4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
42 ARMCPU
*cpu
= ARM_CPU(cs
);
44 cpu
->env
.regs
[15] = value
;
47 static bool arm_cpu_has_work(CPUState
*cs
)
49 ARMCPU
*cpu
= ARM_CPU(cs
);
51 return (cpu
->power_state
!= PSCI_OFF
)
52 && cs
->interrupt_request
&
53 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB
);
58 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
61 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
64 entry
->opaque
= opaque
;
66 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
69 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
72 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
75 entry
->opaque
= opaque
;
77 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
80 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo
*ri
= value
;
86 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
91 ri
->resetfn(&cpu
->env
, ri
);
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
100 if (!ri
->fieldoffset
) {
104 if (cpreg_field_is_64bit(ri
)) {
105 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
107 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
111 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
118 ARMCPRegInfo
*ri
= value
;
119 ARMCPU
*cpu
= opaque
;
120 uint64_t oldvalue
, newvalue
;
122 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
126 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
127 cp_reg_reset(key
, value
, opaque
);
128 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
129 assert(oldvalue
== newvalue
);
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState
*s
)
135 ARMCPU
*cpu
= ARM_CPU(s
);
136 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
137 CPUARMState
*env
= &cpu
->env
;
139 acc
->parent_reset(s
);
141 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
143 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
144 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
146 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
147 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
148 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
149 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
151 cpu
->power_state
= cpu
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
152 s
->halted
= cpu
->start_powered_off
;
154 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
155 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
158 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
159 /* 64 bit CPUs always start in 64 bit mode */
161 #if defined(CONFIG_USER_ONLY)
162 env
->pstate
= PSTATE_MODE_EL0t
;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
165 /* and to the FP/Neon instructions */
166 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
167 /* and to the SVE instructions */
168 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
169 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
170 /* with maximum vector length */
171 env
->vfp
.zcr_el
[1] = cpu
->sve_max_vq
- 1;
172 env
->vfp
.zcr_el
[2] = env
->vfp
.zcr_el
[1];
173 env
->vfp
.zcr_el
[3] = env
->vfp
.zcr_el
[1];
175 /* Reset into the highest available EL */
176 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
177 env
->pstate
= PSTATE_MODE_EL3h
;
178 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
179 env
->pstate
= PSTATE_MODE_EL2h
;
181 env
->pstate
= PSTATE_MODE_EL1h
;
183 env
->pc
= cpu
->rvbar
;
186 #if defined(CONFIG_USER_ONLY)
187 /* Userspace expects access to cp10 and cp11 for FP/Neon */
188 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
192 #if defined(CONFIG_USER_ONLY)
193 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
194 /* For user mode we must enable access to coprocessors */
195 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
196 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
197 env
->cp15
.c15_cpar
= 3;
198 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
199 env
->cp15
.c15_cpar
= 1;
204 * If the highest available EL is EL2, AArch32 will start in Hyp
205 * mode; otherwise it starts in SVC. Note that if we start in
206 * AArch64 then these values in the uncached_cpsr will be ignored.
208 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
209 !arm_feature(env
, ARM_FEATURE_EL3
)) {
210 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
212 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
214 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
216 if (arm_feature(env
, ARM_FEATURE_M
)) {
217 uint32_t initial_msp
; /* Loaded from 0x0 */
218 uint32_t initial_pc
; /* Loaded from 0x4 */
222 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
223 env
->v7m
.secure
= true;
225 /* This bit resets to 0 if security is supported, but 1 if
226 * it is not. The bit is not present in v7M, but we set it
227 * here so we can avoid having to make checks on it conditional
228 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
230 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
233 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234 * that it resets to 1, so QEMU always does that rather than making
235 * it dependent on CPU model. In v8M it is RES1.
237 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
238 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
239 if (arm_feature(env
, ARM_FEATURE_V8
)) {
240 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
242 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
244 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
245 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
246 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
249 /* Unlike A/R profile, M profile defines the reset LR value */
250 env
->regs
[14] = 0xffffffff;
252 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
254 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
256 rom
= rom_ptr(vecbase
, 8);
258 /* Address zero is covered by ROM which hasn't yet been
259 * copied into physical memory.
261 initial_msp
= ldl_p(rom
);
262 initial_pc
= ldl_p(rom
+ 4);
264 /* Address zero not covered by a ROM blob, or the ROM blob
265 * is in non-modifiable memory and this is a second reset after
266 * it got copied into memory. In the latter case, rom_ptr
267 * will return a NULL pointer and we should use ldl_phys instead.
269 initial_msp
= ldl_phys(s
->as
, vecbase
);
270 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
273 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
274 env
->regs
[15] = initial_pc
& ~1;
275 env
->thumb
= initial_pc
& 1;
278 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
279 * executing as AArch32 then check if highvecs are enabled and
280 * adjust the PC accordingly.
282 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
283 env
->regs
[15] = 0xFFFF0000;
286 /* M profile requires that reset clears the exclusive monitor;
287 * A profile does not, but clearing it makes more sense than having it
288 * set with an exclusive access on address zero.
290 arm_clear_exclusive(env
);
292 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
295 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
296 if (cpu
->pmsav7_dregion
> 0) {
297 if (arm_feature(env
, ARM_FEATURE_V8
)) {
298 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
299 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
300 * cpu
->pmsav7_dregion
);
301 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
302 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
303 * cpu
->pmsav7_dregion
);
304 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
305 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
306 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
307 * cpu
->pmsav7_dregion
);
308 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
309 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
310 * cpu
->pmsav7_dregion
);
312 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
313 memset(env
->pmsav7
.drbar
, 0,
314 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
315 memset(env
->pmsav7
.drsr
, 0,
316 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
317 memset(env
->pmsav7
.dracr
, 0,
318 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
321 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
322 env
->pmsav7
.rnr
[M_REG_S
] = 0;
323 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
324 env
->pmsav8
.mair0
[M_REG_S
] = 0;
325 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
326 env
->pmsav8
.mair1
[M_REG_S
] = 0;
329 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
330 if (cpu
->sau_sregion
> 0) {
331 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
332 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
335 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336 * the Cortex-M33 does.
341 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
342 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
343 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
344 set_float_detect_tininess(float_tininess_before_rounding
,
345 &env
->vfp
.fp_status
);
346 set_float_detect_tininess(float_tininess_before_rounding
,
347 &env
->vfp
.standard_fp_status
);
348 set_float_detect_tininess(float_tininess_before_rounding
,
349 &env
->vfp
.fp_status_f16
);
350 #ifndef CONFIG_USER_ONLY
352 kvm_arm_reset_vcpu(cpu
);
356 hw_breakpoint_update_all(cpu
);
357 hw_watchpoint_update_all(cpu
);
360 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
362 CPUClass
*cc
= CPU_GET_CLASS(cs
);
363 CPUARMState
*env
= cs
->env_ptr
;
364 uint32_t cur_el
= arm_current_el(env
);
365 bool secure
= arm_is_secure(env
);
370 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
372 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
373 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
374 cs
->exception_index
= excp_idx
;
375 env
->exception
.target_el
= target_el
;
376 cc
->do_interrupt(cs
);
380 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
382 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
383 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
384 cs
->exception_index
= excp_idx
;
385 env
->exception
.target_el
= target_el
;
386 cc
->do_interrupt(cs
);
390 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
391 excp_idx
= EXCP_VIRQ
;
393 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
394 cs
->exception_index
= excp_idx
;
395 env
->exception
.target_el
= target_el
;
396 cc
->do_interrupt(cs
);
400 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
401 excp_idx
= EXCP_VFIQ
;
403 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
404 cs
->exception_index
= excp_idx
;
405 env
->exception
.target_el
= target_el
;
406 cc
->do_interrupt(cs
);
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
417 CPUClass
*cc
= CPU_GET_CLASS(cs
);
418 ARMCPU
*cpu
= ARM_CPU(cs
);
419 CPUARMState
*env
= &cpu
->env
;
422 /* ARMv7-M interrupt masking works differently than -A or -R.
