reginfo[] = {
6999 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7000 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7001 .access = PL0_RW, .accessfn = access_tpidr2,
7002 .fgt = FGT_NTPIDR2_EL0,
7003 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7004 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7005 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7006 .access = PL0_RW, .type = ARM_CP_SME,
7007 .fieldoffset = offsetof(CPUARMState, svcr),
7008 .writefn = svcr_write, .raw_writefn = raw_write },
7009 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7010 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7011 .access = PL1_RW, .type = ARM_CP_SME,
7012 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7013 .writefn = smcr_write, .raw_writefn = raw_write },
7014 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7015 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7016 .access = PL2_RW, .type = ARM_CP_SME,
7017 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7018 .writefn = smcr_write, .raw_writefn = raw_write },
7019 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7020 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7021 .access = PL3_RW, .type = ARM_CP_SME,
7022 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7023 .writefn = smcr_write, .raw_writefn = raw_write },
7024 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7025 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7026 .access = PL1_R, .accessfn = access_aa64_tid1,
7028 * IMPLEMENTOR = 0 (software)
7029 * REVISION = 0 (implementation defined)
7030 * SMPS = 0 (no streaming execution priority in QEMU)
7031 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7033 .type = ARM_CP_CONST, .resetvalue = 0, },
7035 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7037 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7038 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7039 .access = PL1_RW, .accessfn = access_esm,
7040 .fgt = FGT_NSMPRI_EL1,
7041 .type = ARM_CP_CONST, .resetvalue = 0 },
7042 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7043 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7044 .access = PL2_RW, .accessfn = access_esm,
7045 .type = ARM_CP_CONST, .resetvalue = 0 },
7048 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7049 uint64_t value)
7051 CPUState *cs = env_cpu(env);
7053 tlb_flush(cs);
7056 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7057 uint64_t value)
7059 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7060 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7061 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7062 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7064 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7067 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7069 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7070 env_archcpu(env)->reset_l0gptsz);
7073 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7074 uint64_t value)
7076 CPUState *cs = env_cpu(env);
7078 tlb_flush_all_cpus_synced(cs);
7081 static const ARMCPRegInfo rme_reginfo[] = {
7082 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7083 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7084 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7085 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7086 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7087 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7088 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7089 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7090 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7092 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7093 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7094 .access = PL3_W, .type = ARM_CP_NO_RAW,
7095 .writefn = tlbi_aa64_paall_write },
7096 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7097 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7098 .access = PL3_W, .type = ARM_CP_NO_RAW,
7099 .writefn = tlbi_aa64_paallos_write },
7101 * QEMU does not have a way to invalidate by physical address, thus
7102 * invalidating a range of physical addresses is accomplished by
7103 * flushing all tlb entries in the outer shareable domain,
7104 * just like PAALLOS.
7106 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7107 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7108 .access = PL3_W, .type = ARM_CP_NO_RAW,
7109 .writefn = tlbi_aa64_paallos_write },
7110 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7111 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7112 .access = PL3_W, .type = ARM_CP_NO_RAW,
7113 .writefn = tlbi_aa64_paallos_write },
7114 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7115 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7116 .access = PL3_W, .type = ARM_CP_NOP },
7119 static const ARMCPRegInfo rme_mte_reginfo[] = {
7120 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7121 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7122 .access = PL3_W, .type = ARM_CP_NOP },
7124 #endif /* TARGET_AARCH64 */
7126 static void define_pmu_regs(ARMCPU *cpu)
7129 * v7 performance monitor control register: same implementor
7130 * field as main ID register, and we implement four counters in
7131 * addition to the cycle count register.
7133 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7134 ARMCPRegInfo pmcr = {
7135 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7136 .access = PL0_RW,
7137 .fgt = FGT_PMCR_EL0,
7138 .type = ARM_CP_IO | ARM_CP_ALIAS,
7139 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7140 .accessfn = pmreg_access, .writefn = pmcr_write,
7141 .raw_writefn = raw_write,
7143 ARMCPRegInfo pmcr64 = {
7144 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7145 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7146 .access = PL0_RW, .accessfn = pmreg_access,
7147 .fgt = FGT_PMCR_EL0,
7148 .type = ARM_CP_IO,
7149 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7150 .resetvalue = cpu->isar.reset_pmcr_el0,
7151 .writefn = pmcr_write, .raw_writefn = raw_write,
7154 define_one_arm_cp_reg(cpu, &pmcr);
7155 define_one_arm_cp_reg(cpu, &pmcr64);
7156 for (i = 0; i < pmcrn; i++) {
7157 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7158 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7159 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7160 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7161 ARMCPRegInfo pmev_regs[] = {
7162 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7163 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7164 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7165 .fgt = FGT_PMEVCNTRN_EL0,
7166 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7167 .accessfn = pmreg_access_xevcntr },
7168 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7169 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7170 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7171 .type = ARM_CP_IO,
7172 .fgt = FGT_PMEVCNTRN_EL0,
7173 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7174 .raw_readfn = pmevcntr_rawread,
7175 .raw_writefn = pmevcntr_rawwrite },
7176 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7177 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7178 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7179 .fgt = FGT_PMEVTYPERN_EL0,
7180 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7181 .accessfn = pmreg_access },
7182 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7184 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7185 .fgt = FGT_PMEVTYPERN_EL0,
7186 .type = ARM_CP_IO,
7187 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7188 .raw_writefn = pmevtyper_rawwrite },
7190 define_arm_cp_regs(cpu, pmev_regs);
7191 g_free(pmevcntr_name);
7192 g_free(pmevcntr_el0_name);
7193 g_free(pmevtyper_name);
7194 g_free(pmevtyper_el0_name);
7196 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7197 ARMCPRegInfo v81_pmu_regs[] = {
7198 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7199 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7200 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7201 .fgt = FGT_PMCEIDN_EL0,
7202 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7203 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7204 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7205 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7206 .fgt = FGT_PMCEIDN_EL0,
7207 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7209 define_arm_cp_regs(cpu, v81_pmu_regs);
7211 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7212 static const ARMCPRegInfo v84_pmmir = {
7213 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7214 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7215 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7216 .fgt = FGT_PMMIR_EL1,
7217 .resetvalue = 0
7219 define_one_arm_cp_reg(cpu, &v84_pmmir);
7223 #ifndef CONFIG_USER_ONLY
7225 * We don't know until after realize whether there's a GICv3
7226 * attached, and that is what registers the gicv3 sysregs.
7227 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7228 * at runtime.
7230 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7232 ARMCPU *cpu = env_archcpu(env);
7233 uint64_t pfr1 = cpu->isar.id_pfr1;
7235 if (env->gicv3state) {
7236 pfr1 |= 1 << 28;
7238 return pfr1;
7241 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7243 ARMCPU *cpu = env_archcpu(env);
7244 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7246 if (env->gicv3state) {
7247 pfr0 |= 1 << 24;
7249 return pfr0;
7251 #endif
7254 * Shared logic between LORID and the rest of the LOR* registers.
7255 * Secure state exclusion has already been dealt with.
7257 static CPAccessResult access_lor_ns(CPUARMState *env,
7258 const ARMCPRegInfo *ri, bool isread)
7260 int el = arm_current_el(env);
7262 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7263 return CP_ACCESS_TRAP_EL2;
7265 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7266 return CP_ACCESS_TRAP_EL3;
7268 return CP_ACCESS_OK;
7271 static CPAccessResult access_lor_other(CPUARMState *env,
7272 const ARMCPRegInfo *ri, bool isread)
7274 if (arm_is_secure_below_el3(env)) {
7275 /* Access denied in secure mode. */
7276 return CP_ACCESS_TRAP;
7278 return access_lor_ns(env, ri, isread);
7282 * A trivial implementation of ARMv8.1-LOR leaves all of these
7283 * registers fixed at 0, which indicates that there are zero
7284 * supported Limited Ordering regions.
7286 static const ARMCPRegInfo lor_reginfo[] = {
7287 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7288 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7289 .access = PL1_RW, .accessfn = access_lor_other,
7290 .fgt = FGT_LORSA_EL1,
7291 .type = ARM_CP_CONST, .resetvalue = 0 },
7292 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7293 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7294 .access = PL1_RW, .accessfn = access_lor_other,
7295 .fgt = FGT_LOREA_EL1,
7296 .type = ARM_CP_CONST, .resetvalue = 0 },
7297 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7298 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7299 .access = PL1_RW, .accessfn = access_lor_other,
7300 .fgt = FGT_LORN_EL1,
7301 .type = ARM_CP_CONST, .resetvalue = 0 },
7302 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7303 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7304 .access = PL1_RW, .accessfn = access_lor_other,
7305 .fgt = FGT_LORC_EL1,
7306 .type = ARM_CP_CONST, .resetvalue = 0 },
7307 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7308 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7309 .access = PL1_R, .accessfn = access_lor_ns,
7310 .fgt = FGT_LORID_EL1,
7311 .type = ARM_CP_CONST, .resetvalue = 0 },
7314 #ifdef TARGET_AARCH64
7315 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7316 bool isread)
7318 int el = arm_current_el(env);
7320 if (el < 2 &&
7321 arm_is_el2_enabled(env) &&
7322 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7323 return CP_ACCESS_TRAP_EL2;
7325 if (el < 3 &&
7326 arm_feature(env, ARM_FEATURE_EL3) &&
7327 !(env->cp15.scr_el3 & SCR_APK)) {
7328 return CP_ACCESS_TRAP_EL3;
7330 return CP_ACCESS_OK;
7333 static const ARMCPRegInfo pauth_reginfo[] = {
7334 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7335 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7336 .access = PL1_RW, .accessfn = access_pauth,
7337 .fgt = FGT_APDAKEY,
7338 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7339 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7340 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7341 .access = PL1_RW, .accessfn = access_pauth,
7342 .fgt = FGT_APDAKEY,
7343 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7344 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7345 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7346 .access = PL1_RW, .accessfn = access_pauth,
7347 .fgt = FGT_APDBKEY,
7348 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7349 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7350 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7351 .access = PL1_RW, .accessfn = access_pauth,
7352 .fgt = FGT_APDBKEY,
7353 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7354 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7355 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7356 .access = PL1_RW, .accessfn = access_pauth,
7357 .fgt = FGT_APGAKEY,
7358 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7359 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7360 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7361 .access = PL1_RW, .accessfn = access_pauth,
7362 .fgt = FGT_APGAKEY,
7363 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7364 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7365 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7366 .access = PL1_RW, .accessfn = access_pauth,
7367 .fgt = FGT_APIAKEY,
7368 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7369 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7370 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7371 .access = PL1_RW, .accessfn = access_pauth,
7372 .fgt = FGT_APIAKEY,
7373 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7374 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7375 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7376 .access = PL1_RW, .accessfn = access_pauth,
7377 .fgt = FGT_APIBKEY,
7378 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7379 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7380 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7381 .access = PL1_RW, .accessfn = access_pauth,
7382 .fgt = FGT_APIBKEY,
7383 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7386 static const ARMCPRegInfo tlbirange_reginfo[] = {
7387 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7388 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7389 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7390 .fgt = FGT_TLBIRVAE1IS,
7391 .writefn = tlbi_aa64_rvae1is_write },
7392 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7394 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7395 .fgt = FGT_TLBIRVAAE1IS,
7396 .writefn = tlbi_aa64_rvae1is_write },
7397 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7398 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7399 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7400 .fgt = FGT_TLBIRVALE1IS,
7401 .writefn = tlbi_aa64_rvae1is_write },
7402 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7404 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7405 .fgt = FGT_TLBIRVAALE1IS,
7406 .writefn = tlbi_aa64_rvae1is_write },
7407 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7408 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7409 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7410 .fgt = FGT_TLBIRVAE1OS,
7411 .writefn = tlbi_aa64_rvae1is_write },
7412 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7413 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7414 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7415 .fgt = FGT_TLBIRVAAE1OS,
7416 .writefn = tlbi_aa64_rvae1is_write },
7417 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7418 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7419 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7420 .fgt = FGT_TLBIRVALE1OS,
7421 .writefn = tlbi_aa64_rvae1is_write },
7422 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7424 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7425 .fgt = FGT_TLBIRVAALE1OS,
7426 .writefn = tlbi_aa64_rvae1is_write },
7427 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7428 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7429 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7430 .fgt = FGT_TLBIRVAE1,
7431 .writefn = tlbi_aa64_rvae1_write },
7432 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7433 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7434 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7435 .fgt = FGT_TLBIRVAAE1,
7436 .writefn = tlbi_aa64_rvae1_write },
7437 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7438 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7439 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7440 .fgt = FGT_TLBIRVALE1,
7441 .writefn = tlbi_aa64_rvae1_write },
7442 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7443 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7444 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7445 .fgt = FGT_TLBIRVAALE1,
7446 .writefn = tlbi_aa64_rvae1_write },
7447 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7448 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7449 .access = PL2_W, .type = ARM_CP_NO_RAW,
7450 .writefn = tlbi_aa64_ripas2e1is_write },
7451 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7452 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7453 .access = PL2_W, .type = ARM_CP_NO_RAW,
7454 .writefn = tlbi_aa64_ripas2e1is_write },
7455 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7457 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7458 .writefn = tlbi_aa64_rvae2is_write },
7459 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7460 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7461 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7462 .writefn = tlbi_aa64_rvae2is_write },
7463 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7464 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7465 .access = PL2_W, .type = ARM_CP_NO_RAW,
7466 .writefn = tlbi_aa64_ripas2e1_write },
7467 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7468 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7469 .access = PL2_W, .type = ARM_CP_NO_RAW,
7470 .writefn = tlbi_aa64_ripas2e1_write },
7471 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7472 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7473 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7474 .writefn = tlbi_aa64_rvae2is_write },
7475 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7476 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7477 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7478 .writefn = tlbi_aa64_rvae2is_write },
7479 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7481 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7482 .writefn = tlbi_aa64_rvae2_write },
7483 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7484 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7485 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7486 .writefn = tlbi_aa64_rvae2_write },
7487 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7488 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7489 .access = PL3_W, .type = ARM_CP_NO_RAW,
7490 .writefn = tlbi_aa64_rvae3is_write },
7491 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7492 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7493 .access = PL3_W, .type = ARM_CP_NO_RAW,
7494 .writefn = tlbi_aa64_rvae3is_write },
7495 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7496 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7497 .access = PL3_W, .type = ARM_CP_NO_RAW,
7498 .writefn = tlbi_aa64_rvae3is_write },
7499 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7500 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7501 .access = PL3_W, .type = ARM_CP_NO_RAW,
7502 .writefn = tlbi_aa64_rvae3is_write },
7503 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7504 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7505 .access = PL3_W, .type = ARM_CP_NO_RAW,
7506 .writefn = tlbi_aa64_rvae3_write },
7507 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7508 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7509 .access = PL3_W, .type = ARM_CP_NO_RAW,
7510 .writefn = tlbi_aa64_rvae3_write },
7513 static const ARMCPRegInfo tlbios_reginfo[] = {
7514 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7516 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7517 .fgt = FGT_TLBIVMALLE1OS,
7518 .writefn = tlbi_aa64_vmalle1is_write },
7519 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7520 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7521 .fgt = FGT_TLBIVAE1OS,
7522 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7523 .writefn = tlbi_aa64_vae1is_write },
7524 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7526 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7527 .fgt = FGT_TLBIASIDE1OS,
7528 .writefn = tlbi_aa64_vmalle1is_write },
7529 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7530 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7531 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7532 .fgt = FGT_TLBIVAAE1OS,
7533 .writefn = tlbi_aa64_vae1is_write },
7534 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7535 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7536 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7537 .fgt = FGT_TLBIVALE1OS,
7538 .writefn = tlbi_aa64_vae1is_write },
7539 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7540 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7541 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7542 .fgt = FGT_TLBIVAALE1OS,
7543 .writefn = tlbi_aa64_vae1is_write },
7544 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7546 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7547 .writefn = tlbi_aa64_alle2is_write },
7548 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7550 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7551 .writefn = tlbi_aa64_vae2is_write },
7552 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7554 .access = PL2_W, .type = ARM_CP_NO_RAW,
7555 .writefn = tlbi_aa64_alle1is_write },
7556 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7558 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7559 .writefn = tlbi_aa64_vae2is_write },
7560 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7562 .access = PL2_W, .type = ARM_CP_NO_RAW,
7563 .writefn = tlbi_aa64_alle1is_write },
7564 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7566 .access = PL2_W, .type = ARM_CP_NOP },
7567 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7568 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7569 .access = PL2_W, .type = ARM_CP_NOP },
7570 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7572 .access = PL2_W, .type = ARM_CP_NOP },
7573 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7575 .access = PL2_W, .type = ARM_CP_NOP },
7576 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7577 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7578 .access = PL3_W, .type = ARM_CP_NO_RAW,
7579 .writefn = tlbi_aa64_alle3is_write },
7580 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7581 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7582 .access = PL3_W, .type = ARM_CP_NO_RAW,
7583 .writefn = tlbi_aa64_vae3is_write },
7584 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7585 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7586 .access = PL3_W, .type = ARM_CP_NO_RAW,
7587 .writefn = tlbi_aa64_vae3is_write },
7590 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7592 Error *err = NULL;
7593 uint64_t ret;
7595 /* Success sets NZCV = 0000. */
7596 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7598 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7600 * ??? Failed, for unknown reasons in the crypto subsystem.
7601 * The best we can do is log the reason and return the
7602 * timed-out indication to the guest. There is no reason
7603 * we know to expect this failure to be transitory, so the
7604 * guest may well hang retrying the operation.
