target/arm: Implement the ARMv8.2-AA32HPD extension
[qemu/ar7.git] / target / arm / cpu.c
blob0b185f8d309c5bdc6595abe544f80139cf9deca0
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 ARMCPU *cpu = ARM_CPU(cs);
44 cpu->env.regs[15] = value;
47 static bool arm_cpu_has_work(CPUState *cs)
49 ARMCPU *cpu = ARM_CPU(cs);
51 return (cpu->power_state != PSCI_OFF)
52 && cs->interrupt_request &
53 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB);
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59 void *opaque)
61 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
63 entry->hook = hook;
64 entry->opaque = opaque;
66 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70 void *opaque)
72 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
74 entry->hook = hook;
75 entry->opaque = opaque;
77 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo *ri = value;
84 ARMCPU *cpu = opaque;
86 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87 return;
90 if (ri->resetfn) {
91 ri->resetfn(&cpu->env, ri);
92 return;
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
100 if (!ri->fieldoffset) {
101 return;
104 if (cpreg_field_is_64bit(ri)) {
105 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106 } else {
107 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
111 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
118 ARMCPRegInfo *ri = value;
119 ARMCPU *cpu = opaque;
120 uint64_t oldvalue, newvalue;
122 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123 return;
126 oldvalue = read_raw_cp_reg(&cpu->env, ri);
127 cp_reg_reset(key, value, opaque);
128 newvalue = read_raw_cp_reg(&cpu->env, ri);
129 assert(oldvalue == newvalue);
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
135 ARMCPU *cpu = ARM_CPU(s);
136 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137 CPUARMState *env = &cpu->env;
139 acc->parent_reset(s);
141 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
143 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
146 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
151 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152 s->halted = cpu->start_powered_off;
154 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159 /* 64 bit CPUs always start in 64 bit mode */
160 env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162 env->pstate = PSTATE_MODE_EL0t;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165 /* and to the FP/Neon instructions */
166 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167 /* and to the SVE instructions */
168 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169 env->cp15.cptr_el[3] |= CPTR_EZ;
170 /* with maximum vector length */
171 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175 /* Reset into the highest available EL */
176 if (arm_feature(env, ARM_FEATURE_EL3)) {
177 env->pstate = PSTATE_MODE_EL3h;
178 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179 env->pstate = PSTATE_MODE_EL2h;
180 } else {
181 env->pstate = PSTATE_MODE_EL1h;
183 env->pc = cpu->rvbar;
184 #endif
185 } else {
186 #if defined(CONFIG_USER_ONLY)
187 /* Userspace expects access to cp10 and cp11 for FP/Neon */
188 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
192 #if defined(CONFIG_USER_ONLY)
193 env->uncached_cpsr = ARM_CPU_MODE_USR;
194 /* For user mode we must enable access to coprocessors */
195 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197 env->cp15.c15_cpar = 3;
198 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199 env->cp15.c15_cpar = 1;
201 #else
204 * If the highest available EL is EL2, AArch32 will start in Hyp
205 * mode; otherwise it starts in SVC. Note that if we start in
206 * AArch64 then these values in the uncached_cpsr will be ignored.
208 if (arm_feature(env, ARM_FEATURE_EL2) &&
209 !arm_feature(env, ARM_FEATURE_EL3)) {
210 env->uncached_cpsr = ARM_CPU_MODE_HYP;
211 } else {
212 env->uncached_cpsr = ARM_CPU_MODE_SVC;
214 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
216 if (arm_feature(env, ARM_FEATURE_M)) {
217 uint32_t initial_msp; /* Loaded from 0x0 */
218 uint32_t initial_pc; /* Loaded from 0x4 */
219 uint8_t *rom;
220 uint32_t vecbase;
222 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223 env->v7m.secure = true;
224 } else {
225 /* This bit resets to 0 if security is supported, but 1 if
226 * it is not. The bit is not present in v7M, but we set it
227 * here so we can avoid having to make checks on it conditional
228 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
230 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
233 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234 * that it resets to 1, so QEMU always does that rather than making
235 * it dependent on CPU model. In v8M it is RES1.
237 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239 if (arm_feature(env, ARM_FEATURE_V8)) {
240 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
244 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
249 /* Unlike A/R profile, M profile defines the reset LR value */
250 env->regs[14] = 0xffffffff;
252 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
254 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255 vecbase = env->v7m.vecbase[env->v7m.secure];
256 rom = rom_ptr(vecbase, 8);
257 if (rom) {
258 /* Address zero is covered by ROM which hasn't yet been
259 * copied into physical memory.