423 * There is no FIQ/IRQ distinction. Instead of I and F bits
424 * masking FIQ and IRQ interrupts, an exception is taken only
425 * if it is higher priority than the current execution priority
426 * (which depends on state like BASEPRI, FAULTMASK and the
427 * currently active exception).
429 if (interrupt_request
& CPU_INTERRUPT_HARD
430 && (armv7m_nvic_can_take_pending_exception(env
->nvic
))) {
431 cs
->exception_index
= EXCP_IRQ
;
432 cc
->do_interrupt(cs
);
439 void arm_cpu_update_virq(ARMCPU
*cpu
)
442 * Update the interrupt level for VIRQ, which is the logical OR of
443 * the HCR_EL2.VI bit and the input line level from the GIC.
445 CPUARMState
*env
= &cpu
->env
;
446 CPUState
*cs
= CPU(cpu
);
448 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
449 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
451 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
453 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
455 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
460 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
463 * Update the interrupt level for VFIQ, which is the logical OR of
464 * the HCR_EL2.VF bit and the input line level from the GIC.
466 CPUARMState
*env
= &cpu
->env
;
467 CPUState
*cs
= CPU(cpu
);
469 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
470 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
472 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
474 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
476 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
481 #ifndef CONFIG_USER_ONLY
482 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
484 ARMCPU
*cpu
= opaque
;
485 CPUARMState
*env
= &cpu
->env
;
486 CPUState
*cs
= CPU(cpu
);
487 static const int mask
[] = {
488 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
489 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
490 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
491 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
495 env
->irq_line_state
|= mask
[irq
];
497 env
->irq_line_state
&= ~mask
[irq
];
502 assert(arm_feature(env
, ARM_FEATURE_EL2
));
503 arm_cpu_update_virq(cpu
);
506 assert(arm_feature(env
, ARM_FEATURE_EL2
));
507 arm_cpu_update_vfiq(cpu
);
512 cpu_interrupt(cs
, mask
[irq
]);
514 cpu_reset_interrupt(cs
, mask
[irq
]);
518 g_assert_not_reached();
522 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
525 ARMCPU
*cpu
= opaque
;
526 CPUARMState
*env
= &cpu
->env
;
527 CPUState
*cs
= CPU(cpu
);
528 int kvm_irq
= KVM_ARM_IRQ_TYPE_CPU
<< KVM_ARM_IRQ_TYPE_SHIFT
;
529 uint32_t linestate_bit
;
533 kvm_irq
|= KVM_ARM_IRQ_CPU_IRQ
;
534 linestate_bit
= CPU_INTERRUPT_HARD
;
537 kvm_irq
|= KVM_ARM_IRQ_CPU_FIQ
;
538 linestate_bit
= CPU_INTERRUPT_FIQ
;
541 g_assert_not_reached();
545 env
->irq_line_state
|= linestate_bit
;
547 env
->irq_line_state
&= ~linestate_bit
;
550 kvm_irq
|= cs
->cpu_index
<< KVM_ARM_IRQ_VCPU_SHIFT
;
551 kvm_set_irq(kvm_state
, kvm_irq
, level
? 1 : 0);
555 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
557 ARMCPU
*cpu
= ARM_CPU(cs
);
558 CPUARMState
*env
= &cpu
->env
;
560 cpu_synchronize_state(cs
);
561 return arm_cpu_data_is_big_endian(env
);
566 static inline void set_feature(CPUARMState
*env
, int feature
)
568 env
->features
|= 1ULL << feature
;
571 static inline void unset_feature(CPUARMState
*env
, int feature
)
573 env
->features
&= ~(1ULL << feature
);
577 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
579 return print_insn_arm(pc
| 1, info
);
582 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
584 ARMCPU
*ac
= ARM_CPU(cpu
);
585 CPUARMState
*env
= &ac
->env
;
589 /* We might not be compiled with the A64 disassembler
590 * because it needs a C++ compiler. Leave print_insn
591 * unset in this case to use the caller default behaviour.
593 #if defined(CONFIG_ARM_A64_DIS)
594 info
->print_insn
= print_insn_arm_a64
;
596 info
->cap_arch
= CS_ARCH_ARM64
;
597 info
->cap_insn_unit
= 4;
598 info
->cap_insn_split
= 4;
602 info
->print_insn
= print_insn_thumb1
;
603 info
->cap_insn_unit
= 2;
604 info
->cap_insn_split
= 4;
605 cap_mode
= CS_MODE_THUMB
;
607 info
->print_insn
= print_insn_arm
;
608 info
->cap_insn_unit
= 4;
609 info
->cap_insn_split
= 4;
610 cap_mode
= CS_MODE_ARM
;
612 if (arm_feature(env
, ARM_FEATURE_V8
)) {
613 cap_mode
|= CS_MODE_V8
;
615 if (arm_feature(env
, ARM_FEATURE_M
)) {
616 cap_mode
|= CS_MODE_MCLASS
;
618 info
->cap_arch
= CS_ARCH_ARM
;
619 info
->cap_mode
= cap_mode
;
622 sctlr_b
= arm_sctlr_b(env
);
623 if (bswap_code(sctlr_b
)) {
624 #ifdef TARGET_WORDS_BIGENDIAN
625 info
->endian
= BFD_ENDIAN_LITTLE
;
627 info
->endian
= BFD_ENDIAN_BIG
;
630 info
->flags
&= ~INSN_ARM_BE32
;
631 #ifndef CONFIG_USER_ONLY
633 info
->flags
|= INSN_ARM_BE32
;
638 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
640 uint32_t Aff1
= idx
/ clustersz
;
641 uint32_t Aff0
= idx
% clustersz
;
642 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
645 static void arm_cpu_initfn(Object
*obj
)
647 CPUState
*cs
= CPU(obj
);
648 ARMCPU
*cpu
= ARM_CPU(obj
);
650 cs
->env_ptr
= &cpu
->env
;
651 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
654 QLIST_INIT(&cpu
->pre_el_change_hooks
);
655 QLIST_INIT(&cpu
->el_change_hooks
);
657 #ifndef CONFIG_USER_ONLY
658 /* Our inbound IRQ and FIQ lines */
660 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
661 * the same interface as non-KVM CPUs.
663 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
665 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
668 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
669 arm_gt_ptimer_cb
, cpu
);
670 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
671 arm_gt_vtimer_cb
, cpu
);
672 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
673 arm_gt_htimer_cb
, cpu
);
674 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
675 arm_gt_stimer_cb
, cpu
);
676 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
677 ARRAY_SIZE(cpu
->gt_timer_outputs
));
679 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
680 "gicv3-maintenance-interrupt", 1);
681 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
685 /* DTB consumers generally don't in fact care what the 'compatible'
686 * string is, so always provide some string and trust that a hypothetical
687 * picky DTB consumer will also provide a helpful error message.
689 cpu
->dtb_compatible
= "qemu,unknown";
690 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
691 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
694 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
698 static Property arm_cpu_reset_cbar_property
=
699 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
701 static Property arm_cpu_reset_hivecs_property
=
702 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
704 static Property arm_cpu_rvbar_property
=
705 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
707 static Property arm_cpu_has_el2_property
=
708 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
710 static Property arm_cpu_has_el3_property
=
711 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
713 static Property arm_cpu_cfgend_property
=
714 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
716 /* use property name "pmu" to match other archs and virt tools */
717 static Property arm_cpu_has_pmu_property
=
718 DEFINE_PROP_BOOL("pmu", ARMCPU
, has_pmu
, true);
720 static Property arm_cpu_has_mpu_property
=
721 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
723 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
724 * because the CPU initfn will have already set cpu->pmsav7_dregion to
725 * the right value for that particular CPU type, and we don't want
726 * to override that with an incorrect constant value.
