hw/m68k/next-cube: Move int_status and int_mask to NeXTPC struct
[qemu/ar7.git] / hw / m68k / next-cube.c
blob9b9b051231322ebb8680a361ee1dc51593e1c774
1 /*
2 * NeXT Cube System Driver
4 * Copyright (c) 2011 Bryce Lanham
6 * This code is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License,
9 * or (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "cpu.h"
14 #include "exec/hwaddr.h"
15 #include "exec/address-spaces.h"
16 #include "sysemu/sysemu.h"
17 #include "sysemu/qtest.h"
18 #include "hw/irq.h"
19 #include "hw/m68k/next-cube.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "hw/scsi/esp.h"
23 #include "hw/sysbus.h"
24 #include "qom/object.h"
25 #include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
26 #include "hw/block/fdc.h"
27 #include "hw/qdev-properties.h"
28 #include "qapi/error.h"
29 #include "ui/console.h"
30 #include "target/m68k/cpu.h"
32 /* #define DEBUG_NEXT */
33 #ifdef DEBUG_NEXT
34 #define DPRINTF(fmt, ...) \
35 do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
36 #else
37 #define DPRINTF(fmt, ...) do { } while (0)
38 #endif
40 #define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
41 OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)
43 #define ENTRY 0x0100001e
44 #define RAM_SIZE 0x4000000
45 #define ROM_FILE "Rev_2.5_v66.bin"
47 typedef struct next_dma {
48 uint32_t csr;
50 uint32_t saved_next;
51 uint32_t saved_limit;
52 uint32_t saved_start;
53 uint32_t saved_stop;
55 uint32_t next;
56 uint32_t limit;
57 uint32_t start;
58 uint32_t stop;
60 uint32_t next_initbuf;
61 uint32_t size;
62 } next_dma;
64 typedef struct NextRtc {
65 uint8_t ram[32];
66 uint8_t command;
67 uint8_t value;
68 uint8_t status;
69 uint8_t control;
70 uint8_t retval;
71 } NextRtc;
73 struct NeXTState {
74 MachineState parent;
76 next_dma dma[10];
77 qemu_irq *scsi_irq;
78 qemu_irq scsi_dma;
79 qemu_irq scsi_reset;
80 qemu_irq *fd_irq;
82 NextRtc rtc;
85 #define TYPE_NEXT_PC "next-pc"
86 OBJECT_DECLARE_SIMPLE_TYPE(NeXTPC, NEXT_PC)
88 /* NeXT Peripheral Controller */
89 struct NeXTPC {
90 SysBusDevice parent_obj;
92 /* Temporary until all functionality has been moved into this device */
93 NeXTState *ns;
95 M68kCPU *cpu;
97 MemoryRegion mmiomem;
98 MemoryRegion scrmem;
100 uint32_t scr1;
101 uint32_t scr2;
102 uint8_t scsi_csr_1;
103 uint8_t scsi_csr_2;
104 uint32_t int_mask;
105 uint32_t int_status;
108 /* Thanks to NeXT forums for this */
110 static const uint8_t rtc_ram3[32] = {
111 0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
112 0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
113 0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
114 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
117 static const uint8_t rtc_ram2[32] = {
118 0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
119 0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
120 0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
121 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
124 #define SCR2_RTCLK 0x2
125 #define SCR2_RTDATA 0x4
126 #define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
128 static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
130 static int led;
131 static int phase;
132 static uint8_t old_scr2;
133 uint8_t scr2_2;
134 NextRtc *rtc = &s->ns->rtc;
136 if (size == 4) {
