pc-bios: Update palcode-clipper
[qemu/ar7.git] / target / s390x / kvm.c
blob2ebf26adfe2422937582b832a32b1d8c146ecb77
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "internal.h"
33 #include "kvm_s390x.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/timer.h"
37 #include "qemu/units.h"
38 #include "qemu/mmap-alloc.h"
39 #include "qemu/log.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/hw_accel.h"
42 #include "hw/hw.h"
43 #include "sysemu/device_tree.h"
44 #include "exec/gdbstub.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
54 #ifndef DEBUG_KVM
55 #define DEBUG_KVM 0
56 #endif
58 #define DPRINTF(fmt, ...) do { \
59 if (DEBUG_KVM) { \
60 fprintf(stderr, fmt, ## __VA_ARGS__); \
61 } \
62 } while (0)
64 #define kvm_vm_check_mem_attr(s, attr) \
65 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
67 #define IPA0_DIAG 0x8300
68 #define IPA0_SIGP 0xae00
69 #define IPA0_B2 0xb200
70 #define IPA0_B9 0xb900
71 #define IPA0_EB 0xeb00
72 #define IPA0_E3 0xe300
74 #define PRIV_B2_SCLP_CALL 0x20
75 #define PRIV_B2_CSCH 0x30
76 #define PRIV_B2_HSCH 0x31
77 #define PRIV_B2_MSCH 0x32
78 #define PRIV_B2_SSCH 0x33
79 #define PRIV_B2_STSCH 0x34
80 #define PRIV_B2_TSCH 0x35
81 #define PRIV_B2_TPI 0x36
82 #define PRIV_B2_SAL 0x37
83 #define PRIV_B2_RSCH 0x38
84 #define PRIV_B2_STCRW 0x39
85 #define PRIV_B2_STCPS 0x3a
86 #define PRIV_B2_RCHP 0x3b
87 #define PRIV_B2_SCHM 0x3c
88 #define PRIV_B2_CHSC 0x5f
89 #define PRIV_B2_SIGA 0x74
90 #define PRIV_B2_XSCH 0x76
92 #define PRIV_EB_SQBS 0x8a
93 #define PRIV_EB_PCISTB 0xd0
94 #define PRIV_EB_SIC 0xd1
96 #define PRIV_B9_EQBS 0x9c
97 #define PRIV_B9_CLP 0xa0
98 #define PRIV_B9_PCISTG 0xd0
99 #define PRIV_B9_PCILG 0xd2
100 #define PRIV_B9_RPCIT 0xd3
102 #define PRIV_E3_MPCIFC 0xd0
103 #define PRIV_E3_STPCIFC 0xd4
105 #define DIAG_TIMEREVENT 0x288
106 #define DIAG_IPL 0x308
107 #define DIAG_KVM_HYPERCALL 0x500
108 #define DIAG_KVM_BREAKPOINT 0x501
110 #define ICPT_INSTRUCTION 0x04
111 #define ICPT_PROGRAM 0x08
112 #define ICPT_EXT_INT 0x14
113 #define ICPT_WAITPSW 0x1c
114 #define ICPT_SOFT_INTERCEPT 0x24
115 #define ICPT_CPU_STOP 0x28
116 #define ICPT_OPEREXC 0x2c
117 #define ICPT_IO 0x40
119 #define NR_LOCAL_IRQS 32
121 * Needs to be big enough to contain max_cpus emergency signals
122 * and in addition NR_LOCAL_IRQS interrupts
124 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
125 (max_cpus + NR_LOCAL_IRQS))
127 static CPUWatchpoint hw_watchpoint;
129 * We don't use a list because this structure is also used to transmit the
130 * hardware breakpoints to the kernel.
132 static struct kvm_hw_breakpoint *hw_breakpoints;
133 static int nb_hw_breakpoints;
135 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
136 KVM_CAP_LAST_INFO
139 static int cap_sync_regs;
140 static int cap_async_pf;
141 static int cap_mem_op;
142 static int cap_s390_irq;
143 static int cap_ri;
144 static int cap_gs;
145 static int cap_hpage_1m;
147 static int active_cmma;
149 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
151 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
153 struct kvm_device_attr attr = {
154 .group = KVM_S390_VM_MEM_CTRL,
155 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
156 .addr = (uint64_t) memory_limit,
159 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
162 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
164 int rc;
166 struct kvm_device_attr attr = {
167 .group = KVM_S390_VM_MEM_CTRL,
168 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
169 .addr = (uint64_t) &new_limit,
172 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
173 return 0;
176 rc = kvm_s390_query_mem_limit(hw_limit);
177 if (rc) {
178 return rc;
179 } else if (*hw_limit < new_limit) {
180 return -E2BIG;
183 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
186 int kvm_s390_cmma_active(void)
188 return active_cmma;
191 static bool kvm_s390_cmma_available(void)
193 static bool initialized, value;
195 if (!initialized) {
196 initialized = true;
197 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
198 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
200 return value;
203 void kvm_s390_cmma_reset(void)
205 int rc;
206 struct kvm_device_attr attr = {
207 .group = KVM_S390_VM_MEM_CTRL,
208 .attr = KVM_S390_VM_MEM_CLR_CMMA,
211 if (!kvm_s390_cmma_active()) {
212 return;
215 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
216 trace_kvm_clear_cmma(rc);
219 static void kvm_s390_enable_cmma(void)
221 int rc;
222 struct kvm_device_attr attr = {
223 .group = KVM_S390_VM_MEM_CTRL,
224 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
227 if (cap_hpage_1m) {
228 warn_report("CMM will not be enabled because it is not "
229 "compatible with huge memory backings.");
230 return;
232 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
233 active_cmma = !rc;
234 trace_kvm_enable_cmma(rc);
237 static void kvm_s390_set_attr(uint64_t attr)
239 struct kvm_device_attr attribute = {
240 .group = KVM_S390_VM_CRYPTO,
241 .attr = attr,
244 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
246 if (ret) {
247 error_report("Failed to set crypto device attribute %lu: %s",
248 attr, strerror(-ret));
252 static void kvm_s390_init_aes_kw(void)
254 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
256 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
257 NULL)) {
258 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
261 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
262 kvm_s390_set_attr(attr);
266 static void kvm_s390_init_dea_kw(void)
268 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
270 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
271 NULL)) {
272 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
275 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
276 kvm_s390_set_attr(attr);
280 void kvm_s390_crypto_reset(void)
282 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
283 kvm_s390_init_aes_kw();
284 kvm_s390_init_dea_kw();
288 static int kvm_s390_configure_mempath_backing(KVMState *s)
290 size_t path_psize = qemu_mempath_getpagesize(mem_path);
292 if (path_psize == 4 * KiB) {
293 return 0;
296 if (!hpage_1m_allowed()) {
297 error_report("This QEMU machine does not support huge page "
298 "mappings");
299 return -EINVAL;
302 if (path_psize != 1 * MiB) {
303 error_report("Memory backing with 2G pages was specified, "
304 "but KVM does not support this memory backing");
305 return -EINVAL;
308 if (kvm_vm_enable_cap(s, KVM_CAP_S390_HPAGE_1M, 0)) {
309 error_report("Memory backing with 1M pages was specified, "
310 "but KVM does not support this memory backing");
311 return -EINVAL;
314 cap_hpage_1m = 1;
315 return 0;
318 int kvm_arch_init(MachineState *ms, KVMState *s)
320 MachineClass *mc = MACHINE_GET_CLASS(ms);
322 if (mem_path && kvm_s390_configure_mempath_backing(s)) {
323 return -EINVAL;
326 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
327 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
328 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
329 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
330 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
332 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
333 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
334 phys_mem_set_alloc(legacy_s390_alloc);
337 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
338 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
339 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
340 if (ri_allowed()) {
341 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
342 cap_ri = 1;
345 if (cpu_model_allowed()) {
346 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
347 cap_gs = 1;
352 * The migration interface for ais was introduced with kernel 4.13
353 * but the capability itself had been active since 4.12. As migration
354 * support is considered necessary let's disable ais in the 2.10
355 * machine.