728 static Property arm_cpu_pmsav7_dregion_property
=
729 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
731 qdev_prop_uint32
, uint32_t);
733 /* M profile: initial value of the Secure VTOR */
734 static Property arm_cpu_initsvtor_property
=
735 DEFINE_PROP_UINT32("init-svtor", ARMCPU
, init_svtor
, 0);
737 static void arm_cpu_post_init(Object
*obj
)
739 ARMCPU
*cpu
= ARM_CPU(obj
);
741 /* M profile implies PMSA. We have to do this here rather than
742 * in realize with the other feature-implication checks because
743 * we look at the PMSA bit to see if we should add some properties.
745 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
746 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
749 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
750 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
751 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
,
755 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
756 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
,
760 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
761 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
,
765 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
766 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
767 * prevent "has_el3" from existing on CPUs which cannot support EL3.
769 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
,
772 #ifndef CONFIG_USER_ONLY
773 object_property_add_link(obj
, "secure-memory",
775 (Object
**)&cpu
->secure_memory
,
776 qdev_prop_allow_set_link_before_realize
,
777 OBJ_PROP_LINK_STRONG
,
782 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
783 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
,
787 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
788 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_pmu_property
,
792 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
793 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
,
795 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
796 qdev_property_add_static(DEVICE(obj
),
797 &arm_cpu_pmsav7_dregion_property
,
802 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
803 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
804 qdev_prop_allow_set_link_before_realize
,
805 OBJ_PROP_LINK_STRONG
,
807 qdev_property_add_static(DEVICE(obj
), &arm_cpu_initsvtor_property
,
811 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
,
815 static void arm_cpu_finalizefn(Object
*obj
)
817 ARMCPU
*cpu
= ARM_CPU(obj
);
818 ARMELChangeHook
*hook
, *next
;
820 g_hash_table_destroy(cpu
->cp_regs
);
822 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
823 QLIST_REMOVE(hook
, node
);
826 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
827 QLIST_REMOVE(hook
, node
);
832 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
834 CPUState
*cs
= CPU(dev
);
835 ARMCPU
*cpu
= ARM_CPU(dev
);
836 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
837 CPUARMState
*env
= &cpu
->env
;
839 Error
*local_err
= NULL
;
840 bool no_aa32
= false;
842 /* If we needed to query the host kernel for the CPU features
843 * then it's possible that might have failed in the initfn, but
844 * this is the first point where we can report it.
846 if (cpu
->host_cpu_probe_failed
) {
847 if (!kvm_enabled()) {
848 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
850 error_setg(errp
, "Failed to retrieve host CPU features");
855 #ifndef CONFIG_USER_ONLY
856 /* The NVIC and M-profile CPU are two halves of a single piece of
857 * hardware; trying to use one without the other is a command line
858 * error and will result in segfaults if not caught here.
860 if (arm_feature(env
, ARM_FEATURE_M
)) {
862 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
867 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
873 cpu_exec_realizefn(cs
, &local_err
);
874 if (local_err
!= NULL
) {
875 error_propagate(errp
, local_err
);
879 /* Some features automatically imply others: */
880 if (arm_feature(env
, ARM_FEATURE_V8
)) {
881 if (arm_feature(env
, ARM_FEATURE_M
)) {
882 set_feature(env
, ARM_FEATURE_V7
);
884 set_feature(env
, ARM_FEATURE_V7VE
);
889 * There exist AArch64 cpus without AArch32 support. When KVM
890 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
891 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
893 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
894 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
897 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
898 /* v7 Virtualization Extensions. In real hardware this implies
899 * EL2 and also the presence of the Security Extensions.
900 * For QEMU, for backwards-compatibility we implement some
901 * CPUs or CPU configs which have no actual EL2 or EL3 but do
902 * include the various other features that V7VE implies.
903 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
904 * Security Extensions is ARM_FEATURE_EL3.
906 assert(no_aa32
|| cpu_isar_feature(arm_div
, cpu
));
907 set_feature(env
, ARM_FEATURE_LPAE
);
908 set_feature(env
, ARM_FEATURE_V7
);
910 if (arm_feature(env
, ARM_FEATURE_V7
)) {
911 set_feature(env
, ARM_FEATURE_VAPA
);
912 set_feature(env
, ARM_FEATURE_THUMB2
);
913 set_feature(env
, ARM_FEATURE_MPIDR
);
914 if (!arm_feature(env
, ARM_FEATURE_M
)) {
915 set_feature(env
, ARM_FEATURE_V6K
);
917 set_feature(env
, ARM_FEATURE_V6
);
920 /* Always define VBAR for V7 CPUs even if it doesn't exist in
921 * non-EL3 configs. This is needed by some legacy boards.
923 set_feature(env
, ARM_FEATURE_VBAR
);
925 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
926 set_feature(env
, ARM_FEATURE_V6
);
927 set_feature(env
, ARM_FEATURE_MVFR
);
929 if (arm_feature(env
, ARM_FEATURE_V6
)) {
930 set_feature(env
, ARM_FEATURE_V5
);
931 if (!arm_feature(env
, ARM_FEATURE_M
)) {
932 assert(no_aa32
|| cpu_isar_feature(jazelle
, cpu
));
933 set_feature(env
, ARM_FEATURE_AUXCR
);
936 if (arm_feature(env
, ARM_FEATURE_V5
)) {
937 set_feature(env
, ARM_FEATURE_V4T
);
939 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
940 set_feature(env
, ARM_FEATURE_VFP3
);
941 set_feature(env
, ARM_FEATURE_VFP_FP16
);
943 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
944 set_feature(env
, ARM_FEATURE_VFP
);
946 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
947 set_feature(env
, ARM_FEATURE_V7MP
);
948 set_feature(env
, ARM_FEATURE_PXN
);
950 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
951 set_feature(env
, ARM_FEATURE_CBAR
);
953 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
954 !arm_feature(env
, ARM_FEATURE_M
)) {
955 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
958 if (arm_feature(env
, ARM_FEATURE_V7
) &&
959 !arm_feature(env
, ARM_FEATURE_M
) &&
960 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
961 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
966 /* For CPUs which might have tiny 1K pages, or which have an
967 * MPU and might have small region sizes, stick with 1K pages.
971 if (!set_preferred_target_page_bits(pagebits
)) {
972 /* This can only ever happen for hotplugging a CPU, or if
973 * the board code incorrectly creates a CPU which it has
974 * promised via minimum_page_size that it will not.
976 error_setg(errp
, "This CPU requires a smaller page size than the "
981 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
982 * We don't support setting cluster ID ([16..23]) (known as Aff2
983 * in later ARM ARM versions), or any of the higher affinity level fields,
984 * so these bits always RAZ.
986 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
987 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
988 ARM_DEFAULT_CPUS_PER_CLUSTER
);
991 if (cpu
->reset_hivecs
) {
992 cpu
->reset_sctlr
|= (1 << 13);
996 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
997 cpu
->reset_sctlr
|= SCTLR_EE
;
999 cpu
->reset_sctlr
|= SCTLR_B
;
1003 if (!cpu
->has_el3
) {
1004 /* If the has_el3 CPU property is disabled then we need to disable the
1007 unset_feature(env
, ARM_FEATURE_EL3
);
1009 /* Disable the security extension feature bits in the processor feature
1010 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1012 cpu
->id_pfr1
&= ~0xf0;
1013 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1016 if (!cpu
->has_el2
) {
1017 unset_feature(env
, ARM_FEATURE_EL2
);
1020 if (!cpu
->has_pmu
) {
1021 unset_feature(env
, ARM_FEATURE_PMU
);
1022 cpu
->id_aa64dfr0
&= ~0xf00;
1025 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1026 /* Disable the hypervisor feature bits in the processor feature
1027 * registers if we don't have EL2. These are id_pfr1[15:12] and
1028 * id_aa64pfr0_el1[11:8].