137 scr2_2 = (val >> 8) & 0xFF;
138 } else {
139 scr2_2 = val & 0xFF;
142 if (val & 0x1) {
143 DPRINTF("fault!\n");
144 led++;
145 if (led == 10) {
146 DPRINTF("LED flashing, possible fault!\n");
147 led = 0;
151 if (scr2_2 & 0x1) {
152 /* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
153 if (phase == -1) {
154 phase = 0;
156 /* If we are in going down clock... do something */
157 if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
158 ((scr2_2 & SCR2_RTCLK) == 0)) {
159 if (phase < 8) {
160 rtc->command = (rtc->command << 1) |
161 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
163 if (phase >= 8 && phase < 16) {
164 rtc->value = (rtc->value << 1) |
165 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
167 /* if we read RAM register, output RT_DATA bit */
168 if (rtc->command <= 0x1F) {
169 scr2_2 = scr2_2 & (~SCR2_RTDATA);
170 if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) {
171 scr2_2 |= SCR2_RTDATA;
174 rtc->retval = (rtc->retval << 1) |
175 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
177 /* read the status 0x30 */
178 if (rtc->command == 0x30) {
179 scr2_2 = scr2_2 & (~SCR2_RTDATA);
180 /* for now status = 0x98 (new rtc + FTU) */
181 if (rtc->status & (0x80 >> (phase - 8))) {
182 scr2_2 |= SCR2_RTDATA;
185 rtc->retval = (rtc->retval << 1) |
186 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
188 /* read the status 0x31 */
189 if (rtc->command == 0x31) {
190 scr2_2 = scr2_2 & (~SCR2_RTDATA);
191 if (rtc->control & (0x80 >> (phase - 8))) {
192 scr2_2 |= SCR2_RTDATA;
194 rtc->retval = (rtc->retval << 1) |
195 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
198 if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) {
199 scr2_2 = scr2_2 & (~SCR2_RTDATA);
200 /* for now 0x00 */
201 time_t time_h = time(NULL);
202 struct tm *info = localtime(&time_h);
203 int ret = 0;
205 switch (rtc->command) {
206 case 0x20:
207 ret = SCR2_TOBCD(info->tm_sec);
208 break;
209 case 0x21:
210 ret = SCR2_TOBCD(info->tm_min);
211 break;
212 case 0x22:
213 ret = SCR2_TOBCD(info->tm_hour);
214 break;
215 case 0x24:
216 ret = SCR2_TOBCD(info->tm_mday);
217 break;
218 case 0x25:
219 ret = SCR2_TOBCD((info->tm_mon + 1));
220 break;
221 case 0x26:
222 ret = SCR2_TOBCD((info->tm_year - 100));
223 break;
227 if (ret & (0x80 >> (phase - 8))) {
228 scr2_2 |= SCR2_RTDATA;
230 rtc->retval = (rtc->retval << 1) |
231 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
236 phase++;
237 if (phase == 16) {
238 if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
239 rtc->ram[rtc->command - 0x80] = rtc->value;
241 /* write to x30 register */
242 if (rtc->command == 0xB1) {
243 /* clear FTU */
244 if (rtc->value & 0x04) {
245 rtc->status = rtc->status & (~0x18);
246 s->int_status = s->int_status & (~0x04);
251 } else {
252 /* else end or abort */
253 phase = -1;
254 rtc->command = 0;
255 rtc->value = 0;
257 s->scr2 = val & 0xFFFF00FF;
258 s->scr2 |= scr2_2 << 8;
259 old_scr2 = scr2_2;
262 static uint32_t mmio_readb(NeXTPC *s, hwaddr addr)
264 switch (addr) {
265 case 0xc000:
266 return (s->scr1 >> 24) & 0xFF;
267 case 0xc001:
268 return (s->scr1 >> 16) & 0xFF;
269 case 0xc002:
270 return (s->scr1 >> 8) & 0xFF;
271 case 0xc003:
272 return (s->scr1 >> 0) & 0xFF;
274 case 0xd000:
275 return (s->scr2 >> 24) & 0xFF;
