docs/system/gdb.rst: Add some more heading structure
[qemu/ar7.git] / target / riscv / cpu_helper.c
blob21c54ef561346b8a527a615d64ee8219159cc8c5
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
32 return 0;
33 #else
34 return env->priv;
35 #endif
38 #ifndef CONFIG_USER_ONLY
39 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
41 target_ulong irqs;
43 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
44 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
45 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
47 target_ulong pending = env->mip & env->mie &
48 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
49 target_ulong vspending = (env->mip & env->mie &
50 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
52 target_ulong mie = env->priv < PRV_M ||
53 (env->priv == PRV_M && mstatus_mie);
54 target_ulong sie = env->priv < PRV_S ||
55 (env->priv == PRV_S && mstatus_sie);
56 target_ulong hs_sie = env->priv < PRV_S ||
57 (env->priv == PRV_S && hs_mstatus_sie);
59 if (riscv_cpu_virt_enabled(env)) {
60 target_ulong pending_hs_irq = pending & -hs_sie;
62 if (pending_hs_irq) {
63 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
64 return ctz64(pending_hs_irq);
67 pending = vspending;
70 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
72 if (irqs) {
73 return ctz64(irqs); /* since non-zero */
74 } else {
75 return EXCP_NONE; /* indicates no pending interrupt */
78 #endif
80 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
82 #if !defined(CONFIG_USER_ONLY)
83 if (interrupt_request & CPU_INTERRUPT_HARD) {
84 RISCVCPU *cpu = RISCV_CPU(cs);
85 CPURISCVState *env = &cpu->env;
86 int interruptno = riscv_cpu_local_irq_pending(env);
87 if (interruptno >= 0) {
88 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
89 riscv_cpu_do_interrupt(cs);
90 return true;
93 #endif
94 return false;
97 #if !defined(CONFIG_USER_ONLY)
99 /* Return true is floating point support is currently enabled */
100 bool riscv_cpu_fp_enabled(CPURISCVState *env)
102 if (env->mstatus & MSTATUS_FS) {
103 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
104 return false;
106 return true;
109 return false;
112 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
114 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
115 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
116 MSTATUS64_UXL;
117 bool current_virt = riscv_cpu_virt_enabled(env);
119 g_assert(riscv_has_ext(env, RVH));
121 if (current_virt) {
122 /* Current V=1 and we are about to change to V=0 */
123 env->vsstatus = env->mstatus & mstatus_mask;
124 env->mstatus &= ~mstatus_mask;
125 env->mstatus |= env->mstatus_hs;
127 env->vstvec = env->stvec;
128 env->stvec = env->stvec_hs;
130 env->vsscratch = env->sscratch;
131 env->sscratch = env->sscratch_hs;
133 env->vsepc = env->sepc;
134 env->sepc = env->sepc_hs;
136 env->vscause = env->scause;
137 env->scause = env->scause_hs;
139 env->vstval = env->sbadaddr;
140 env->sbadaddr = env->stval_hs;
142 env->vsatp = env->satp;
143 env->satp = env->satp_hs;
144 } else {
145 /* Current V=0 and we are about to change to V=1 */
146 env->mstatus_hs = env->mstatus & mstatus_mask;
147 env->mstatus &= ~mstatus_mask;
148 env->mstatus |= env->vsstatus;
150 env->stvec_hs = env->stvec;
151 env->stvec = env->vstvec;
153 env->sscratch_hs = env->sscratch;
154 env->sscratch = env->vsscratch;
156 env->sepc_hs = env->sepc;
157 env->sepc = env->vsepc;
159 env->scause_hs = env->scause;
160 env->scause = env->vscause;
162 env->stval_hs = env->sbadaddr;
163 env->sbadaddr = env->vstval;
165 env->satp_hs = env->satp;
166 env->satp = env->vsatp;
170 bool riscv_cpu_virt_enabled(CPURISCVState *env)
172 if (!riscv_has_ext(env, RVH)) {
173 return false;
176 return get_field(env->virt, VIRT_ONOFF);
179 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
181 if (!riscv_has_ext(env, RVH)) {
182 return;
185 /* Flush the TLB on all virt mode changes. */
186 if (get_field(env->virt, VIRT_ONOFF) != enable) {
187 tlb_flush(env_cpu(env));
190 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
193 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
195 if (!riscv_has_ext(env, RVH)) {
196 return false;
199 return get_field(env->virt, FORCE_HS_EXCEP);
202 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
204 if (!riscv_has_ext(env, RVH)) {
205 return;
208 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
211 bool riscv_cpu_two_stage_lookup(int mmu_idx)
213 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
216 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