1030 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1031 cpu
->id_pfr1
&= ~0xf000;
1034 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1035 * to false or by setting pmsav7-dregion to 0.
1037 if (!cpu
->has_mpu
) {
1038 cpu
->pmsav7_dregion
= 0;
1040 if (cpu
->pmsav7_dregion
== 0) {
1041 cpu
->has_mpu
= false;
1044 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1045 arm_feature(env
, ARM_FEATURE_V7
)) {
1046 uint32_t nr
= cpu
->pmsav7_dregion
;
1049 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1054 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1056 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1057 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1058 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1059 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1060 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1063 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1064 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1065 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1070 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1071 uint32_t nr
= cpu
->sau_sregion
;
1074 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1079 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1080 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1084 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1085 set_feature(env
, ARM_FEATURE_VBAR
);
1088 register_cp_regs_for_features(cpu
);
1089 arm_cpu_register_gdb_regs_for_features(cpu
);
1091 init_cpreg_list(cpu
);
1093 #ifndef CONFIG_USER_ONLY
1094 if (cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1097 if (!cpu
->secure_memory
) {
1098 cpu
->secure_memory
= cs
->memory
;
1100 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1101 cpu
->secure_memory
);
1105 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1107 /* No core_count specified, default to smp_cpus. */
1108 if (cpu
->core_count
== -1) {
1109 cpu
->core_count
= smp_cpus
;
1116 acc
->parent_realize(dev
, errp
);
1119 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1124 const char *cpunamestr
;
1126 cpuname
= g_strsplit(cpu_model
, ",", 1);
1127 cpunamestr
= cpuname
[0];
1128 #ifdef CONFIG_USER_ONLY
1129 /* For backwards compatibility usermode emulation allows "-cpu any",
1130 * which has the same semantics as "-cpu max".
1132 if (!strcmp(cpunamestr
, "any")) {
1136 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1137 oc
= object_class_by_name(typename
);
1138 g_strfreev(cpuname
);
1140 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1141 object_class_is_abstract(oc
)) {
1147 /* CPU models. These are not needed for the AArch64 linux-user build. */
1148 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1150 static void arm926_initfn(Object
*obj
)
1152 ARMCPU
*cpu
= ARM_CPU(obj
);
1154 cpu
->dtb_compatible
= "arm,arm926";
1155 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1156 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1157 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1158 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1159 cpu
->midr
= 0x41069265;
1160 cpu
->reset_fpsid
= 0x41011090;
1161 cpu
->ctr
= 0x1dd20d2;
1162 cpu
->reset_sctlr
= 0x00090078;
1165 * ARMv5 does not have the ID_ISAR registers, but we can still
1166 * set the field to indicate Jazelle support within QEMU.
1168 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1171 static void arm946_initfn(Object
*obj
)
1173 ARMCPU
*cpu
= ARM_CPU(obj
);
1175 cpu
->dtb_compatible
= "arm,arm946";
1176 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1177 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1178 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1179 cpu
->midr
= 0x41059461;
1180 cpu
->ctr
= 0x0f004006;
1181 cpu
->reset_sctlr
= 0x00000078;
1184 static void arm1026_initfn(Object
*obj
)
1186 ARMCPU
*cpu
= ARM_CPU(obj
);
1188 cpu
->dtb_compatible
= "arm,arm1026";
1189 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1190 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1191 set_feature(&cpu
->env
, ARM_FEATURE_AUXCR
);
1192 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1193 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1194 cpu
->midr
= 0x4106a262;
1195 cpu
->reset_fpsid
= 0x410110a0;
1196 cpu
->ctr
= 0x1dd20d2;
1197 cpu
->reset_sctlr
= 0x00090078;
1198 cpu
->reset_auxcr
= 1;
1201 * ARMv5 does not have the ID_ISAR registers, but we can still
1202 * set the field to indicate Jazelle support within QEMU.
1204 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1207 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1208 ARMCPRegInfo ifar
= {
1209 .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
1211 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifar_ns
),
1214 define_one_arm_cp_reg(cpu
, &ifar
);
1218 static void arm1136_r2_initfn(Object
*obj
)
1220 ARMCPU
*cpu
= ARM_CPU(obj
);
1221 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1222 * older core than plain "arm1136". In particular this does not
1223 * have the v6K features.
1224 * These ID register values are correct for 1136 but may be wrong
1225 * for 1136_r2 (in particular r0p2 does not actually implement most
1226 * of the ID registers).
1229 cpu
->dtb_compatible
= "arm,arm1136";
1230 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1231 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1232 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1233 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1234 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1235 cpu
->midr
= 0x4107b362;
1236 cpu
->reset_fpsid
= 0x410120b4;
1237 cpu
->isar
.mvfr0
= 0x11111111;
1238 cpu
->isar
.mvfr1
= 0x00000000;
1239 cpu
->ctr
= 0x1dd20d2;
1240 cpu
->reset_sctlr
= 0x00050078;
1241 cpu
->id_pfr0
= 0x111;
1245 cpu
->id_mmfr0
= 0x01130003;
1246 cpu
->id_mmfr1
= 0x10030302;
1247 cpu
->id_mmfr2
= 0x01222110;
1248 cpu
->isar
.id_isar0
= 0x00140011;
1249 cpu
->isar
.id_isar1
= 0x12002111;
1250 cpu
->isar
.id_isar2
= 0x11231111;
1251 cpu
->isar
.id_isar3
= 0x01102131;
1252 cpu
->isar
.id_isar4
= 0x141;
1253 cpu
->reset_auxcr
= 7;
1256 static void arm1136_initfn(Object
*obj
)
1258 ARMCPU
*cpu
= ARM_CPU(obj
);
1260 cpu
->dtb_compatible
= "arm,arm1136";
1261 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1262 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1263 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1264 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1265 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1266 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1267 cpu
->midr
= 0x4117b363;
1268 cpu
->reset_fpsid
= 0x410120b4;
1269 cpu
->isar
.mvfr0
= 0x11111111;
1270 cpu
->isar
.mvfr1
= 0x00000000;
1271 cpu
->ctr
= 0x1dd20d2;
1272 cpu
->reset_sctlr
= 0x00050078;
1273 cpu
->id_pfr0
= 0x111;
1277 cpu
->id_mmfr0
= 0x01130003;
1278 cpu
->id_mmfr1
= 0x10030302;
1279 cpu
->id_mmfr2
= 0x01222110;
1280 cpu
->isar
.id_isar0
= 0x00140011;
1281 cpu
->isar