261 initial_msp = ldl_p(rom);
262 initial_pc = ldl_p(rom + 4);
263 } else {
264 /* Address zero not covered by a ROM blob, or the ROM blob
265 * is in non-modifiable memory and this is a second reset after
266 * it got copied into memory. In the latter case, rom_ptr
267 * will return a NULL pointer and we should use ldl_phys instead.
269 initial_msp = ldl_phys(s->as, vecbase);
270 initial_pc = ldl_phys(s->as, vecbase + 4);
273 env->regs[13] = initial_msp & 0xFFFFFFFC;
274 env->regs[15] = initial_pc & ~1;
275 env->thumb = initial_pc & 1;
278 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
279 * executing as AArch32 then check if highvecs are enabled and
280 * adjust the PC accordingly.
282 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283 env->regs[15] = 0xFFFF0000;
286 /* M profile requires that reset clears the exclusive monitor;
287 * A profile does not, but clearing it makes more sense than having it
288 * set with an exclusive access on address zero.
290 arm_clear_exclusive(env);
292 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
293 #endif
295 if (arm_feature(env, ARM_FEATURE_PMSA)) {
296 if (cpu->pmsav7_dregion > 0) {
297 if (arm_feature(env, ARM_FEATURE_V8)) {
298 memset(env->pmsav8.rbar[M_REG_NS], 0,
299 sizeof(*env->pmsav8.rbar[M_REG_NS])
300 * cpu->pmsav7_dregion);
301 memset(env->pmsav8.rlar[M_REG_NS], 0,
302 sizeof(*env->pmsav8.rlar[M_REG_NS])
303 * cpu->pmsav7_dregion);
304 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305 memset(env->pmsav8.rbar[M_REG_S], 0,
306 sizeof(*env->pmsav8.rbar[M_REG_S])
307 * cpu->pmsav7_dregion);
308 memset(env->pmsav8.rlar[M_REG_S], 0,
309 sizeof(*env->pmsav8.rlar[M_REG_S])
310 * cpu->pmsav7_dregion);
312 } else if (arm_feature(env, ARM_FEATURE_V7)) {
313 memset(env->pmsav7.drbar, 0,
314 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315 memset(env->pmsav7.drsr, 0,
316 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317 memset(env->pmsav7.dracr, 0,
318 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
321 env->pmsav7.rnr[M_REG_NS] = 0;
322 env->pmsav7.rnr[M_REG_S] = 0;
323 env->pmsav8.mair0[M_REG_NS] = 0;
324 env->pmsav8.mair0[M_REG_S] = 0;
325 env->pmsav8.mair1[M_REG_NS] = 0;
326 env->pmsav8.mair1[M_REG_S] = 0;
329 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330 if (cpu->sau_sregion > 0) {
331 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
334 env->sau.rnr = 0;
335 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336 * the Cortex-M33 does.
338 env->sau.ctrl = 0;
341 set_flush_to_zero(1, &env->vfp.standard_fp_status);
342 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343 set_default_nan_mode(1, &env->vfp.standard_fp_status);
344 set_float_detect_tininess(float_tininess_before_rounding,
345 &env->vfp.fp_status);
346 set_float_detect_tininess(float_tininess_before_rounding,
347 &env->vfp.standard_fp_status);
348 set_float_detect_tininess(float_tininess_before_rounding,
349 &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
351 if (kvm_enabled()) {
352 kvm_arm_reset_vcpu(cpu);
354 #endif
356 hw_breakpoint_update_all(cpu);
357 hw_watchpoint_update_all(cpu);
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
362 CPUClass *cc = CPU_GET_CLASS(cs);
363 CPUARMState *env = cs->env_ptr;
364 uint32_t cur_el = arm_current_el(env);
365 bool secure = arm_is_secure(env);
366 uint32_t target_el;
367 uint32_t excp_idx;
368 bool ret = false;
370 if (interrupt_request & CPU_INTERRUPT_FIQ) {
371 excp_idx = EXCP_FIQ;
372 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374 cs->exception_index = excp_idx;
375 env->exception.target_el = target_el;
376 cc->do_interrupt(cs);
377 ret = true;
380 if (interrupt_request & CPU_INTERRUPT_HARD) {
381 excp_idx = EXCP_IRQ;
382 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384 cs->exception_index = excp_idx;
385 env->exception.target_el = target_el;
386 cc->do_interrupt(cs);
387 ret = true;
390 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391 excp_idx = EXCP_VIRQ;
392 target_el = 1;
393 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394 cs->exception_index = excp_idx;
395 env->exception.target_el = target_el;
396 cc->do_interrupt(cs);
397 ret = true;
400 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401 excp_idx = EXCP_VFIQ;
402 target_el = 1;
403 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404 cs->exception_index = excp_idx;
405 env->exception.target_el = target_el;
406 cc->do_interrupt(cs);
407 ret = true;
411 return ret;
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
417 CPUClass *cc = CPU_GET_CLASS(cs);
418 ARMCPU *cpu = ARM_CPU(cs);
419 CPUARMState *env = &cpu->env;
420 bool ret = false;
422 /* ARMv7-M interrupt masking works differently than -A or -R.