218 CPURISCVState *env = &cpu->env;
219 if (env->miclaim & interrupts) {
220 return -1;
221 } else {
222 env->miclaim |= interrupts;
223 return 0;
227 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
229 CPURISCVState *env = &cpu->env;
230 CPUState *cs = CPU(cpu);
231 uint32_t old = env->mip;
232 bool locked = false;
234 if (!qemu_mutex_iothread_locked()) {
235 locked = true;
236 qemu_mutex_lock_iothread();
239 env->mip = (env->mip & ~mask) | (value & mask);
241 if (env->mip) {
242 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
243 } else {
244 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
247 if (locked) {
248 qemu_mutex_unlock_iothread();
251 return old;
254 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
255 uint32_t arg)
257 env->rdtime_fn = fn;
258 env->rdtime_fn_arg = arg;
261 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
263 if (newpriv > PRV_M) {
264 g_assert_not_reached();
266 if (newpriv == PRV_H) {
267 newpriv = PRV_U;
269 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
270 env->priv = newpriv;
273 * Clear the load reservation - otherwise a reservation placed in one
274 * context/process can be used by another, resulting in an SC succeeding
275 * incorrectly. Version 2.2 of the ISA specification explicitly requires
276 * this behaviour, while later revisions say that the kernel "should" use
277 * an SC instruction to force the yielding of a load reservation on a
278 * preemptive context switch. As a result, do both.
280 env->load_res = -1;
284 * get_physical_address_pmp - check PMP permission for this physical address
286 * Match the PMP region and check permission for this physical address and it's
287 * TLB page. Returns 0 if the permission checking was successful
289 * @env: CPURISCVState
290 * @prot: The returned protection attributes
291 * @tlb_size: TLB page size containing addr. It could be modified after PMP
292 * permission checking. NULL if not set TLB page for addr.
293 * @addr: The physical address to be checked permission
294 * @access_type: The type of MMU access
295 * @mode: Indicates current privilege level.
297 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
298 target_ulong *tlb_size, hwaddr addr,
299 int size, MMUAccessType access_type,
300 int mode)
302 pmp_priv_t pmp_priv;
303 target_ulong tlb_size_pmp = 0;
305 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
307 return TRANSLATE_SUCCESS;
310 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
311 mode)) {
312 *prot = 0;
313 return TRANSLATE_PMP_FAIL;
316 *prot = pmp_priv_to_page_prot(pmp_priv);
317 if (tlb_size != NULL) {
318 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
319 *tlb_size = tlb_size_pmp;
323 return TRANSLATE_SUCCESS;
326 /* get_physical_address - get the physical address for this virtual address
328 * Do a page table walk to obtain the physical address corresponding to a
329 * virtual address. Returns 0 if the translation was successful
331 * Adapted from Spike's mmu_t::translate and mmu_t::walk
333 * @env: CPURISCVState
334 * @physical: This will be set to the calculated physical address
335 * @prot: The returned protection attributes
336 * @addr: The virtual address to be translated
337 * @fault_pte_addr: If not NULL, this will be set to fault pte address
338 * when a error occurs on pte address translation.
339 * This will already be shifted to match htval.
340 * @access_type: The type of MMU access
341 * @mmu_idx: Indicates current privilege level
342 * @first_stage: Are we in first stage translation?
343 * Second stage is used for hypervisor guest translation
344 * @two_stage: Are we going to perform two stage translation
346 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
347 int *prot, target_ulong addr,
348 target_ulong *fault_pte_addr,
349 int access_type, int mmu_idx,
350 bool first_stage, bool two_stage)
352 /* NOTE: the env->pc value visible here will not be
353 * correct, but the value visible to the exception handler
354 * (riscv_cpu_do_interrupt) is correct */
355 MemTxResult res;
356 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
357 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
358 bool use_background = false;
361 * Check if we should use the background registers for the two
362 * stage translation. We don't need to check if we actually need
363 * two stage translation as that happened before this function
364 * was called. Background registers will be used if the guest has
365 * forced a two stage translation to be on (in HS or M mode).