.id_isar1
= 0x12002111;
1282 cpu
->isar
.id_isar2
= 0x11231111;
1283 cpu
->isar
.id_isar3
= 0x01102131;
1284 cpu
->isar
.id_isar4
= 0x141;
1285 cpu
->reset_auxcr
= 7;
1288 static void arm1176_initfn(Object
*obj
)
1290 ARMCPU
*cpu
= ARM_CPU(obj
);
1292 cpu
->dtb_compatible
= "arm,arm1176";
1293 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1294 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1295 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1296 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1297 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1298 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1299 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1300 cpu
->midr
= 0x410fb767;
1301 cpu
->reset_fpsid
= 0x410120b5;
1302 cpu
->isar
.mvfr0
= 0x11111111;
1303 cpu
->isar
.mvfr1
= 0x00000000;
1304 cpu
->ctr
= 0x1dd20d2;
1305 cpu
->reset_sctlr
= 0x00050078;
1306 cpu
->id_pfr0
= 0x111;
1307 cpu
->id_pfr1
= 0x11;
1308 cpu
->id_dfr0
= 0x33;
1310 cpu
->id_mmfr0
= 0x01130003;
1311 cpu
->id_mmfr1
= 0x10030302;
1312 cpu
->id_mmfr2
= 0x01222100;
1313 cpu
->isar
.id_isar0
= 0x0140011;
1314 cpu
->isar
.id_isar1
= 0x12002111;
1315 cpu
->isar
.id_isar2
= 0x11231121;
1316 cpu
->isar
.id_isar3
= 0x01102131;
1317 cpu
->isar
.id_isar4
= 0x01141;
1318 cpu
->reset_auxcr
= 7;
1321 static void arm11mpcore_initfn(Object
*obj
)
1323 ARMCPU
*cpu
= ARM_CPU(obj
);
1325 cpu
->dtb_compatible
= "arm,arm11mpcore";
1326 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1327 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1328 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1329 set_feature(&cpu
->env
, ARM_FEATURE_MPIDR
);
1330 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1331 cpu
->midr
= 0x410fb022;
1332 cpu
->reset_fpsid
= 0x410120b4;
1333 cpu
->isar
.mvfr0
= 0x11111111;
1334 cpu
->isar
.mvfr1
= 0x00000000;
1335 cpu
->ctr
= 0x1d192992; /* 32K icache 32K dcache */
1336 cpu
->id_pfr0
= 0x111;
1340 cpu
->id_mmfr0
= 0x01100103;
1341 cpu
->id_mmfr1
= 0x10020302;
1342 cpu
->id_mmfr2
= 0x01222000;
1343 cpu
->isar
.id_isar0
= 0x00100011;
1344 cpu
->isar
.id_isar1
= 0x12002111;
1345 cpu
->isar
.id_isar2
= 0x11221011;
1346 cpu
->isar
.id_isar3
= 0x01102131;
1347 cpu
->isar
.id_isar4
= 0x141;
1348 cpu
->reset_auxcr
= 1;
1351 static void cortex_m0_initfn(Object
*obj
)
1353 ARMCPU
*cpu
= ARM_CPU(obj
);
1354 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1355 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1357 cpu
->midr
= 0x410cc200;
1360 static void cortex_m3_initfn(Object
*obj
)
1362 ARMCPU
*cpu
= ARM_CPU(obj
);
1363 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1364 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1365 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1366 cpu
->midr
= 0x410fc231;
1367 cpu
->pmsav7_dregion
= 8;
1368 cpu
->id_pfr0
= 0x00000030;
1369 cpu
->id_pfr1
= 0x00000200;
1370 cpu
->id_dfr0
= 0x00100000;
1371 cpu
->id_afr0
= 0x00000000;
1372 cpu
->id_mmfr0
= 0x00000030;
1373 cpu
->id_mmfr1
= 0x00000000;
1374 cpu
->id_mmfr2
= 0x00000000;
1375 cpu
->id_mmfr3
= 0x00000000;
1376 cpu
->isar
.id_isar0
= 0x01141110;
1377 cpu
->isar
.id_isar1
= 0x02111000;
1378 cpu
->isar
.id_isar2
= 0x21112231;
1379 cpu
->isar
.id_isar3
= 0x01111110;
1380 cpu
->isar
.id_isar4
= 0x01310102;
1381 cpu
->isar
.id_isar5
= 0x00000000;
1382 cpu
->isar
.id_isar6
= 0x00000000;
1385 static void cortex_m4_initfn(Object
*obj
)
1387 ARMCPU
*cpu
= ARM_CPU(obj
);
1389 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1390 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1391 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1392 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1393 cpu
->midr
= 0x410fc240; /* r0p0 */
1394 cpu
->pmsav7_dregion
= 8;
1395 cpu
->id_pfr0
= 0x00000030;
1396 cpu
->id_pfr1
= 0x00000200;
1397 cpu
->id_dfr0
= 0x00100000;
1398 cpu
->id_afr0
= 0x00000000;
1399 cpu
->id_mmfr0
= 0x00000030;
1400 cpu
->id_mmfr1
= 0x00000000;
1401 cpu
->id_mmfr2
= 0x00000000;
1402 cpu
->id_mmfr3
= 0x00000000;
1403 cpu
->isar
.id_isar0
= 0x01141110;
1404 cpu
->isar
.id_isar1
= 0x02111000;
1405 cpu
->isar
.id_isar2
= 0x21112231;
1406 cpu
->isar
.id_isar3
= 0x01111110;
1407 cpu
->isar
.id_isar4
= 0x01310102;
1408 cpu
->isar
.id_isar5
= 0x00000000;
1409 cpu
->isar
.id_isar6
= 0x00000000;
1412 static void cortex_m33_initfn(Object
*obj
)
1414 ARMCPU
*cpu
= ARM_CPU(obj
);
1416 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1417 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1418 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1419 set_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
);
1420 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1421 cpu
->midr
= 0x410fd213; /* r0p3 */
1422 cpu
->pmsav7_dregion
= 16;
1423 cpu
->sau_sregion
= 8;
1424 cpu
->id_pfr0
= 0x00000030;
1425 cpu
->id_pfr1
= 0x00000210;
1426 cpu
->id_dfr0
= 0x00200000;
1427 cpu
->id_afr0
= 0x00000000;
1428 cpu
->id_mmfr0
= 0x00101F40;
1429 cpu
->id_mmfr1
= 0x00000000;
1430 cpu
->id_mmfr2
= 0x01000000;
1431 cpu
->id_mmfr3
= 0x00000000;
1432 cpu
->isar
.id_isar0
= 0x01101110;
1433 cpu
->isar
.id_isar1
= 0x02212000;
1434 cpu
->isar
.id_isar2
= 0x20232232;
1435 cpu
->isar
.id_isar3
= 0x01111131;
1436 cpu
->isar
.id_isar4
= 0x01310132;
1437 cpu
->isar
.id_isar5
= 0x00000000;
1438 cpu
->isar
.id_isar6
= 0x00000000;
1439 cpu
->clidr
= 0x00000000;
1440 cpu
->ctr
= 0x8000c000;
1443 static void arm_v7m_class_init(ObjectClass
*oc
, void *data
)
1445 CPUClass
*cc
= CPU_CLASS(oc
);
1447 #ifndef CONFIG_USER_ONLY
1448 cc
->do_interrupt
= arm_v7m_cpu_do_interrupt
;
1451 cc
->cpu_exec_interrupt
= arm_v7m_cpu_exec_interrupt
;
1454 static const ARMCPRegInfo cortexr5_cp_reginfo
[] = {
1455 /* Dummy the TCM region regs for the moment */
1456 { .name
= "ATCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1457 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1458 { .name
= "BTCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1459 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1460 { .name
= "DCACHE_INVAL", .cp
= 15, .opc1
= 0, .crn
= 15, .crm
= 5,
1461 .opc2
= 0, .access
= PL1_W
, .type
= ARM_CP_NOP
},
1465 static void cortex_r5_initfn(Object
*obj
)
1467 ARMCPU
*cpu
= ARM_CPU(obj
);
1469 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1470 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1471 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1472 cpu
->midr
= 0x411fc153; /* r1p3 */
1473 cpu
->id_pfr0
= 0x0131;
1474 cpu
->id_pfr1
= 0x001;
1475 cpu
->id_dfr0
= 0x010400;
1477 cpu
->id_mmfr0
= 0x0210030;
1478 cpu
->id_mmfr1
= 0x00000000;
1479 cpu
->id_mmfr2
= 0x01200000;
1480 cpu
->id_mmfr3
= 0x0211;
1481 cpu
->isar
.id_isar0
= 0x02101111;
1482 cpu
->isar
.id_isar1
= 0x13112111;
1483 cpu
->isar
.id_isar2
= 0x21232141;
1484 cpu
->isar
.id_isar3
= 0x01112131;
1485 cpu
->isar
.id_isar4
= 0x0010142;
1486 cpu
->isar
.id_isar5
= 0x0;
1487 cpu
->isar
.id_isar6
= 0x0;
1488 cpu
->mp_is_up
= true;
1489 cpu
->pmsav7_dregion