7606 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7607 ri->name, error_get_pretty(err));
7608 error_free(err);
7610 env->ZF = 0; /* NZCF = 0100 */
7611 return 0;
7613 return ret;
7616 /* We do not support re-seeding, so the two registers operate the same. */
7617 static const ARMCPRegInfo rndr_reginfo[] = {
7618 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7619 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7620 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7621 .access = PL0_R, .readfn = rndr_readfn },
7622 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7623 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7624 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7625 .access = PL0_R, .readfn = rndr_readfn },
7628 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7629 uint64_t value)
7631 ARMCPU *cpu = env_archcpu(env);
7632 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7633 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7634 uint64_t vaddr_in = (uint64_t) value;
7635 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7636 void *haddr;
7637 int mem_idx = cpu_mmu_index(env, false);
7639 /* This won't be crossing page boundaries */
7640 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7641 if (haddr) {
7642 #ifndef CONFIG_USER_ONLY
7644 ram_addr_t offset;
7645 MemoryRegion *mr;
7647 /* RCU lock is already being held */
7648 mr = memory_region_from_host(haddr, &offset);
7650 if (mr) {
7651 memory_region_writeback(mr, offset, dline_size);
7653 #endif /*CONFIG_USER_ONLY*/
7657 static const ARMCPRegInfo dcpop_reg[] = {
7658 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7659 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7660 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7661 .fgt = FGT_DCCVAP,
7662 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7665 static const ARMCPRegInfo dcpodp_reg[] = {
7666 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7667 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7668 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7669 .fgt = FGT_DCCVADP,
7670 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7673 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7674 bool isread)
7676 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7677 return CP_ACCESS_TRAP_EL2;
7680 return CP_ACCESS_OK;
7683 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7684 bool isread)
7686 int el = arm_current_el(env);
7688 if (el < 2 && arm_is_el2_enabled(env)) {
7689 uint64_t hcr = arm_hcr_el2_eff(env);
7690 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7691 return CP_ACCESS_TRAP_EL2;
7694 if (el < 3 &&
7695 arm_feature(env, ARM_FEATURE_EL3) &&
7696 !(env->cp15.scr_el3 & SCR_ATA)) {
7697 return CP_ACCESS_TRAP_EL3;
7699 return CP_ACCESS_OK;
7702 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7704 return env->pstate & PSTATE_TCO;
7707 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7709 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7712 static const ARMCPRegInfo mte_reginfo[] = {
7713 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7714 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7715 .access = PL1_RW, .accessfn = access_mte,
7716 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7717 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7718 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7719 .access = PL1_RW, .accessfn = access_mte,
7720 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7721 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7722 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7723 .access = PL2_RW, .accessfn = access_mte,
7724 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7725 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7726 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7727 .access = PL3_RW,
7728 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7729 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7730 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7731 .access = PL1_RW, .accessfn = access_mte,
7732 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7733 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7734 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7735 .access = PL1_RW, .accessfn = access_mte,
7736 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7737 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7738 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7739 .type = ARM_CP_NO_RAW,
7740 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7741 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7742 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7743 .type = ARM_CP_NOP, .access = PL1_W,
7744 .fgt = FGT_DCIVAC,
7745 .accessfn = aa64_cacheop_poc_access },
7746 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7747 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7748 .fgt = FGT_DCISW,
7749 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7750 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7751 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7752 .type = ARM_CP_NOP, .access = PL1_W,
7753 .fgt = FGT_DCIVAC,
7754 .accessfn = aa64_cacheop_poc_access },
7755 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7756 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7757 .fgt = FGT_DCISW,
7758 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7759 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7760 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7761 .fgt = FGT_DCCSW,
7762 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7763 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7764 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7765 .fgt = FGT_DCCSW,
7766 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7767 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7768 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7769 .fgt = FGT_DCCISW,
7770 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7771 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7772 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7773 .fgt = FGT_DCCISW,
7774 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7777 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7778 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7779 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7780 .type = ARM_CP_CONST, .access = PL0_RW, },
7783 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7784 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7785 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7786 .type = ARM_CP_NOP, .access = PL0_W,
7787 .fgt = FGT_DCCVAC,
7788 .accessfn = aa64_cacheop_poc_access },
7789 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7790 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7791 .type = ARM_CP_NOP, .access = PL0_W,
7792 .fgt = FGT_DCCVAC,
7793 .accessfn = aa64_cacheop_poc_access },
7794 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7795 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7796 .type = ARM_CP_NOP, .access = PL0_W,
7797 .fgt = FGT_DCCVAP,
7798 .accessfn = aa64_cacheop_poc_access },
7799 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7800 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7801 .type = ARM_CP_NOP, .access = PL0_W,
7802 .fgt = FGT_DCCVAP,
7803 .accessfn = aa64_cacheop_poc_access },
7804 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7805 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7806 .type = ARM_CP_NOP, .access = PL0_W,
7807 .fgt = FGT_DCCVADP,
7808 .accessfn = aa64_cacheop_poc_access },
7809 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7811 .type = ARM_CP_NOP, .access = PL0_W,
7812 .fgt = FGT_DCCVADP,
7813 .accessfn = aa64_cacheop_poc_access },
7814 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7815 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7816 .type = ARM_CP_NOP, .access = PL0_W,
7817 .fgt = FGT_DCCIVAC,
7818 .accessfn = aa64_cacheop_poc_access },
7819 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7820 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7821 .type = ARM_CP_NOP, .access = PL0_W,
7822 .fgt = FGT_DCCIVAC,
7823 .accessfn = aa64_cacheop_poc_access },
7824 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7825 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7826 .access = PL0_W, .type = ARM_CP_DC_GVA,
7827 #ifndef CONFIG_USER_ONLY
7828 /* Avoid overhead of an access check that always passes in user-mode */
7829 .accessfn = aa64_zva_access,
7830 .fgt = FGT_DCZVA,
7831 #endif
7833 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7834 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7835 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7836 #ifndef CONFIG_USER_ONLY
7837 /* Avoid overhead of an access check that always passes in user-mode */
7838 .accessfn = aa64_zva_access,
7839 .fgt = FGT_DCZVA,
7840 #endif
7844 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7845 bool isread)
7847 uint64_t hcr = arm_hcr_el2_eff(env);
7848 int el = arm_current_el(env);
7850 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7851 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7852 if (hcr & HCR_TGE) {
7853 return CP_ACCESS_TRAP_EL2;
7855 return CP_ACCESS_TRAP;
7857 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7858 return CP_ACCESS_TRAP_EL2;
7860 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7861 return CP_ACCESS_TRAP_EL2;
7863 if (el < 3
7864 && arm_feature(env, ARM_FEATURE_EL3)
7865 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7866 return CP_ACCESS_TRAP_EL3;
7868 return CP_ACCESS_OK;
7871 static const ARMCPRegInfo scxtnum_reginfo[] = {
7872 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7873 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7874 .access = PL0_RW, .accessfn = access_scxtnum,
7875 .fgt = FGT_SCXTNUM_EL0,
7876 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7877 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7878 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7879 .access = PL1_RW, .accessfn = access_scxtnum,
7880 .fgt = FGT_SCXTNUM_EL1,
7881 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7882 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7883 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7884 .access = PL2_RW, .accessfn = access_scxtnum,
7885 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7886 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7887 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7888 .access = PL3_RW,
7889 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7892 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7893 bool isread)
7895 if (arm_current_el(env) == 2 &&
7896 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7897 return CP_ACCESS_TRAP_EL3;
7899 return CP_ACCESS_OK;
7902 static const ARMCPRegInfo fgt_reginfo[] = {
7903 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7904 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7905 .access = PL2_RW, .accessfn = access_fgt,
7906 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7907 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7908 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7909 .access = PL2_RW, .accessfn = access_fgt,
7910 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7911 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7912 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7913 .access = PL2_RW, .accessfn = access_fgt,
7914 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7915 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7916 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7917 .access = PL2_RW, .accessfn = access_fgt,
7918 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7919 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7920 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7921 .access = PL2_RW, .accessfn = access_fgt,
7922 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7924 #endif /* TARGET_AARCH64 */
7926 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7927 bool isread)
7929 int el = arm_current_el(env);
7931 if (el == 0) {
7932 uint64_t sctlr = arm_sctlr(env, el);
7933 if (!(sctlr & SCTLR_EnRCTX)) {
7934 return CP_ACCESS_TRAP;
7936 } else if (el == 1) {
7937 uint64_t hcr = arm_hcr_el2_eff(env);
7938 if (hcr & HCR_NV) {
7939 return CP_ACCESS_TRAP_EL2;
7942 return CP_ACCESS_OK;
7945 static const ARMCPRegInfo predinv_reginfo[] = {
7946 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7947 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7948 .fgt = FGT_CFPRCTX,
7949 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7950 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7951 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7952 .fgt = FGT_DVPRCTX,
7953 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7954 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7955 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7956 .fgt = FGT_CPPRCTX,
7957 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7959 * Note the AArch32 opcodes have a different OPC1.
7961 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7962 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7963 .fgt = FGT_CFPRCTX,
7964 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7965 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7966 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7967 .fgt = FGT_DVPRCTX,
7968 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7969 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7970 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7971 .fgt = FGT_CPPRCTX,
7972 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7975 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7977 /* Read the high 32 bits of the current CCSIDR */
7978 return extract64(ccsidr_read(env, ri), 32, 32);
7981 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7982 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7983 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7984 .access = PL1_R,
7985 .accessfn = access_tid4,
7986 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7989 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7990 bool isread)
7992 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7993 return CP_ACCESS_TRAP_EL2;
7996 return CP_ACCESS_OK;
7999 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8000 bool isread)
8002 if (arm_feature(env, ARM_FEATURE_V8)) {
8003 return access_aa64_tid3(env, ri, isread);
8006 return CP_ACCESS_OK;
8009 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8010 bool isread)
8012 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8013 return CP_ACCESS_TRAP_EL2;
8016 return CP_ACCESS_OK;
8019 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8020 const ARMCPRegInfo *ri, bool isread)
8023 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8024 * in v7A, not in v8A.
8026 if (!arm_feature(env, ARM_FEATURE_V8) &&
8027 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8028 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8029 return CP_ACCESS_TRAP_EL2;
8031 return CP_ACCESS_OK;
8034 static const ARMCPRegInfo jazelle_regs[] = {
8035 { .name = "JIDR",
8036 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8037 .access = PL1_R, .accessfn = access_jazelle,
8038 .type = ARM_CP_CONST, .resetvalue = 0 },
8039 { .name = "JOSCR",
8040 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8041 .accessfn = access_joscr_jmcr,
8042 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8043 { .name = "JMCR",
8044 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8045 .accessfn = access_joscr_jmcr,
8046 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8049 static const ARMCPRegInfo contextidr_el2 = {
8050 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8051 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8052 .access = PL2_RW,
8053 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8056 static const ARMCPRegInfo vhe_reginfo[] = {
8057 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8058 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8059 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8060 .raw_writefn = raw_write,
8061 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8062 #ifndef CONFIG_USER_ONLY
8063 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8064 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8065 .fieldoffset =
8066 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8067 .type = ARM_CP_IO, .access = PL2_RW,
8068 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8069 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8070 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8072 .resetfn = gt_hv_timer_reset,
8073 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8074 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8075 .type = ARM_CP_IO,
8076 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8077 .access = PL2_RW,
8078 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8079 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8080 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8081 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8082 .type = ARM_CP_IO | ARM_CP_ALIAS,
8083 .access = PL2_RW, .accessfn = e2h_access,
8084 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8085 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8086 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8087 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8088 .type = ARM_CP_IO | ARM_CP_ALIAS,
8089 .access = PL2_RW, .accessfn = e2h_access,
8090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8091 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8092 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8093 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8094 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8095 .access = PL2_RW, .accessfn = e2h_access,
8096 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8097 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8098 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8099 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8100 .access = PL2_RW, .accessfn = e2h_access,
8101 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8102 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8103 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8104 .type = ARM_CP_IO | ARM_CP_ALIAS,
8105 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8106 .access = PL2_RW, .accessfn = e2h_access,
8107 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8108 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8109 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8110 .type = ARM_CP_IO | ARM_CP_ALIAS,
8111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8112 .access = PL2_RW, .accessfn = e2h_access,
8113 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8114 #endif
8117 #ifndef CONFIG_USER_ONLY
8118 static const ARMCPRegInfo ats1e1_reginfo[] = {
8119 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8120 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8121 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8122 .fgt = FGT_ATS1E1RP,
8123 .accessfn = at_e012_access, .writefn = ats_write64 },
8124 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8125 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8126 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8127 .fgt = FGT_ATS1E1WP,
8128 .accessfn = at_e012_access, .writefn = ats_write64 },
8131 static const ARMCPRegInfo ats1cp_reginfo[] = {
8132 { .name = "ATS1CPRP",
8133 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8134 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8135 .writefn = ats_write },
8136 { .name = "ATS1CPWP",
8137 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8138 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8139 .writefn = ats_write },
8141 #endif
8144 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8145 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8146 * is non-zero, which is never for ARMv7, optionally in ARMv8
8147 * and mandatorily for ARMv8.2 and up.
8148 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8149 * implementation is RAZ/WI we can ignore this detail, as we
8150 * do for ACTLR.
8152 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8153 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8154 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8155 .access = PL1_RW, .accessfn = access_tacr,
8156 .type = ARM_CP_CONST, .resetvalue = 0 },
8157 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8158 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8159 .access = PL2_RW, .type = ARM_CP_CONST,
8160 .resetvalue = 0 },
8163 void register_cp_regs_for_features(ARMCPU *cpu)
8165 /* Register all the coprocessor registers based on feature bits */
8166 CPUARMState *env = &cpu->env;
8167 if (arm_feature(env, ARM_FEATURE_M)) {
8168 /* M profile has no coprocessor registers */
8169 return;
8172 define_arm_cp_regs(cpu, cp_reginfo);
8173 if (!arm_feature(env, ARM_FEATURE_V8)) {
8175 * Must go early as it is full of wildcards that may be
8176 * overridden by later definitions.
8178 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8181 if (arm_feature(env, ARM_FEATURE_V6)) {
8182 /* The ID registers all have impdef reset values */
8183 ARMCPRegInfo v6_idregs[] = {
8184 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8186 .access = PL1_R, .type = ARM_CP_CONST,
8187 .accessfn = access_aa32_tid3,
8188 .resetvalue = cpu->isar.id_pfr0 },
8190 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8191 * the value of the GIC field until after we define these regs.
8193 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8195 .access = PL1_R, .type = ARM_CP_NO_RAW,
8196 .accessfn = access_aa32_tid3,
8197 #ifdef CONFIG_USER_ONLY
8198 .type = ARM_CP_CONST,
8199 .resetvalue = cpu->isar.id_pfr1,
8200 #else
8201 .type = ARM_CP_NO_RAW,
8202 .accessfn = access_aa32_tid3,
8203 .readfn = id_pfr1_read,
8204 .writefn = arm_cp_write_ignore
8205 #endif
8207 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8209 .access = PL1_R, .type = ARM_CP_CONST,
8210 .accessfn = access_aa32_tid3,
8211 .resetvalue = cpu->isar.id_dfr0 },
8212 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8214 .access = PL1_R, .type = ARM_CP_CONST,
8215 .accessfn = access_aa32_tid3,
8216 .resetvalue = cpu->id_afr0 },
8217 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8219 .access = PL1_R, .type = ARM_CP_CONST,
8220 .accessfn = access_aa32_tid3,
8221 .resetvalue = cpu->isar.id_mmfr0 },
8222 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8224 .access = PL1_R, .type = ARM_CP_CONST,
8225 .accessfn = access_aa32_tid3,
8226 .resetvalue = cpu->isar.id_mmfr1 },
8227 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8229 .access = PL1_R, .type = ARM_CP_CONST,
8230 .accessfn = access_aa32_tid3,
8231 .resetvalue = cpu->isar.id_mmfr2 },
8232 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8234 .access = PL1_R, .type = ARM_CP_CONST,
8235 .accessfn = access_aa32_tid3,
8236 .resetvalue = cpu->isar.id_mmfr3 },
8237 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8239 .access = PL1_R, .type = ARM_CP_CONST,
8240 .accessfn = access_aa32_tid3,
8241 .resetvalue = cpu->isar.id_isar0 },
8242 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8244 .access = PL1_R, .type = ARM_CP_CONST,
8245 .accessfn = access_aa32_tid3,
8246 .resetvalue = cpu->isar.id_isar1 },
8247 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8249 .access = PL1_R, .type = ARM_CP_CONST,
8250 .accessfn = access_aa32_tid3,
8251 .resetvalue = cpu->isar.id_isar2 },
8252 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8254 .access = PL1_R, .type = ARM_CP_CONST,
8255 .accessfn = access_aa32_tid3,
8256 .resetvalue = cpu->isar.id_isar3 },
8257 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8259 .access = PL1_R, .type = ARM_CP_CONST,
8260 .accessfn = access_aa32_tid3,
8261 .resetvalue = cpu->isar.id_isar4 },
8262 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8264 .access = PL1_R, .type = ARM_CP_CONST,
8265 .accessfn = access_aa32_tid3,
8266 .resetvalue = cpu->isar.id_isar5 },
8267 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8269 .access = PL1_R, .type = ARM_CP_CONST,
8270 .accessfn = access_aa32_tid3,
8271 .resetvalue = cpu->isar.id_mmfr4 },
8272 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8274 .access = PL1_R, .type = ARM_CP_CONST,
8275 .accessfn = access_aa32_tid3,
8276 .resetvalue = cpu->isar.id_isar6 },
8278 define_arm_cp_regs(cpu, v6_idregs);
8279 define_arm_cp_regs(cpu, v6_cp_reginfo);
8280 } else {
8281 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8283 if (arm_feature(env, ARM_FEATURE_V6K)) {
8284 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8286 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8287 !arm_feature(env, ARM_FEATURE_PMSA)) {
8288 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8290 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8291 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8293 if (arm_feature(env, ARM_FEATURE_V7)) {
8294 ARMCPRegInfo clidr = {
8295 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8296 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8297 .access = PL1_R, .type = ARM_CP_CONST,
8298 .accessfn = access_tid4,
8299 .fgt = FGT_CLIDR_EL1,
8300 .resetvalue = cpu->clidr
8302 define_one_arm_cp_reg(cpu, &clidr);
8303 define_arm_cp_regs(cpu, v7_cp_reginfo);
8304 define_debug_regs(cpu);
8305 define_pmu_regs(cpu);
8306 } else {
8307 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8309 if (arm_feature(env, ARM_FEATURE_V8)) {
8311 * v8 ID registers, which all have impdef reset values.
8312 * Note that within the ID register ranges the unused slots
8313 * must all RAZ, not UNDEF; future architecture versions may
8314 * define new registers here.
8315 * ID registers which are AArch64 views of the AArch32 ID registers
8316 * which already existed in v6 and v7 are handled elsewhere,
8317 * in v6_idregs[].
8319 int i;
8320 ARMCPRegInfo v8_idregs[] = {
8322 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8323 * emulation because we don't know the right value for the
8324 * GIC field until after we define these regs.
