io: bind to socket before creating QIOChannelSocket
[qemu/ar7.git] / target-ppc / mmu-hash64.c
blob9c58fbf0094f364a740042b7f6caa36c75d30979
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "qemu/error-report.h"
24 #include "sysemu/kvm.h"
25 #include "qemu/error-report.h"
26 #include "kvm_ppc.h"
27 #include "mmu-hash64.h"
28 #include "exec/log.h"
30 //#define DEBUG_SLB
32 #ifdef DEBUG_SLB
33 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
34 #else
35 # define LOG_SLB(...) do { } while (0)
36 #endif
39 * Used to indicate whether we have allocated htab in the
40 * host kernel
42 bool kvmppc_kern_htab;
44 * SLB handling
47 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
49 CPUPPCState *env = &cpu->env;
50 uint64_t esid_256M, esid_1T;
51 int n;
53 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
55 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
56 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
58 for (n = 0; n < env->slb_nr; n++) {
59 ppc_slb_t *slb = &env->slb[n];
61 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
62 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
63 /* We check for 1T matches on all MMUs here - if the MMU
64 * doesn't have 1T segment support, we will have prevented 1T
65 * entries from being inserted in the slbmte code. */
66 if (((slb->esid == esid_256M) &&
67 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
68 || ((slb->esid == esid_1T) &&
69 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
70 return slb;
74 return NULL;
77 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
79 CPUPPCState *env = &cpu->env;
80 int i;
81 uint64_t slbe, slbv;
83 cpu_synchronize_state(CPU(cpu));
85 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
86 for (i = 0; i < env->slb_nr; i++) {
87 slbe = env->slb[i].esid;
88 slbv = env->slb[i].vsid;
89 if (slbe == 0 && slbv == 0) {
90 continue;
92 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
93 i, slbe, slbv);
97 void helper_slbia(CPUPPCState *env)
99 PowerPCCPU *cpu = ppc_env_get_cpu(env);
100 int n, do_invalidate;
102 do_invalidate = 0;
103 /* XXX: Warning: slbia never invalidates the first segment */
104 for (n = 1; n < env->slb_nr; n++) {
105 ppc_slb_t *slb = &env->slb[n];
107 if (slb->esid & SLB_ESID_V) {
108 slb->esid &= ~SLB_ESID_V;
109 /* XXX: given the fact that segment size is 256 MB or 1TB,
110 * and we still don't have a tlb_flush_mask(env, n, mask)
111 * in QEMU, we just invalidate all TLBs
113 do_invalidate = 1;
116 if (do_invalidate) {
117 tlb_flush(CPU(cpu), 1);
121 void helper_slbie(CPUPPCState *env, target_ulong addr)
123 PowerPCCPU *cpu = ppc_env_get_cpu(env);
124 ppc_slb_t *slb;
126 slb = slb_lookup(cpu, addr);
127 if (!slb) {
128 return;
131 if (slb->esid & SLB_ESID_V) {
132 slb->esid &= ~SLB_ESID_V;
134 /* XXX: given the fact that segment size is 256 MB or 1TB,
135 * and we still don't have a tlb_flush_mask(env, n, mask)
136 * in QEMU, we just invalidate all TLBs
138 tlb_flush(CPU(cpu), 1);
142 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
143 target_ulong esid, target_ulong vsid)
145 CPUPPCState *env = &cpu->env;
146 ppc_slb_t *slb = &env->slb[slot];
147 const struct ppc_one_seg_page_size *sps = NULL;
148 int i;
150 if (slot >= env->slb_nr) {
151 return -1; /* Bad slot number */
153 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
154 return -1; /* Reserved bits set */
156 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
157 return -1; /* Bad segment size */
159 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
160 return -1; /* 1T segment on MMU that doesn't support it */
163 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
164 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
166 if (!sps1->page_shift) {
167 break;
170 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
171 sps = sps1;
172 break;
176 if (!sps) {
177 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
178 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
179 slot, esid, vsid);
180 return -1;
183 slb->esid = esid;
184 slb->vsid = vsid;
185 slb->sps = sps;
187 LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
188 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
189 slb->esid, slb->vsid);
191 return 0;
194 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
195 target_ulong *rt)
197 CPUPPCState *env = &cpu->env;
198 int slot = rb & 0xfff;
199 ppc_slb_t *slb = &env->slb[slot];
201 if (slot >= env->slb_nr) {
202 return -1;
205 *rt = slb->esid;
206 return 0;
209 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