276 case 0xd001:
277 return (s->scr2 >> 16) & 0xFF;
278 case 0xd002:
279 return (s->scr2 >> 8) & 0xFF;
280 case 0xd003:
281 return (s->scr2 >> 0) & 0xFF;
282 case 0x14020:
283 DPRINTF("MMIO Read 0x4020\n");
284 return 0x7f;
286 default:
287 DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
288 return 0x0;
292 static uint32_t mmio_readw(NeXTPC *s, hwaddr addr)
294 switch (addr) {
295 default:
296 DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
297 return 0x0;
301 static uint32_t mmio_readl(NeXTPC *s, hwaddr addr)
303 switch (addr) {
304 case 0x7000:
305 /* DPRINTF("Read INT status: %x\n", s->int_status); */
306 return s->int_status;
308 case 0x7800:
309 DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
310 return s->int_mask;
312 case 0xc000:
313 return s->scr1;
315 case 0xd000:
316 return s->scr2;
318 default:
319 DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
320 return 0x0;
324 static void mmio_writeb(NeXTPC *s, hwaddr addr, uint32_t val)
326 switch (addr) {
327 case 0xd003:
328 nextscr2_write(s, val, 1);
329 break;
330 default:
331 DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
336 static void mmio_writew(NeXTPC *s, hwaddr addr, uint32_t val)
338 DPRINTF("MMIO Write W\n");
341 static void mmio_writel(NeXTPC *s, hwaddr addr, uint32_t val)
343 switch (addr) {
344 case 0x7000:
345 DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
346 s->int_status = val;
347 break;
348 case 0x7800:
349 DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
350 s->int_mask = val;
351 break;
352 case 0xc000:
353 DPRINTF("SCR1 Write: %x\n", val);
354 break;
355 case 0xd000:
356 nextscr2_write(s, val, 4);
357 break;
359 default:
360 DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
364 static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
366 NeXTPC *s = NEXT_PC(opaque);
368 switch (size) {
369 case 1:
370 return mmio_readb(s, addr);
371 case 2:
372 return mmio_readw(s, addr);
373 case 4:
374 return mmio_readl(s, addr);
375 default:
376 g_assert_not_reached();
380 static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
381 unsigned size)
383 NeXTPC *s = NEXT_PC(opaque);
385 switch (size) {
386 case 1:
387 mmio_writeb(s, addr, value);
388 break;
389 case 2:
390 mmio_writew(s, addr, value);
391 break;
392 case 4:
393 mmio_writel(s, addr, value);
394 break;
395 default:
396 g_assert_not_reached();
400 static const MemoryRegionOps mmio_ops = {
401 .read = mmio_readfn,
402 .write = mmio_writefn,
403 .valid.min_access_size = 1,
404 .valid.max_access_size = 4,
405 .endianness = DEVICE_NATIVE_ENDIAN,
408 static uint32_t scr_readb(NeXTPC *s, hwaddr addr)
410 switch (addr) {
411 case 0x14108:
412 DPRINTF("FD read @ %x\n", (unsigned int)addr);
413 return 0x40 | 0x04 | 0x2 | 0x1;
414 case 0x14020:
415 DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
416 return s->scsi_csr_1;
418 case 0x14021:
419 DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
420 return 0x40;
423 * These 4 registers are the hardware timer, not sure which register
424 * is the latch instead of data, but no problems so far
426 case 0x1a000:
427 return 0xff & (clock() >> 24);
428 case 0x1a001:
429 return 0xff & (clock() >> 16);
430 case 0x1a002:
431 return 0xff & (clock() >> 8);
432 case 0x1a003:
433 /* Hack: We need to have this change consistently to make it work */
434 return 0xFF & clock();
436 default:
437 DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
438 return 0;
442 static uint32_t scr_readw(NeXTPC *s, hwaddr addr)
444 DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
445 return 0;
448 static uint32_t scr_readl(NeXTPC *s, hwaddr addr)
450 DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
451 return 0;
454 #define SCSICSR_ENABLE 0x01
455 #define SCSICSR_RESET 0x02 /* reset scsi dma */
456 #define SCSICSR_FIFOFL 0x04
457 #define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */
458 #define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */
459 #define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */
461 static void scr_writeb(NeXTPC *s, hwaddr addr, uint32_t value)
463 switch (addr) {
464 case 0x14108:
465 DPRINTF("FDCSR Write: %x\n", value);
467 if (value == 0x0) {
468 /* qemu_irq_raise(s->fd_irq[0]); */
470 break;
471 case 0x14020: /* SCSI Control Register */
472 if (value & SCSICSR_FIFOFL) {
473 DPRINTF("SCSICSR FIFO Flush\n");
474 /* will have to add another irq to the esp if this is needed */
475 /* esp_puflush_fifo(esp_g); */
476 /* qemu_irq_pulse(s->scsi_dma); */
479 if (value & SCSICSR_ENABLE) {
480 DPRINTF("SCSICSR Enable\n");
482 * qemu_irq_raise(s->scsi_dma);
483 * s->scsi_csr_1 = 0xc0;
484 * s->scsi_csr_1 |= 0x1;
485 * qemu_irq_pulse(s->scsi_dma);
489 * else
490 * s->scsi_csr_1 &= ~SCSICSR_ENABLE;
493 if (value & SCSICSR_RESET) {
494 DPRINTF("SCSICSR Reset\n");
495 /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
496 /* qemu_irq_raise(s->scsi_reset); */
497 /* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */
500 if (value & SCSICSR_DMADIR) {
501 DPRINTF("SCSICSR DMAdir\n");
503 if (value & SCSICSR_CPUDMA) {
504 DPRINTF("SCSICSR CPUDMA\n");
505 /* qemu_irq_raise(s->scsi_dma); */
507 s->int_status |= 0x4000000;
508 } else {
509 s->int_status &= ~(0x4000000);
511 if (value & SCSICSR_INTMASK) {
512 DPRINTF("SCSICSR INTMASK\n");
514 * int_mask &= ~0x1000;
515 * s->scsi_csr_1 |= value;
516 * s->scsi_csr_1 &= ~SCSICSR_INTMASK;
517 * if (s->scsi_queued) {
518 * s->scsi_queued = 0;
519 * next_irq(s, NEXT_SCSI_I, level);
522 } else {
523 /* int_mask |= 0x1000; */
525 if (value & 0x80) {
526 /* int_mask |= 0x1000; */
527 /* s->scsi_csr_1 |= 0x80; */
529 DPRINTF("SCSICSR Write: %x\n", value);
530 /* s->scsi_csr_1 = value; */
531 return;
532 /* Hardware timer latch - not implemented yet */
533 case 0x1a000:
534 default:
535 DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
539 static void scr_writew(NeXTPC *s, hwaddr addr, uint32_t value)
541 DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
544 static void scr_writel(NeXTPC *s, hwaddr addr, uint32_t value)
546 DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
549 static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
551 NeXTPC *s = NEXT_PC(opaque);
553 switch (size) {
554 case 1:
555 return scr_readb(s, addr);
556 case 2:
557 return scr_readw(s, addr);
558 case 4:
559 return scr_readl(s, addr);
560 default:
561 g_assert_not_reached();
565 static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
566 unsigned size)
568 NeXTPC *s = NEXT_PC(opaque);
570 switch (size) {
571 case 1:
572 scr_writeb(s, addr, value);
573 break;
574 case 2:
575 scr_writew(s, addr, value);
576 break;
577 case 4:
578 scr_writel(s, addr, value);
579 break;
580 default:
581 g_assert_not_reached();
585 static const MemoryRegionOps scr_ops = {
586 .read = scr_readfn,
587 .write = scr_writefn,
588 .valid.min_access_size = 1,
589 .valid.max_access_size = 4,
590 .endianness = DEVICE_NATIVE_ENDIAN,
593 #define NEXTDMA_SCSI(x) (0x10 + x)
594 #define NEXTDMA_FD(x) (0x10 + x)
595 #define NEXTDMA_ENTX(x) (0x110 + x)
596 #define NEXTDMA_ENRX(x) (0x150 + x)
597 #define NEXTDMA_CSR 0x0
598 #define NEXTDMA_NEXT 0x4000
599 #define NEXTDMA_LIMIT 0x4004
600 #define NEXTDMA_START 0x4008
601 #define NEXTDMA_STOP 0x400c
602 #define NEXTDMA_NEXT_INIT 0x4200
603 #define NEXTDMA_SIZE 0x4204
605 static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
606 unsigned int size)
608 NeXTState *next_state = NEXT_MACHINE(opaque);
610 switch (addr) {
611 case NEXTDMA_ENRX(NEXTDMA_CSR):
612 if (value & DMA_DEV2M) {
613 next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
616 if (value & DMA_SETENABLE) {
617 /* DPRINTF("SCSI DMA ENABLE\n"); */
618 next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
620 if (value & DMA_SETSUPDATE) {
621 next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
623 if (value & DMA_CLRCOMPLETE) {
624 next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
627 if (value & DMA_RESET) {
628 next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
629 DMA_ENABLE | DMA_DEV2M);
631 /* DPRINTF("RXCSR \tWrite: %x\n",value); */
632 break;
633 case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
634 next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
635 break;
636 case NEXTDMA_ENRX(NEXTDMA_NEXT):
637 next_state->dma[NEXTDMA_ENRX].next = value;
638 break;
639 case NEXTDMA_ENRX(NEXTDMA_LIMIT):
640 next_state->dma[NEXTDMA_ENRX].limit = value;
641 break;
642 case NEXTDMA_SCSI(NEXTDMA_CSR):
643 if (value & DMA_DEV2M) {
644 next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
646 if (value & DMA_SETENABLE) {
647 /* DPRINTF("SCSI DMA ENABLE\n"); */
648 next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
650 if (value & DMA_SETSUPDATE) {
651 next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
653 if (value & DMA_CLRCOMPLETE) {
654 next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
657 if (value & DMA_RESET) {
658 next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
659 DMA_ENABLE | DMA_DEV2M);
660 /* DPRINTF("SCSI DMA RESET\n"); */
662 /* DPRINTF("RXCSR \tWrite: %x\n",value); */
663 break;
665 case NEXTDMA_SCSI(NEXTDMA_NEXT):
666 next_state->dma[NEXTDMA_SCSI].next = value;
667 break;
669 case NEXTDMA_SCSI(NEXTDMA_LIMIT):
670 next_state->dma[NEXTDMA_SCSI].limit = value;
671 break;
673 case NEXTDMA_SCSI(NEXTDMA_START):
674 next_state->dma[NEXTDMA_SCSI].start = value;
675 break;
677 case NEXTDMA_SCSI(NEXTDMA_STOP):
678 next_state->dma[NEXTDMA_SCSI].stop = value;
679 break;
681 case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
682 next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
683 break;
685 default:
686 DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
690 static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
692 NeXTState *next_state = NEXT_MACHINE(opaque);
694 switch (addr) {
695 case NEXTDMA_SCSI(NEXTDMA_CSR):