367 if (!riscv_cpu_virt_enabled(env) && two_stage) {
368 use_background = true;
371 /* MPRV does not affect the virtual-machine load/store
372 instructions, HLV, HLVX, and HSV. */
373 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
374 mode = get_field(env->hstatus, HSTATUS_SPVP);
375 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
376 if (get_field(env->mstatus, MSTATUS_MPRV)) {
377 mode = get_field(env->mstatus, MSTATUS_MPP);
381 if (first_stage == false) {
382 /* We are in stage 2 translation, this is similar to stage 1. */
383 /* Stage 2 is always taken as U-mode */
384 mode = PRV_U;
387 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
388 *physical = addr;
389 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
390 return TRANSLATE_SUCCESS;
393 *prot = 0;
395 hwaddr base;
396 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
398 if (first_stage == true) {
399 mxr = get_field(env->mstatus, MSTATUS_MXR);
400 } else {
401 mxr = get_field(env->vsstatus, MSTATUS_MXR);
404 if (first_stage == true) {
405 if (use_background) {
406 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
407 vm = get_field(env->vsatp, SATP_MODE);
408 } else {
409 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
410 vm = get_field(env->satp, SATP_MODE);
412 widened = 0;
413 } else {
414 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
415 vm = get_field(env->hgatp, HGATP_MODE);
416 widened = 2;
418 /* status.SUM will be ignored if execute on background */
419 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background;
420 switch (vm) {
421 case VM_1_10_SV32:
422 levels = 2; ptidxbits = 10; ptesize = 4; break;
423 case VM_1_10_SV39:
424 levels = 3; ptidxbits = 9; ptesize = 8; break;
425 case VM_1_10_SV48:
426 levels = 4; ptidxbits = 9; ptesize = 8; break;
427 case VM_1_10_SV57:
428 levels = 5; ptidxbits = 9; ptesize = 8; break;
429 case VM_1_10_MBARE:
430 *physical = addr;
431 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
432 return TRANSLATE_SUCCESS;
433 default:
434 g_assert_not_reached();
437 CPUState *cs = env_cpu(env);
438 int va_bits = PGSHIFT + levels * ptidxbits + widened;
439 target_ulong mask, masked_msbs;
441 if (TARGET_LONG_BITS > (va_bits - 1)) {
442 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
443 } else {
444 mask = 0;
446 masked_msbs = (addr >> (va_bits - 1)) & mask;
448 if (masked_msbs != 0 && masked_msbs != mask) {
449 return TRANSLATE_FAIL;
452 int ptshift = (levels - 1) * ptidxbits;
453 int i;
455 #if !TCG_OVERSIZED_GUEST
456 restart:
457 #endif
458 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
459 target_ulong idx;
460 if (i == 0) {
461 idx = (addr >> (PGSHIFT + ptshift)) &
462 ((1 << (ptidxbits + widened)) - 1);
463 } else {
464 idx = (addr >> (PGSHIFT + ptshift)) &
465 ((1 << ptidxbits) - 1);
468 /* check that physical address of PTE is legal */
469 hwaddr pte_addr;
471 if (two_stage && first_stage) {
472 int vbase_prot;
473 hwaddr vbase;
475 /* Do the second stage translation on the base PTE address. */
476 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
477 base, NULL, MMU_DATA_LOAD,
478 mmu_idx, false, true);
480 if (vbase_ret != TRANSLATE_SUCCESS) {
481 if (fault_pte_addr) {
482 *fault_pte_addr = (base + idx * ptesize) >> 2;
484 return TRANSLATE_G_STAGE_FAIL;
487 pte_addr = vbase + idx * ptesize;
488 } else {
489 pte_addr = base + idx * ptesize;
492 int pmp_prot;
493 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
494 sizeof(target_ulong),
495 MMU_DATA_LOAD, PRV_S);
496 if (pmp_ret != TRANSLATE_SUCCESS) {
497 return TRANSLATE_PMP_FAIL;
500 target_ulong pte;
501 if (riscv_cpu_is_32bit(env)) {
502 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
503 } else {
504 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
507 if (res != MEMTX_OK) {
508 return TRANSLATE_FAIL;
511 hwaddr ppn = pte >> PTE_PPN_SHIFT;
513 if (!(pte & PTE_V)) {
514 /* Invalid PTE */
515 return TRANSLATE_FAIL;
516 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