357 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
359 return 0;
362 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
364 return 0;
367 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
369 return cpu->cpu_index;
372 int kvm_arch_init_vcpu(CPUState *cs)
374 S390CPU *cpu = S390_CPU(cs);
375 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
376 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
377 return 0;
380 void kvm_s390_reset_vcpu(S390CPU *cpu)
382 CPUState *cs = CPU(cpu);
384 /* The initial reset call is needed here to reset in-kernel
385 * vcpu data that we can't access directly from QEMU
386 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
387 * Before this ioctl cpu_synchronize_state() is called in common kvm
388 * code (kvm-all) */
389 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
390 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
394 static int can_sync_regs(CPUState *cs, int regs)
396 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
399 int kvm_arch_put_registers(CPUState *cs, int level)
401 S390CPU *cpu = S390_CPU(cs);
402 CPUS390XState *env = &cpu->env;
403 struct kvm_sregs sregs;
404 struct kvm_regs regs;
405 struct kvm_fpu fpu = {};
406 int r;
407 int i;
409 /* always save the PSW and the GPRS*/
410 cs->kvm_run->psw_addr = env->psw.addr;
411 cs->kvm_run->psw_mask = env->psw.mask;
413 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
414 for (i = 0; i < 16; i++) {
415 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
416 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
418 } else {
419 for (i = 0; i < 16; i++) {
420 regs.gprs[i] = env->regs[i];
422 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
423 if (r < 0) {
424 return r;
428 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
429 for (i = 0; i < 32; i++) {
430 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
431 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
433 cs->kvm_run->s.regs.fpc = env->fpc;
434 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
435 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
436 for (i = 0; i < 16; i++) {
437 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
439 cs->kvm_run->s.regs.fpc = env->fpc;
440 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
441 } else {
442 /* Floating point */
443 for (i = 0; i < 16; i++) {
444 fpu.fprs[i] = get_freg(env, i)->ll;
446 fpu.fpc = env->fpc;
448 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
449 if (r < 0) {
450 return r;
454 /* Do we need to save more than that? */
455 if (level == KVM_PUT_RUNTIME_STATE) {
456 return 0;
459 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
460 cs->kvm_run->s.regs.cputm = env->cputm;
461 cs->kvm_run->s.regs.ckc = env->ckc;
462 cs->kvm_run->s.regs.todpr = env->todpr;
463 cs->kvm_run->s.regs.gbea = env->gbea;
464 cs->kvm_run->s.regs.pp = env->pp;
465 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
466 } else {
468 * These ONE_REGS are not protected by a capability. As they are only
469 * necessary for migration we just trace a possible error, but don't
470 * return with an error return code.
472 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
473 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
474 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
475 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
476 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
479 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
480 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
481 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
484 /* pfault parameters */
485 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
486 cs->kvm_run->s.regs.pft = env->pfault_token;
487 cs->kvm_run->s.regs.pfs = env->pfault_select;
488 cs->kvm_run->s.regs.pfc = env->pfault_compare;
489 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
490 } else if (cap_async_pf) {
491 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
492 if (r < 0) {
493 return r;
495 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
496 if (r < 0) {
497 return r;
499 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
500 if (r < 0) {
501 return r;
505 /* access registers and control registers*/
506 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
507 for (i = 0; i < 16; i++) {
508 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
509 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
511 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
512 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
513 } else {
514 for (i = 0; i < 16; i++) {
515 sregs.acrs[i] = env->aregs[i];
516 sregs.crs[i] = env->cregs[i];
518 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
519 if (r < 0) {
520 return r;
524 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
525 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
526 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
529 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
530 cs->kvm_run->s.regs.bpbc = env->bpbc;
531 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
534 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
535 cs->kvm_run->s.regs.etoken = env->etoken;
536 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
537 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
540 /* Finally the prefix */
541 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
542 cs->kvm_run->s.regs.prefix = env->psa;
543 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
544 } else {
545 /* prefix is only supported via sync regs */
547 return 0;
550 int kvm_arch_get_registers(CPUState *cs)
552 S390CPU *cpu = S390_CPU(cs);
553 CPUS390XState *env = &cpu->env;
554 struct kvm_sregs sregs;
555 struct kvm_regs regs;
556 struct kvm_fpu fpu;
557 int i, r;
559 /* get the PSW */
560 env->psw.addr = cs->kvm_run->psw_addr;
561 env->psw.mask = cs->kvm_run->psw_mask;
563 /* the GPRS */
564 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
565 for (i = 0; i < 16; i++) {
566 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
568 } else {
569 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
570 if (r < 0) {
571 return r;
573 for (i = 0; i < 16; i++) {
574 env->regs[i] = regs.gprs[i];
578 /* The ACRS and CRS */
579 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
580 for (i = 0; i < 16; i++) {
581 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
582 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
584 } else {
585 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
586 if (r < 0) {
587 return r;
589 for (i = 0; i < 16; i++) {
590 env->aregs[i] = sregs.acrs[i];
591 env->cregs[i] = sregs.crs[i];
595 /* Floating point and vector registers */
596 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
597 for (i = 0; i < 32; i++) {
598 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
599 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
601 env->fpc = cs->kvm_run->s.regs.fpc;
602 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
603 for (i = 0; i < 16; i++) {
604 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
606 env->fpc = cs->kvm_run->s.regs.fpc;
607 } else {
608 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
609 if (r < 0) {
610 return r;
612 for (i = 0; i < 16; i++) {
613 get_freg(env, i)->ll = fpu.fprs[i];
615 env->fpc = fpu.fpc;
618 /* The prefix */
619 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
620 env->psa = cs->kvm_run->s.regs.prefix;
623 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
624 env->cputm = cs->kvm_run->s.regs.cputm;
625 env->ckc = cs->kvm_run->s.regs.ckc;
626 env->todpr = cs->kvm_run->s.regs.todpr;
627 env->gbea = cs->kvm_run->s.regs.gbea;
628 env->pp = cs->kvm_run->s.regs.pp;
629 } else {
631 * These ONE_REGS are not protected by a capability. As they are only
632 * necessary for migration we just trace a possible error, but don't
633 * return with an error return code.