696 DPRINTF("SCSI DMA CSR READ\n");
697 return next_state->dma[NEXTDMA_SCSI].csr;
698 case NEXTDMA_ENRX(NEXTDMA_CSR):
699 return next_state->dma[NEXTDMA_ENRX].csr;
700 case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
701 return next_state->dma[NEXTDMA_ENRX].next_initbuf;
702 case NEXTDMA_ENRX(NEXTDMA_NEXT):
703 return next_state->dma[NEXTDMA_ENRX].next;
704 case NEXTDMA_ENRX(NEXTDMA_LIMIT):
705 return next_state->dma[NEXTDMA_ENRX].limit;
707 case NEXTDMA_SCSI(NEXTDMA_NEXT):
708 return next_state->dma[NEXTDMA_SCSI].next;
709 case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
710 return next_state->dma[NEXTDMA_SCSI].next_initbuf;
711 case NEXTDMA_SCSI(NEXTDMA_LIMIT):
712 return next_state->dma[NEXTDMA_SCSI].limit;
713 case NEXTDMA_SCSI(NEXTDMA_START):
714 return next_state->dma[NEXTDMA_SCSI].start;
715 case NEXTDMA_SCSI(NEXTDMA_STOP):
716 return next_state->dma[NEXTDMA_SCSI].stop;
718 default:
719 DPRINTF("DMA read @ %x\n", (unsigned int)addr);
720 return 0;
724 * once the csr's are done, subtract 0x3FEC from the addr, and that will
725 * normalize the upper registers
729 static const MemoryRegionOps dma_ops = {
730 .read = dma_readl,
731 .write = dma_writel,
732 .impl.min_access_size = 4,
733 .valid.min_access_size = 4,
734 .valid.max_access_size = 4,
735 .endianness = DEVICE_NATIVE_ENDIAN,
739 * TODO: set the shift numbers as values in the enum, so the first switch
740 * will not be needed
742 static void next_irq(void *opaque, int number, int level)
744 NeXTPC *s = NEXT_PC(opaque);
745 M68kCPU *cpu = s->cpu;
746 int shift = 0;
748 /* first switch sets interupt status */
749 /* DPRINTF("IRQ %i\n",number); */
750 switch (number) {
751 /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
752 case NEXT_FD_I:
753 shift = 7;
754 break;
755 case NEXT_KBD_I:
756 shift = 3;
757 break;
758 case NEXT_PWR_I:
759 shift = 2;
760 break;
761 case NEXT_ENRX_I:
762 shift = 9;
763 break;
764 case NEXT_ENTX_I:
765 shift = 10;
766 break;
767 case NEXT_SCSI_I:
768 shift = 12;
769 break;
770 case NEXT_CLK_I:
771 shift = 5;
772 break;
774 /* level 5 - scc (serial) */
775 case NEXT_SCC_I:
776 shift = 17;
777 break;
779 /* level 6 - audio etherrx/tx dma */
780 case NEXT_ENTX_DMA_I:
781 shift = 28;
782 break;
783 case NEXT_ENRX_DMA_I:
784 shift = 27;
785 break;
786 case NEXT_SCSI_DMA_I:
787 shift = 26;
788 break;
789 case NEXT_SND_I:
790 shift = 23;
791 break;
792 case NEXT_SCC_DMA_I:
793 shift = 21;
794 break;
798 * this HAS to be wrong, the interrupt handlers in mach and together
799 * int_status and int_mask and return if there is a hit
801 if (s->int_mask & (1 << shift)) {
802 DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
803 /* return; */
806 /* second switch triggers the correct interrupt */
807 if (level) {
808 s->int_status |= 1 << shift;
810 switch (number) {
811 /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
812 case NEXT_FD_I:
813 case NEXT_KBD_I:
814 case NEXT_PWR_I:
815 case NEXT_ENRX_I:
816 case NEXT_ENTX_I:
817 case NEXT_SCSI_I:
818 case NEXT_CLK_I:
819 m68k_set_irq_level(cpu, 3, 27);
820 break;
822 /* level 5 - scc (serial) */
823 case NEXT_SCC_I:
824 m68k_set_irq_level(cpu, 5, 29);
825 break;
827 /* level 6 - audio etherrx/tx dma */
828 case NEXT_ENTX_DMA_I:
829 case NEXT_ENRX_DMA_I:
830 case NEXT_SCSI_DMA_I:
831 case NEXT_SND_I:
832 case NEXT_SCC_DMA_I:
833 m68k_set_irq_level(cpu, 6, 30);
834 break;
836 } else {
837 s->int_status &= ~(1 << shift);
838 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
842 static void next_serial_irq(void *opaque, int n, int level)
844 /* DPRINTF("SCC IRQ NUM %i\n",n); */
845 if (n) {
846 next_irq(opaque, NEXT_SCC_DMA_I, level);
847 } else {
848 next_irq(opaque, NEXT_SCC_I, level);
852 static void next_escc_init(DeviceState *pcdev)
854 qemu_irq *ser_irq = qemu_allocate_irqs(next_serial_irq, pcdev, 2);
855 DeviceState *dev;
856 SysBusDevice *s;
858 dev = qdev_new(TYPE_ESCC);
859 qdev_prop_set_uint32(dev, "disabled", 0);
860 qdev_prop_set_uint32(dev, "frequency", 9600 * 384);
861 qdev_prop_set_uint32(dev, "it_shift", 0);
862 qdev_prop_set_bit(dev, "bit_swap", true);
863 qdev_prop_set_chr(dev, "chrB", serial_hd(1));
864 qdev_prop_set_chr(dev, "chrA", serial_hd(0));
865 qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
866 qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
868 s = SYS_BUS_DEVICE(dev);
869 sysbus_realize_and_unref(s, &error_fatal);
870 sysbus_connect_irq(s, 0, ser_irq[0]);
871 sysbus_connect_irq(s, 1, ser_irq[1]);
872 sysbus_mmio_map(s, 0, 0x2118000);
875 static void next_pc_reset(DeviceState *dev)
877 NeXTPC *s = NEXT_PC(dev);
879 /* Set internal registers to initial values */
880 /* 0x0000XX00 << vital bits */
881 s->scr1 = 0x00011102;
882 s->scr2 = 0x00ff0c80;
885 static void next_pc_realize(DeviceState *dev, Error **errp)
887 NeXTPC *s = NEXT_PC(dev);
888 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
890 memory_region_init_io(&s->mmiomem, OBJECT(s), &mmio_ops, s,
891 "next.mmio", 0xD0000);
892 memory_region_init_io(&s->scrmem, OBJECT(s), &scr_ops, s,
893 "next.scr", 0x20000);
894 sysbus_init_mmio(sbd, &s->mmiomem);
895 sysbus_init_mmio(sbd, &s->scrmem);
899 * If the m68k CPU implemented its inbound irq lines as GPIO lines
900 * rather than via the m68k_set_irq_level() function we would not need
901 * this cpu link property and could instead provide outbound IRQ lines
902 * that the board could wire up to the CPU.
904 static Property next_pc_properties[] = {
905 DEFINE_PROP_LINK("cpu", NeXTPC, cpu, TYPE_M68K_CPU, M68kCPU *),
906 DEFINE_PROP_END_OF_LIST(),
909 static void next_pc_class_init(ObjectClass *klass, void *data)
911 DeviceClass *dc = DEVICE_CLASS(klass);
913 dc->desc = "NeXT Peripheral Controller";
914 dc->realize = next_pc_realize;
915 dc->reset = next_pc_reset;
916 device_class_set_props(dc, next_pc_properties);
917 /* We will add the VMState in a later commit */
920 static const TypeInfo next_pc_info = {
921 .name = TYPE_NEXT_PC,
922 .parent = TYPE_SYS_BUS_DEVICE,
923 .instance_size = sizeof(NeXTPC),
924 .class_init = next_pc_class_init,
927 static void next_cube_init(MachineState *machine)
929 M68kCPU *cpu;
930 CPUM68KState *env;
931 MemoryRegion *rom = g_new(MemoryRegion, 1);
932 MemoryRegion *dmamem = g_new(MemoryRegion, 1);
933 MemoryRegion *bmapm1 = g_new(MemoryRegion, 1);
934 MemoryRegion *bmapm2 = g_new(MemoryRegion, 1);
935 MemoryRegion *sysmem = get_system_memory();
936 const char *bios_name = machine->firmware ?: ROM_FILE;
937 NeXTState *ns = NEXT_MACHINE(machine);
938 DeviceState *dev;
939 DeviceState *pcdev;
941 /* Initialize the cpu core */