8326 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8327 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8328 .access = PL1_R,
8329 #ifdef CONFIG_USER_ONLY
8330 .type = ARM_CP_CONST,
8331 .resetvalue = cpu->isar.id_aa64pfr0
8332 #else
8333 .type = ARM_CP_NO_RAW,
8334 .accessfn = access_aa64_tid3,
8335 .readfn = id_aa64pfr0_read,
8336 .writefn = arm_cp_write_ignore
8337 #endif
8339 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8341 .access = PL1_R, .type = ARM_CP_CONST,
8342 .accessfn = access_aa64_tid3,
8343 .resetvalue = cpu->isar.id_aa64pfr1},
8344 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8346 .access = PL1_R, .type = ARM_CP_CONST,
8347 .accessfn = access_aa64_tid3,
8348 .resetvalue = 0 },
8349 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8350 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8351 .access = PL1_R, .type = ARM_CP_CONST,
8352 .accessfn = access_aa64_tid3,
8353 .resetvalue = 0 },
8354 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8355 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8356 .access = PL1_R, .type = ARM_CP_CONST,
8357 .accessfn = access_aa64_tid3,
8358 .resetvalue = cpu->isar.id_aa64zfr0 },
8359 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8360 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8361 .access = PL1_R, .type = ARM_CP_CONST,
8362 .accessfn = access_aa64_tid3,
8363 .resetvalue = cpu->isar.id_aa64smfr0 },
8364 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8366 .access = PL1_R, .type = ARM_CP_CONST,
8367 .accessfn = access_aa64_tid3,
8368 .resetvalue = 0 },
8369 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8370 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8371 .access = PL1_R, .type = ARM_CP_CONST,
8372 .accessfn = access_aa64_tid3,
8373 .resetvalue = 0 },
8374 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8375 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8376 .access = PL1_R, .type = ARM_CP_CONST,
8377 .accessfn = access_aa64_tid3,
8378 .resetvalue = cpu->isar.id_aa64dfr0 },
8379 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8380 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8381 .access = PL1_R, .type = ARM_CP_CONST,
8382 .accessfn = access_aa64_tid3,
8383 .resetvalue = cpu->isar.id_aa64dfr1 },
8384 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8385 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8386 .access = PL1_R, .type = ARM_CP_CONST,
8387 .accessfn = access_aa64_tid3,
8388 .resetvalue = 0 },
8389 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8391 .access = PL1_R, .type = ARM_CP_CONST,
8392 .accessfn = access_aa64_tid3,
8393 .resetvalue = 0 },
8394 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8396 .access = PL1_R, .type = ARM_CP_CONST,
8397 .accessfn = access_aa64_tid3,
8398 .resetvalue = cpu->id_aa64afr0 },
8399 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8401 .access = PL1_R, .type = ARM_CP_CONST,
8402 .accessfn = access_aa64_tid3,
8403 .resetvalue = cpu->id_aa64afr1 },
8404 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8406 .access = PL1_R, .type = ARM_CP_CONST,
8407 .accessfn = access_aa64_tid3,
8408 .resetvalue = 0 },
8409 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8411 .access = PL1_R, .type = ARM_CP_CONST,
8412 .accessfn = access_aa64_tid3,
8413 .resetvalue = 0 },
8414 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8416 .access = PL1_R, .type = ARM_CP_CONST,
8417 .accessfn = access_aa64_tid3,
8418 .resetvalue = cpu->isar.id_aa64isar0 },
8419 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8421 .access = PL1_R, .type = ARM_CP_CONST,
8422 .accessfn = access_aa64_tid3,
8423 .resetvalue = cpu->isar.id_aa64isar1 },
8424 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8426 .access = PL1_R, .type = ARM_CP_CONST,
8427 .accessfn = access_aa64_tid3,
8428 .resetvalue = cpu->isar.id_aa64isar2 },
8429 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8431 .access = PL1_R, .type = ARM_CP_CONST,
8432 .accessfn = access_aa64_tid3,
8433 .resetvalue = 0 },
8434 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8436 .access = PL1_R, .type = ARM_CP_CONST,
8437 .accessfn = access_aa64_tid3,
8438 .resetvalue = 0 },
8439 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8441 .access = PL1_R, .type = ARM_CP_CONST,
8442 .accessfn = access_aa64_tid3,
8443 .resetvalue = 0 },
8444 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8446 .access = PL1_R, .type = ARM_CP_CONST,
8447 .accessfn = access_aa64_tid3,
8448 .resetvalue = 0 },
8449 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8451 .access = PL1_R, .type = ARM_CP_CONST,
8452 .accessfn = access_aa64_tid3,
8453 .resetvalue = 0 },
8454 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8456 .access = PL1_R, .type = ARM_CP_CONST,
8457 .accessfn = access_aa64_tid3,
8458 .resetvalue = cpu->isar.id_aa64mmfr0 },
8459 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8461 .access = PL1_R, .type = ARM_CP_CONST,
8462 .accessfn = access_aa64_tid3,
8463 .resetvalue = cpu->isar.id_aa64mmfr1 },
8464 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8466 .access = PL1_R, .type = ARM_CP_CONST,
8467 .accessfn = access_aa64_tid3,
8468 .resetvalue = cpu->isar.id_aa64mmfr2 },
8469 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8471 .access = PL1_R, .type = ARM_CP_CONST,
8472 .accessfn = access_aa64_tid3,
8473 .resetvalue = 0 },
8474 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8476 .access = PL1_R, .type = ARM_CP_CONST,
8477 .accessfn = access_aa64_tid3,
8478 .resetvalue = 0 },
8479 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8481 .access = PL1_R, .type = ARM_CP_CONST,
8482 .accessfn = access_aa64_tid3,
8483 .resetvalue = 0 },
8484 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8486 .access = PL1_R, .type = ARM_CP_CONST,
8487 .accessfn = access_aa64_tid3,
8488 .resetvalue = 0 },
8489 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8491 .access = PL1_R, .type = ARM_CP_CONST,
8492 .accessfn = access_aa64_tid3,
8493 .resetvalue = 0 },
8494 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8496 .access = PL1_R, .type = ARM_CP_CONST,
8497 .accessfn = access_aa64_tid3,
8498 .resetvalue = cpu->isar.mvfr0 },
8499 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8501 .access = PL1_R, .type = ARM_CP_CONST,
8502 .accessfn = access_aa64_tid3,
8503 .resetvalue = cpu->isar.mvfr1 },
8504 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8506 .access = PL1_R, .type = ARM_CP_CONST,
8507 .accessfn = access_aa64_tid3,
8508 .resetvalue = cpu->isar.mvfr2 },
8510 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8511 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8512 * as RAZ, since it is in the "reserved for future ID
8513 * registers, RAZ" part of the AArch32 encoding space.
8515 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8516 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8517 .access = PL1_R, .type = ARM_CP_CONST,
8518 .accessfn = access_aa64_tid3,
8519 .resetvalue = 0 },
8520 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8521 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8522 .access = PL1_R, .type = ARM_CP_CONST,
8523 .accessfn = access_aa64_tid3,
8524 .resetvalue = 0 },
8525 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8526 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8527 .access = PL1_R, .type = ARM_CP_CONST,
8528 .accessfn = access_aa64_tid3,
8529 .resetvalue = 0 },
8531 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8532 * they're also RAZ for AArch64, and in v8 are gradually
8533 * being filled with AArch64-view-of-AArch32-ID-register
8534 * for new ID registers.
8536 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8538 .access = PL1_R, .type = ARM_CP_CONST,
8539 .accessfn = access_aa64_tid3,
8540 .resetvalue = 0 },
8541 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8543 .access = PL1_R, .type = ARM_CP_CONST,
8544 .accessfn = access_aa64_tid3,
8545 .resetvalue = cpu->isar.id_pfr2 },
8546 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8548 .access = PL1_R, .type = ARM_CP_CONST,
8549 .accessfn = access_aa64_tid3,
8550 .resetvalue = cpu->isar.id_dfr1 },
8551 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8553 .access = PL1_R, .type = ARM_CP_CONST,
8554 .accessfn = access_aa64_tid3,
8555 .resetvalue = cpu->isar.id_mmfr5 },
8556 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8558 .access = PL1_R, .type = ARM_CP_CONST,
8559 .accessfn = access_aa64_tid3,
8560 .resetvalue = 0 },
8561 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8562 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8563 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8564 .fgt = FGT_PMCEIDN_EL0,
8565 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8566 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8567 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8568 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8569 .fgt = FGT_PMCEIDN_EL0,
8570 .resetvalue = cpu->pmceid0 },
8571 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8572 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8573 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8574 .fgt = FGT_PMCEIDN_EL0,
8575 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8576 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8577 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8578 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8579 .fgt = FGT_PMCEIDN_EL0,
8580 .resetvalue = cpu->pmceid1 },
8582 #ifdef CONFIG_USER_ONLY
8583 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8584 { .name = "ID_AA64PFR0_EL1",
8585 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8586 R_ID_AA64PFR0_ADVSIMD_MASK |
8587 R_ID_AA64PFR0_SVE_MASK |
8588 R_ID_AA64PFR0_DIT_MASK,
8589 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8590 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8591 { .name = "ID_AA64PFR1_EL1",
8592 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8593 R_ID_AA64PFR1_SSBS_MASK |
8594 R_ID_AA64PFR1_MTE_MASK |
8595 R_ID_AA64PFR1_SME_MASK },
8596 { .name = "ID_AA64PFR*_EL1_RESERVED",
8597 .is_glob = true },
8598 { .name = "ID_AA64ZFR0_EL1",
8599 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8600 R_ID_AA64ZFR0_AES_MASK |
8601 R_ID_AA64ZFR0_BITPERM_MASK |
8602 R_ID_AA64ZFR0_BFLOAT16_MASK |
8603 R_ID_AA64ZFR0_SHA3_MASK |
8604 R_ID_AA64ZFR0_SM4_MASK |
8605 R_ID_AA64ZFR0_I8MM_MASK |
8606 R_ID_AA64ZFR0_F32MM_MASK |
8607 R_ID_AA64ZFR0_F64MM_MASK },
8608 { .name = "ID_AA64SMFR0_EL1",
8609 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8610 R_ID_AA64SMFR0_BI32I32_MASK |
8611 R_ID_AA64SMFR0_B16F32_MASK |
8612 R_ID_AA64SMFR0_F16F32_MASK |
8613 R_ID_AA64SMFR0_I8I32_MASK |
8614 R_ID_AA64SMFR0_F16F16_MASK |
8615 R_ID_AA64SMFR0_B16B16_MASK |
8616 R_ID_AA64SMFR0_I16I32_MASK |
8617 R_ID_AA64SMFR0_F64F64_MASK |
8618 R_ID_AA64SMFR0_I16I64_MASK |
8619 R_ID_AA64SMFR0_SMEVER_MASK |
8620 R_ID_AA64SMFR0_FA64_MASK },
8621 { .name = "ID_AA64MMFR0_EL1",
8622 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8623 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8624 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8625 { .name = "ID_AA64MMFR1_EL1",
8626 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8627 { .name = "ID_AA64MMFR2_EL1",
8628 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8629 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8630 .is_glob = true },
8631 { .name = "ID_AA64DFR0_EL1",
8632 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8633 { .name = "ID_AA64DFR1_EL1" },
8634 { .name = "ID_AA64DFR*_EL1_RESERVED",
8635 .is_glob = true },
8636 { .name = "ID_AA64AFR*",
8637 .is_glob = true },
8638 { .name = "ID_AA64ISAR0_EL1",
8639 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8640 R_ID_AA64ISAR0_SHA1_MASK |
8641 R_ID_AA64ISAR0_SHA2_MASK |
8642 R_ID_AA64ISAR0_CRC32_MASK |
8643 R_ID_AA64ISAR0_ATOMIC_MASK |
8644 R_ID_AA64ISAR0_RDM_MASK |
8645 R_ID_AA64ISAR0_SHA3_MASK |
8646 R_ID_AA64ISAR0_SM3_MASK |
8647 R_ID_AA64ISAR0_SM4_MASK |
8648 R_ID_AA64ISAR0_DP_MASK |
8649 R_ID_AA64ISAR0_FHM_MASK |
8650 R_ID_AA64ISAR0_TS_MASK |
8651 R_ID_AA64ISAR0_RNDR_MASK },
8652 { .name = "ID_AA64ISAR1_EL1",
8653 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8654 R_ID_AA64ISAR1_APA_MASK |
8655 R_ID_AA64ISAR1_API_MASK |
8656 R_ID_AA64ISAR1_JSCVT_MASK |
8657 R_ID_AA64ISAR1_FCMA_MASK |
8658 R_ID_AA64ISAR1_LRCPC_MASK |
8659 R_ID_AA64ISAR1_GPA_MASK |
8660 R_ID_AA64ISAR1_GPI_MASK |
8661 R_ID_AA64ISAR1_FRINTTS_MASK |
8662 R_ID_AA64ISAR1_SB_MASK |
8663 R_ID_AA64ISAR1_BF16_MASK |
8664 R_ID_AA64ISAR1_DGH_MASK |
8665 R_ID_AA64ISAR1_I8MM_MASK },
8666 { .name = "ID_AA64ISAR2_EL1",
8667 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8668 R_ID_AA64ISAR2_RPRES_MASK |
8669 R_ID_AA64ISAR2_GPA3_MASK |
8670 R_ID_AA64ISAR2_APA3_MASK |
8671 R_ID_AA64ISAR2_MOPS_MASK |
8672 R_ID_AA64ISAR2_BC_MASK |
8673 R_ID_AA64ISAR2_RPRFM_MASK |
8674 R_ID_AA64ISAR2_CSSC_MASK },
8675 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8676 .is_glob = true },
8678 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8679 #endif
8681 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8682 * TODO: For RMR, a write with bit 1 set should do something with
8683 * cpu_reset(). In the meantime, "the bit is strictly a request",
8684 * so we are in spec just ignoring writes.
8686 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8687 !arm_feature(env, ARM_FEATURE_EL2)) {
8688 ARMCPRegInfo el1_reset_regs[] = {
8689 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8690 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8691 .access = PL1_R,
8692 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8693 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8694 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8695 .access = PL1_RW, .type = ARM_CP_CONST,
8696 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8698 define_arm_cp_regs(cpu, el1_reset_regs);
8700 define_arm_cp_regs(cpu, v8_idregs);
8701 define_arm_cp_regs(cpu, v8_cp_reginfo);
8703 for (i = 4; i < 16; i++) {
8705 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8706 * For pre-v8 cores there are RAZ patterns for these in
8707 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8708 * v8 extends the "must RAZ" part of the ID register space
8709 * to also cover c0, 0, c{8-15}, {0-7}.
8710 * These are STATE_AA32 because in the AArch64 sysreg space
8711 * c4-c7 is where the AArch64 ID registers live (and we've
8712 * already defined those in v8_idregs[]), and c8-c15 are not
8713 * "must RAZ" for AArch64.
8715 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8716 ARMCPRegInfo v8_aa32_raz_idregs = {
8717 .name = name,
8718 .state = ARM_CP_STATE_AA32,
8719 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8720 .access = PL1_R, .type = ARM_CP_CONST,
8721 .accessfn = access_aa64_tid3,
8722 .resetvalue = 0 };
8723 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8728 * Register the base EL2 cpregs.
8729 * Pre v8, these registers are implemented only as part of the
8730 * Virtualization Extensions (EL2 present). Beginning with v8,
8731 * if EL2 is missing but EL3 is enabled, mostly these become
8732 * RES0 from EL3, with some specific exceptions.
8734 if (arm_feature(env, ARM_FEATURE_EL2)
8735 || (arm_feature(env, ARM_FEATURE_EL3)
8736 && arm_feature(env, ARM_FEATURE_V8))) {
8737 uint64_t vmpidr_def = mpidr_read_val(env);
8738 ARMCPRegInfo vpidr_regs[] = {
8739 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8740 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8741 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8742 .resetvalue = cpu->midr,
8743 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8744 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8745 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8746 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8747 .access = PL2_RW, .resetvalue = cpu->midr,
8748 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8749 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8750 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8751 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8752 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8753 .resetvalue = vmpidr_def,
8754 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8755 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8756 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8757 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8758 .access = PL2_RW, .resetvalue = vmpidr_def,
8759 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8760 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8763 * The only field of MDCR_EL2 that has a defined architectural reset
8764 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8766 ARMCPRegInfo mdcr_el2 = {
8767 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8768 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8769 .writefn = mdcr_el2_write,
8770 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8771 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8773 define_one_arm_cp_reg(cpu, &mdcr_el2);
8774 define_arm_cp_regs(cpu, vpidr_regs);
8775 define_arm_cp_regs(cpu, el2_cp_reginfo);
8776 if (arm_feature(env, ARM_FEATURE_V8)) {
8777 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8779 if (cpu_isar_feature(aa64_sel2, cpu)) {
8780 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8783 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8784 * See commentary near RMR_EL1.
8786 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8787 static const ARMCPRegInfo el2_reset_regs[] = {
8788 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8789 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8790 .access = PL2_R,
8791 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8792 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8793 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8794 .access = PL2_R,
8795 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8796 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8797 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8798 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8800 define_arm_cp_regs(cpu, el2_reset_regs);
8804 /* Register the base EL3 cpregs. */
8805 if (arm_feature(env, ARM_FEATURE_EL3)) {
8806 define_arm_cp_regs(cpu, el3_cp_reginfo);
8807 ARMCPRegInfo el3_regs[] = {
8808 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8809 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8810 .access = PL3_R,
8811 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8812 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8813 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8814 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8815 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8816 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8817 .access = PL3_RW, .type = ARM_CP_CONST,
8818 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8819 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8820 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8821 .access = PL3_RW,
8822 .raw_writefn = raw_write, .writefn = sctlr_write,
8823 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8824 .resetvalue = cpu->reset_sctlr },
8827 define_arm_cp_regs(cpu, el3_regs);
8830 * The behaviour of NSACR is sufficiently various that we don't
8831 * try to describe it in a single reginfo:
8832 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8833 * reads as constant 0xc00 from NS EL1 and NS EL2
8834 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8835 * if v7 without EL3, register doesn't exist
8836 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8838 if (arm_feature(env, ARM_FEATURE_EL3)) {
8839 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8840 static const ARMCPRegInfo nsacr = {
8841 .name = "NSACR", .type = ARM_CP_CONST,
8842 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8843 .access = PL1_RW, .accessfn = nsacr_access,
8844 .resetvalue = 0xc00
8846 define_one_arm_cp_reg(cpu, &nsacr);
8847 } else {
8848 static const ARMCPRegInfo nsacr = {
8849 .name = "NSACR",
8850 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8851 .access = PL3_RW | PL1_R,
8852 .resetvalue = 0,
8853 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8855 define_one_arm_cp_reg(cpu, &nsacr);
8857 } else {
8858 if (arm_feature(env, ARM_FEATURE_V8)) {
8859 static const ARMCPRegInfo nsacr = {
8860 .name = "NSACR", .type = ARM_CP_CONST,
8861 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8862 .access = PL1_R,
8863 .resetvalue = 0xc00
8865 define_one_arm_cp_reg(cpu, &nsacr);
8869 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8870 if (arm_feature(env, ARM_FEATURE_V6)) {
8871 /* PMSAv6 not implemented */
8872 assert(arm_feature(env, ARM_FEATURE_V7));
8873 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8874 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8875 } else {
8876 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8878 } else {
8879 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8880 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8881 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8882 if (cpu_isar_feature(aa32_hpd, cpu)) {
8883 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8886 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8887 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8889 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8890 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8892 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8893 ARMCPRegInfo vapa_cp_reginfo[] = {
8894 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
8895 .access = PL1_RW, .resetvalue = 0,
8896 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
8897 offsetoflow32(CPUARMState, cp15.par_ns) },
8898 .writefn = par_write},
8899 #ifndef CONFIG_USER_ONLY
8900 /* This underdecoding is safe because the reginfo is NO_RAW. */
8901 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
8902 .access = PL1_W, .accessfn = ats_access,
8903 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
8904 #endif
8908 * When LPAE exists this 32-bit PAR register is an alias of the
8909 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
8911 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8912 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
8914 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8916 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8917 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8919 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8920 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8922 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8923 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8925 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8926 define_arm_cp_regs(cpu, omap_cp_reginfo);
8928 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8929 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8931 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8932 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8934 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8935 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8937 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8938 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8940 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8941 define_arm_cp_regs(cpu, jazelle_regs);
8944 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8945 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8946 * be read-only (ie write causes UNDEF exception).