635 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
636 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
637 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
638 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
639 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
642 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
643 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
646 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
647 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
650 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
651 env->bpbc = cs->kvm_run->s.regs.bpbc;
654 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
655 env->etoken = cs->kvm_run->s.regs.etoken;
656 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
659 /* pfault parameters */
660 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
661 env->pfault_token = cs->kvm_run->s.regs.pft;
662 env->pfault_select = cs->kvm_run->s.regs.pfs;
663 env->pfault_compare = cs->kvm_run->s.regs.pfc;
664 } else if (cap_async_pf) {
665 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
666 if (r < 0) {
667 return r;
669 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
670 if (r < 0) {
671 return r;
673 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
674 if (r < 0) {
675 return r;
679 return 0;
682 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
684 int r;
685 struct kvm_device_attr attr = {
686 .group = KVM_S390_VM_TOD,
687 .attr = KVM_S390_VM_TOD_LOW,
688 .addr = (uint64_t)tod_low,
691 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
692 if (r) {
693 return r;
696 attr.attr = KVM_S390_VM_TOD_HIGH;
697 attr.addr = (uint64_t)tod_high;
698 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
701 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
703 int r;
704 struct kvm_s390_vm_tod_clock gtod;
705 struct kvm_device_attr attr = {
706 .group = KVM_S390_VM_TOD,
707 .attr = KVM_S390_VM_TOD_EXT,
708 .addr = (uint64_t)&gtod,
711 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
712 *tod_high = gtod.epoch_idx;
713 *tod_low = gtod.tod;
715 return r;
718 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
720 int r;
721 struct kvm_device_attr attr = {
722 .group = KVM_S390_VM_TOD,
723 .attr = KVM_S390_VM_TOD_LOW,
724 .addr = (uint64_t)&tod_low,
727 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
728 if (r) {
729 return r;
732 attr.attr = KVM_S390_VM_TOD_HIGH;
733 attr.addr = (uint64_t)&tod_high;
734 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
737 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
739 struct kvm_s390_vm_tod_clock gtod = {
740 .epoch_idx = tod_high,
741 .tod = tod_low,
743 struct kvm_device_attr attr = {
744 .group = KVM_S390_VM_TOD,
745 .attr = KVM_S390_VM_TOD_EXT,
746 .addr = (uint64_t)&gtod,
749 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
753 * kvm_s390_mem_op:
754 * @addr: the logical start address in guest memory
755 * @ar: the access register number
756 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
757 * @len: length that should be transferred
758 * @is_write: true = write, false = read
759 * Returns: 0 on success, non-zero if an exception or error occurred
761 * Use KVM ioctl to read/write from/to guest memory. An access exception
762 * is injected into the vCPU in case of translation errors.
764 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
765 int len, bool is_write)
767 struct kvm_s390_mem_op mem_op = {
768 .gaddr = addr,
769 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
770 .size = len,
771 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
772 : KVM_S390_MEMOP_LOGICAL_READ,
773 .buf = (uint64_t)hostbuf,
774 .ar = ar,
776 int ret;
778 if (!cap_mem_op) {
779 return -ENOSYS;
781 if (!hostbuf) {
782 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
785 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
786 if (ret < 0) {
787 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
789 return ret;
793 * Legacy layout for s390:
794 * Older S390 KVM requires the topmost vma of the RAM to be
795 * smaller than an system defined value, which is at least 256GB.
796 * Larger systems have larger values. We put the guest between
797 * the end of data segment (system break) and this value. We
798 * use 32GB as a base to have enough room for the system break
799 * to grow. We also have to use MAP parameters that avoid
800 * read-only mapping of guest pages.
802 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
804 static void *mem;
806 if (mem) {
807 /* we only support one allocation, which is enough for initial ram */
808 return NULL;
811 mem = mmap((void *) 0x800000000ULL, size,
812 PROT_EXEC|PROT_READ|PROT_WRITE,
813 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
814 if (mem == MAP_FAILED) {
815 mem = NULL;
817 if (mem && align) {
818 *align = QEMU_VMALLOC_ALIGN;
820 return mem;
823 static uint8_t const *sw_bp_inst;
824 static uint8_t sw_bp_ilen;
826 static void determine_sw_breakpoint_instr(void)
828 /* DIAG 501 is used for sw breakpoints with old kernels */
829 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
830 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
831 static const uint8_t instr_0x0000[] = {0x00, 0x00};
833 if (sw_bp_inst) {
834 return;
836 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
837 sw_bp_inst = diag_501;
838 sw_bp_ilen = sizeof(diag_501);
839 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
840 } else {
841 sw_bp_inst = instr_0x0000;
842 sw_bp_ilen = sizeof(instr_0x0000);
843 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
847 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
849 determine_sw_breakpoint_instr();
851 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
852 sw_bp_ilen, 0) ||
853 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
854 return -EINVAL;
856 return 0;
859 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
861 uint8_t t[MAX_ILEN];
863 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
864 return -EINVAL;
865 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
866 return -EINVAL;
867 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
868 sw_bp_ilen, 1)) {
869 return -EINVAL;
872 return 0;
875 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
876 int len, int type)
878 int n;
880 for (n = 0; n < nb_hw_breakpoints; n++) {
881 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
882 (hw_breakpoints[n].len == len || len == -1)) {
883 return &hw_breakpoints[n];
887 return NULL;
890 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
892 int size;
894 if (find_hw_breakpoint(addr, len, type)) {
895 return -EEXIST;
898 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
900 if (!hw_breakpoints) {
901 nb_hw_breakpoints = 0;
902 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
903 } else {
904 hw_breakpoints =
905 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
908 if (!hw_breakpoints) {
909 nb_hw_breakpoints = 0;
910 return -ENOMEM;
913 hw_breakpoints[nb_hw_breakpoints].addr = addr;
914 hw_breakpoints[nb_hw_breakpoints].len = len;
915 hw_breakpoints[nb_hw_breakpoints].type = type;
917 nb_hw_breakpoints++;
919 return 0;
922 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
923 target_ulong len, int type)
925 switch (type) {
926 case GDB_BREAKPOINT_HW:
927 type = KVM_HW_BP;
928 break;
929 case GDB_WATCHPOINT_WRITE:
930 if (len < 1) {
931 return -EINVAL;
933 type = KVM_HW_WP_WRITE;
934 break;
935 default:
936 return -ENOSYS;
938 return insert_hw_breakpoint(addr, len, type);
941 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
942 target_ulong len, int type)
944 int size;
945 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
947 if (bp == NULL) {
948 return -ENOENT;
951 nb_hw_breakpoints--;
952 if (nb_hw_breakpoints > 0) {
954 * In order to trim the array, move the last element to the position to
955 * be removed - if necessary.