= 16;
1490 define_arm_cp_regs(cpu
, cortexr5_cp_reginfo
);
1493 static void cortex_r5f_initfn(Object
*obj
)
1495 ARMCPU
*cpu
= ARM_CPU(obj
);
1497 cortex_r5_initfn(obj
);
1498 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1501 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1502 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1503 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1504 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1505 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1509 static void cortex_a8_initfn(Object
*obj
)
1511 ARMCPU
*cpu
= ARM_CPU(obj
);
1513 cpu
->dtb_compatible
= "arm,cortex-a8";
1514 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1515 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1516 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1517 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1518 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1519 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1520 cpu
->midr
= 0x410fc080;
1521 cpu
->reset_fpsid
= 0x410330c0;
1522 cpu
->isar
.mvfr0
= 0x11110222;
1523 cpu
->isar
.mvfr1
= 0x00011111;
1524 cpu
->ctr
= 0x82048004;
1525 cpu
->reset_sctlr
= 0x00c50078;
1526 cpu
->id_pfr0
= 0x1031;
1527 cpu
->id_pfr1
= 0x11;
1528 cpu
->id_dfr0
= 0x400;
1530 cpu
->id_mmfr0
= 0x31100003;
1531 cpu
->id_mmfr1
= 0x20000000;
1532 cpu
->id_mmfr2
= 0x01202000;
1533 cpu
->id_mmfr3
= 0x11;
1534 cpu
->isar
.id_isar0
= 0x00101111;
1535 cpu
->isar
.id_isar1
= 0x12112111;
1536 cpu
->isar
.id_isar2
= 0x21232031;
1537 cpu
->isar
.id_isar3
= 0x11112131;
1538 cpu
->isar
.id_isar4
= 0x00111142;
1539 cpu
->dbgdidr
= 0x15141000;
1540 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1541 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1542 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1543 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1544 cpu
->reset_auxcr
= 2;
1545 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1548 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1549 /* power_control should be set to maximum latency. Again,
1550 * default to 0 and set by private hook
1552 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1553 .access
= PL1_RW
, .resetvalue
= 0,
1554 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1555 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1556 .access
= PL1_RW
, .resetvalue
= 0,
1557 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1558 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1559 .access
= PL1_RW
, .resetvalue
= 0,
1560 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1561 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1562 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1563 /* TLB lockdown control */
1564 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1565 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1566 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1567 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1568 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1569 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1570 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1571 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1572 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1573 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1577 static void cortex_a9_initfn(Object
*obj
)
1579 ARMCPU
*cpu
= ARM_CPU(obj
);
1581 cpu
->dtb_compatible
= "arm,cortex-a9";
1582 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1583 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1584 set_feature(&cpu
->env
, ARM_FEATURE_VFP_FP16
);
1585 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1586 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1587 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1588 /* Note that A9 supports the MP extensions even for
1589 * A9UP and single-core A9MP (which are both different
1590 * and valid configurations; we don't model A9UP).
1592 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1593 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1594 cpu
->midr
= 0x410fc090;
1595 cpu
->reset_fpsid
= 0x41033090;
1596 cpu
->isar
.mvfr0
= 0x11110222;
1597 cpu
->isar
.mvfr1
= 0x01111111;
1598 cpu
->ctr
= 0x80038003;
1599 cpu
->reset_sctlr
= 0x00c50078;
1600 cpu
->id_pfr0
= 0x1031;
1601 cpu
->id_pfr1
= 0x11;
1602 cpu
->id_dfr0
= 0x000;
1604 cpu
->id_mmfr0
= 0x00100103;
1605 cpu
->id_mmfr1
= 0x20000000;
1606 cpu
->id_mmfr2
= 0x01230000;
1607 cpu
->id_mmfr3
= 0x00002111;
1608 cpu
->isar
.id_isar0
= 0x00101111;
1609 cpu
->isar
.id_isar1
= 0x13112111;
1610 cpu
->isar
.id_isar2
= 0x21232041;
1611 cpu
->isar
.id_isar3
= 0x11112131;
1612 cpu
->isar
.id_isar4
= 0x00111142;
1613 cpu
->dbgdidr
= 0x35141000;
1614 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
1615 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
1616 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
1617 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
1620 #ifndef CONFIG_USER_ONLY
1621 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1623 /* Linux wants the number of processors from here.
1624 * Might as well set the interrupt-controller bit too.
1626 return ((smp_cpus
- 1) << 24) | (1 << 23);
1630 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
1631 #ifndef CONFIG_USER_ONLY
1632 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1633 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
1634 .writefn
= arm_cp_write_ignore
, },
1636 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
1637 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1641 static void cortex_a7_initfn(Object
*obj
)
1643 ARMCPU
*cpu
= ARM_CPU(obj
);
1645 cpu
->dtb_compatible
= "arm,cortex-a7";
1646 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1647 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1648 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1649 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1650 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1651 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1652 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1653 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1654 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1655 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
1656 cpu
->midr
= 0x410fc075;
1657 cpu
->reset_fpsid
= 0x41023075;
1658 cpu
->isar
.mvfr0
= 0x10110222;
1659 cpu
->isar
.mvfr1
= 0x11111111;
1660 cpu
->ctr
= 0x84448003;
1661 cpu
->reset_sctlr
= 0x00c50078;
1662 cpu
->id_pfr0
= 0x00001131;
1663 cpu
->id_pfr1
= 0x00011011;
1664 cpu
->id_dfr0
= 0x02010555;
1665 cpu
->pmceid0
= 0x00000000;
1666 cpu
->pmceid1
= 0x00000000;
1667 cpu
->id_afr0
= 0x00000000;
1668 cpu
->id_mmfr0
= 0x10101105;
1669 cpu
->id_mmfr1
= 0x40000000;
1670 cpu
->id_mmfr2
= 0x01240000;
1671 cpu
->id_mmfr3
= 0x02102211;
1672 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1673 * table 4-41 gives 0x02101110, which includes the arm div insns.