8949 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8951 * Pre-v8 MIDR space.
8952 * Note that the MIDR isn't a simple constant register because
8953 * of the TI925 behaviour where writes to another register can
8954 * cause the MIDR value to change.
8956 * Unimplemented registers in the c15 0 0 0 space default to
8957 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8958 * and friends override accordingly.
8960 { .name = "MIDR",
8961 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8962 .access = PL1_R, .resetvalue = cpu->midr,
8963 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8964 .readfn = midr_read,
8965 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8966 .type = ARM_CP_OVERRIDE },
8967 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8968 { .name = "DUMMY",
8969 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8970 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8971 { .name = "DUMMY",
8972 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8973 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8974 { .name = "DUMMY",
8975 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8976 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8977 { .name = "DUMMY",
8978 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8979 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8980 { .name = "DUMMY",
8981 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8982 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8984 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8985 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8987 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8988 .fgt = FGT_MIDR_EL1,
8989 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8990 .readfn = midr_read },
8991 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8992 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8993 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8994 .access = PL1_R, .resetvalue = cpu->midr },
8995 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8997 .access = PL1_R,
8998 .accessfn = access_aa64_tid1,
8999 .fgt = FGT_REVIDR_EL1,
9000 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9002 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9003 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9004 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9005 .access = PL1_R, .resetvalue = cpu->midr
9007 ARMCPRegInfo id_cp_reginfo[] = {
9008 /* These are common to v8 and pre-v8 */
9009 { .name = "CTR",
9010 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9011 .access = PL1_R, .accessfn = ctr_el0_access,
9012 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9013 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9014 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9015 .access = PL0_R, .accessfn = ctr_el0_access,
9016 .fgt = FGT_CTR_EL0,
9017 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9018 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9019 { .name = "TCMTR",
9020 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9021 .access = PL1_R,
9022 .accessfn = access_aa32_tid1,
9023 .type = ARM_CP_CONST, .resetvalue = 0 },
9025 /* TLBTR is specific to VMSA */
9026 ARMCPRegInfo id_tlbtr_reginfo = {
9027 .name = "TLBTR",
9028 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9029 .access = PL1_R,
9030 .accessfn = access_aa32_tid1,
9031 .type = ARM_CP_CONST, .resetvalue = 0,
9033 /* MPUIR is specific to PMSA V6+ */
9034 ARMCPRegInfo id_mpuir_reginfo = {
9035 .name = "MPUIR",
9036 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9037 .access = PL1_R, .type = ARM_CP_CONST,
9038 .resetvalue = cpu->pmsav7_dregion << 8
9040 /* HMPUIR is specific to PMSA V8 */
9041 ARMCPRegInfo id_hmpuir_reginfo = {
9042 .name = "HMPUIR",
9043 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9044 .access = PL2_R, .type = ARM_CP_CONST,
9045 .resetvalue = cpu->pmsav8r_hdregion
9047 static const ARMCPRegInfo crn0_wi_reginfo = {
9048 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9049 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9050 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9052 #ifdef CONFIG_USER_ONLY
9053 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9054 { .name = "MIDR_EL1",
9055 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9056 R_MIDR_EL1_PARTNUM_MASK |
9057 R_MIDR_EL1_ARCHITECTURE_MASK |
9058 R_MIDR_EL1_VARIANT_MASK |
9059 R_MIDR_EL1_IMPLEMENTER_MASK },
9060 { .name = "REVIDR_EL1" },
9062 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9063 #endif
9064 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9065 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9066 size_t i;
9068 * Register the blanket "writes ignored" value first to cover the
9069 * whole space. Then update the specific ID registers to allow write
9070 * access, so that they ignore writes rather than causing them to
9071 * UNDEF.
9073 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9074 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9075 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9077 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9078 id_cp_reginfo[i].access = PL1_RW;
9080 id_mpuir_reginfo.access = PL1_RW;
9081 id_tlbtr_reginfo.access = PL1_RW;
9083 if (arm_feature(env, ARM_FEATURE_V8)) {
9084 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9085 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9086 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9088 } else {
9089 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9091 define_arm_cp_regs(cpu, id_cp_reginfo);
9092 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9093 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9094 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9095 arm_feature(env, ARM_FEATURE_V8)) {
9096 uint32_t i = 0;
9097 char *tmp_string;
9099 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9100 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9101 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9103 /* Register alias is only valid for first 32 indexes */
9104 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9105 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9106 uint8_t opc1 = extract32(i, 4, 1);
9107 uint8_t opc2 = extract32(i, 0, 1) << 2;
9109 tmp_string = g_strdup_printf("PRBAR%u", i);
9110 ARMCPRegInfo tmp_prbarn_reginfo = {
9111 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9112 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9113 .access = PL1_RW, .resetvalue = 0,
9114 .accessfn = access_tvm_trvm,
9115 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9117 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9118 g_free(tmp_string);
9120 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9121 tmp_string = g_strdup_printf("PRLAR%u", i);
9122 ARMCPRegInfo tmp_prlarn_reginfo = {
9123 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9124 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9125 .access = PL1_RW, .resetvalue = 0,
9126 .accessfn = access_tvm_trvm,
9127 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9129 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9130 g_free(tmp_string);
9133 /* Register alias is only valid for first 32 indexes */
9134 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9135 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9136 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9137 uint8_t opc2 = extract32(i, 0, 1) << 2;
9139 tmp_string = g_strdup_printf("HPRBAR%u", i);
9140 ARMCPRegInfo tmp_hprbarn_reginfo = {
9141 .name = tmp_string,
9142 .type = ARM_CP_NO_RAW,
9143 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9144 .access = PL2_RW, .resetvalue = 0,
9145 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9147 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9148 g_free(tmp_string);
9150 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9151 tmp_string = g_strdup_printf("HPRLAR%u", i);
9152 ARMCPRegInfo tmp_hprlarn_reginfo = {
9153 .name = tmp_string,
9154 .type = ARM_CP_NO_RAW,
9155 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9156 .access = PL2_RW, .resetvalue = 0,
9157 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9159 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9160 g_free(tmp_string);
9162 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9163 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9167 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9168 ARMCPRegInfo mpidr_cp_reginfo[] = {
9169 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9170 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9171 .fgt = FGT_MPIDR_EL1,
9172 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9174 #ifdef CONFIG_USER_ONLY
9175 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9176 { .name = "MPIDR_EL1",
9177 .fixed_bits = 0x0000000080000000 },
9179 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9180 #endif
9181 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9184 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9185 ARMCPRegInfo auxcr_reginfo[] = {
9186 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9187 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9188 .access = PL1_RW, .accessfn = access_tacr,
9189 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9190 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9191 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9192 .access = PL2_RW, .type = ARM_CP_CONST,
9193 .resetvalue = 0 },
9194 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9195 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9196 .access = PL3_RW, .type = ARM_CP_CONST,
9197 .resetvalue = 0 },
9199 define_arm_cp_regs(cpu, auxcr_reginfo);
9200 if (cpu_isar_feature(aa32_ac2, cpu)) {
9201 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9205 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9207 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9208 * There are two flavours:
9209 * (1) older 32-bit only cores have a simple 32-bit CBAR
9210 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9211 * 32-bit register visible to AArch32 at a different encoding
9212 * to the "flavour 1" register and with the bits rearranged to
9213 * be able to squash a 64-bit address into the 32-bit view.
9214 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9215 * in future if we support AArch32-only configs of some of the
9216 * AArch64 cores we might need to add a specific feature flag
9217 * to indicate cores with "flavour 2" CBAR.
9219 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9220 /* 32 bit view is [31:18] 0...0 [43:32]. */
9221 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9222 | extract64(cpu->reset_cbar, 32, 12);
9223 ARMCPRegInfo cbar_reginfo[] = {
9224 { .name = "CBAR",
9225 .type = ARM_CP_CONST,
9226 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9227 .access = PL1_R, .resetvalue = cbar32 },
9228 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9229 .type = ARM_CP_CONST,
9230 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9231 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9233 /* We don't implement a r/w 64 bit CBAR currently */
9234 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9235 define_arm_cp_regs(cpu, cbar_reginfo);
9236 } else {
9237 ARMCPRegInfo cbar = {
9238 .name = "CBAR",
9239 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9240 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9241 .fieldoffset = offsetof(CPUARMState,
9242 cp15.c15_config_base_address)
9244 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9245 cbar.access = PL1_R;
9246 cbar.fieldoffset = 0;
9247 cbar.type = ARM_CP_CONST;
9249 define_one_arm_cp_reg(cpu, &cbar);
9253 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9254 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9255 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9256 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9257 .access = PL1_RW, .writefn = vbar_write,
9258 .fgt = FGT_VBAR_EL1,
9259 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9260 offsetof(CPUARMState, cp15.vbar_ns) },
9261 .resetvalue = 0 },
9263 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9266 /* Generic registers whose values depend on the implementation */
9268 ARMCPRegInfo sctlr = {
9269 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9270 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9271 .access = PL1_RW, .accessfn = access_tvm_trvm,
9272 .fgt = FGT_SCTLR_EL1,
9273 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9274 offsetof(CPUARMState, cp15.sctlr_ns) },
9275 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9276 .raw_writefn = raw_write,
9278 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9280 * Normally we would always end the TB on an SCTLR write, but Linux
9281 * arch/arm/mach-pxa/sleep.S expects two instructions following
9282 * an MMU enable to execute from cache. Imitate this behaviour.
9284 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9286 define_one_arm_cp_reg(cpu, &sctlr);
9288 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9289 arm_feature(env, ARM_FEATURE_V8)) {
9290 ARMCPRegInfo vsctlr = {
9291 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9292 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9293 .access = PL2_RW, .resetvalue = 0x0,
9294 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9296 define_one_arm_cp_reg(cpu, &vsctlr);
9300 if (cpu_isar_feature(aa64_lor, cpu)) {
9301 define_arm_cp_regs(cpu, lor_reginfo);
9303 if (cpu_isar_feature(aa64_pan, cpu)) {
9304 define_one_arm_cp_reg(cpu, &pan_reginfo);
9306 #ifndef CONFIG_USER_ONLY
9307 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9308 define_arm_cp_regs(cpu, ats1e1_reginfo);
9310 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9311 define_arm_cp_regs(cpu, ats1cp_reginfo);
9313 #endif
9314 if (cpu_isar_feature(aa64_uao, cpu)) {
9315 define_one_arm_cp_reg(cpu, &uao_reginfo);
9318 if (cpu_isar_feature(aa64_dit, cpu)) {
9319 define_one_arm_cp_reg(cpu, &dit_reginfo);
9321 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9322 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9324 if (cpu_isar_feature(any_ras, cpu)) {
9325 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9328 if (cpu_isar_feature(aa64_vh, cpu) ||
9329 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9330 define_one_arm_cp_reg(cpu, &contextidr_el2);
9332 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9333 define_arm_cp_regs(cpu, vhe_reginfo);
9336 if (cpu_isar_feature(aa64_sve, cpu)) {
9337 define_arm_cp_regs(cpu, zcr_reginfo);
9340 if (cpu_isar_feature(aa64_hcx, cpu)) {
9341 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9344 #ifdef TARGET_AARCH64
9345 if (cpu_isar_feature(aa64_sme, cpu)) {
9346 define_arm_cp_regs(cpu, sme_reginfo);
9348 if (cpu_isar_feature(aa64_pauth, cpu)) {
9349 define_arm_cp_regs(cpu, pauth_reginfo);
9351 if (cpu_isar_feature(aa64_rndr, cpu)) {
9352 define_arm_cp_regs(cpu, rndr_reginfo);
9354 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9355 define_arm_cp_regs(cpu, tlbirange_reginfo);
9357 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9358 define_arm_cp_regs(cpu, tlbios_reginfo);
9360 /* Data Cache clean instructions up to PoP */
9361 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9362 define_one_arm_cp_reg(cpu, dcpop_reg);
9364 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9365 define_one_arm_cp_reg(cpu, dcpodp_reg);
9370 * If full MTE is enabled, add all of the system registers.
9371 * If only "instructions available at EL0" are enabled,
9372 * then define only a RAZ/WI version of PSTATE.TCO.
9374 if (cpu_isar_feature(aa64_mte, cpu)) {
9375 ARMCPRegInfo gmid_reginfo = {
9376 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9377 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9378 .access = PL1_R, .accessfn = access_aa64_tid5,
9379 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9381 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9382 define_arm_cp_regs(cpu, mte_reginfo);
9383 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9384 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9385 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9386 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9389 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9390 define_arm_cp_regs(cpu, scxtnum_reginfo);
9393 if (cpu_isar_feature(aa64_fgt, cpu)) {
9394 define_arm_cp_regs(cpu, fgt_reginfo);
9397 if (cpu_isar_feature(aa64_rme, cpu)) {
9398 define_arm_cp_regs(cpu, rme_reginfo);
9399 if (cpu_isar_feature(aa64_mte, cpu)) {
9400 define_arm_cp_regs(cpu, rme_mte_reginfo);
9403 #endif
9405 if (cpu_isar_feature(any_predinv, cpu)) {
9406 define_arm_cp_regs(cpu, predinv_reginfo);
9409 if (cpu_isar_feature(any_ccidx, cpu)) {
9410 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9413 #ifndef CONFIG_USER_ONLY
9415 * Register redirections and aliases must be done last,
9416 * after the registers from the other extensions have been defined.
9418 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9419 define_arm_vh_e2h_redirects_aliases(cpu);
9421 #endif
9424 /* Sort alphabetically by type name, except for "any". */
9425 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9427 ObjectClass *class_a = (ObjectClass *)a;
9428 ObjectClass *class_b = (ObjectClass *)b;
9429 const char *name_a, *name_b;
9431 name_a = object_class_get_name(class_a);
9432 name_b = object_class_get_name(class_b);
9433 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9434 return 1;
9435 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9436 return -1;
9437 } else {
9438 return strcmp(name_a, name_b);
9442 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9444 ObjectClass *oc = data;
9445 CPUClass *cc = CPU_CLASS(oc);
9446 const char *typename;
9447 char *name;
9449 typename = object_class_get_name(oc);
9450 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9451 if (cc->deprecation_note) {
9452 qemu_printf(" %s (deprecated)\n", name);
9453 } else {
9454 qemu_printf(" %s\n", name);
9456 g_free(name);
9459 void arm_cpu_list(void)
9461 GSList *list;
9463 list = object_class_get_list(TYPE_ARM_CPU, false);
9464 list = g_slist_sort(list, arm_cpu_list_compare);
9465 qemu_printf("Available CPUs:\n");
9466 g_slist_foreach(list, arm_cpu_list_entry, NULL);
9467 g_slist_free(list);
9471 * Private utility function for define_one_arm_cp_reg_with_opaque():
9472 * add a single reginfo struct to the hash table.
9474 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9475 void *opaque, CPState state,
9476 CPSecureState secstate,
9477 int crm, int opc1, int opc2,
9478 const char *name)
9480 CPUARMState *env = &cpu->env;
9481 uint32_t key;
9482 ARMCPRegInfo *r2;
9483 bool is64 = r->type & ARM_CP_64BIT;
9484 bool ns = secstate & ARM_CP_SECSTATE_NS;
9485 int cp = r->cp;
9486 size_t name_len;
9487 bool make_const;
9489 switch (state) {
9490 case ARM_CP_STATE_AA32:
9491 /* We assume it is a cp15 register if the .cp field is left unset. */
9492 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9493 cp = 15;
9495 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9496 break;
9497 case ARM_CP_STATE_AA64:
9499 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9500 * cp == 0 as equivalent to the value for "standard guest-visible
9501 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9502 * in their AArch64 view (the .cp value may be non-zero for the
9503 * benefit of the AArch32 view).
9505 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9506 cp = CP_REG_ARM64_SYSREG_CP;
9508 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9509 break;
9510 default:
9511 g_assert_not_reached();
9514 /* Overriding of an existing definition must be explicitly requested. */
9515 if (!(r->type & ARM_CP_OVERRIDE)) {
9516 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9517 if (oldreg) {
9518 assert(oldreg->type & ARM_CP_OVERRIDE);
9523 * Eliminate registers that are not present because the EL is missing.
9524 * Doing this here makes it easier to put all registers for a given
9525 * feature into the same ARMCPRegInfo array and define them all at once.