517 /* Inner PTE, continue walking */
518 base = ppn << PGSHIFT;
519 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
520 /* Reserved leaf PTE flags: PTE_W */
521 return TRANSLATE_FAIL;
522 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
523 /* Reserved leaf PTE flags: PTE_W + PTE_X */
524 return TRANSLATE_FAIL;
525 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
526 (!sum || access_type == MMU_INST_FETCH))) {
527 /* User PTE flags when not U mode and mstatus.SUM is not set,
528 or the access type is an instruction fetch */
529 return TRANSLATE_FAIL;
530 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
531 /* Supervisor PTE flags when not S mode */
532 return TRANSLATE_FAIL;
533 } else if (ppn & ((1ULL << ptshift) - 1)) {
534 /* Misaligned PPN */
535 return TRANSLATE_FAIL;
536 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
537 ((pte & PTE_X) && mxr))) {
538 /* Read access check failed */
539 return TRANSLATE_FAIL;
540 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
541 /* Write access check failed */
542 return TRANSLATE_FAIL;
543 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
544 /* Fetch access check failed */
545 return TRANSLATE_FAIL;
546 } else {
547 /* if necessary, set accessed and dirty bits. */
548 target_ulong updated_pte = pte | PTE_A |
549 (access_type == MMU_DATA_STORE ? PTE_D : 0);
551 /* Page table updates need to be atomic with MTTCG enabled */
552 if (updated_pte != pte) {
554 * - if accessed or dirty bits need updating, and the PTE is
555 * in RAM, then we do so atomically with a compare and swap.
556 * - if the PTE is in IO space or ROM, then it can't be updated
557 * and we return TRANSLATE_FAIL.
558 * - if the PTE changed by the time we went to update it, then
559 * it is no longer valid and we must re-walk the page table.
561 MemoryRegion *mr;
562 hwaddr l = sizeof(target_ulong), addr1;
563 mr = address_space_translate(cs->as, pte_addr,
564 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
565 if (memory_region_is_ram(mr)) {
566 target_ulong *pte_pa =
567 qemu_map_ram_ptr(mr->ram_block, addr1);
568 #if TCG_OVERSIZED_GUEST
569 /* MTTCG is not enabled on oversized TCG guests so
570 * page table updates do not need to be atomic */
571 *pte_pa = pte = updated_pte;
572 #else
573 target_ulong old_pte =
574 qatomic_cmpxchg(pte_pa, pte, updated_pte);
575 if (old_pte != pte) {
576 goto restart;
577 } else {
578 pte = updated_pte;
580 #endif
581 } else {
582 /* misconfigured PTE in ROM (AD bits are not preset) or
583 * PTE is in IO space and can't be updated atomically */
584 return TRANSLATE_FAIL;
588 /* for superpage mappings, make a fake leaf PTE for the TLB's
589 benefit. */
590 target_ulong vpn = addr >> PGSHIFT;
591 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
592 (addr & ~TARGET_PAGE_MASK);
594 /* set permissions on the TLB entry */
595 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
596 *prot |= PAGE_READ;
598 if ((pte & PTE_X)) {
599 *prot |= PAGE_EXEC;
601 /* add write permission on stores or if the page is already dirty,
602 so that we TLB miss on later writes to update the dirty bit */
603 if ((pte & PTE_W) &&
604 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
605 *prot |= PAGE_WRITE;
607 return TRANSLATE_SUCCESS;
610 return TRANSLATE_FAIL;
613 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
614 MMUAccessType access_type, bool pmp_violation,
615 bool first_stage, bool two_stage)
617 CPUState *cs = env_cpu(env);
618 int page_fault_exceptions;
619 if (first_stage) {
620 page_fault_exceptions =
621 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
622 !pmp_violation;
623 } else {
624 page_fault_exceptions =
625 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
626 !pmp_violation;
628 switch (access_type) {
629 case MMU_INST_FETCH:
630 if (riscv_cpu_virt_enabled(env) && !first_stage) {
631 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
632 } else {
633 cs->exception_index = page_fault_exceptions ?