957 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
958 *bp = hw_breakpoints[nb_hw_breakpoints];
960 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
961 hw_breakpoints =
962 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
963 } else {
964 g_free(hw_breakpoints);
965 hw_breakpoints = NULL;
968 return 0;
971 void kvm_arch_remove_all_hw_breakpoints(void)
973 nb_hw_breakpoints = 0;
974 g_free(hw_breakpoints);
975 hw_breakpoints = NULL;
978 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
980 int i;
982 if (nb_hw_breakpoints > 0) {
983 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
984 dbg->arch.hw_bp = hw_breakpoints;
986 for (i = 0; i < nb_hw_breakpoints; ++i) {
987 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
988 hw_breakpoints[i].addr);
990 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
991 } else {
992 dbg->arch.nr_hw_bp = 0;
993 dbg->arch.hw_bp = NULL;
997 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1001 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1003 return MEMTXATTRS_UNSPECIFIED;
1006 int kvm_arch_process_async_events(CPUState *cs)
1008 return cs->halted;
1011 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1012 struct kvm_s390_interrupt *interrupt)
1014 int r = 0;
1016 interrupt->type = irq->type;
1017 switch (irq->type) {
1018 case KVM_S390_INT_VIRTIO:
1019 interrupt->parm = irq->u.ext.ext_params;
1020 /* fall through */
1021 case KVM_S390_INT_PFAULT_INIT:
1022 case KVM_S390_INT_PFAULT_DONE:
1023 interrupt->parm64 = irq->u.ext.ext_params2;
1024 break;
1025 case KVM_S390_PROGRAM_INT:
1026 interrupt->parm = irq->u.pgm.code;
1027 break;
1028 case KVM_S390_SIGP_SET_PREFIX:
1029 interrupt->parm = irq->u.prefix.address;
1030 break;
1031 case KVM_S390_INT_SERVICE:
1032 interrupt->parm = irq->u.ext.ext_params;
1033 break;
1034 case KVM_S390_MCHK:
1035 interrupt->parm = irq->u.mchk.cr14;
1036 interrupt->parm64 = irq->u.mchk.mcic;
1037 break;
1038 case KVM_S390_INT_EXTERNAL_CALL:
1039 interrupt->parm = irq->u.extcall.code;
1040 break;
1041 case KVM_S390_INT_EMERGENCY:
1042 interrupt->parm = irq->u.emerg.code;
1043 break;
1044 case KVM_S390_SIGP_STOP:
1045 case KVM_S390_RESTART:
1046 break; /* These types have no parameters */
1047 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1048 interrupt->parm = irq->u.io.subchannel_id << 16;
1049 interrupt->parm |= irq->u.io.subchannel_nr;
1050 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1051 interrupt->parm64 |= irq->u.io.io_int_word;
1052 break;
1053 default:
1054 r = -EINVAL;
1055 break;
1057 return r;
1060 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1062 struct kvm_s390_interrupt kvmint = {};
1063 int r;
1065 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1066 if (r < 0) {
1067 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1068 exit(1);
1071 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1072 if (r < 0) {
1073 fprintf(stderr, "KVM failed to inject interrupt\n");
1074 exit(1);
1078 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1080 CPUState *cs = CPU(cpu);
1081 int r;
1083 if (cap_s390_irq) {
1084 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1085 if (!r) {
1086 return;
1088 error_report("KVM failed to inject interrupt %llx", irq->type);
1089 exit(1);
1092 inject_vcpu_irq_legacy(cs, irq);
1095 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1097 struct kvm_s390_interrupt kvmint = {};
1098 int r;
1100 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1101 if (r < 0) {
1102 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1103 exit(1);
1106 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1107 if (r < 0) {
1108 fprintf(stderr, "KVM failed to inject interrupt\n");
1109 exit(1);
1113 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1115 struct kvm_s390_irq irq = {
1116 .type = KVM_S390_PROGRAM_INT,
1117 .u.pgm.code = code,
1119 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1120 cpu->env.psw.addr);
1121 kvm_s390_vcpu_interrupt(cpu, &irq);
1124 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1126 struct kvm_s390_irq irq = {
1127 .type = KVM_S390_PROGRAM_INT,
1128 .u.pgm.code = code,
1129 .u.pgm.trans_exc_code = te_code,
1130 .u.pgm.exc_access_id = te_code & 3,
1133 kvm_s390_vcpu_interrupt(cpu, &irq);
1136 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1137 uint16_t ipbh0)
1139 CPUS390XState *env = &cpu->env;
1140 uint64_t sccb;
1141 uint32_t code;
1142 int r = 0;
1144 sccb = env->regs[ipbh0 & 0xf];
1145 code = env->regs[(ipbh0 & 0xf0) >> 4];
1147 r = sclp_service_call(env, sccb, code);
1148 if (r < 0) {
1149 kvm_s390_program_interrupt(cpu, -r);
1150 } else {
1151 setcc(cpu, r);
1154 return 0;
1157 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1159 CPUS390XState *env = &cpu->env;
1160 int rc = 0;
1161 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1163 switch (ipa1) {
1164 case PRIV_B2_XSCH:
1165 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1166 break;
1167 case PRIV_B2_CSCH:
1168 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1169 break;
1170 case PRIV_B2_HSCH:
1171 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1172 break;
1173 case PRIV_B2_MSCH:
1174 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1175 break;
1176 case PRIV_B2_SSCH:
1177 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1178 break;
1179 case PRIV_B2_STCRW:
1180 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1181 break;
1182 case PRIV_B2_STSCH:
1183 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1184 break;
1185 case PRIV_B2_TSCH:
1186 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1187 fprintf(stderr, "Spurious tsch intercept\n");
1188 break;
1189 case PRIV_B2_CHSC:
1190 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1191 break;
1192 case PRIV_B2_TPI:
1193 /* This should have been handled by kvm already. */
1194 fprintf(stderr, "Spurious tpi intercept\n");
1195 break;
1196 case PRIV_B2_SCHM:
1197 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1198 run->s390_sieic.ipb, RA_IGNORED);
1199 break;
1200 case PRIV_B2_RSCH:
1201 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1202 break;
1203 case PRIV_B2_RCHP:
1204 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1205 break;
1206 case PRIV_B2_STCPS:
1207 /* We do not provide this instruction, it is suppressed. */
1208 break;
1209 case PRIV_B2_SAL:
1210 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1211 break;
1212 case PRIV_B2_SIGA:
1213 /* Not provided, set CC = 3 for subchannel not operational */
1214 setcc(cpu, 3);
1215 break;
1216 case PRIV_B2_SCLP_CALL:
1217 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1218 break;
1219 default:
1220 rc = -1;
1221 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1222 break;
1225 return rc;
1228 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1229 uint8_t *ar)
1231 CPUS390XState *env = &cpu->env;
1232 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1233 uint32_t base2 = run->s390_sieic.ipb >> 28;
1234 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1235 ((run->s390_sieic.ipb & 0xff00) << 4);
1237 if (disp2 & 0x80000) {
1238 disp2 += 0xfff00000;
1240 if (ar) {
1241 *ar = base2;
1244 return (base2 ? env->regs[base2] : 0) +
1245 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1248 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1249 uint8_t *ar)
1251 CPUS390XState *env = &cpu->env;
1252 uint32_t base2 = run->s390_sieic.ipb >> 28;
1253 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1254 ((run->s390_sieic.ipb & 0xff00) << 4);
1256 if (disp2 & 0x80000) {
1257 disp2 += 0xfff00000;
1259 if (ar) {
1260 *ar = base2;
1263 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1266 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1268 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1270 if (s390_has_feat(S390_FEAT_ZPCI)) {
1271 return clp_service_call(cpu, r2, RA_IGNORED);
1272 } else {
1273 return -1;
1277 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1279 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1280 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1282 if (s390_has_feat(S390_FEAT_ZPCI)) {
1283 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1284 } else {
1285 return -1;
1289 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1291 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1292 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1294 if (s390_has_feat(S390_FEAT_ZPCI)) {
1295 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1296 } else {
1297 return -1;
1301 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1303 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1304 uint64_t fiba;
1305 uint8_t ar;
1307 if (s390_has_feat(S390_FEAT_ZPCI)) {
1308 fiba = get_base_disp_rxy(cpu, run, &ar);
1310 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1311 } else {
1312 return -1;
1316 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1318 CPUS390XState *env = &cpu->env;
1319 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1320 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1321 uint8_t isc;
1322 uint16_t mode;
1323 int r;
1325 mode = env->regs[r1] & 0xffff;
1326 isc = (env->regs[r3] >> 27) & 0x7;
1327 r = css_do_sic(env, isc, mode);
1328 if (r) {
1329 kvm_s390_program_interrupt(cpu, -r);
1332 return 0;
1335 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1337 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1338 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1340 if (s390_has_feat(S390_FEAT_ZPCI)) {
1341 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1342 } else {
1343 return -1;
1347 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1349 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1350 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1351 uint64_t gaddr;
1352 uint8_t ar;
1354 if (s390_has_feat(S390_FEAT_ZPCI)) {
1355 gaddr = get_base_disp_rsy(cpu, run, &ar);
1357 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1358 } else {
1359 return -1;
1363 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1365 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1366 uint64_t fiba;
1367 uint8_t ar;
1369 if (s390_has_feat(S390_FEAT_ZPCI)) {
1370 fiba = get_base_disp_rxy(cpu, run, &ar);
1372 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1373 } else {
1374 return -1;
1378 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1380 int r = 0;
1382 switch (ipa1) {
1383 case PRIV_B9_CLP:
1384 r = kvm_clp_service_call(cpu, run);
1385 break;
1386 case PRIV_B9_PCISTG:
1387 r = kvm_pcistg_service_call(cpu, run);
1388 break;
1389 case PRIV_B9_PCILG:
1390 r = kvm_pcilg_service_call(cpu, run);
1391 break;
1392 case PRIV_B9_RPCIT:
1393 r = kvm_rpcit_service_call(cpu, run);
1394 break;
1395 case PRIV_B9_EQBS:
1396 /* just inject exception */
1397 r = -1;
1398 break;
1399 default:
1400 r = -1;
1401 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1402 break;
1405 return r;
1408 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1410 int r = 0;
1412 switch (ipbl) {
1413 case PRIV_EB_PCISTB:
1414 r = kvm_pcistb_service_call(cpu, run);
1415 break;
1416 case PRIV_EB_SIC:
1417 r = kvm_sic_service_call(cpu, run);
1418 break;
1419 case PRIV_EB_SQBS:
1420 /* just inject exception */
1421 r = -1;
1422 break;
1423 default:
1424 r = -1;
1425 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1426 break;
1429 return r;
1432 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1434 int r = 0;
1436 switch (ipbl) {
1437 case PRIV_E3_MPCIFC:
1438 r = kvm_mpcifc_service_call(cpu, run);
1439 break;
1440 case PRIV_E3_STPCIFC:
1441 r = kvm_stpcifc_service_call(cpu, run);
1442 break;
1443 default:
1444 r = -1;
1445 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1446 break;
1449 return r;
1452 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1454 CPUS390XState *env = &cpu->env;
1455 int ret;
1457 ret = s390_virtio_hypercall(env);
1458 if (ret == -EINVAL) {
1459 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1460 return 0;
1463 return ret;
1466 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1468 uint64_t r1, r3;
1469 int rc;
1471 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1472 r3 = run->s390_sieic.ipa & 0x000f;
1473 rc = handle_diag_288(&cpu->env, r1, r3);
1474 if (rc) {
1475 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1479 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1481 uint64_t r1, r3;
1483 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1484 r3 = run->s390_sieic.ipa & 0x000f;
1485 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1488 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1490 CPUS390XState *env = &cpu->env;
1491 unsigned long pc;
1493 pc = env->psw.addr - sw_bp_ilen;
1494 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1495 env->psw.addr = pc;
1496 return EXCP_DEBUG;
1499 return -ENOENT;
1502 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1504 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1506 int r = 0;
1507 uint16_t func_code;
1510 * For any diagnose call we support, bits 48-63 of the resulting
1511 * address specify the function code; the remainder is ignored.