9527 make_const = false;
9528 if (arm_feature(env, ARM_FEATURE_EL3)) {
9530 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9531 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9533 int min_el = ctz32(r->access) / 2;
9534 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9535 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9536 return;
9538 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9540 } else {
9541 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9542 ? PL2_RW : PL1_RW);
9543 if ((r->access & max_el) == 0) {
9544 return;
9548 /* Combine cpreg and name into one allocation. */
9549 name_len = strlen(name) + 1;
9550 r2 = g_malloc(sizeof(*r2) + name_len);
9551 *r2 = *r;
9552 r2->name = memcpy(r2 + 1, name, name_len);
9555 * Update fields to match the instantiation, overwiting wildcards
9556 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9558 r2->cp = cp;
9559 r2->crm = crm;
9560 r2->opc1 = opc1;
9561 r2->opc2 = opc2;
9562 r2->state = state;
9563 r2->secure = secstate;
9564 if (opaque) {
9565 r2->opaque = opaque;
9568 if (make_const) {
9569 /* This should not have been a very special register to begin. */
9570 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9571 assert(old_special == 0 || old_special == ARM_CP_NOP);
9573 * Set the special function to CONST, retaining the other flags.
9574 * This is important for e.g. ARM_CP_SVE so that we still
9575 * take the SVE trap if CPTR_EL3.EZ == 0.
9577 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9579 * Usually, these registers become RES0, but there are a few
9580 * special cases like VPIDR_EL2 which have a constant non-zero
9581 * value with writes ignored.
9583 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9584 r2->resetvalue = 0;
9587 * ARM_CP_CONST has precedence, so removing the callbacks and
9588 * offsets are not strictly necessary, but it is potentially
9589 * less confusing to debug later.
9591 r2->readfn = NULL;
9592 r2->writefn = NULL;
9593 r2->raw_readfn = NULL;
9594 r2->raw_writefn = NULL;
9595 r2->resetfn = NULL;
9596 r2->fieldoffset = 0;
9597 r2->bank_fieldoffsets[0] = 0;
9598 r2->bank_fieldoffsets[1] = 0;
9599 } else {
9600 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9602 if (isbanked) {
9604 * Register is banked (using both entries in array).
9605 * Overwriting fieldoffset as the array is only used to define
9606 * banked registers but later only fieldoffset is used.
9608 r2->fieldoffset = r->bank_fieldoffsets[ns];
9610 if (state == ARM_CP_STATE_AA32) {
9611 if (isbanked) {
9613 * If the register is banked then we don't need to migrate or
9614 * reset the 32-bit instance in certain cases:
9616 * 1) If the register has both 32-bit and 64-bit instances
9617 * then we can count on the 64-bit instance taking care
9618 * of the non-secure bank.
9619 * 2) If ARMv8 is enabled then we can count on a 64-bit
9620 * version taking care of the secure bank. This requires
9621 * that separate 32 and 64-bit definitions are provided.
9623 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9624 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9625 r2->type |= ARM_CP_ALIAS;
9627 } else if ((secstate != r->secure) && !ns) {
9629 * The register is not banked so we only want to allow
9630 * migration of the non-secure instance.
9632 r2->type |= ARM_CP_ALIAS;
9635 if (HOST_BIG_ENDIAN &&
9636 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9637 r2->fieldoffset += sizeof(uint32_t);
9643 * By convention, for wildcarded registers only the first
9644 * entry is used for migration; the others are marked as
9645 * ALIAS so we don't try to transfer the register
9646 * multiple times. Special registers (ie NOP/WFI) are
9647 * never migratable and not even raw-accessible.
9649 if (r2->type & ARM_CP_SPECIAL_MASK) {
9650 r2->type |= ARM_CP_NO_RAW;
9652 if (((r->crm == CP_ANY) && crm != 0) ||
9653 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9654 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9655 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9659 * Check that raw accesses are either forbidden or handled. Note that
9660 * we can't assert this earlier because the setup of fieldoffset for
9661 * banked registers has to be done first.
9663 if (!(r2->type & ARM_CP_NO_RAW)) {
9664 assert(!raw_accessors_invalid(r2));
9667 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9671 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9672 const ARMCPRegInfo *r, void *opaque)
9675 * Define implementations of coprocessor registers.
9676 * We store these in a hashtable because typically
9677 * there are less than 150 registers in a space which
9678 * is 16*16*16*8*8 = 262144 in size.
9679 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9680 * If a register is defined twice then the second definition is
9681 * used, so this can be used to define some generic registers and
9682 * then override them with implementation specific variations.
9683 * At least one of the original and the second definition should
9684 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9685 * against accidental use.
9687 * The state field defines whether the register is to be
9688 * visible in the AArch32 or AArch64 execution state. If the
9689 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9690 * reginfo structure for the AArch32 view, which sees the lower
9691 * 32 bits of the 64 bit register.
9693 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9694 * be wildcarded. AArch64 registers are always considered to be 64
9695 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9696 * the register, if any.
9698 int crm, opc1, opc2;
9699 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9700 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9701 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9702 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9703 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9704 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9705 CPState state;
9707 /* 64 bit registers have only CRm and Opc1 fields */
9708 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9709 /* op0 only exists in the AArch64 encodings */
9710 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9711 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9712 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9714 * This API is only for Arm's system coprocessors (14 and 15) or
9715 * (M-profile or v7A-and-earlier only) for implementation defined
9716 * coprocessors in the range 0..7. Our decode assumes this, since
9717 * 8..13 can be used for other insns including VFP and Neon. See
9718 * valid_cp() in translate.c. Assert here that we haven't tried
9719 * to use an invalid coprocessor number.
9721 switch (r->state) {
9722 case ARM_CP_STATE_BOTH:
9723 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9724 if (r->cp == 0) {
9725 break;
9727 /* fall through */
9728 case ARM_CP_STATE_AA32:
9729 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9730 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9731 assert(r->cp >= 14 && r->cp <= 15);
9732 } else {
9733 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9735 break;
9736 case ARM_CP_STATE_AA64:
9737 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9738 break;
9739 default:
9740 g_assert_not_reached();
9743 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9744 * encodes a minimum access level for the register. We roll this
9745 * runtime check into our general permission check code, so check
9746 * here that the reginfo's specified permissions are strict enough
9747 * to encompass the generic architectural permission check.
9749 if (r->state != ARM_CP_STATE_AA32) {
9750 CPAccessRights mask;
9751 switch (r->opc1) {
9752 case 0:
9753 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9754 mask = PL0U_R | PL1_RW;
9755 break;
9756 case 1: case 2:
9757 /* min_EL EL1 */
9758 mask = PL1_RW;
9759 break;
9760 case 3:
9761 /* min_EL EL0 */
9762 mask = PL0_RW;
9763 break;
9764 case 4:
9765 case 5:
9766 /* min_EL EL2 */
9767 mask = PL2_RW;
9768 break;
9769 case 6:
9770 /* min_EL EL3 */
9771 mask = PL3_RW;
9772 break;
9773 case 7:
9774 /* min_EL EL1, secure mode only (we don't check the latter) */
9775 mask = PL1_RW;
9776 break;
9777 default:
9778 /* broken reginfo with out-of-range opc1 */
9779 g_assert_not_reached();
9781 /* assert our permissions are not too lax (stricter is fine) */
9782 assert((r->access & ~mask) == 0);
9786 * Check that the register definition has enough info to handle
9787 * reads and writes if they are permitted.
9789 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9790 if (r->access & PL3_R) {
9791 assert((r->fieldoffset ||
9792 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9793 r->readfn);
9795 if (r->access & PL3_W) {
9796 assert((r->fieldoffset ||
9797 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9798 r->writefn);
9802 for (crm = crmmin; crm <= crmmax; crm++) {
9803 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9804 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9805 for (state = ARM_CP_STATE_AA32;
9806 state <= ARM_CP_STATE_AA64; state++) {
9807 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9808 continue;
9810 if (state == ARM_CP_STATE_AA32) {
9812 * Under AArch32 CP registers can be common
9813 * (same for secure and non-secure world) or banked.
9815 char *name;
9817 switch (r->secure) {
9818 case ARM_CP_SECSTATE_S:
9819 case ARM_CP_SECSTATE_NS:
9820 add_cpreg_to_hashtable(cpu, r, opaque, state,
9821 r->secure, crm, opc1, opc2,
9822 r->name);
9823 break;
9824 case ARM_CP_SECSTATE_BOTH:
9825 name = g_strdup_printf("%s_S", r->name);
9826 add_cpreg_to_hashtable(cpu, r, opaque, state,
9827 ARM_CP_SECSTATE_S,
9828 crm, opc1, opc2, name);
9829 g_free(name);
9830 add_cpreg_to_hashtable(cpu, r, opaque, state,
9831 ARM_CP_SECSTATE_NS,
9832 crm, opc1, opc2, r->name);
9833 break;
9834 default:
9835 g_assert_not_reached();
9837 } else {
9839 * AArch64 registers get mapped to non-secure instance
9840 * of AArch32
9842 add_cpreg_to_hashtable(cpu, r, opaque, state,
9843 ARM_CP_SECSTATE_NS,
9844 crm, opc1, opc2, r->name);
9852 /* Define a whole list of registers */
9853 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9854 void *opaque, size_t len)
9856 size_t i;
9857 for (i = 0; i < len; ++i) {
9858 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9863 * Modify ARMCPRegInfo for access from userspace.
9865 * This is a data driven modification directed by
9866 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9867 * user-space cannot alter any values and dynamic values pertaining to
9868 * execution state are hidden from user space view anyway.
9870 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9871 const ARMCPRegUserSpaceInfo *mods,
9872 size_t mods_len)
9874 for (size_t mi = 0; mi < mods_len; ++mi) {
9875 const ARMCPRegUserSpaceInfo *m = mods + mi;
9876 GPatternSpec *pat = NULL;
9878 if (m->is_glob) {
9879 pat = g_pattern_spec_new(m->name);
9881 for (size_t ri = 0; ri < regs_len; ++ri) {
9882 ARMCPRegInfo *r = regs + ri;
9884 if (pat && g_pattern_match_string(pat, r->name)) {
9885 r->type = ARM_CP_CONST;
9886 r->access = PL0U_R;
9887 r->resetvalue = 0;
9888 /* continue */
9889 } else if (strcmp(r->name, m->name) == 0) {
9890 r->type = ARM_CP_CONST;
9891 r->access = PL0U_R;
9892 r->resetvalue &= m->exported_bits;
9893 r->resetvalue |= m->fixed_bits;
9894 break;
9897 if (pat) {
9898 g_pattern_spec_free(pat);
9903 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9905 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9908 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9909 uint64_t value)
9911 /* Helper coprocessor write function for write-ignore registers */
9914 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9916 /* Helper coprocessor write function for read-as-zero registers */
9917 return 0;
9920 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9922 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9925 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9928 * Return true if it is not valid for us to switch to
9929 * this CPU mode (ie all the UNPREDICTABLE cases in
9930 * the ARM ARM CPSRWriteByInstr pseudocode).
9933 /* Changes to or from Hyp via MSR and CPS are illegal. */
9934 if (write_type == CPSRWriteByInstr &&
9935 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9936 mode == ARM_CPU_MODE_HYP)) {
9937 return 1;
9940 switch (mode) {
9941 case ARM_CPU_MODE_USR:
9942 return 0;
9943 case ARM_CPU_MODE_SYS:
9944 case ARM_CPU_MODE_SVC:
9945 case ARM_CPU_MODE_ABT:
9946 case ARM_CPU_MODE_UND:
9947 case ARM_CPU_MODE_IRQ:
9948 case ARM_CPU_MODE_FIQ:
9950 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9951 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9954 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9955 * and CPS are treated as illegal mode changes.
9957 if (write_type == CPSRWriteByInstr &&
9958 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9959 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9960 return 1;
9962 return 0;
9963 case ARM_CPU_MODE_HYP:
9964 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9965 case ARM_CPU_MODE_MON:
9966 return arm_current_el(env) < 3;
9967 default:
9968 return 1;
9972 uint32_t cpsr_read(CPUARMState *env)
9974 int ZF;
9975 ZF = (env->ZF == 0);
9976 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9977 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9978 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9979 | ((env->condexec_bits & 0xfc) << 8)
9980 | (env->GE << 16) | (env->daif & CPSR_AIF);
9983 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9984 CPSRWriteType write_type)
9986 uint32_t changed_daif;
9987 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9988 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9990 if (mask & CPSR_NZCV) {
9991 env->ZF = (~val) & CPSR_Z;
9992 env->NF = val;
9993 env->CF = (val >> 29) & 1;
9994 env->VF = (val << 3) & 0x80000000;
9996 if (mask & CPSR_Q) {
9997 env->QF = ((val & CPSR_Q) != 0);
9999 if (mask & CPSR_T) {
10000 env->thumb = ((val & CPSR_T) != 0);
10002 if (mask & CPSR_IT_0_1) {
10003 env->condexec_bits &= ~3;
10004 env->condexec_bits |= (val >> 25) & 3;
10006 if (mask & CPSR_IT_2_7) {
10007 env->condexec_bits &= 3;
10008 env->condexec_bits |= (val >> 8) & 0xfc;
10010 if (mask & CPSR_GE) {
10011 env->GE = (val >> 16) & 0xf;
10015 * In a V7 implementation that includes the security extensions but does
10016 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10017 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10018 * bits respectively.
10020 * In a V8 implementation, it is permitted for privileged software to
10021 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10023 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10024 arm_feature(env, ARM_FEATURE_EL3) &&
10025 !arm_feature(env, ARM_FEATURE_EL2) &&
10026 !arm_is_secure(env)) {
10028 changed_daif = (env->daif ^ val) & mask;
10030 if (changed_daif & CPSR_A) {
10032 * Check to see if we are allowed to change the masking of async
10033 * abort exceptions from a non-secure state.
10035 if (!(env->cp15.scr_el3 & SCR_AW)) {
10036 qemu_log_mask(LOG_GUEST_ERROR,
10037 "Ignoring attempt to switch CPSR_A flag from "
10038 "non-secure world with SCR.AW bit clear\n");
10039 mask &= ~CPSR_A;
10043 if (changed_daif & CPSR_F) {
10045 * Check to see if we are allowed to change the masking of FIQ
10046 * exceptions from a non-secure state.
10048 if (!(env->cp15.scr_el3 & SCR_FW)) {
10049 qemu_log_mask(LOG_GUEST_ERROR,
10050 "Ignoring attempt to switch CPSR_F flag from "
10051 "non-secure world with SCR.FW bit clear\n");
10052 mask &= ~CPSR_F;
10056 * Check whether non-maskable FIQ (NMFI) support is enabled.
10057 * If this bit is set software is not allowed to mask
10058 * FIQs, but is allowed to set CPSR_F to 0.
10060 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10061 (val & CPSR_F)) {
10062 qemu_log_mask(LOG_GUEST_ERROR,
10063 "Ignoring attempt to enable CPSR_F flag "
10064 "(non-maskable FIQ [NMFI] support enabled)\n");
10065 mask &= ~CPSR_F;
10070 env->daif &= ~(CPSR_AIF & mask);
10071 env->daif |= val & CPSR_AIF & mask;
10073 if (write_type != CPSRWriteRaw &&
10074 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10075 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10077 * Note that we can only get here in USR mode if this is a
10078 * gdb stub write; for this case we follow the architectural
10079 * behaviour for guest writes in USR mode of ignoring an attempt
10080 * to switch mode. (Those are caught by translate.c for writes
10081 * triggered by guest instructions.)
10083 mask &= ~CPSR_M;
10084 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10086 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10087 * v7, and has defined behaviour in v8:
10088 * + leave CPSR.M untouched
10089 * + allow changes to the other CPSR fields
10090 * + set PSTATE.IL
10091 * For user changes via the GDB stub, we don't set PSTATE.IL,
10092 * as this would be unnecessarily harsh for a user error.
10094 mask &= ~CPSR_M;
10095 if (write_type != CPSRWriteByGDBStub &&
10096 arm_feature(env, ARM_FEATURE_V8)) {
10097 mask |= CPSR_IL;
10098 val |= CPSR_IL;
10100 qemu_log_mask(LOG_GUEST_ERROR,
10101 "Illegal AArch32 mode switch attempt from %s to %s\n",
10102 aarch32_mode_name(env->uncached_cpsr),
10103 aarch32_mode_name(val));
10104 } else {
10105 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10106 write_type == CPSRWriteExceptionReturn ?
10107 "Exception return from AArch32" :
10108 "AArch32 mode switch from",
10109 aarch32_mode_name(env->uncached_cpsr),
10110 aarch32_mode_name(val), env->regs[15]);
10111 switch_mode(env, val & CPSR_M);
10114 mask &= ~CACHED_CPSR_BITS;
10115 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10116 if (tcg_enabled() && rebuild_hflags) {
10117 arm_rebuild_hflags(env);
10121 /* Sign/zero extend */
10122 uint32_t HELPER(sxtb16)(uint32_t x)
10124 uint32_t res;
10125 res = (uint16_t)(int8_t)x;
10126 res |= (uint32_t)(int8_t)(x >> 16) << 16;
10127 return res;
10130 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10133 * Take a division-by-zero exception if necessary; otherwise return
10134 * to get the usual non-trapping division behaviour (result of 0)
10136 if (arm_feature(env, ARM_FEATURE_M)
10137 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10138 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10142 uint32_t HELPER(uxtb16)(uint32_t x)
10144 uint32_t res;
10145 res = (uint16_t)(uint8_t)x;
10146 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10147 return res;
10150 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10152 if (den == 0) {
10153 handle_possible_div0_trap(env, GETPC());
10154 return 0;
10156 if (num == INT_MIN && den == -1) {
10157 return INT_MIN;
10159 return num / den;
10162 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10164 if (den == 0) {
10165 handle_possible_div0_trap(env, GETPC());
10166 return 0;
10168 return num / den;
10171 uint32_t HELPER(rbit)(uint32_t x)
10173 return revbit32(x);
10176 #ifdef CONFIG_USER_ONLY
10178 static void switch_mode(CPUARMState *env, int mode)
10180 ARMCPU *cpu = env_archcpu(env);
10182 if (mode != ARM_CPU_MODE_USR) {
10183 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10187 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10188 uint32_t cur_el, bool secure)
10190 return 1;
10193 void aarch64_sync_64_to_32(CPUARMState *env)
10195 g_assert_not_reached();
10198 #else
10200 static void switch_mode(CPUARMState *env, int mode)
10202 int old_mode;
10203 int i;
10205 old_mode = env->uncached_cpsr & CPSR_M;
10206 if (mode == old_mode) {
10207 return;
10210 if (old_mode == ARM_CPU_MODE_FIQ) {
10211 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10212 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10213 } else if (mode == ARM_CPU_MODE_FIQ) {
10214 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10215 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10218 i = bank_number(old_mode);
10219 env->banked_r13[i] = env->regs[13];
10220 env->banked_spsr[i] = env->spsr;
10222 i = bank_number(mode);
10223 env->regs[13] = env->banked_r13[i];
10224 env->spsr = env->banked_spsr[i];
10226 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10227 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10231 * Physical Interrupt Target EL Lookup Table
10233 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10235 * The below multi-dimensional table is used for looking up the target
10236 * exception level given numerous condition criteria. Specifically, the
10237 * target EL is based on SCR and HCR routing controls as well as the
10238 * currently executing EL and secure state.