210 target_ulong *rt)
212 CPUPPCState *env = &cpu->env;
213 int slot = rb & 0xfff;
214 ppc_slb_t *slb = &env->slb[slot];
216 if (slot >= env->slb_nr) {
217 return -1;
220 *rt = slb->vsid;
221 return 0;
224 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
226 PowerPCCPU *cpu = ppc_env_get_cpu(env);
228 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
229 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
230 POWERPC_EXCP_INVAL);
234 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
236 PowerPCCPU *cpu = ppc_env_get_cpu(env);
237 target_ulong rt = 0;
239 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
240 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
241 POWERPC_EXCP_INVAL);
243 return rt;
246 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
248 PowerPCCPU *cpu = ppc_env_get_cpu(env);
249 target_ulong rt = 0;
251 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
252 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
253 POWERPC_EXCP_INVAL);
255 return rt;
259 * 64-bit hash table MMU handling
262 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
263 ppc_slb_t *slb, ppc_hash_pte64_t pte)
265 CPUPPCState *env = &cpu->env;
266 unsigned pp, key;
267 /* Some pp bit combinations have undefined behaviour, so default
268 * to no access in those cases */
269 int prot = 0;
271 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
272 : (slb->vsid & SLB_VSID_KS));
273 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
275 if (key == 0) {
276 switch (pp) {
277 case 0x0:
278 case 0x1:
279 case 0x2:
280 prot = PAGE_READ | PAGE_WRITE;
281 break;
283 case 0x3:
284 case 0x6:
285 prot = PAGE_READ;
286 break;
288 } else {
289 switch (pp) {
290 case 0x0:
291 case 0x6:
292 prot = 0;
293 break;
295 case 0x1:
296 case 0x3:
297 prot = PAGE_READ;
298 break;
300 case 0x2:
301 prot = PAGE_READ | PAGE_WRITE;
302 break;
306 /* No execute if either noexec or guarded bits set */
307 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
308 || (slb->vsid & SLB_VSID_N)) {
309 prot |= PAGE_EXEC;
312 return prot;
315 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
317 CPUPPCState *env = &cpu->env;
318 int key, amrbits;
319 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
321 /* Only recent MMUs implement Virtual Page Class Key Protection */
322 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
323 return prot;
326 key = HPTE64_R_KEY(pte.pte1);
327 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
329 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
330 /* env->spr[SPR_AMR]); */
333 * A store is permitted if the AMR bit is 0. Remove write
334 * protection if it is set.
336 if (amrbits & 0x2) {
337 prot &= ~PAGE_WRITE;
340 * A load is permitted if the AMR bit is 0. Remove read
341 * protection if it is set.
343 if (amrbits & 0x1) {
344 prot &= ~PAGE_READ;
347 return prot;
350 uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
352 uint64_t token = 0;
353 hwaddr pte_offset;
355 pte_offset = pte_index * HASH_PTE_SIZE_64;
356 if (kvmppc_kern_htab) {
358 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
360 token = kvmppc_hash64_read_pteg(cpu, pte_index);
361 if (token) {
362 return token;
365 * pteg read failed, even though we have allocated htab via
366 * kvmppc_reset_htab.
368 return 0;
371 * HTAB is controlled by QEMU. Just point to the internally
372 * accessible PTEG.
374 if (cpu->env.external_htab) {
375 token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
376 } else if (cpu->env.htab_base) {
377 token = cpu->env.htab_base + pte_offset;
379 return token;
382 void ppc_hash64_stop_access(uint64_t token)
384 if (kvmppc_kern_htab) {
385 kvmppc_hash64_free_pteg(token);
389 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
390 bool secondary, target_ulong ptem,
391 ppc_hash_pte64_t *pte)
393 CPUPPCState *env = &cpu->env;
394 int i;
395 uint64_t token;
396 target_ulong pte0, pte1;
397 target_ulong pte_index;
399 pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
400 token = ppc_hash64_start_access(cpu, pte_index);
401 if (!token) {
402 return -1;
404 for (i = 0; i < HPTES_PER_GROUP; i++) {
405 pte0 = ppc_hash64_load_hpte0(cpu, token, i);
406 pte1 = ppc_hash64_load_hpte1(cpu, token, i);
408 if ((pte0 & HPTE64_V_VALID)
409 && (secondary == !!(pte0 & HPTE64_V_SECONDARY))
410 && HPTE64_V_COMPARE(pte0, ptem)) {
411 pte->pte0 = pte0;
412 pte->pte1 = pte1;
413 ppc_hash64_stop_access(token);
414 return (pte_index + i) * HASH_PTE_SIZE_64;
417 ppc_hash64_stop_access(token);
419 * We didn't find a valid entry.