1513 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1514 switch (func_code) {
1515 case DIAG_TIMEREVENT:
1516 kvm_handle_diag_288(cpu, run);
1517 break;
1518 case DIAG_IPL:
1519 kvm_handle_diag_308(cpu, run);
1520 break;
1521 case DIAG_KVM_HYPERCALL:
1522 r = handle_hypercall(cpu, run);
1523 break;
1524 case DIAG_KVM_BREAKPOINT:
1525 r = handle_sw_breakpoint(cpu, run);
1526 break;
1527 default:
1528 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1529 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1530 break;
1533 return r;
1536 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1538 CPUS390XState *env = &cpu->env;
1539 const uint8_t r1 = ipa1 >> 4;
1540 const uint8_t r3 = ipa1 & 0x0f;
1541 int ret;
1542 uint8_t order;
1544 /* get order code */
1545 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1547 ret = handle_sigp(env, order, r1, r3);
1548 setcc(cpu, ret);
1549 return 0;
1552 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1554 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1555 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1556 int r = -1;
1558 DPRINTF("handle_instruction 0x%x 0x%x\n",
1559 run->s390_sieic.ipa, run->s390_sieic.ipb);
1560 switch (ipa0) {
1561 case IPA0_B2:
1562 r = handle_b2(cpu, run, ipa1);
1563 break;
1564 case IPA0_B9:
1565 r = handle_b9(cpu, run, ipa1);
1566 break;
1567 case IPA0_EB:
1568 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1569 break;
1570 case IPA0_E3:
1571 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1572 break;
1573 case IPA0_DIAG:
1574 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1575 break;
1576 case IPA0_SIGP:
1577 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1578 break;
1581 if (r < 0) {
1582 r = 0;
1583 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1586 return r;
1589 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1590 int pswoffset)
1592 CPUState *cs = CPU(cpu);
1594 s390_cpu_halt(cpu);
1595 cpu->env.crash_reason = reason;
1596 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1599 /* try to detect pgm check loops */
1600 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1602 CPUState *cs = CPU(cpu);
1603 PSW oldpsw, newpsw;
1605 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1606 offsetof(LowCore, program_new_psw));
1607 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1608 offsetof(LowCore, program_new_psw) + 8);
1609 oldpsw.mask = run->psw_mask;
1610 oldpsw.addr = run->psw_addr;
1612 * Avoid endless loops of operation exceptions, if the pgm new
1613 * PSW will cause a new operation exception.
1614 * The heuristic checks if the pgm new psw is within 6 bytes before
1615 * the faulting psw address (with same DAT, AS settings) and the
1616 * new psw is not a wait psw and the fault was not triggered by
1617 * problem state. In that case go into crashed state.
1620 if (oldpsw.addr - newpsw.addr <= 6 &&
1621 !(newpsw.mask & PSW_MASK_WAIT) &&
1622 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1623 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1624 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1625 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1626 offsetof(LowCore, program_new_psw));
1627 return EXCP_HALTED;
1629 return 0;
1632 static int handle_intercept(S390CPU *cpu)
1634 CPUState *cs = CPU(cpu);
1635 struct kvm_run *run = cs->kvm_run;
1636 int icpt_code = run->s390_sieic.icptcode;
1637 int r = 0;
1639 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1640 (long)cs->kvm_run->psw_addr);
1641 switch (icpt_code) {
1642 case ICPT_INSTRUCTION:
1643 r = handle_instruction(cpu, run);
1644 break;
1645 case ICPT_PROGRAM:
1646 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1647 offsetof(LowCore, program_new_psw));
1648 r = EXCP_HALTED;
1649 break;
1650 case ICPT_EXT_INT:
1651 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1652 offsetof(LowCore, external_new_psw));
1653 r = EXCP_HALTED;
1654 break;
1655 case ICPT_WAITPSW:
1656 /* disabled wait, since enabled wait is handled in kernel */
1657 s390_handle_wait(cpu);
1658 r = EXCP_HALTED;
1659 break;
1660 case ICPT_CPU_STOP:
1661 do_stop_interrupt(&cpu->env);
1662 r = EXCP_HALTED;
1663 break;
1664 case ICPT_OPEREXC:
1665 /* check for break points */
1666 r = handle_sw_breakpoint(cpu, run);
1667 if (r == -ENOENT) {
1668 /* Then check for potential pgm check loops */
1669 r = handle_oper_loop(cpu, run);
1670 if (r == 0) {
1671 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1674 break;
1675 case ICPT_SOFT_INTERCEPT:
1676 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1677 exit(1);
1678 break;
1679 case ICPT_IO:
1680 fprintf(stderr, "KVM unimplemented icpt IO\n");
1681 exit(1);
1682 break;
1683 default:
1684 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1685 exit(1);
1686 break;
1689 return r;
1692 static int handle_tsch(S390CPU *cpu)
1694 CPUState *cs = CPU(cpu);
1695 struct kvm_run *run = cs->kvm_run;
1696 int ret;
1698 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1699 RA_IGNORED);
1700 if (ret < 0) {
1702 * Failure.
1703 * If an I/O interrupt had been dequeued, we have to reinject it.
1705 if (run->s390_tsch.dequeued) {
1706 s390_io_interrupt(run->s390_tsch.subchannel_id,
1707 run->s390_tsch.subchannel_nr,
1708 run->s390_tsch.io_int_parm,
1709 run->s390_tsch.io_int_word);
1711 ret = 0;
1713 return ret;
1716 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1718 SysIB_322 sysib;
1719 int del;
1721 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1722 return;
1724 /* Shift the stack of Extended Names to prepare for our own data */
1725 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1726 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1727 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1728 * assumed it's not capable of managing Extended Names for lower levels.
1730 for (del = 1; del < sysib.count; del++) {
1731 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1732 break;
1735 if (del < sysib.count) {
1736 memset(sysib.ext_names[del], 0,
1737 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1739 /* Insert short machine name in EBCDIC, padded with blanks */
1740 if (qemu_name) {
1741 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1742 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1743 strlen(qemu_name)));
1745 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1746 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1747 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1748 * considered by s390 as not capable of providing any Extended Name.
1749 * Therefore if no name was specified on qemu invocation, we go with the
1750 * same "KVMguest" default, which KVM has filled into short name field.