10240 * Dimensions:
10241 * target_el_table[2][2][2][2][2][4]
10242 * | | | | | +--- Current EL
10243 * | | | | +------ Non-secure(0)/Secure(1)
10244 * | | | +--------- HCR mask override
10245 * | | +------------ SCR exec state control
10246 * | +--------------- SCR mask override
10247 * +------------------ 32-bit(0)/64-bit(1) EL3
10249 * The table values are as such:
10250 * 0-3 = EL0-EL3
10251 * -1 = Cannot occur
10253 * The ARM ARM target EL table includes entries indicating that an "exception
10254 * is not taken". The two cases where this is applicable are:
10255 * 1) An exception is taken from EL3 but the SCR does not have the exception
10256 * routed to EL3.
10257 * 2) An exception is taken from EL2 but the HCR does not have the exception
10258 * routed to EL2.
10259 * In these two cases, the below table contain a target of EL1. This value is
10260 * returned as it is expected that the consumer of the table data will check
10261 * for "target EL >= current EL" to ensure the exception is not taken.
10263 * SCR HCR
10264 * 64 EA AMO From
10265 * BIT IRQ IMO Non-secure Secure
10266 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10268 static const int8_t target_el_table[2][2][2][2][2][4] = {
10269 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10270 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10271 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10272 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10273 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10274 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10275 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10276 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10277 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10278 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10279 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10280 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10281 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10282 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10283 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10284 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10288 * Determine the target EL for physical exceptions
10290 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10291 uint32_t cur_el, bool secure)
10293 CPUARMState *env = cpu_env(cs);
10294 bool rw;
10295 bool scr;
10296 bool hcr;
10297 int target_el;
10298 /* Is the highest EL AArch64? */
10299 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10300 uint64_t hcr_el2;
10302 if (arm_feature(env, ARM_FEATURE_EL3)) {
10303 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10304 } else {
10306 * Either EL2 is the highest EL (and so the EL2 register width
10307 * is given by is64); or there is no EL2 or EL3, in which case
10308 * the value of 'rw' does not affect the table lookup anyway.
10310 rw = is64;
10313 hcr_el2 = arm_hcr_el2_eff(env);
10314 switch (excp_idx) {
10315 case EXCP_IRQ:
10316 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10317 hcr = hcr_el2 & HCR_IMO;
10318 break;
10319 case EXCP_FIQ:
10320 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10321 hcr = hcr_el2 & HCR_FMO;
10322 break;
10323 default:
10324 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10325 hcr = hcr_el2 & HCR_AMO;
10326 break;
10330 * For these purposes, TGE and AMO/IMO/FMO both force the
10331 * interrupt to EL2. Fold TGE into the bit extracted above.
10333 hcr |= (hcr_el2 & HCR_TGE) != 0;
10335 /* Perform a table-lookup for the target EL given the current state */
10336 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10338 assert(target_el > 0);
10340 return target_el;
10343 void arm_log_exception(CPUState *cs)
10345 int idx = cs->exception_index;
10347 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10348 const char *exc = NULL;
10349 static const char * const excnames[] = {
10350 [EXCP_UDEF] = "Undefined Instruction",
10351 [EXCP_SWI] = "SVC",
10352 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10353 [EXCP_DATA_ABORT] = "Data Abort",
10354 [EXCP_IRQ] = "IRQ",
10355 [EXCP_FIQ] = "FIQ",
10356 [EXCP_BKPT] = "Breakpoint",
10357 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10358 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10359 [EXCP_HVC] = "Hypervisor Call",
10360 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10361 [EXCP_SMC] = "Secure Monitor Call",
10362 [EXCP_VIRQ] = "Virtual IRQ",
10363 [EXCP_VFIQ] = "Virtual FIQ",
10364 [EXCP_SEMIHOST] = "Semihosting call",
10365 [EXCP_NOCP] = "v7M NOCP UsageFault",
10366 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10367 [EXCP_STKOF] = "v8M STKOF UsageFault",
10368 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10369 [EXCP_LSERR] = "v8M LSERR UsageFault",
10370 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10371 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10372 [EXCP_VSERR] = "Virtual SERR",
10373 [EXCP_GPC] = "Granule Protection Check",
10376 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10377 exc = excnames[idx];
10379 if (!exc) {
10380 exc = "unknown";
10382 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10383 idx, exc, cs->cpu_index);
10388 * Function used to synchronize QEMU's AArch64 register set with AArch32
10389 * register set. This is necessary when switching between AArch32 and AArch64
10390 * execution state.
10392 void aarch64_sync_32_to_64(CPUARMState *env)
10394 int i;
10395 uint32_t mode = env->uncached_cpsr & CPSR_M;
10397 /* We can blanket copy R[0:7] to X[0:7] */
10398 for (i = 0; i < 8; i++) {
10399 env->xregs[i] = env->regs[i];
10403 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10404 * Otherwise, they come from the banked user regs.
10406 if (mode == ARM_CPU_MODE_FIQ) {
10407 for (i = 8; i < 13; i++) {
10408 env->xregs[i] = env->usr_regs[i - 8];
10410 } else {
10411 for (i = 8; i < 13; i++) {
10412 env->xregs[i] = env->regs[i];
10417 * Registers x13-x23 are the various mode SP and FP registers. Registers
10418 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10419 * from the mode banked register.
10421 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10422 env->xregs[13] = env->regs[13];
10423 env->xregs[14] = env->regs[14];
10424 } else {
10425 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10426 /* HYP is an exception in that it is copied from r14 */
10427 if (mode == ARM_CPU_MODE_HYP) {
10428 env->xregs[14] = env->regs[14];
10429 } else {
10430 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10434 if (mode == ARM_CPU_MODE_HYP) {
10435 env->xregs[15] = env->regs[13];
10436 } else {
10437 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10440 if (mode == ARM_CPU_MODE_IRQ) {
10441 env->xregs[16] = env->regs[14];
10442 env->xregs[17] = env->regs[13];
10443 } else {
10444 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10445 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10448 if (mode == ARM_CPU_MODE_SVC) {
10449 env->xregs[18] = env->regs[14];
10450 env->xregs[19] = env->regs[13];
10451 } else {
10452 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10453 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10456 if (mode == ARM_CPU_MODE_ABT) {
10457 env->xregs[20] = env->regs[14];
10458 env->xregs[21] = env->regs[13];
10459 } else {
10460 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10461 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10464 if (mode == ARM_CPU_MODE_UND) {
10465 env->xregs[22] = env->regs[14];
10466 env->xregs[23] = env->regs[13];
10467 } else {
10468 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10469 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10473 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10474 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10475 * FIQ bank for r8-r14.
10477 if (mode == ARM_CPU_MODE_FIQ) {
10478 for (i = 24; i < 31; i++) {
10479 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10481 } else {
10482 for (i = 24; i < 29; i++) {
10483 env->xregs[i] = env->fiq_regs[i - 24];
10485 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10486 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10489 env->pc = env->regs[15];
10493 * Function used to synchronize QEMU's AArch32 register set with AArch64
10494 * register set. This is necessary when switching between AArch32 and AArch64
10495 * execution state.
10497 void aarch64_sync_64_to_32(CPUARMState *env)
10499 int i;
10500 uint32_t mode = env->uncached_cpsr & CPSR_M;
10502 /* We can blanket copy X[0:7] to R[0:7] */
10503 for (i = 0; i < 8; i++) {
10504 env->regs[i] = env->xregs[i];
10508 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10509 * Otherwise, we copy x8-x12 into the banked user regs.
10511 if (mode == ARM_CPU_MODE_FIQ) {
10512 for (i = 8; i < 13; i++) {
10513 env->usr_regs[i - 8] = env->xregs[i];
10515 } else {
10516 for (i = 8; i < 13; i++) {
10517 env->regs[i] = env->xregs[i];
10522 * Registers r13 & r14 depend on the current mode.
10523 * If we are in a given mode, we copy the corresponding x registers to r13
10524 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10525 * for the mode.
10527 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10528 env->regs[13] = env->xregs[13];
10529 env->regs[14] = env->xregs[14];
10530 } else {
10531 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10534 * HYP is an exception in that it does not have its own banked r14 but
10535 * shares the USR r14
10537 if (mode == ARM_CPU_MODE_HYP) {
10538 env->regs[14] = env->xregs[14];
10539 } else {
10540 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10544 if (mode == ARM_CPU_MODE_HYP) {
10545 env->regs[13] = env->xregs[15];
10546 } else {
10547 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10550 if (mode == ARM_CPU_MODE_IRQ) {
10551 env->regs[14] = env->xregs[16];
10552 env->regs[13] = env->xregs[17];
10553 } else {
10554 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10555 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10558 if (mode == ARM_CPU_MODE_SVC) {
10559 env->regs[14] = env->xregs[18];
10560 env->regs[13] = env->xregs[19];
10561 } else {
10562 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10563 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10566 if (mode == ARM_CPU_MODE_ABT) {
10567 env->regs[14] = env->xregs[20];
10568 env->regs[13] = env->xregs[21];
10569 } else {
10570 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10571 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10574 if (mode == ARM_CPU_MODE_UND) {
10575 env->regs[14] = env->xregs[22];
10576 env->regs[13] = env->xregs[23];
10577 } else {
10578 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10579 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10583 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10584 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10585 * FIQ bank for r8-r14.
10587 if (mode == ARM_CPU_MODE_FIQ) {
10588 for (i = 24; i < 31; i++) {
10589 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10591 } else {
10592 for (i = 24; i < 29; i++) {
10593 env->fiq_regs[i - 24] = env->xregs[i];
10595 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10596 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10599 env->regs[15] = env->pc;
10602 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10603 uint32_t mask, uint32_t offset,
10604 uint32_t newpc)
10606 int new_el;
10608 /* Change the CPU state so as to actually take the exception. */
10609 switch_mode(env, new_mode);
10612 * For exceptions taken to AArch32 we must clear the SS bit in both
10613 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10615 env->pstate &= ~PSTATE_SS;
10616 env->spsr = cpsr_read(env);
10617 /* Clear IT bits. */
10618 env->condexec_bits = 0;
10619 /* Switch to the new mode, and to the correct instruction set. */
10620 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10622 /* This must be after mode switching. */
10623 new_el = arm_current_el(env);
10625 /* Set new mode endianness */
10626 env->uncached_cpsr &= ~CPSR_E;
10627 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10628 env->uncached_cpsr |= CPSR_E;
10630 /* J and IL must always be cleared for exception entry */
10631 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10632 env->daif |= mask;
10634 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10635 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10636 env->uncached_cpsr |= CPSR_SSBS;
10637 } else {
10638 env->uncached_cpsr &= ~CPSR_SSBS;
10642 if (new_mode == ARM_CPU_MODE_HYP) {
10643 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10644 env->elr_el[2] = env->regs[15];
10645 } else {
10646 /* CPSR.PAN is normally preserved preserved unless... */
10647 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10648 switch (new_el) {
10649 case 3:
10650 if (!arm_is_secure_below_el3(env)) {
10651 /* ... the target is EL3, from non-secure state. */
10652 env->uncached_cpsr &= ~CPSR_PAN;
10653 break;
10655 /* ... the target is EL3, from secure state ... */
10656 /* fall through */
10657 case 1:
10658 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10659 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10660 env->uncached_cpsr |= CPSR_PAN;
10662 break;
10666 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10667 * and we should just guard the thumb mode on V4
10669 if (arm_feature(env, ARM_FEATURE_V4T)) {
10670 env->thumb =
10671 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10673 env->regs[14] = env->regs[15] + offset;
10675 env->regs[15] = newpc;
10677 if (tcg_enabled()) {
10678 arm_rebuild_hflags(env);
10682 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10685 * Handle exception entry to Hyp mode; this is sufficiently
10686 * different to entry to other AArch32 modes that we handle it
10687 * separately here.
10689 * The vector table entry used is always the 0x14 Hyp mode entry point,
10690 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10691 * The offset applied to the preferred return address is always zero
10692 * (see DDI0487C.a section G1.12.3).
10693 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10695 uint32_t addr, mask;
10696 ARMCPU *cpu = ARM_CPU(cs);
10697 CPUARMState *env = &cpu->env;
10699 switch (cs->exception_index) {
10700 case EXCP_UDEF:
10701 addr = 0x04;
10702 break;
10703 case EXCP_SWI:
10704 addr = 0x08;
10705 break;
10706 case EXCP_BKPT:
10707 /* Fall through to prefetch abort. */
10708 case EXCP_PREFETCH_ABORT:
10709 env->cp15.ifar_s = env->exception.vaddress;
10710 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10711 (uint32_t)env->exception.vaddress);
10712 addr = 0x0c;
10713 break;
10714 case EXCP_DATA_ABORT:
10715 env->cp15.dfar_s = env->exception.vaddress;
10716 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10717 (uint32_t)env->exception.vaddress);
10718 addr = 0x10;
10719 break;
10720 case EXCP_IRQ:
10721 addr = 0x18;
10722 break;
10723 case EXCP_FIQ:
10724 addr = 0x1c;
10725 break;
10726 case EXCP_HVC:
10727 addr = 0x08;
10728 break;
10729 case EXCP_HYP_TRAP:
10730 addr = 0x14;
10731 break;
10732 default:
10733 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10736 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10737 if (!arm_feature(env, ARM_FEATURE_V8)) {
10739 * QEMU syndrome values are v8-style. v7 has the IL bit
10740 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10741 * If this is a v7 CPU, squash the IL bit in those cases.
10743 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10744 (cs->exception_index == EXCP_DATA_ABORT &&
10745 !(env->exception.syndrome & ARM_EL_ISV)) ||
10746 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10747 env->exception.syndrome &= ~ARM_EL_IL;
10750 env->cp15.esr_el[2] = env->exception.syndrome;
10753 if (arm_current_el(env) != 2 && addr < 0x14) {
10754 addr = 0x14;
10757 mask = 0;
10758 if (!(env->cp15.scr_el3 & SCR_EA)) {
10759 mask |= CPSR_A;
10761 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10762 mask |= CPSR_I;
10764 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10765 mask |= CPSR_F;
10768 addr += env->cp15.hvbar;
10770 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10773 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10775 ARMCPU *cpu = ARM_CPU(cs);
10776 CPUARMState *env = &cpu->env;
10777 uint32_t addr;
10778 uint32_t mask;
10779 int new_mode;
10780 uint32_t offset;
10781 uint32_t moe;
10783 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10784 switch (syn_get_ec(env->exception.syndrome)) {
10785 case EC_BREAKPOINT:
10786 case EC_BREAKPOINT_SAME_EL:
10787 moe = 1;
10788 break;
10789 case EC_WATCHPOINT:
10790 case EC_WATCHPOINT_SAME_EL:
10791 moe = 10;
10792 break;
10793 case EC_AA32_BKPT:
10794 moe = 3;
10795 break;
10796 case EC_VECTORCATCH:
10797 moe = 5;
10798 break;
10799 default:
10800 moe = 0;
10801 break;
10804 if (moe) {
10805 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10808 if (env->exception.target_el == 2) {
10809 arm_cpu_do_interrupt_aarch32_hyp(cs);
10810 return;
10813 switch (cs->exception_index) {
10814 case EXCP_UDEF:
10815 new_mode = ARM_CPU_MODE_UND;
10816 addr = 0x04;
10817 mask = CPSR_I;
10818 if (env->thumb) {
10819 offset = 2;
10820 } else {
10821 offset = 4;
10823 break;
10824 case EXCP_SWI:
10825 new_mode = ARM_CPU_MODE_SVC;
10826 addr = 0x08;
10827 mask = CPSR_I;
10828 /* The PC already points to the next instruction. */
10829 offset = 0;
10830 break;
10831 case EXCP_BKPT:
10832 /* Fall through to prefetch abort. */
10833 case EXCP_PREFETCH_ABORT:
10834 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10835 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10836 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10837 env->exception.fsr, (uint32_t)env->exception.vaddress);
10838 new_mode = ARM_CPU_MODE_ABT;
10839 addr = 0x0c;
10840 mask = CPSR_A | CPSR_I;
10841 offset = 4;
10842 break;
10843 case EXCP_DATA_ABORT:
10844 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10845 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10846 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10847 env->exception.fsr,
10848 (uint32_t)env->exception.vaddress);
10849 new_mode = ARM_CPU_MODE_ABT;
10850 addr = 0x10;
10851 mask = CPSR_A | CPSR_I;
10852 offset = 8;
10853 break;
10854 case EXCP_IRQ:
10855 new_mode = ARM_CPU_MODE_IRQ;
10856 addr = 0x18;
10857 /* Disable IRQ and imprecise data aborts. */
10858 mask = CPSR_A | CPSR_I;
10859 offset = 4;
10860 if (env->cp15.scr_el3 & SCR_IRQ) {
10861 /* IRQ routed to monitor mode */
10862 new_mode = ARM_CPU_MODE_MON;
10863 mask |= CPSR_F;
10865 break;
10866 case EXCP_FIQ:
10867 new_mode = ARM_CPU_MODE_FIQ;
10868 addr = 0x1c;
10869 /* Disable FIQ, IRQ and imprecise data aborts. */
10870 mask = CPSR_A | CPSR_I | CPSR_F;
10871 if (env->cp15.scr_el3 & SCR_FIQ) {
10872 /* FIQ routed to monitor mode */
10873 new_mode = ARM_CPU_MODE_MON;
10875 offset = 4;
10876 break;
10877 case EXCP_VIRQ:
10878 new_mode = ARM_CPU_MODE_IRQ;
10879 addr = 0x18;
10880 /* Disable IRQ and imprecise data aborts. */
10881 mask = CPSR_A | CPSR_I;
10882 offset = 4;
10883 break;
10884 case EXCP_VFIQ:
10885 new_mode = ARM_CPU_MODE_FIQ;
10886 addr = 0x1c;
10887 /* Disable FIQ, IRQ and imprecise data aborts. */
10888 mask = CPSR_A | CPSR_I | CPSR_F;
10889 offset = 4;
10890 break;
10891 case EXCP_VSERR:
10894 * Note that this is reported as a data abort, but the DFAR
10895 * has an UNKNOWN value. Construct the SError syndrome from
10896 * AET and ExT fields.