1675 cpu
->isar
.id_isar0
= 0x02101110;
1676 cpu
->isar
.id_isar1
= 0x13112111;
1677 cpu
->isar
.id_isar2
= 0x21232041;
1678 cpu
->isar
.id_isar3
= 0x11112131;
1679 cpu
->isar
.id_isar4
= 0x10011142;
1680 cpu
->dbgdidr
= 0x3515f005;
1681 cpu
->clidr
= 0x0a200023;
1682 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1683 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1684 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1685 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
1688 static void cortex_a15_initfn(Object
*obj
)
1690 ARMCPU
*cpu
= ARM_CPU(obj
);
1692 cpu
->dtb_compatible
= "arm,cortex-a15";
1693 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1694 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1695 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1696 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1697 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1698 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1699 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1700 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1701 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1702 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
1703 cpu
->midr
= 0x412fc0f1;
1704 cpu
->reset_fpsid
= 0x410430f0;
1705 cpu
->isar
.mvfr0
= 0x10110222;
1706 cpu
->isar
.mvfr1
= 0x11111111;
1707 cpu
->ctr
= 0x8444c004;
1708 cpu
->reset_sctlr
= 0x00c50078;
1709 cpu
->id_pfr0
= 0x00001131;
1710 cpu
->id_pfr1
= 0x00011011;
1711 cpu
->id_dfr0
= 0x02010555;
1712 cpu
->pmceid0
= 0x0000000;
1713 cpu
->pmceid1
= 0x00000000;
1714 cpu
->id_afr0
= 0x00000000;
1715 cpu
->id_mmfr0
= 0x10201105;
1716 cpu
->id_mmfr1
= 0x20000000;
1717 cpu
->id_mmfr2
= 0x01240000;
1718 cpu
->id_mmfr3
= 0x02102211;
1719 cpu
->isar
.id_isar0
= 0x02101110;
1720 cpu
->isar
.id_isar1
= 0x13112111;
1721 cpu
->isar
.id_isar2
= 0x21232041;
1722 cpu
->isar
.id_isar3
= 0x11112131;
1723 cpu
->isar
.id_isar4
= 0x10011142;
1724 cpu
->dbgdidr
= 0x3515f021;
1725 cpu
->clidr
= 0x0a200023;
1726 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1727 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1728 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1729 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
1732 static void ti925t_initfn(Object
*obj
)
1734 ARMCPU
*cpu
= ARM_CPU(obj
);
1735 set_feature(&cpu
->env
, ARM_FEATURE_V4T
);
1736 set_feature(&cpu
->env
, ARM_FEATURE_OMAPCP
);
1737 cpu
->midr
= ARM_CPUID_TI925T
;
1738 cpu
->ctr
= 0x5109149;
1739 cpu
->reset_sctlr
= 0x00000070;
1742 static void sa1100_initfn(Object
*obj
)
1744 ARMCPU
*cpu
= ARM_CPU(obj
);
1746 cpu
->dtb_compatible
= "intel,sa1100";
1747 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1748 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1749 cpu
->midr
= 0x4401A11B;
1750 cpu
->reset_sctlr
= 0x00000070;
1753 static void sa1110_initfn(Object
*obj
)
1755 ARMCPU
*cpu
= ARM_CPU(obj
);
1756 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1757 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1758 cpu
->midr
= 0x6901B119;
1759 cpu
->reset_sctlr
= 0x00000070;
1762 static void pxa250_initfn(Object
*obj
)
1764 ARMCPU
*cpu
= ARM_CPU(obj
);
1766 cpu
->dtb_compatible
= "marvell,xscale";
1767 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1768 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1769 cpu
->midr
= 0x69052100;
1770 cpu
->ctr
= 0xd172172;
1771 cpu
->reset_sctlr
= 0x00000078;
1774 static void pxa255_initfn(Object
*obj
)
1776 ARMCPU
*cpu
= ARM_CPU(obj
);
1778 cpu
->dtb_compatible
= "marvell,xscale";
1779 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1780 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1781 cpu
->midr
= 0x69052d00;
1782 cpu
->ctr
= 0xd172172;
1783 cpu
->reset_sctlr
= 0x00000078;
1786 static void pxa260_initfn(Object
*obj
)
1788 ARMCPU
*cpu
= ARM_CPU(obj
);
1790 cpu
->dtb_compatible
= "marvell,xscale";
1791 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1792 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1793 cpu
->midr
= 0x69052903;
1794 cpu
->ctr
= 0xd172172;
1795 cpu
->reset_sctlr
= 0x00000078;
1798 static void pxa261_initfn(Object
*obj
)
1800 ARMCPU
*cpu
= ARM_CPU(obj
);
1802 cpu
->dtb_compatible
= "marvell,xscale";
1803 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1804 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1805 cpu
->midr
= 0x69052d05;
1806 cpu
->ctr
= 0xd172172;
1807 cpu
->reset_sctlr
= 0x00000078;
1810 static void pxa262_initfn(Object
*obj
)
1812 ARMCPU
*cpu
= ARM_CPU(obj
);
1814 cpu
->dtb_compatible
= "marvell,xscale";
1815 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1816 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1817 cpu
->midr
= 0x69052d06;
1818 cpu
->ctr
= 0xd172172;
1819 cpu
->reset_sctlr
= 0x00000078;
1822 static void pxa270a0_initfn(Object
*obj
)
1824 ARMCPU
*cpu
= ARM_CPU(obj
);
1826 cpu
->dtb_compatible
= "marvell,xscale";
1827 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1828 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1829 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1830 cpu
->midr
= 0x69054110;
1831 cpu
->ctr
= 0xd172172;
1832 cpu
->reset_sctlr
= 0x00000078;
1835 static void pxa270a1_initfn(Object
*obj
)
1837 ARMCPU
*cpu
= ARM_CPU(obj
);
1839 cpu
->dtb_compatible
= "marvell,xscale";
1840 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1841 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1842 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1843 cpu
->midr
= 0x69054111;
1844 cpu
->ctr
= 0xd172172;
1845 cpu
->reset_sctlr
= 0x00000078;
1848 static void pxa270b0_initfn(Object
*obj
)
1850 ARMCPU
*cpu
= ARM_CPU(obj
);
1852 cpu
->dtb_compatible
= "marvell,xscale";
1853 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1854 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1855 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1856 cpu
->midr
= 0x69054112;
1857 cpu
->ctr
= 0xd172172;
1858 cpu
->reset_sctlr
= 0x00000078;
1861 static void pxa270b1_initfn(Object
*obj
)
1863 ARMCPU
*cpu
= ARM_CPU(obj
);
1865 cpu
->dtb_compatible
= "marvell,xscale";
1866 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1867 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1868 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1869 cpu
->midr
= 0x69054113;
1870 cpu
->ctr
= 0xd172172;
1871 cpu
->reset_sctlr
= 0x00000078;
1874 static void pxa270c0_initfn(Object
*obj
)
1876 ARMCPU
*cpu
= ARM_CPU(obj
);
1878 cpu
->dtb_compatible
= "marvell,xscale";
1879 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1880 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1881 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1882 cpu
->midr
= 0x69054114;
1883 cpu
->ctr
= 0xd172172;
1884 cpu
->reset_sctlr
= 0x00000078;
1887 static void pxa270c5_initfn(Object
*obj
)
1889 ARMCPU
*cpu
= ARM_CPU(obj
);
1891 cpu
->dtb_compatible
= "marvell,xscale";
1892 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1893 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1894 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1895 cpu
->midr
= 0x69054117;
1896 cpu
->ctr
= 0xd172172;
1897 cpu
->reset_sctlr
= 0x00000078;
1900 #ifndef TARGET_AARCH64
1901 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1902 * otherwise, a CPU with as many features enabled as our emulation supports.
1903 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1904 * this only needs to handle 32 bits.
1906 static void arm_max_initfn(Object
*obj
)
1908 ARMCPU
*cpu
= ARM_CPU(obj
);
1910 if (kvm_enabled()) {
1911 kvm_arm_set_cpu_features_from_host(cpu
);
1913 cortex_a15_initfn(obj
);
1914 #ifdef CONFIG_USER_ONLY
1915 /* We don't set these in system emulation mode for the moment,
1916 * since we don't correctly set (all of) the ID registers to
1919 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1923 t
= cpu
->isar
.id_isar5
;
1924 t
= FIELD_DP32(t
, ID_ISAR5
, AES
, 2);
1925 t
= FIELD_DP32(t
, ID_ISAR5
, SHA1
, 1);
1926 t
= FIELD_DP32(t
, ID_ISAR5
, SHA2
, 1);
1927 t
= FIELD_DP32(t
, ID_ISAR5
, CRC32
, 1);
1928 t
= FIELD_DP32(t
, ID_ISAR5
, RDM
, 1);
1929 t
= FIELD_DP32(t
, ID_ISAR5
, VCMA
, 1);
1930 cpu
->isar
.id_isar5
= t
;
1932 t
= cpu
->isar
.id_isar6
;
1933 t
= FIELD_DP32(t
, ID_ISAR6
, DP
, 1);
1934 cpu
->isar
.id_isar6
= t
;
1937 t
= FIELD_DP32(t
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
1945 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1947 typedef struct ARMCPUInfo
{
1949 void (*initfn
)(Object
*obj
);
1950 void (*class_init
)(ObjectClass
*oc
, void *data
);
1953 static const ARMCPUInfo arm_cpus
[] = {
1954 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1955 { .name
= "arm926", .initfn
= arm926_initfn
},
1956 { .name
= "arm946", .initfn
= arm946_initfn
},
1957 { .name
= "arm1026", .initfn
= arm1026_initfn
},
1958 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1959 * older core than plain "arm1136". In particular this does not
1960 * have the v6K features.