634 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
636 break;
637 case MMU_DATA_LOAD:
638 if (two_stage && !first_stage) {
639 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
640 } else {
641 cs->exception_index = page_fault_exceptions ?
642 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
644 break;
645 case MMU_DATA_STORE:
646 if (two_stage && !first_stage) {
647 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
648 } else {
649 cs->exception_index = page_fault_exceptions ?
650 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
652 break;
653 default:
654 g_assert_not_reached();
656 env->badaddr = address;
657 env->two_stage_lookup = two_stage;
660 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
662 RISCVCPU *cpu = RISCV_CPU(cs);
663 CPURISCVState *env = &cpu->env;
664 hwaddr phys_addr;
665 int prot;
666 int mmu_idx = cpu_mmu_index(&cpu->env, false);
668 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
669 true, riscv_cpu_virt_enabled(env))) {
670 return -1;
673 if (riscv_cpu_virt_enabled(env)) {
674 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
675 0, mmu_idx, false, true)) {
676 return -1;
680 return phys_addr & TARGET_PAGE_MASK;
683 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
684 vaddr addr, unsigned size,
685 MMUAccessType access_type,
686 int mmu_idx, MemTxAttrs attrs,
687 MemTxResult response, uintptr_t retaddr)
689 RISCVCPU *cpu = RISCV_CPU(cs);
690 CPURISCVState *env = &cpu->env;
692 if (access_type == MMU_DATA_STORE) {
693 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
694 } else {
695 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
698 env->badaddr = addr;
699 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
700 riscv_cpu_two_stage_lookup(mmu_idx);
701 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
704 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
705 MMUAccessType access_type, int mmu_idx,
706 uintptr_t retaddr)
708 RISCVCPU *cpu = RISCV_CPU(cs);
709 CPURISCVState *env = &cpu->env;
710 switch (access_type) {
711 case MMU_INST_FETCH:
712 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
713 break;
714 case MMU_DATA_LOAD:
715 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
716 break;
717 case MMU_DATA_STORE:
718 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
719 break;
720 default:
721 g_assert_not_reached();
723 env->badaddr = addr;
724 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
725 riscv_cpu_two_stage_lookup(mmu_idx);
726 riscv_raise_exception(env, cs->exception_index, retaddr);
728 #endif /* !CONFIG_USER_ONLY */
730 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
731 MMUAccessType access_type, int mmu_idx,
732 bool probe, uintptr_t retaddr)
734 RISCVCPU *cpu = RISCV_CPU(cs);
735 CPURISCVState *env = &cpu->env;
736 #ifndef CONFIG_USER_ONLY
737 vaddr im_address;
738 hwaddr pa = 0;
739 int prot, prot2, prot_pmp;
740 bool pmp_violation = false;
741 bool first_stage_error = true;
742 bool two_stage_lookup = false;
743 int ret = TRANSLATE_FAIL;
744 int mode = mmu_idx;
745 /* default TLB page size */
746 target_ulong tlb_size = TARGET_PAGE_SIZE;
748 env->guest_phys_fault_addr = 0;
750 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
751 __func__, address, access_type, mmu_idx);
753 /* MPRV does not affect the virtual-machine load/store
754 instructions, HLV, HLVX, and HSV. */
755 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
756 mode = get_field(env->hstatus, HSTATUS_SPVP);
757 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
758 get_field(env->mstatus, MSTATUS_MPRV)) {
759 mode = get_field(env->mstatus, MSTATUS_MPP);
760 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
761 two_stage_lookup = true;
765 if (riscv_cpu_virt_enabled(env) ||
766 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
767 access_type != MMU_INST_FETCH)) {
768 /* Two stage lookup */
769 ret = get_physical_address(env, &pa, &prot, address,
770 &env->guest_phys_fault_addr, access_type,
771 mmu_idx, true, true);
774 * A G-stage exception may be triggered during two state lookup.
775 * And the env->guest_phys_fault_addr has already been set in
776 * get_physical_address().