942 cpu = M68K_CPU(cpu_create(machine->cpu_type));
943 if (!cpu) {
944 error_report("Unable to find m68k CPU definition");
945 exit(1);
947 env = &cpu->env;
949 /* Initialize CPU registers. */
950 env->vbr = 0;
951 env->sr = 0x2700;
953 /* Peripheral Controller */
954 pcdev = qdev_new(TYPE_NEXT_PC);
955 object_property_set_link(OBJECT(pcdev), "cpu", OBJECT(cpu), &error_abort);
956 sysbus_realize_and_unref(SYS_BUS_DEVICE(pcdev), &error_fatal);
957 /* Temporary while we refactor this code */
958 NEXT_PC(pcdev)->ns = ns;
960 ns->rtc.status = 0x90;
962 /* Load RTC RAM - TODO: provide possibility to load contents from file */
963 memcpy(ns->rtc.ram, rtc_ram2, 32);
965 /* 64MB RAM starting at 0x04000000 */
966 memory_region_add_subregion(sysmem, 0x04000000, machine->ram);
968 /* Framebuffer */
969 dev = qdev_new(TYPE_NEXTFB);
970 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
971 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0B000000);
973 /* MMIO */
974 sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 0, 0x02000000);
976 /* BMAP IO - acts as a catch-all for now */
977 sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02100000);
979 /* BMAP memory */
980 memory_region_init_ram_shared_nomigrate(bmapm1, NULL, "next.bmapmem", 64,
981 true, &error_fatal);
982 memory_region_add_subregion(sysmem, 0x020c0000, bmapm1);
983 /* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
984 memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64);
985 memory_region_add_subregion(sysmem, 0x820c0000, bmapm2);
987 /* KBD */
988 dev = qdev_new(TYPE_NEXTKBD);
989 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
990 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0200e000);
992 /* Load ROM here */
993 /* still not sure if the rom should also be mapped at 0x0*/
994 memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal);
995 memory_region_add_subregion(sysmem, 0x01000000, rom);
996 if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
997 if (!qtest_enabled()) {
998 error_report("Failed to load firmware '%s'.", bios_name);
1000 } else {
1001 uint8_t *ptr;
1002 /* Initial PC is always at offset 4 in firmware binaries */
1003 ptr = rom_ptr(0x01000004, 4);
1004 g_assert(ptr != NULL);
1005 env->pc = ldl_p(ptr);
1006 if (env->pc >= 0x01020000) {
1007 error_report("'%s' does not seem to be a valid firmware image.",
1008 bios_name);
1009 exit(1);
1013 /* Serial */
1014 next_escc_init(pcdev);
1016 /* TODO: */
1017 /* Network */
1018 /* SCSI */
1020 /* DMA */
1021 memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000);
1022 memory_region_add_subregion(sysmem, 0x02000000, dmamem);
1025 static void next_machine_class_init(ObjectClass *oc, void *data)
1027 MachineClass *mc = MACHINE_CLASS(oc);
1029 mc->desc = "NeXT Cube";
1030 mc->init = next_cube_init;
1031 mc->default_ram_size = RAM_SIZE;
1032 mc->default_ram_id = "next.ram";
1033 mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
1036 static const TypeInfo next_typeinfo = {
1037 .name = TYPE_NEXT_MACHINE,
1038 .parent = TYPE_MACHINE,
1039 .class_init = next_machine_class_init,
1040 .instance_size = sizeof(NeXTState),
1043 static void next_register_type(void)
1045 type_register_static(&next_typeinfo);
1046 type_register_static(&next_pc_info);
1049 type_init(next_register_type)