1962 { .name
= "arm1136-r2", .initfn
= arm1136_r2_initfn
},
1963 { .name
= "arm1136", .initfn
= arm1136_initfn
},
1964 { .name
= "arm1176", .initfn
= arm1176_initfn
},
1965 { .name
= "arm11mpcore", .initfn
= arm11mpcore_initfn
},
1966 { .name
= "cortex-m0", .initfn
= cortex_m0_initfn
,
1967 .class_init
= arm_v7m_class_init
},
1968 { .name
= "cortex-m3", .initfn
= cortex_m3_initfn
,
1969 .class_init
= arm_v7m_class_init
},
1970 { .name
= "cortex-m4", .initfn
= cortex_m4_initfn
,
1971 .class_init
= arm_v7m_class_init
},
1972 { .name
= "cortex-m33", .initfn
= cortex_m33_initfn
,
1973 .class_init
= arm_v7m_class_init
},
1974 { .name
= "cortex-r5", .initfn
= cortex_r5_initfn
},
1975 { .name
= "cortex-r5f", .initfn
= cortex_r5f_initfn
},
1976 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
1977 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
1978 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
1979 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
1980 { .name
= "ti925t", .initfn
= ti925t_initfn
},
1981 { .name
= "sa1100", .initfn
= sa1100_initfn
},
1982 { .name
= "sa1110", .initfn
= sa1110_initfn
},
1983 { .name
= "pxa250", .initfn
= pxa250_initfn
},
1984 { .name
= "pxa255", .initfn
= pxa255_initfn
},
1985 { .name
= "pxa260", .initfn
= pxa260_initfn
},
1986 { .name
= "pxa261", .initfn
= pxa261_initfn
},
1987 { .name
= "pxa262", .initfn
= pxa262_initfn
},
1988 /* "pxa270" is an alias for "pxa270-a0" */
1989 { .name
= "pxa270", .initfn
= pxa270a0_initfn
},
1990 { .name
= "pxa270-a0", .initfn
= pxa270a0_initfn
},
1991 { .name
= "pxa270-a1", .initfn
= pxa270a1_initfn
},
1992 { .name
= "pxa270-b0", .initfn
= pxa270b0_initfn
},
1993 { .name
= "pxa270-b1", .initfn
= pxa270b1_initfn
},
1994 { .name
= "pxa270-c0", .initfn
= pxa270c0_initfn
},
1995 { .name
= "pxa270-c5", .initfn
= pxa270c5_initfn
},
1996 #ifndef TARGET_AARCH64
1997 { .name
= "max", .initfn
= arm_max_initfn
},
1999 #ifdef CONFIG_USER_ONLY
2000 { .name
= "any", .initfn
= arm_max_initfn
},
2006 static Property arm_cpu_properties
[] = {
2007 DEFINE_PROP_BOOL("start-powered-off", ARMCPU
, start_powered_off
, false),
2008 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
2009 DEFINE_PROP_UINT32("midr", ARMCPU
, midr
, 0),
2010 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2011 mp_affinity
, ARM64_AFFINITY_INVALID
),
2012 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2013 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2014 DEFINE_PROP_END_OF_LIST()
2017 #ifdef CONFIG_USER_ONLY
2018 static int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int size
,
2019 int rw
, int mmu_idx
)
2021 ARMCPU
*cpu
= ARM_CPU(cs
);
2022 CPUARMState
*env
= &cpu
->env
;
2024 env
->exception
.vaddress
= address
;
2026 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
2028 cs
->exception_index
= EXCP_DATA_ABORT
;
2034 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2036 ARMCPU
*cpu
= ARM_CPU(cs
);
2037 CPUARMState
*env
= &cpu
->env
;
2039 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2040 return g_strdup("iwmmxt");
2042 return g_strdup("arm");
2045 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2047 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2048 CPUClass
*cc
= CPU_CLASS(acc
);
2049 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2051 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2052 &acc
->parent_realize
);
2053 dc
->props
= arm_cpu_properties
;
2055 acc
->parent_reset
= cc
->reset
;
2056 cc
->reset
= arm_cpu_reset
;
2058 cc
->class_by_name
= arm_cpu_class_by_name
;
2059 cc
->has_work
= arm_cpu_has_work
;
2060 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
2061 cc
->dump_state
= arm_cpu_dump_state
;
2062 cc
->set_pc
= arm_cpu_set_pc
;
2063 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2064 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2065 #ifdef CONFIG_USER_ONLY
2066 cc
->handle_mmu_fault
= arm_cpu_handle_mmu_fault
;
2068 cc
->do_interrupt
= arm_cpu_do_interrupt
;
2069 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
2070 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
2071 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
2072 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
2073 cc
->vmsd
= &vmstate_arm_cpu
;
2074 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
2075 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
2076 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
2078 cc
->gdb_num_core_regs
= 26;
2079 cc
->gdb_core_xml_file
= "arm-core.xml";
2080 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2081 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2082 cc
->gdb_stop_before_watchpoint
= true;
2083 cc
->debug_excp_handler
= arm_debug_excp_handler
;
2084 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
2085 #if !defined(CONFIG_USER_ONLY)
2086 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
2089 cc
->disas_set_info
= arm_disas_set_info
;
2091 cc
->tcg_initialize
= arm_translate_init
;
2096 static void arm_host_initfn(Object
*obj
)
2098 ARMCPU
*cpu
= ARM_CPU(obj
);
2100 kvm_arm_set_cpu_features_from_host(cpu
);
2103 static const TypeInfo host_arm_cpu_type_info
= {
2104 .name
= TYPE_ARM_HOST_CPU
,
2105 #ifdef TARGET_AARCH64
2106 .parent
= TYPE_AARCH64_CPU
,
2108 .parent
= TYPE_ARM_CPU
,
2110 .instance_init
= arm_host_initfn
,
2115 static void cpu_register(const ARMCPUInfo
*info
)
2117 TypeInfo type_info
= {
2118 .parent
= TYPE_ARM_CPU
,
2119 .instance_size
= sizeof(ARMCPU
),
2120 .instance_init
= info
->initfn
,
2121 .class_size
= sizeof(ARMCPUClass
),
2122 .class_init
= info
->class_init
,
2125 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2126 type_register(&type_info
);
2127 g_free((void *)type_info
.name
);
2130 static const TypeInfo arm_cpu_type_info
= {
2131 .name
= TYPE_ARM_CPU
,
2133 .instance_size
= sizeof(ARMCPU
),
2134 .instance_init
= arm_cpu_initfn
,
2135 .instance_post_init
= arm_cpu_post_init
,
2136 .instance_finalize
= arm_cpu_finalizefn
,
2138 .class_size
= sizeof(ARMCPUClass
),
2139 .class_init
= arm_cpu_class_init
,
2142 static const TypeInfo idau_interface_type_info
= {
2143 .name
= TYPE_IDAU_INTERFACE
,
2144 .parent
= TYPE_INTERFACE
,
2145 .class_size
= sizeof(IDAUInterfaceClass
),
2148 static void arm_cpu_register_types(void)
2150 const ARMCPUInfo
*info
= arm_cpus
;
2152 type_register_static(&arm_cpu_type_info
);
2153 type_register_static(&idau_interface_type_info
);
2155 while (info
->name
) {
2161 type_register_static(&host_arm_cpu_type_info
);
2165 type_init(arm_cpu_register_types
)