421 return -1;
424 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
425 ppc_slb_t *slb, target_ulong eaddr,
426 ppc_hash_pte64_t *pte)
428 CPUPPCState *env = &cpu->env;
429 hwaddr pte_offset;
430 hwaddr hash;
431 uint64_t vsid, epnmask, epn, ptem;
433 /* The SLB store path should prevent any bad page size encodings
434 * getting in there, so: */
435 assert(slb->sps);
437 epnmask = ~((1ULL << slb->sps->page_shift) - 1);
439 if (slb->vsid & SLB_VSID_B) {
440 /* 1TB segment */
441 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
442 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
443 hash = vsid ^ (vsid << 25) ^ (epn >> slb->sps->page_shift);
444 } else {
445 /* 256M segment */
446 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
447 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
448 hash = vsid ^ (epn >> slb->sps->page_shift);
450 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
452 /* Page address translation */
453 qemu_log_mask(CPU_LOG_MMU,
454 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
455 " hash " TARGET_FMT_plx "\n",
456 env->htab_base, env->htab_mask, hash);
458 /* Primary PTEG lookup */
459 qemu_log_mask(CPU_LOG_MMU,
460 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
461 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
462 " hash=" TARGET_FMT_plx "\n",
463 env->htab_base, env->htab_mask, vsid, ptem, hash);
464 pte_offset = ppc_hash64_pteg_search(cpu, hash, 0, ptem, pte);
466 if (pte_offset == -1) {
467 /* Secondary PTEG lookup */
468 qemu_log_mask(CPU_LOG_MMU,
469 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
470 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
471 " hash=" TARGET_FMT_plx "\n", env->htab_base,
472 env->htab_mask, vsid, ptem, ~hash);
474 pte_offset = ppc_hash64_pteg_search(cpu, ~hash, 1, ptem, pte);
477 return pte_offset;
480 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
481 uint64_t pte0, uint64_t pte1)
483 int i;
485 if (!(pte0 & HPTE64_V_LARGE)) {
486 if (sps->page_shift != 12) {
487 /* 4kiB page in a non 4kiB segment */
488 return 0;
490 /* Normal 4kiB page */
491 return 12;
494 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
495 const struct ppc_one_page_size *ps = &sps->enc[i];
496 uint64_t mask;
498 if (!ps->page_shift) {
499 break;
502 if (ps->page_shift == 12) {
503 /* L bit is set so this can't be a 4kiB page */
504 continue;
507 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
509 if ((pte1 & mask) == (ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
510 return ps->page_shift;
514 return 0; /* Bad page size encoding */
517 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
518 uint64_t pte0, uint64_t pte1,
519 unsigned *seg_page_shift)
521 CPUPPCState *env = &cpu->env;
522 int i;
524 if (!(pte0 & HPTE64_V_LARGE)) {
525 *seg_page_shift = 12;
526 return 12;
530 * The encodings in env->sps need to be carefully chosen so that
531 * this gives an unambiguous result.