778 if (ret == TRANSLATE_G_STAGE_FAIL) {
779 first_stage_error = false;
780 access_type = MMU_DATA_LOAD;
783 qemu_log_mask(CPU_LOG_MMU,
784 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
785 TARGET_FMT_plx " prot %d\n",
786 __func__, address, ret, pa, prot);
788 if (ret == TRANSLATE_SUCCESS) {
789 /* Second stage lookup */
790 im_address = pa;
792 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
793 access_type, mmu_idx, false, true);
795 qemu_log_mask(CPU_LOG_MMU,
796 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
797 TARGET_FMT_plx " prot %d\n",
798 __func__, im_address, ret, pa, prot2);
800 prot &= prot2;
802 if (ret == TRANSLATE_SUCCESS) {
803 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
804 size, access_type, mode);
806 qemu_log_mask(CPU_LOG_MMU,
807 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
808 " %d tlb_size " TARGET_FMT_lu "\n",
809 __func__, pa, ret, prot_pmp, tlb_size);
811 prot &= prot_pmp;
814 if (ret != TRANSLATE_SUCCESS) {
816 * Guest physical address translation failed, this is a HS
817 * level exception
819 first_stage_error = false;
820 env->guest_phys_fault_addr = (im_address |
821 (address &
822 (TARGET_PAGE_SIZE - 1))) >> 2;
825 } else {
826 /* Single stage lookup */
827 ret = get_physical_address(env, &pa, &prot, address, NULL,
828 access_type, mmu_idx, true, false);
830 qemu_log_mask(CPU_LOG_MMU,
831 "%s address=%" VADDR_PRIx " ret %d physical "
832 TARGET_FMT_plx " prot %d\n",
833 __func__, address, ret, pa, prot);
835 if (ret == TRANSLATE_SUCCESS) {
836 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
837 size, access_type, mode);
839 qemu_log_mask(CPU_LOG_MMU,
840 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
841 " %d tlb_size " TARGET_FMT_lu "\n",
842 __func__, pa, ret, prot_pmp, tlb_size);
844 prot &= prot_pmp;
848 if (ret == TRANSLATE_PMP_FAIL) {
849 pmp_violation = true;
852 if (ret == TRANSLATE_SUCCESS) {
853 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
854 prot, mmu_idx, tlb_size);
855 return true;
856 } else if (probe) {
857 return false;
858 } else {
859 raise_mmu_exception(env, address, access_type, pmp_violation,
860 first_stage_error,
861 riscv_cpu_virt_enabled(env) ||
862 riscv_cpu_two_stage_lookup(mmu_idx));
863 riscv_raise_exception(env, cs->exception_index, retaddr);
866 return true;
868 #else
869 switch (access_type) {
870 case MMU_INST_FETCH:
871 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
872 break;
873 case MMU_DATA_LOAD:
874 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
875 break;
876 case MMU_DATA_STORE:
877 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
878 break;
879 default:
880 g_assert_not_reached();
882 env->badaddr = address;
883 cpu_loop_exit_restore(cs, retaddr);
884 #endif
888 * Handle Traps
890 * Adapted from Spike's processor_t::take_trap.
893 void riscv_cpu_do_interrupt(CPUState *cs)
895 #if !defined(CONFIG_USER_ONLY)
897 RISCVCPU *cpu = RISCV_CPU(cs);
898 CPURISCVState *env = &cpu->env;
899 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
900 uint64_t s;
902 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
903 * so we mask off the MSB and separate into trap type and cause.