1752 if (qemu_name) {
1753 strncpy((char *)sysib.ext_names[0], qemu_name,
1754 sizeof(sysib.ext_names[0]));
1755 } else {
1756 strcpy((char *)sysib.ext_names[0], "KVMguest");
1758 /* Insert UUID */
1759 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1761 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1764 static int handle_stsi(S390CPU *cpu)
1766 CPUState *cs = CPU(cpu);
1767 struct kvm_run *run = cs->kvm_run;
1769 switch (run->s390_stsi.fc) {
1770 case 3:
1771 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1772 return 0;
1774 /* Only sysib 3.2.2 needs post-handling for now. */
1775 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1776 return 0;
1777 default:
1778 return 0;
1782 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1784 CPUState *cs = CPU(cpu);
1785 struct kvm_run *run = cs->kvm_run;
1787 int ret = 0;
1788 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1790 switch (arch_info->type) {
1791 case KVM_HW_WP_WRITE:
1792 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1793 cs->watchpoint_hit = &hw_watchpoint;
1794 hw_watchpoint.vaddr = arch_info->addr;
1795 hw_watchpoint.flags = BP_MEM_WRITE;
1796 ret = EXCP_DEBUG;
1798 break;
1799 case KVM_HW_BP:
1800 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1801 ret = EXCP_DEBUG;
1803 break;
1804 case KVM_SINGLESTEP:
1805 if (cs->singlestep_enabled) {
1806 ret = EXCP_DEBUG;
1808 break;
1809 default:
1810 ret = -ENOSYS;
1813 return ret;
1816 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1818 S390CPU *cpu = S390_CPU(cs);
1819 int ret = 0;
1821 qemu_mutex_lock_iothread();
1823 kvm_cpu_synchronize_state(cs);
1825 switch (run->exit_reason) {
1826 case KVM_EXIT_S390_SIEIC:
1827 ret = handle_intercept(cpu);
1828 break;
1829 case KVM_EXIT_S390_RESET:
1830 s390_ipl_reset_request(cs, S390_RESET_REIPL);
1831 break;
1832 case KVM_EXIT_S390_TSCH:
1833 ret = handle_tsch(cpu);
1834 break;
1835 case KVM_EXIT_S390_STSI:
1836 ret = handle_stsi(cpu);
1837 break;
1838 case KVM_EXIT_DEBUG:
1839 ret = kvm_arch_handle_debug_exit(cpu);
1840 break;
1841 default:
1842 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1843 break;
1845 qemu_mutex_unlock_iothread();
1847 if (ret == 0) {
1848 ret = EXCP_INTERRUPT;
1850 return ret;
1853 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1855 return true;
1858 void kvm_s390_enable_css_support(S390CPU *cpu)
1860 int r;
1862 /* Activate host kernel channel subsystem support. */
1863 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1864 assert(r == 0);
1867 void kvm_arch_init_irq_routing(KVMState *s)
1870 * Note that while irqchip capabilities generally imply that cpustates
1871 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1872 * have to override the common code kvm_halt_in_kernel_allowed setting.
1874 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1875 kvm_gsi_routing_allowed = true;
1876 kvm_halt_in_kernel_allowed = false;
1880 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1881 int vq, bool assign)
1883 struct kvm_ioeventfd kick = {
1884 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1885 KVM_IOEVENTFD_FLAG_DATAMATCH,
1886 .fd = event_notifier_get_fd(notifier),
1887 .datamatch = vq,
1888 .addr = sch,
1889 .len = 8,
1891 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1892 return -ENOSYS;
1894 if (!assign) {
1895 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1897 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1900 int kvm_s390_get_ri(void)
1902 return cap_ri;
1905 int kvm_s390_get_gs(void)
1907 return cap_gs;
1910 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1912 struct kvm_mp_state mp_state = {};
1913 int ret;
1915 /* the kvm part might not have been initialized yet */
1916 if (CPU(cpu)->kvm_state == NULL) {
1917 return 0;
1920 switch (cpu_state) {
1921 case S390_CPU_STATE_STOPPED:
1922 mp_state.mp_state = KVM_MP_STATE_STOPPED;
1923 break;
1924 case S390_CPU_STATE_CHECK_STOP:
1925 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1926 break;
1927 case S390_CPU_STATE_OPERATING:
1928 mp_state.mp_state = KVM_MP_STATE_OPERATING;
1929 break;
1930 case S390_CPU_STATE_LOAD:
1931 mp_state.mp_state = KVM_MP_STATE_LOAD;
1932 break;
1933 default:
1934 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1935 cpu_state);
1936 exit(1);
1939 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1940 if (ret) {
1941 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1942 strerror(-ret));
1945 return ret;
1948 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1950 struct kvm_s390_irq_state irq_state = {
1951 .buf = (uint64_t) cpu->irqstate,
1952 .len = VCPU_IRQ_BUF_SIZE,
1954 CPUState *cs = CPU(cpu);
1955 int32_t bytes;
1957 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1958 return;
1961 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
1962 if (bytes < 0) {
1963 cpu->irqstate_saved_size = 0;
1964 error_report("Migration of interrupt state failed");
1965 return;
1968 cpu->irqstate_saved_size = bytes;
1971 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
1973 CPUState *cs = CPU(cpu);
1974 struct kvm_s390_irq_state irq_state = {
1975 .buf = (uint64_t) cpu->irqstate,
1976 .len = cpu->irqstate_saved_size,
1978 int r;
1980 if (cpu->irqstate_saved_size == 0) {
1981 return 0;
1984 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1985 return -ENOSYS;
1988 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
1989 if (r) {
1990 error_report("Setting interrupt state failed %d", r);
1992 return r;
1995 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1996 uint64_t address, uint32_t data, PCIDevice *dev)
1998 S390PCIBusDevice *pbdev;
1999 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2001 if (!dev) {
2002 DPRINTF("add_msi_route no pci device\n");
2003 return -ENODEV;
2006 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2007 if (!pbdev) {
2008 DPRINTF("add_msi_route no zpci device\n");
2009 return -ENODEV;
2012 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2013 route->flags = 0;
2014 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2015 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2016 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2017 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2018 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2019 return 0;
2022 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2023 int vector, PCIDevice *dev)
2025 return 0;
2028 int kvm_arch_release_virq_post(int virq)
2030 return 0;
2033 int kvm_arch_msi_data_to_gsi(uint32_t data)
2035 abort();
2038 static int query_cpu_subfunc(S390FeatBitmap features)
2040 struct kvm_s390_vm_cpu_subfunc prop;
2041 struct kvm_device_attr attr = {
2042 .group = KVM_S390_VM_CPU_MODEL,
2043 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2044 .addr = (uint64_t) &prop,
2046 int rc;
2048 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2049 if (rc) {
2050 return rc;
2054 * We're going to add all subfunctions now, if the corresponding feature
2055 * is available that unlocks the query functions.