533 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
534 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
535 unsigned shift;
537 if (!sps->page_shift) {
538 break;
541 shift = hpte_page_shift(sps, pte0, pte1);
542 if (shift) {
543 *seg_page_shift = sps->page_shift;
544 return shift;
548 *seg_page_shift = 0;
549 return 0;
552 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr,
553 int rwx, int mmu_idx)
555 CPUState *cs = CPU(cpu);
556 CPUPPCState *env = &cpu->env;
557 ppc_slb_t *slb;
558 unsigned apshift;
559 hwaddr pte_offset;
560 ppc_hash_pte64_t pte;
561 int pp_prot, amr_prot, prot;
562 uint64_t new_pte1;
563 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
564 hwaddr raddr;
566 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
568 /* 1. Handle real mode accesses */
569 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
570 /* Translation is off */
571 /* In real mode the top 4 effective address bits are ignored */
572 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
573 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
574 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
575 TARGET_PAGE_SIZE);
576 return 0;
579 /* 2. Translation is on, so look up the SLB */
580 slb = slb_lookup(cpu, eaddr);
582 if (!slb) {
583 if (rwx == 2) {
584 cs->exception_index = POWERPC_EXCP_ISEG;
585 env->error_code = 0;
586 } else {
587 cs->exception_index = POWERPC_EXCP_DSEG;
588 env->error_code = 0;
589 env->spr[SPR_DAR] = eaddr;
591 return 1;
594 /* 3. Check for segment level no-execute violation */
595 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
596 cs->exception_index = POWERPC_EXCP_ISI;
597 env->error_code = 0x10000000;
598 return 1;
601 /* 4. Locate the PTE in the hash table */
602 pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte);
603 if (pte_offset == -1) {
604 if (rwx == 2) {
605 cs->exception_index = POWERPC_EXCP_ISI;
606 env->error_code = 0x40000000;
607 } else {
608 cs->exception_index = POWERPC_EXCP_DSI;
609 env->error_code = 0;
610 env->spr[SPR_DAR] = eaddr;
611 if (rwx == 1) {
612 env->spr[SPR_DSISR] = 0x42000000;
613 } else {
614 env->spr[SPR_DSISR] = 0x40000000;
617 return 1;
619 qemu_log_mask(CPU_LOG_MMU,
620 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
622 /* Validate page size encoding */
623 apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
624 if (!apshift) {
625 error_report("Bad page size encoding in HPTE 0x%"PRIx64" - 0x%"PRIx64
626 " @ 0x%"HWADDR_PRIx, pte.pte0, pte.pte1, pte_offset);
627 /* Not entirely sure what the right action here, but machine
628 * check seems reasonable */
629 cs->exception_index = POWERPC_EXCP_MCHECK;
630 env->error_code = 0;
631 return 1;
634 /* 5. Check access permissions */
636 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
637 amr_prot = ppc_hash64_amr_prot(cpu, pte);
638 prot = pp_prot & amr_prot;
640 if ((need_prot[rwx] & ~prot) != 0) {
641 /* Access right violation */
642 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
643 if (rwx == 2) {
644 cs->exception_index = POWERPC_EXCP_ISI;
645 env->error_code = 0x08000000;
646 } else {
647 target_ulong dsisr = 0;
649 cs->exception_index = POWERPC_EXCP_DSI;
650 env->error_code = 0;
651 env->spr[SPR_DAR] = eaddr;
652 if (need_prot[rwx] & ~pp_prot) {
653 dsisr |= 0x08000000;
655 if (rwx == 1) {
656 dsisr |= 0x02000000;
658 if (need_prot[rwx] & ~amr_prot) {
659 dsisr |= 0x00200000;
661 env->spr[SPR_DSISR] = dsisr;
663 return 1;
666 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
668 /* 6. Update PTE referenced and changed bits if necessary */
670 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
671 if (rwx == 1) {
672 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
673 } else {
674 /* Treat the page as read-only for now, so that a later write
675 * will pass through this function again to set the C bit */
676 prot &= ~PAGE_WRITE;
679 if (new_pte1 != pte.pte1) {
680 ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
681 pte.pte0, new_pte1);
684 /* 7. Determine the real address from the PTE */
686 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
688 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
689 prot, mmu_idx, 1ULL << apshift);
691 return 0;
694 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
696 CPUPPCState *env = &cpu->env;
697 ppc_slb_t *slb;
698 hwaddr pte_offset;
699 ppc_hash_pte64_t pte;
700 unsigned apshift;
702 if (msr_dr == 0) {
703 /* In real mode the top 4 effective address bits are ignored */
704 return addr & 0x0FFFFFFFFFFFFFFFULL;
707 slb = slb_lookup(cpu, addr);
708 if (!slb) {
709 return -1;
712 pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte);
713 if (pte_offset == -1) {
714 return -1;
717 apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
718 if (!apshift) {
719 return -1;
722 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
723 & TARGET_PAGE_MASK;
726 void ppc_hash64_store_hpte(PowerPCCPU *cpu,
727 target_ulong pte_index,
728 target_ulong pte0, target_ulong pte1)
730 CPUPPCState *env = &cpu->env;
732 if (kvmppc_kern_htab) {
733 kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
734 return;
737 pte_index *= HASH_PTE_SIZE_64;
738 if (env->external_htab) {
739 stq_p(env->external_htab + pte_index, pte0);
740 stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
741 } else {
742 stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
743 stq_phys(CPU(cpu)->as,
744 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
748 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
749 target_ulong pte_index,
750 target_ulong pte0, target_ulong pte1)
753 * XXX: given the fact that there are too many segments to
754 * invalidate, and we still don't have a tlb_flush_mask(env, n,
755 * mask) in QEMU, we just invalidate all TLBs
757 tlb_flush(CPU(cpu), 1);