905 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
906 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
907 target_ulong deleg = async ? env->mideleg : env->medeleg;
908 bool write_tval = false;
909 target_ulong tval = 0;
910 target_ulong htval = 0;
911 target_ulong mtval2 = 0;
913 if (cause == RISCV_EXCP_SEMIHOST) {
914 if (env->priv >= PRV_S) {
915 env->gpr[xA0] = do_common_semihosting(cs);
916 env->pc += 4;
917 return;
919 cause = RISCV_EXCP_BREAKPOINT;
922 if (!async) {
923 /* set tval to badaddr for traps with address information */
924 switch (cause) {
925 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
926 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
927 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
928 force_hs_execp = true;
929 /* fallthrough */
930 case RISCV_EXCP_INST_ADDR_MIS:
931 case RISCV_EXCP_INST_ACCESS_FAULT:
932 case RISCV_EXCP_LOAD_ADDR_MIS:
933 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
934 case RISCV_EXCP_LOAD_ACCESS_FAULT:
935 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
936 case RISCV_EXCP_INST_PAGE_FAULT:
937 case RISCV_EXCP_LOAD_PAGE_FAULT:
938 case RISCV_EXCP_STORE_PAGE_FAULT:
939 write_tval = true;
940 tval = env->badaddr;
941 break;
942 default:
943 break;
945 /* ecall is dispatched as one cause so translate based on mode */
946 if (cause == RISCV_EXCP_U_ECALL) {
947 assert(env->priv <= 3);
949 if (env->priv == PRV_M) {
950 cause = RISCV_EXCP_M_ECALL;
951 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
952 cause = RISCV_EXCP_VS_ECALL;
953 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
954 cause = RISCV_EXCP_S_ECALL;
955 } else if (env->priv == PRV_U) {
956 cause = RISCV_EXCP_U_ECALL;
961 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
962 riscv_cpu_get_trap_name(cause, async));
964 qemu_log_mask(CPU_LOG_INT,
965 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
966 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
967 __func__, env->mhartid, async, cause, env->pc, tval,
968 riscv_cpu_get_trap_name(cause, async));
970 if (env->priv <= PRV_S &&
971 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
972 /* handle the trap in S-mode */
973 if (riscv_has_ext(env, RVH)) {
974 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
976 if (env->two_stage_lookup && write_tval) {
978 * If we are writing a guest virtual address to stval, set
979 * this to 1. If we are trapping to VS we will set this to 0
980 * later.
982 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
983 } else {
984 /* For other HS-mode traps, we set this to 0. */
985 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
988 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
989 !force_hs_execp) {
990 /* Trap to VS mode */
992 * See if we need to adjust cause. Yes if its VS mode interrupt
993 * no if hypervisor has delegated one of hs mode's interrupt
995 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
996 cause == IRQ_VS_EXT) {
997 cause = cause - 1;
999 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1000 } else if (riscv_cpu_virt_enabled(env)) {
1001 /* Trap into HS mode, from virt */
1002 riscv_cpu_swap_hypervisor_regs(env);
1003 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1004 env->priv);
1005 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1006 riscv_cpu_virt_enabled(env));
1008 htval = env->guest_phys_fault_addr;
1010 riscv_cpu_set_virt_enabled(env, 0);
1011 riscv_cpu_set_force_hs_excep(env, 0);
1012 } else {
1013 /* Trap into HS mode */
1014 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1015 htval = env->guest_phys_fault_addr;
1019 s = env->mstatus;
1020 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1021 s = set_field(s, MSTATUS_SPP, env->priv);
1022 s = set_field(s, MSTATUS_SIE, 0);
1023 env->mstatus = s;
1024 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1025 env->sepc = env->pc;
1026 env->sbadaddr = tval;
1027 env->htval = htval;
1028 env->pc = (env->stvec >> 2 << 2) +
1029 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1030 riscv_cpu_set_mode(env, PRV_S);
1031 } else {
1032 /* handle the trap in M-mode */
1033 if (riscv_has_ext(env, RVH)) {
1034 if (riscv_cpu_virt_enabled(env)) {
1035 riscv_cpu_swap_hypervisor_regs(env);
1037 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1038 riscv_cpu_virt_enabled(env));
1039 if (riscv_cpu_virt_enabled(env) && tval) {
1040 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1043 mtval2 = env->guest_phys_fault_addr;
1045 /* Trapping to M mode, virt is disabled */
1046 riscv_cpu_set_virt_enabled(env, 0);
1047 riscv_cpu_set_force_hs_excep(env, 0);
1050 s = env->mstatus;
1051 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1052 s = set_field(s, MSTATUS_MPP, env->priv);
1053 s = set_field(s, MSTATUS_MIE, 0);
1054 env->mstatus = s;
1055 env->mcause = cause | ~(((target_ulong)-1) >> async);
1056 env->mepc = env->pc;
1057 env->mbadaddr = tval;
1058 env->mtval2 = mtval2;
1059 env->pc = (env->mtvec >> 2 << 2) +
1060 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1061 riscv_cpu_set_mode(env, PRV_M);
1064 /* NOTE: it is not necessary to yield load reservations here. It is only
1065 * necessary for an SC from "another hart" to cause a load reservation
1066 * to be yielded. Refer to the memory consistency model section of the
1067 * RISC-V ISA Specification.
1070 env->two_stage_lookup = false;
1071 #endif
1072 cs->exception_index = EXCP_NONE; /* mark handled to qemu */