10898 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10900 if (extended_addresses_enabled(env)) {
10901 env->exception.fsr = arm_fi_to_lfsc(&fi);
10902 } else {
10903 env->exception.fsr = arm_fi_to_sfsc(&fi);
10905 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10906 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10907 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10908 env->exception.fsr);
10910 new_mode = ARM_CPU_MODE_ABT;
10911 addr = 0x10;
10912 mask = CPSR_A | CPSR_I;
10913 offset = 8;
10915 break;
10916 case EXCP_SMC:
10917 new_mode = ARM_CPU_MODE_MON;
10918 addr = 0x08;
10919 mask = CPSR_A | CPSR_I | CPSR_F;
10920 offset = 0;
10921 break;
10922 default:
10923 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10924 return; /* Never happens. Keep compiler happy. */
10927 if (new_mode == ARM_CPU_MODE_MON) {
10928 addr += env->cp15.mvbar;
10929 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10930 /* High vectors. When enabled, base address cannot be remapped. */
10931 addr += 0xffff0000;
10932 } else {
10934 * ARM v7 architectures provide a vector base address register to remap
10935 * the interrupt vector table.
10936 * This register is only followed in non-monitor mode, and is banked.
10937 * Note: only bits 31:5 are valid.
10939 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10942 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10943 env->cp15.scr_el3 &= ~SCR_NS;
10946 take_aarch32_exception(env, new_mode, mask, offset, addr);
10949 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10952 * Return the register number of the AArch64 view of the AArch32
10953 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10954 * be that of the AArch32 mode the exception came from.
10956 int mode = env->uncached_cpsr & CPSR_M;
10958 switch (aarch32_reg) {
10959 case 0 ... 7:
10960 return aarch32_reg;
10961 case 8 ... 12:
10962 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10963 case 13:
10964 switch (mode) {
10965 case ARM_CPU_MODE_USR:
10966 case ARM_CPU_MODE_SYS:
10967 return 13;
10968 case ARM_CPU_MODE_HYP:
10969 return 15;
10970 case ARM_CPU_MODE_IRQ:
10971 return 17;
10972 case ARM_CPU_MODE_SVC:
10973 return 19;
10974 case ARM_CPU_MODE_ABT:
10975 return 21;
10976 case ARM_CPU_MODE_UND:
10977 return 23;
10978 case ARM_CPU_MODE_FIQ:
10979 return 29;
10980 default:
10981 g_assert_not_reached();
10983 case 14:
10984 switch (mode) {
10985 case ARM_CPU_MODE_USR:
10986 case ARM_CPU_MODE_SYS:
10987 case ARM_CPU_MODE_HYP:
10988 return 14;
10989 case ARM_CPU_MODE_IRQ:
10990 return 16;
10991 case ARM_CPU_MODE_SVC:
10992 return 18;
10993 case ARM_CPU_MODE_ABT:
10994 return 20;
10995 case ARM_CPU_MODE_UND:
10996 return 22;
10997 case ARM_CPU_MODE_FIQ:
10998 return 30;
10999 default:
11000 g_assert_not_reached();
11002 case 15:
11003 return 31;
11004 default:
11005 g_assert_not_reached();
11009 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11011 uint32_t ret = cpsr_read(env);
11013 /* Move DIT to the correct location for SPSR_ELx */
11014 if (ret & CPSR_DIT) {
11015 ret &= ~CPSR_DIT;
11016 ret |= PSTATE_DIT;
11018 /* Merge PSTATE.SS into SPSR_ELx */
11019 ret |= env->pstate & PSTATE_SS;
11021 return ret;
11024 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11026 /* Return true if this syndrome value is a synchronous external abort */
11027 switch (syn_get_ec(syndrome)) {
11028 case EC_INSNABORT:
11029 case EC_INSNABORT_SAME_EL:
11030 case EC_DATAABORT:
11031 case EC_DATAABORT_SAME_EL:
11032 /* Look at fault status code for all the synchronous ext abort cases */
11033 switch (syndrome & 0x3f) {
11034 case 0x10:
11035 case 0x13:
11036 case 0x14:
11037 case 0x15:
11038 case 0x16:
11039 case 0x17:
11040 return true;
11041 default:
11042 return false;
11044 default:
11045 return false;
11049 /* Handle exception entry to a target EL which is using AArch64 */
11050 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11052 ARMCPU *cpu = ARM_CPU(cs);
11053 CPUARMState *env = &cpu->env;
11054 unsigned int new_el = env->exception.target_el;
11055 target_ulong addr = env->cp15.vbar_el[new_el];
11056 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11057 unsigned int old_mode;
11058 unsigned int cur_el = arm_current_el(env);
11059 int rt;
11061 if (tcg_enabled()) {
11063 * Note that new_el can never be 0. If cur_el is 0, then
11064 * el0_a64 is is_a64(), else el0_a64 is ignored.
11066 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11069 if (cur_el < new_el) {
11071 * Entry vector offset depends on whether the implemented EL
11072 * immediately lower than the target level is using AArch32 or AArch64
11074 bool is_aa64;
11075 uint64_t hcr;
11077 switch (new_el) {
11078 case 3:
11079 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11080 break;
11081 case 2:
11082 hcr = arm_hcr_el2_eff(env);
11083 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11084 is_aa64 = (hcr & HCR_RW) != 0;
11085 break;
11087 /* fall through */
11088 case 1:
11089 is_aa64 = is_a64(env);
11090 break;
11091 default:
11092 g_assert_not_reached();
11095 if (is_aa64) {
11096 addr += 0x400;
11097 } else {
11098 addr += 0x600;
11100 } else if (pstate_read(env) & PSTATE_SP) {
11101 addr += 0x200;
11104 switch (cs->exception_index) {
11105 case EXCP_GPC:
11106 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11107 env->cp15.mfar_el3);
11108 /* fall through */
11109 case EXCP_PREFETCH_ABORT:
11110 case EXCP_DATA_ABORT:
11112 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11113 * to be taken to the SError vector entrypoint.
11115 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11116 syndrome_is_sync_extabt(env->exception.syndrome)) {
11117 addr += 0x180;
11119 env->cp15.far_el[new_el] = env->exception.vaddress;
11120 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11121 env->cp15.far_el[new_el]);
11122 /* fall through */
11123 case EXCP_BKPT:
11124 case EXCP_UDEF:
11125 case EXCP_SWI:
11126 case EXCP_HVC:
11127 case EXCP_HYP_TRAP:
11128 case EXCP_SMC:
11129 switch (syn_get_ec(env->exception.syndrome)) {
11130 case EC_ADVSIMDFPACCESSTRAP:
11132 * QEMU internal FP/SIMD syndromes from AArch32 include the
11133 * TA and coproc fields which are only exposed if the exception
11134 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11135 * AArch64 format syndrome.
11137 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11138 break;
11139 case EC_CP14RTTRAP:
11140 case EC_CP15RTTRAP:
11141 case EC_CP14DTTRAP:
11143 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11144 * the raw register field from the insn; when taking this to
11145 * AArch64 we must convert it to the AArch64 view of the register
11146 * number. Notice that we read a 4-bit AArch32 register number and
11147 * write back a 5-bit AArch64 one.
11149 rt = extract32(env->exception.syndrome, 5, 4);
11150 rt = aarch64_regnum(env, rt);
11151 env->exception.syndrome = deposit32(env->exception.syndrome,
11152 5, 5, rt);
11153 break;
11154 case EC_CP15RRTTRAP:
11155 case EC_CP14RRTTRAP:
11156 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11157 rt = extract32(env->exception.syndrome, 5, 4);
11158 rt = aarch64_regnum(env, rt);
11159 env->exception.syndrome = deposit32(env->exception.syndrome,
11160 5, 5, rt);
11161 rt = extract32(env->exception.syndrome, 10, 4);
11162 rt = aarch64_regnum(env, rt);
11163 env->exception.syndrome = deposit32(env->exception.syndrome,
11164 10, 5, rt);
11165 break;
11167 env->cp15.esr_el[new_el] = env->exception.syndrome;
11168 break;
11169 case EXCP_IRQ:
11170 case EXCP_VIRQ:
11171 addr += 0x80;
11172 break;
11173 case EXCP_FIQ:
11174 case EXCP_VFIQ:
11175 addr += 0x100;
11176 break;
11177 case EXCP_VSERR:
11178 addr += 0x180;
11179 /* Construct the SError syndrome from IDS and ISS fields. */
11180 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11181 env->cp15.esr_el[new_el] = env->exception.syndrome;
11182 break;
11183 default:
11184 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11187 if (is_a64(env)) {
11188 old_mode = pstate_read(env);
11189 aarch64_save_sp(env, arm_current_el(env));
11190 env->elr_el[new_el] = env->pc;
11191 } else {
11192 old_mode = cpsr_read_for_spsr_elx(env);
11193 env->elr_el[new_el] = env->regs[15];
11195 aarch64_sync_32_to_64(env);
11197 env->condexec_bits = 0;
11199 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11201 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11202 env->elr_el[new_el]);
11204 if (cpu_isar_feature(aa64_pan, cpu)) {
11205 /* The value of PSTATE.PAN is normally preserved, except when ... */
11206 new_mode |= old_mode & PSTATE_PAN;
11207 switch (new_el) {
11208 case 2:
11209 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11210 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11211 != (HCR_E2H | HCR_TGE)) {
11212 break;
11214 /* fall through */
11215 case 1:
11216 /* ... the target is EL1 ... */
11217 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11218 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11219 new_mode |= PSTATE_PAN;
11221 break;
11224 if (cpu_isar_feature(aa64_mte, cpu)) {
11225 new_mode |= PSTATE_TCO;
11228 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11229 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11230 new_mode |= PSTATE_SSBS;
11231 } else {
11232 new_mode &= ~PSTATE_SSBS;
11236 pstate_write(env, PSTATE_DAIF | new_mode);
11237 env->aarch64 = true;
11238 aarch64_restore_sp(env, new_el);
11240 if (tcg_enabled()) {
11241 helper_rebuild_hflags_a64(env, new_el);
11244 env->pc = addr;
11246 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11247 new_el, env->pc, pstate_read(env));
11251 * Do semihosting call and set the appropriate return value. All the
11252 * permission and validity checks have been done at translate time.
11254 * We only see semihosting exceptions in TCG only as they are not
11255 * trapped to the hypervisor in KVM.
11257 #ifdef CONFIG_TCG
11258 static void tcg_handle_semihosting(CPUState *cs)
11260 ARMCPU *cpu = ARM_CPU(cs);
11261 CPUARMState *env = &cpu->env;
11263 if (is_a64(env)) {
11264 qemu_log_mask(CPU_LOG_INT,
11265 "...handling as semihosting call 0x%" PRIx64 "\n",
11266 env->xregs[0]);
11267 do_common_semihosting(cs);
11268 env->pc += 4;
11269 } else {
11270 qemu_log_mask(CPU_LOG_INT,
11271 "...handling as semihosting call 0x%x\n",
11272 env->regs[0]);
11273 do_common_semihosting(cs);
11274 env->regs[15] += env->thumb ? 2 : 4;
11277 #endif
11280 * Handle a CPU exception for A and R profile CPUs.
11281 * Do any appropriate logging, handle PSCI calls, and then hand off
11282 * to the AArch64-entry or AArch32-entry function depending on the
11283 * target exception level's register width.
11285 * Note: this is used for both TCG (as the do_interrupt tcg op),
11286 * and KVM to re-inject guest debug exceptions, and to
11287 * inject a Synchronous-External-Abort.
11289 void arm_cpu_do_interrupt(CPUState *cs)
11291 ARMCPU *cpu = ARM_CPU(cs);
11292 CPUARMState *env = &cpu->env;
11293 unsigned int new_el = env->exception.target_el;
11295 assert(!arm_feature(env, ARM_FEATURE_M));
11297 arm_log_exception(cs);
11298 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11299 new_el);
11300 if (qemu_loglevel_mask(CPU_LOG_INT)
11301 && !excp_is_internal(cs->exception_index)) {
11302 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11303 syn_get_ec(env->exception.syndrome),
11304 env->exception.syndrome);
11307 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11308 arm_handle_psci_call(cpu);
11309 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11310 return;
11314 * Semihosting semantics depend on the register width of the code
11315 * that caused the exception, not the target exception level, so
11316 * must be handled here.
11318 #ifdef CONFIG_TCG
11319 if (cs->exception_index == EXCP_SEMIHOST) {
11320 tcg_handle_semihosting(cs);
11321 return;
11323 #endif
11326 * Hooks may change global state so BQL should be held, also the
11327 * BQL needs to be held for any modification of
11328 * cs->interrupt_request.
11330 g_assert(qemu_mutex_iothread_locked());
11332 arm_call_pre_el_change_hook(cpu);
11334 assert(!excp_is_internal(cs->exception_index));
11335 if (arm_el_is_aa64(env, new_el)) {
11336 arm_cpu_do_interrupt_aarch64(cs);
11337 } else {
11338 arm_cpu_do_interrupt_aarch32(cs);
11341 arm_call_el_change_hook(cpu);
11343 if (!kvm_enabled()) {
11344 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11347 #endif /* !CONFIG_USER_ONLY */
11349 uint64_t arm_sctlr(CPUARMState *env, int el)
11351 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11352 if (el == 0) {
11353 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11354 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11356 return env->cp15.sctlr_el[el];
11359 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11361 if (regime_has_2_ranges(mmu_idx)) {
11362 return extract64(tcr, 37, 2);
11363 } else if (regime_is_stage2(mmu_idx)) {
11364 return 0; /* VTCR_EL2 */
11365 } else {
11366 /* Replicate the single TBI bit so we always have 2 bits. */
11367 return extract32(tcr, 20, 1) * 3;
11371 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11373 if (regime_has_2_ranges(mmu_idx)) {
11374 return extract64(tcr, 51, 2);
11375 } else if (regime_is_stage2(mmu_idx)) {
11376 return 0; /* VTCR_EL2 */
11377 } else {
11378 /* Replicate the single TBID bit so we always have 2 bits. */
11379 return extract32(tcr, 29, 1) * 3;
11383 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11385 if (regime_has_2_ranges(mmu_idx)) {
11386 return extract64(tcr, 57, 2);
11387 } else {
11388 /* Replicate the single TCMA bit so we always have 2 bits. */
11389 return extract32(tcr, 30, 1) * 3;
11393 static ARMGranuleSize tg0_to_gran_size(int tg)
11395 switch (tg) {
11396 case 0:
11397 return Gran4K;
11398 case 1:
11399 return Gran64K;
11400 case 2:
11401 return Gran16K;
11402 default:
11403 return GranInvalid;
11407 static ARMGranuleSize tg1_to_gran_size(int tg)
11409 switch (tg) {
11410 case 1:
11411 return Gran16K;
11412 case 2:
11413 return Gran4K;
11414 case 3:
11415 return Gran64K;
11416 default:
11417 return GranInvalid;
11421 static inline bool have4k(ARMCPU *cpu, bool stage2)
11423 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11424 : cpu_isar_feature(aa64_tgran4, cpu);
11427 static inline bool have16k(ARMCPU *cpu, bool stage2)
11429 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11430 : cpu_isar_feature(aa64_tgran16, cpu);
11433 static inline bool have64k(ARMCPU *cpu, bool stage2)
11435 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11436 : cpu_isar_feature(aa64_tgran64, cpu);
11439 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11440 bool stage2)
11442 switch (gran) {
11443 case Gran4K:
11444 if (have4k(cpu, stage2)) {
11445 return gran;
11447 break;
11448 case Gran16K:
11449 if (have16k(cpu, stage2)) {
11450 return gran;
11452 break;
11453 case Gran64K:
11454 if (have64k(cpu, stage2)) {
11455 return gran;
11457 break;
11458 case GranInvalid:
11459 break;
11462 * If the guest selects a granule size that isn't implemented,
11463 * the architecture requires that we behave as if it selected one
11464 * that is (with an IMPDEF choice of which one to pick). We choose
11465 * to implement the smallest supported granule size.
11467 if (have4k(cpu, stage2)) {
11468 return Gran4K;
11470 if (have16k(cpu, stage2)) {
11471 return Gran16K;
11473 assert(have64k(cpu, stage2));
11474 return Gran64K;
11477 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11478 ARMMMUIdx mmu_idx, bool data,
11479 bool el1_is_aa32)
11481 uint64_t tcr = regime_tcr(env, mmu_idx);
11482 bool epd, hpd, tsz_oob, ds, ha, hd;
11483 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11484 ARMGranuleSize gran;
11485 ARMCPU *cpu = env_archcpu(env);
11486 bool stage2 = regime_is_stage2(mmu_idx);
11488 if (!regime_has_2_ranges(mmu_idx)) {
11489 select = 0;
11490 tsz = extract32(tcr, 0, 6);
11491 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11492 if (stage2) {
11493 /* VTCR_EL2 */
11494 hpd = false;
11495 } else {
11496 hpd = extract32(tcr, 24, 1);
11498 epd = false;
11499 sh = extract32(tcr, 12, 2);
11500 ps = extract32(tcr, 16, 3);
11501 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11502 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11503 ds = extract64(tcr, 32, 1);
11504 } else {
11505 bool e0pd;
11508 * Bit 55 is always between the two regions, and is canonical for
11509 * determining if address tagging is enabled.
11511 select = extract64(va, 55, 1);
11512 if (!select) {
11513 tsz = extract32(tcr, 0, 6);
11514 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11515 epd = extract32(tcr, 7, 1);
11516 sh = extract32(tcr, 12, 2);
11517 hpd = extract64(tcr, 41, 1);
11518 e0pd = extract64(tcr, 55, 1);
11519 } else {
11520 tsz = extract32(tcr, 16, 6);
11521 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11522 epd = extract32(tcr, 23, 1);
11523 sh = extract32(tcr, 28, 2);
11524 hpd = extract64(tcr, 42, 1);
11525 e0pd = extract64(tcr, 56, 1);
11527 ps = extract64(tcr, 32, 3);
11528 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11529 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11530 ds = extract64(tcr, 59, 1);
11532 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11533 regime_is_user(env, mmu_idx)) {
11534 epd = true;
11538 gran = sanitize_gran_size(cpu, gran, stage2);
11540 if (cpu_isar_feature(aa64_st, cpu)) {
11541 max_tsz = 48 - (gran == Gran64K);
11542 } else {
11543 max_tsz = 39;
11547 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11548 * adjust the effective value of DS, as documented.