423 * There is no FIQ/IRQ distinction. Instead of I and F bits
424 * masking FIQ and IRQ interrupts, an exception is taken only
425 * if it is higher priority than the current execution priority
426 * (which depends on state like BASEPRI, FAULTMASK and the
427 * currently active exception).
429 if (interrupt_request & CPU_INTERRUPT_HARD
430 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431 cs->exception_index = EXCP_IRQ;
432 cc->do_interrupt(cs);
433 ret = true;
435 return ret;
437 #endif
439 void arm_cpu_update_virq(ARMCPU *cpu)
442 * Update the interrupt level for VIRQ, which is the logical OR of
443 * the HCR_EL2.VI bit and the input line level from the GIC.
445 CPUARMState *env = &cpu->env;
446 CPUState *cs = CPU(cpu);
448 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
449 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
451 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
452 if (new_state) {
453 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
454 } else {
455 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
460 void arm_cpu_update_vfiq(ARMCPU *cpu)
463 * Update the interrupt level for VFIQ, which is the logical OR of
464 * the HCR_EL2.VF bit and the input line level from the GIC.
466 CPUARMState *env = &cpu->env;
467 CPUState *cs = CPU(cpu);
469 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
470 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
472 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
473 if (new_state) {
474 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
475 } else {
476 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
481 #ifndef CONFIG_USER_ONLY
482 static void arm_cpu_set_irq(void *opaque, int irq, int level)
484 ARMCPU *cpu = opaque;
485 CPUARMState *env = &cpu->env;
486 CPUState *cs = CPU(cpu);
487 static const int mask[] = {
488 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
489 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
490 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
491 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
494 if (level) {
495 env->irq_line_state |= mask[irq];
496 } else {
497 env->irq_line_state &= ~mask[irq];
500 switch (irq) {
501 case ARM_CPU_VIRQ:
502 assert(arm_feature(env, ARM_FEATURE_EL2));
503 arm_cpu_update_virq(cpu);
504 break;
505 case ARM_CPU_VFIQ:
506 assert(arm_feature(env, ARM_FEATURE_EL2));
507 arm_cpu_update_vfiq(cpu);
508 break;
509 case ARM_CPU_IRQ:
510 case ARM_CPU_FIQ:
511 if (level) {
512 cpu_interrupt(cs, mask[irq]);
513 } else {
514 cpu_reset_interrupt(cs, mask[irq]);
516 break;
517 default:
518 g_assert_not_reached();
522 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
524 #ifdef CONFIG_KVM
525 ARMCPU *cpu = opaque;
526 CPUARMState *env = &cpu->env;
527 CPUState *cs = CPU(cpu);
528 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
529 uint32_t linestate_bit;
531 switch (irq) {
532 case ARM_CPU_IRQ:
533 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
534 linestate_bit = CPU_INTERRUPT_HARD;
535 break;
536 case ARM_CPU_FIQ:
537 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
538 linestate_bit = CPU_INTERRUPT_FIQ;
539 break;
540 default:
541 g_assert_not_reached();
544 if (level) {
545 env->irq_line_state |= linestate_bit;
546 } else {
547 env->irq_line_state &= ~linestate_bit;
550 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
551 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
552 #endif
555 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
557 ARMCPU *cpu = ARM_CPU(cs);
558 CPUARMState *env = &cpu->env;
560 cpu_synchronize_state(cs);
561 return arm_cpu_data_is_big_endian(env);
564 #endif
566 static inline void set_feature(CPUARMState *env, int feature)
568 env->features |= 1ULL << feature;
571 static inline void unset_feature(CPUARMState *env, int feature)
573 env->features &= ~(1ULL << feature);
576 static int
577 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
579 return print_insn_arm(pc | 1, info);
582 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
584 ARMCPU *ac = ARM_CPU(cpu);
585 CPUARMState *env = &ac->env;
586 bool sctlr_b;
588 if (is_a64(env)) {
589 /* We might not be compiled with the A64 disassembler
590 * because it needs a C++ compiler. Leave print_insn
591 * unset in this case to use the caller default behaviour.