2057 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2058 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2059 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2061 if (test_bit(S390_FEAT_MSA, features)) {
2062 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2063 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2064 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2065 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2066 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2068 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2069 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2071 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2072 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2073 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2074 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2075 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2077 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2078 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2080 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2081 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2083 return 0;
2086 static int configure_cpu_subfunc(const S390FeatBitmap features)
2088 struct kvm_s390_vm_cpu_subfunc prop = {};
2089 struct kvm_device_attr attr = {
2090 .group = KVM_S390_VM_CPU_MODEL,
2091 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2092 .addr = (uint64_t) &prop,
2095 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2096 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2097 /* hardware support might be missing, IBC will handle most of this */
2098 return 0;
2101 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2102 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2103 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2105 if (test_bit(S390_FEAT_MSA, features)) {
2106 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2107 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2108 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2109 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2110 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2112 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2113 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2115 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2116 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2117 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2118 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2119 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2121 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2122 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2124 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2125 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2127 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2130 static int kvm_to_feat[][2] = {
2131 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2132 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2133 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2134 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2135 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2136 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2137 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2138 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2139 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2140 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2141 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2142 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2143 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2144 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2147 static int query_cpu_feat(S390FeatBitmap features)
2149 struct kvm_s390_vm_cpu_feat prop;
2150 struct kvm_device_attr attr = {
2151 .group = KVM_S390_VM_CPU_MODEL,
2152 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2153 .addr = (uint64_t) &prop,
2155 int rc;
2156 int i;
2158 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2159 if (rc) {
2160 return rc;
2163 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2164 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2165 set_bit(kvm_to_feat[i][1], features);
2168 return 0;
2171 static int configure_cpu_feat(const S390FeatBitmap features)
2173 struct kvm_s390_vm_cpu_feat prop = {};
2174 struct kvm_device_attr attr = {
2175 .group = KVM_S390_VM_CPU_MODEL,
2176 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2177 .addr = (uint64_t) &prop,
2179 int i;
2181 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2182 if (test_bit(kvm_to_feat[i][1], features)) {
2183 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2186 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2189 bool kvm_s390_cpu_models_supported(void)
2191 if (!cpu_model_allowed()) {
2192 /* compatibility machines interfere with the cpu model */
2193 return false;
2195 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2196 KVM_S390_VM_CPU_MACHINE) &&
2197 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2198 KVM_S390_VM_CPU_PROCESSOR) &&
2199 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2200 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2201 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2202 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2203 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2204 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2207 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2209 struct kvm_s390_vm_cpu_machine prop = {};
2210 struct kvm_device_attr attr = {
2211 .group = KVM_S390_VM_CPU_MODEL,
2212 .attr = KVM_S390_VM_CPU_MACHINE,
2213 .addr = (uint64_t) &prop,
2215 uint16_t unblocked_ibc = 0, cpu_type = 0;
2216 int rc;
2218 memset(model, 0, sizeof(*model));
2220 if (!kvm_s390_cpu_models_supported()) {
2221 error_setg(errp, "KVM doesn't support CPU models");
2222 return;
2225 /* query the basic cpu model properties */
2226 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2227 if (rc) {
2228 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2229 return;
2232 cpu_type = cpuid_type(prop.cpuid);
2233 if (has_ibc(prop.ibc)) {
2234 model->lowest_ibc = lowest_ibc(prop.ibc);
2235 unblocked_ibc = unblocked_ibc(prop.ibc);
2237 model->cpu_id = cpuid_id(prop.cpuid);
2238 model->cpu_id_format = cpuid_format(prop.cpuid);
2239 model->cpu_ver = 0xff;
2241 /* get supported cpu features indicated via STFL(E) */
2242 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2243 (uint8_t *) prop.fac_mask);
2244 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2245 if (test_bit(S390_FEAT_STFLE, model->features)) {
2246 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2248 /* get supported cpu features indicated e.g. via SCLP */
2249 rc = query_cpu_feat(model->features);
2250 if (rc) {
2251 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2252 return;
2254 /* get supported cpu subfunctions indicated via query / test bit */
2255 rc = query_cpu_subfunc(model->features);
2256 if (rc) {
2257 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2258 return;
2261 /* PTFF subfunctions might be indicated although kernel support missing */
2262 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2263 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2264 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2265 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2266 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2269 /* with cpu model support, CMM is only indicated if really available */
2270 if (kvm_s390_cmma_available()) {
2271 set_bit(S390_FEAT_CMM, model->features);
2272 } else {
2273 /* no cmm -> no cmm nt */
2274 clear_bit(S390_FEAT_CMM_NT, model->features);
2277 /* bpb needs kernel support for migration, VSIE and reset */
2278 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2279 clear_bit(S390_FEAT_BPB, model->features);
2282 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2283 if (pci_available) {
2284 set_bit(S390_FEAT_ZPCI, model->features);
2286 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2288 if (s390_known_cpu_type(cpu_type)) {
2289 /* we want the exact model, even if some features are missing */
2290 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2291 ibc_ec_ga(unblocked_ibc), NULL);
2292 } else {
2293 /* model unknown, e.g. too new - search using features */
2294 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2295 ibc_ec_ga(unblocked_ibc),
2296 model->features);
2298 if (!model->def) {
2299 error_setg(errp, "KVM: host CPU model could not be identified");
2300 return;
2302 /* for now, we can only provide the AP feature with HW support */
2303 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2304 KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2305 set_bit(S390_FEAT_AP, model->features);
2307 /* strip of features that are not part of the maximum model */
2308 bitmap_and(model->features, model->features, model->def->full_feat,
2309 S390_FEAT_MAX);
2312 static void kvm_s390_configure_apie(bool interpret)
2314 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2315 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2317 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2318 kvm_s390_set_attr(attr);
2322 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2324 struct kvm_s390_vm_cpu_processor prop = {
2325 .fac_list = { 0 },
2327 struct kvm_device_attr attr = {
2328 .group = KVM_S390_VM_CPU_MODEL,
2329 .attr = KVM_S390_VM_CPU_PROCESSOR,
2330 .addr = (uint64_t) &prop,
2332 int rc;
2334 if (!model) {
2335 /* compatibility handling if cpu models are disabled */
2336 if (kvm_s390_cmma_available()) {
2337 kvm_s390_enable_cmma();
2339 return;
2341 if (!kvm_s390_cpu_models_supported()) {
2342 error_setg(errp, "KVM doesn't support CPU models");
2343 return;
2345 prop.cpuid = s390_cpuid_from_cpu_model(model);
2346 prop.ibc = s390_ibc_from_cpu_model(model);
2347 /* configure cpu features indicated via STFL(e) */
2348 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2349 (uint8_t *) prop.fac_list);
2350 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2351 if (rc) {
2352 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2353 return;
2355 /* configure cpu features indicated e.g. via SCLP */
2356 rc = configure_cpu_feat(model->features);
2357 if (rc) {
2358 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2359 return;
2361 /* configure cpu subfunctions indicated via query / test bit */
2362 rc = configure_cpu_subfunc(model->features);
2363 if (rc) {
2364 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2365 return;
2367 /* enable CMM via CMMA */
2368 if (test_bit(S390_FEAT_CMM, model->features)) {
2369 kvm_s390_enable_cmma();
2372 if (test_bit(S390_FEAT_AP, model->features)) {
2373 kvm_s390_configure_apie(true);
2377 void kvm_s390_restart_interrupt(S390CPU *cpu)
2379 struct kvm_s390_irq irq = {
2380 .type = KVM_S390_RESTART,
2383 kvm_s390_vcpu_interrupt(cpu, &irq);
2386 void kvm_s390_stop_interrupt(S390CPU *cpu)
2388 struct kvm_s390_irq irq = {
2389 .type = KVM_S390_SIGP_STOP,
2392 kvm_s390_vcpu_interrupt(cpu, &irq);