11550 min_tsz = 16;
11551 if (gran == Gran64K) {
11552 if (cpu_isar_feature(aa64_lva, cpu)) {
11553 min_tsz = 12;
11555 ds = false;
11556 } else if (ds) {
11557 if (regime_is_stage2(mmu_idx)) {
11558 if (gran == Gran16K) {
11559 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11560 } else {
11561 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11563 } else {
11564 if (gran == Gran16K) {
11565 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11566 } else {
11567 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11570 if (ds) {
11571 min_tsz = 12;
11575 if (stage2 && el1_is_aa32) {
11577 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11578 * are loosened: a configured IPA of 40 bits is permitted even if
11579 * the implemented PA is less than that (and so a 40 bit IPA would
11580 * fault for an AArch64 EL1). See R_DTLMN.
11582 min_tsz = MIN(min_tsz, 24);
11585 if (tsz > max_tsz) {
11586 tsz = max_tsz;
11587 tsz_oob = true;
11588 } else if (tsz < min_tsz) {
11589 tsz = min_tsz;
11590 tsz_oob = true;
11591 } else {
11592 tsz_oob = false;
11595 /* Present TBI as a composite with TBID. */
11596 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11597 if (!data) {
11598 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11600 tbi = (tbi >> select) & 1;
11602 return (ARMVAParameters) {
11603 .tsz = tsz,
11604 .ps = ps,
11605 .sh = sh,
11606 .select = select,
11607 .tbi = tbi,
11608 .epd = epd,
11609 .hpd = hpd,
11610 .tsz_oob = tsz_oob,
11611 .ds = ds,
11612 .ha = ha,
11613 .hd = ha && hd,
11614 .gran = gran,
11619 * Note that signed overflow is undefined in C. The following routines are
11620 * careful to use unsigned types where modulo arithmetic is required.
11621 * Failure to do so _will_ break on newer gcc.
11624 /* Signed saturating arithmetic. */
11626 /* Perform 16-bit signed saturating addition. */
11627 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11629 uint16_t res;
11631 res = a + b;
11632 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11633 if (a & 0x8000) {
11634 res = 0x8000;
11635 } else {
11636 res = 0x7fff;
11639 return res;
11642 /* Perform 8-bit signed saturating addition. */
11643 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11645 uint8_t res;
11647 res = a + b;
11648 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11649 if (a & 0x80) {
11650 res = 0x80;
11651 } else {
11652 res = 0x7f;
11655 return res;
11658 /* Perform 16-bit signed saturating subtraction. */
11659 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11661 uint16_t res;
11663 res = a - b;
11664 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11665 if (a & 0x8000) {
11666 res = 0x8000;
11667 } else {
11668 res = 0x7fff;
11671 return res;
11674 /* Perform 8-bit signed saturating subtraction. */
11675 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11677 uint8_t res;
11679 res = a - b;
11680 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11681 if (a & 0x80) {
11682 res = 0x80;
11683 } else {
11684 res = 0x7f;
11687 return res;
11690 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11691 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11692 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11693 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11694 #define PFX q
11696 #include "op_addsub.h"
11698 /* Unsigned saturating arithmetic. */
11699 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11701 uint16_t res;
11702 res = a + b;
11703 if (res < a) {
11704 res = 0xffff;
11706 return res;
11709 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11711 if (a > b) {
11712 return a - b;
11713 } else {
11714 return 0;
11718 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11720 uint8_t res;
11721 res = a + b;
11722 if (res < a) {
11723 res = 0xff;
11725 return res;
11728 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11730 if (a > b) {
11731 return a - b;
11732 } else {
11733 return 0;
11737 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11738 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11739 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11740 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11741 #define PFX uq
11743 #include "op_addsub.h"
11745 /* Signed modulo arithmetic. */
11746 #define SARITH16(a, b, n, op) do { \
11747 int32_t sum; \
11748 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11749 RESULT(sum, n, 16); \
11750 if (sum >= 0) \
11751 ge |= 3 << (n * 2); \
11752 } while (0)
11754 #define SARITH8(a, b, n, op) do { \
11755 int32_t sum; \
11756 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11757 RESULT(sum, n, 8); \
11758 if (sum >= 0) \
11759 ge |= 1 << n; \
11760 } while (0)
11763 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11764 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11765 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11766 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11767 #define PFX s
11768 #define ARITH_GE
11770 #include "op_addsub.h"
11772 /* Unsigned modulo arithmetic. */
11773 #define ADD16(a, b, n) do { \
11774 uint32_t sum; \
11775 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11776 RESULT(sum, n, 16); \
11777 if ((sum >> 16) == 1) \
11778 ge |= 3 << (n * 2); \
11779 } while (0)
11781 #define ADD8(a, b, n) do { \
11782 uint32_t sum; \
11783 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11784 RESULT(sum, n, 8); \
11785 if ((sum >> 8) == 1) \
11786 ge |= 1 << n; \
11787 } while (0)
11789 #define SUB16(a, b, n) do { \
11790 uint32_t sum; \
11791 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11792 RESULT(sum, n, 16); \
11793 if ((sum >> 16) == 0) \
11794 ge |= 3 << (n * 2); \
11795 } while (0)
11797 #define SUB8(a, b, n) do { \
11798 uint32_t sum; \
11799 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11800 RESULT(sum, n, 8); \
11801 if ((sum >> 8) == 0) \
11802 ge |= 1 << n; \
11803 } while (0)
11805 #define PFX u
11806 #define ARITH_GE
11808 #include "op_addsub.h"
11810 /* Halved signed arithmetic. */
11811 #define ADD16(a, b, n) \
11812 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11813 #define SUB16(a, b, n) \
11814 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11815 #define ADD8(a, b, n) \
11816 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11817 #define SUB8(a, b, n) \
11818 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11819 #define PFX sh
11821 #include "op_addsub.h"
11823 /* Halved unsigned arithmetic. */
11824 #define ADD16(a, b, n) \
11825 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11826 #define SUB16(a, b, n) \
11827 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11828 #define ADD8(a, b, n) \
11829 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11830 #define SUB8(a, b, n) \
11831 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11832 #define PFX uh
11834 #include "op_addsub.h"
11836 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11838 if (a > b) {
11839 return a - b;
11840 } else {
11841 return b - a;
11845 /* Unsigned sum of absolute byte differences. */
11846 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11848 uint32_t sum;
11849 sum = do_usad(a, b);
11850 sum += do_usad(a >> 8, b >> 8);
11851 sum += do_usad(a >> 16, b >> 16);
11852 sum += do_usad(a >> 24, b >> 24);
11853 return sum;
11856 /* For ARMv6 SEL instruction. */
11857 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11859 uint32_t mask;
11861 mask = 0;
11862 if (flags & 1) {
11863 mask |= 0xff;
11865 if (flags & 2) {
11866 mask |= 0xff00;
11868 if (flags & 4) {
11869 mask |= 0xff0000;
11871 if (flags & 8) {
11872 mask |= 0xff000000;
11874 return (a & mask) | (b & ~mask);
11878 * CRC helpers.
11879 * The upper bytes of val (above the number specified by 'bytes') must have
11880 * been zeroed out by the caller.
11882 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11884 uint8_t buf[4];
11886 stl_le_p(buf, val);
11888 /* zlib crc32 converts the accumulator and output to one's complement. */
11889 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11892 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11894 uint8_t buf[4];
11896 stl_le_p(buf, val);
11898 /* Linux crc32c converts the output to one's complement. */
11899 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11903 * Return the exception level to which FP-disabled exceptions should
11904 * be taken, or 0 if FP is enabled.
11906 int fp_exception_el(CPUARMState *env, int cur_el)
11908 #ifndef CONFIG_USER_ONLY
11909 uint64_t hcr_el2;
11912 * CPACR and the CPTR registers don't exist before v6, so FP is
11913 * always accessible
11915 if (!arm_feature(env, ARM_FEATURE_V6)) {
11916 return 0;
11919 if (arm_feature(env, ARM_FEATURE_M)) {
11920 /* CPACR can cause a NOCP UsageFault taken to current security state */
11921 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11922 return 1;
11925 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11926 if (!extract32(env->v7m.nsacr, 10, 1)) {
11927 /* FP insns cause a NOCP UsageFault taken to Secure */
11928 return 3;
11932 return 0;
11935 hcr_el2 = arm_hcr_el2_eff(env);
11938 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11939 * 0, 2 : trap EL0 and EL1/PL1 accesses
11940 * 1 : trap only EL0 accesses
11941 * 3 : trap no accesses
11942 * This register is ignored if E2H+TGE are both set.
11944 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11945 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11947 switch (fpen) {
11948 case 1:
11949 if (cur_el != 0) {
11950 break;
11952 /* fall through */
11953 case 0:
11954 case 2:
11955 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11956 if (!arm_el_is_aa64(env, 3)
11957 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11958 return 3;
11960 if (cur_el <= 1) {
11961 return 1;
11963 break;
11968 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11969 * to control non-secure access to the FPU. It doesn't have any
11970 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11972 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11973 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11974 if (!extract32(env->cp15.nsacr, 10, 1)) {
11975 /* FP insns act as UNDEF */
11976 return cur_el == 2 ? 2 : 1;
11981 * CPTR_EL2 is present in v7VE or v8, and changes format
11982 * with HCR_EL2.E2H (regardless of TGE).
11984 if (cur_el <= 2) {
11985 if (hcr_el2 & HCR_E2H) {
11986 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11987 case 1:
11988 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11989 break;
11991 /* fall through */
11992 case 0:
11993 case 2:
11994 return 2;
11996 } else if (arm_is_el2_enabled(env)) {
11997 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11998 return 2;
12003 /* CPTR_EL3 : present in v8 */
12004 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12005 /* Trap all FP ops to EL3 */
12006 return 3;
12008 #endif
12009 return 0;
12012 /* Return the exception level we're running at if this is our mmu_idx */
12013 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12015 if (mmu_idx & ARM_MMU_IDX_M) {
12016 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12019 switch (mmu_idx) {
12020 case ARMMMUIdx_E10_0:
12021 case ARMMMUIdx_E20_0:
12022 return 0;
12023 case ARMMMUIdx_E10_1:
12024 case ARMMMUIdx_E10_1_PAN:
12025 return 1;
12026 case ARMMMUIdx_E2:
12027 case ARMMMUIdx_E20_2:
12028 case ARMMMUIdx_E20_2_PAN:
12029 return 2;
12030 case ARMMMUIdx_E3:
12031 return 3;
12032 default:
12033 g_assert_not_reached();
12037 #ifndef CONFIG_TCG
12038 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12040 g_assert_not_reached();
12042 #endif
12044 static bool arm_pan_enabled(CPUARMState *env)
12046 if (is_a64(env)) {
12047 return env->pstate & PSTATE_PAN;
12048 } else {
12049 return env->uncached_cpsr & CPSR_PAN;
12053 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12055 ARMMMUIdx idx;
12056 uint64_t hcr;
12058 if (arm_feature(env, ARM_FEATURE_M)) {
12059 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12062 /* See ARM pseudo-function ELIsInHost. */
12063 switch (el) {
12064 case 0:
12065 hcr = arm_hcr_el2_eff(env);
12066 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12067 idx = ARMMMUIdx_E20_0;
12068 } else {
12069 idx = ARMMMUIdx_E10_0;
12071 break;
12072 case 1:
12073 if (arm_pan_enabled(env)) {
12074 idx = ARMMMUIdx_E10_1_PAN;
12075 } else {
12076 idx = ARMMMUIdx_E10_1;
12078 break;
12079 case 2:
12080 /* Note that TGE does not apply at EL2. */
12081 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12082 if (arm_pan_enabled(env)) {
12083 idx = ARMMMUIdx_E20_2_PAN;
12084 } else {
12085 idx = ARMMMUIdx_E20_2;
12087 } else {
12088 idx = ARMMMUIdx_E2;
12090 break;
12091 case 3:
12092 return ARMMMUIdx_E3;
12093 default:
12094 g_assert_not_reached();
12097 return idx;
12100 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12102 return arm_mmu_idx_el(env, arm_current_el(env));
12105 static bool mve_no_pred(CPUARMState *env)
12108 * Return true if there is definitely no predication of MVE
12109 * instructions by VPR or LTPSIZE. (Returning false even if there
12110 * isn't any predication is OK; generated code will just be
12111 * a little worse.)
12112 * If the CPU does not implement MVE then this TB flag is always 0.
12114 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12115 * logic in gen_update_fp_context() needs to be updated to match.
12117 * We do not include the effect of the ECI bits here -- they are
12118 * tracked in other TB flags. This simplifies the logic for
12119 * "when did we emit code that changes the MVE_NO_PRED TB flag
12120 * and thus need to end the TB?".
12122 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12123 return false;
12125 if (env->v7m.vpr) {
12126 return false;
12128 if (env->v7m.ltpsize < 4) {
12129 return false;
12131 return true;
12134 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12135 uint64_t *cs_base, uint32_t *pflags)
12137 CPUARMTBFlags flags;
12139 assert_hflags_rebuild_correctly(env);
12140 flags = env->hflags;
12142 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12143 *pc = env->pc;
12144 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12145 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12147 } else {
12148 *pc = env->regs[15];
12150 if (arm_feature(env, ARM_FEATURE_M)) {
12151 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12152 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12153 != env->v7m.secure) {
12154 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12157 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12158 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12159 (env->v7m.secure &&
12160 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12162 * ASPEN is set, but FPCA/SFPA indicate that there is no
12163 * active FP context; we must create a new FP context before
12164 * executing any FP insn.
12166 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12169 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12170 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12171 DP_TBFLAG_M32(flags, LSPACT, 1);
12174 if (mve_no_pred(env)) {
12175 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12177 } else {
12179 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12180 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12182 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12183 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12184 } else {
12185 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12186 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12188 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12189 DP_TBFLAG_A32(flags, VFPEN, 1);
12193 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12194 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12198 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12199 * states defined in the ARM ARM for software singlestep:
12200 * SS_ACTIVE PSTATE.SS State
12201 * 0 x Inactive (the TB flag for SS is always 0)
12202 * 1 0 Active-pending
12203 * 1 1 Active-not-pending
12204 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12206 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12207 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12210 *pflags = flags.flags;
12211 *cs_base = flags.flags2;
12214 #ifdef TARGET_AARCH64
12216 * The manual says that when SVE is enabled and VQ is widened the
12217 * implementation is allowed to zero the previously inaccessible
12218 * portion of the registers. The corollary to that is that when
12219 * SVE is enabled and VQ is narrowed we are also allowed to zero
12220 * the now inaccessible portion of the registers.
12222 * The intent of this is that no predicate bit beyond VQ is ever set.
12223 * Which means that some operations on predicate registers themselves
12224 * may operate on full uint64_t or even unrolled across the maximum
12225 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12226 * may well be cheaper than conditionals to restrict the operation
12227 * to the relevant portion of a uint16_t[16].
12229 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12231 int i, j;
12232 uint64_t pmask;
12234 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12235 assert(vq <= env_archcpu(env)->sve_max_vq);
12237 /* Zap the high bits of the zregs. */
12238 for (i = 0; i < 32; i++) {
12239 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12242 /* Zap the high bits of the pregs and ffr. */
12243 pmask = 0;
12244 if (vq & 3) {
12245 pmask = ~(-1ULL << (16 * (vq & 3)));
12247 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12248 for (i = 0; i < 17; ++i) {
12249 env->vfp.pregs[i].p[j] &= pmask;
12251 pmask = 0;
12255 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12257 int exc_el;
12259 if (sm) {
12260 exc_el = sme_exception_el(env, el);
12261 } else {
12262 exc_el = sve_exception_el(env, el);
12264 if (exc_el) {
12265 return 0; /* disabled */
12267 return sve_vqm1_for_el_sm(env, el, sm);
12271 * Notice a change in SVE vector size when changing EL.
12273 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12274 int new_el, bool el0_a64)
12276 ARMCPU *cpu = env_archcpu(env);
12277 int old_len, new_len;
12278 bool old_a64, new_a64, sm;
12280 /* Nothing to do if no SVE. */
12281 if (!cpu_isar_feature(aa64_sve, cpu)) {
12282 return;
12285 /* Nothing to do if FP is disabled in either EL. */
12286 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12287 return;
12290 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12291 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12294 * Both AArch64.TakeException and AArch64.ExceptionReturn
12295 * invoke ResetSVEState when taking an exception from, or
12296 * returning to, AArch32 state when PSTATE.SM is enabled.
12298 sm = FIELD_EX64(env->svcr, SVCR, SM);
12299 if (old_a64 != new_a64 && sm) {
12300 arm_reset_sve_state(env);
12301 return;
12305 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12306 * at ELx, or not available because the EL is in AArch32 state, then
12307 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12308 * has an effective value of 0".
12310 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12311 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12312 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12313 * we already have the correct register contents when encountering the
12314 * vq0->vq0 transition between EL0->EL1.
12316 old_len = new_len = 0;
12317 if (old_a64) {
12318 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12320 if (new_a64) {
12321 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12324 /* When changing vector length, clear inaccessible state. */
12325 if (new_len < old_len) {
12326 aarch64_sve_narrow_vq(env, new_len + 1);
12329 #endif
12331 #ifndef CONFIG_USER_ONLY
12332 ARMSecuritySpace arm_security_space(CPUARMState *env)
12334 if (arm_feature(env, ARM_FEATURE_M)) {
12335 return arm_secure_to_space(env->v7m.secure);
12339 * If EL3 is not supported then the secure state is implementation
12340 * defined, in which case QEMU defaults to non-secure.
12342 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12343 return ARMSS_NonSecure;
12346 /* Check for AArch64 EL3 or AArch32 Mon. */
12347 if (is_a64(env)) {
12348 if (extract32(env->pstate, 2, 2) == 3) {
12349 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12350 return ARMSS_Root;
12351 } else {
12352 return ARMSS_Secure;
12355 } else {
12356 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12357 return ARMSS_Secure;
12361 return arm_security_space_below_el3(env);
12364 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12366 assert(!arm_feature(env, ARM_FEATURE_M));
12369 * If EL3 is not supported then the secure state is implementation
12370 * defined, in which case QEMU defaults to non-secure.
12372 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12373 return ARMSS_NonSecure;
12377 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12378 * Ignoring NSE when !NS retains consistency without having to
12379 * modify other predicates.
12381 if (!(env->cp15.scr_el3 & SCR_NS)) {
12382 return ARMSS_Secure;
12383 } else if (env->cp15.scr_el3 & SCR_NSE) {
12384 return ARMSS_Realm;
12385 } else {
12386 return ARMSS_NonSecure;
12389 #endif /* !CONFIG_USER_ONLY */