593 #if defined(CONFIG_ARM_A64_DIS)
594 info->print_insn = print_insn_arm_a64;
595 #endif
596 info->cap_arch = CS_ARCH_ARM64;
597 info->cap_insn_unit = 4;
598 info->cap_insn_split = 4;
599 } else {
600 int cap_mode;
601 if (env->thumb) {
602 info->print_insn = print_insn_thumb1;
603 info->cap_insn_unit = 2;
604 info->cap_insn_split = 4;
605 cap_mode = CS_MODE_THUMB;
606 } else {
607 info->print_insn = print_insn_arm;
608 info->cap_insn_unit = 4;
609 info->cap_insn_split = 4;
610 cap_mode = CS_MODE_ARM;
612 if (arm_feature(env, ARM_FEATURE_V8)) {
613 cap_mode |= CS_MODE_V8;
615 if (arm_feature(env, ARM_FEATURE_M)) {
616 cap_mode |= CS_MODE_MCLASS;
618 info->cap_arch = CS_ARCH_ARM;
619 info->cap_mode = cap_mode;
622 sctlr_b = arm_sctlr_b(env);
623 if (bswap_code(sctlr_b)) {
624 #ifdef TARGET_WORDS_BIGENDIAN
625 info->endian = BFD_ENDIAN_LITTLE;
626 #else
627 info->endian = BFD_ENDIAN_BIG;
628 #endif
630 info->flags &= ~INSN_ARM_BE32;
631 #ifndef CONFIG_USER_ONLY
632 if (sctlr_b) {
633 info->flags |= INSN_ARM_BE32;
635 #endif
638 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
640 uint32_t Aff1 = idx / clustersz;
641 uint32_t Aff0 = idx % clustersz;
642 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
645 static void arm_cpu_initfn(Object *obj)
647 CPUState *cs = CPU(obj);
648 ARMCPU *cpu = ARM_CPU(obj);
650 cs->env_ptr = &cpu->env;
651 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
652 g_free, g_free);
654 QLIST_INIT(&cpu->pre_el_change_hooks);
655 QLIST_INIT(&cpu->el_change_hooks);
657 #ifndef CONFIG_USER_ONLY
658 /* Our inbound IRQ and FIQ lines */
659 if (kvm_enabled()) {
660 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
661 * the same interface as non-KVM CPUs.
663 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
664 } else {
665 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
668 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
669 arm_gt_ptimer_cb, cpu);
670 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
671 arm_gt_vtimer_cb, cpu);
672 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
673 arm_gt_htimer_cb, cpu);
674 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
675 arm_gt_stimer_cb, cpu);
676 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
677 ARRAY_SIZE(cpu->gt_timer_outputs));
679 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
680 "gicv3-maintenance-interrupt", 1);
681 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
682 "pmu-interrupt", 1);
683 #endif
685 /* DTB consumers generally don't in fact care what the 'compatible'
686 * string is, so always provide some string and trust that a hypothetical
687 * picky DTB consumer will also provide a helpful error message.
689 cpu->dtb_compatible = "qemu,unknown";
690 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
691 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
693 if (tcg_enabled()) {
694 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
698 static Property arm_cpu_reset_cbar_property =
699 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
701 static Property arm_cpu_reset_hivecs_property =
702 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
704 static Property arm_cpu_rvbar_property =
705 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
707 static Property arm_cpu_has_el2_property =
708 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
710 static Property arm_cpu_has_el3_property =
711 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
713 static Property arm_cpu_cfgend_property =
714 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
716 /* use property name "pmu" to match other archs and virt tools */
717 static Property arm_cpu_has_pmu_property =
718 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
720 static Property arm_cpu_has_mpu_property =
721 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
723 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
724 * because the CPU initfn will have already set cpu->pmsav7_dregion to
725 * the right value for that particular CPU type, and we don't want
726 * to override that with an incorrect constant value.
728 static Property arm_cpu_pmsav7_dregion_property =
729 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
730 pmsav7_dregion,
731 qdev_prop_uint32, uint32_t);
733 /* M profile: initial value of the Secure VTOR */
734 static Property arm_cpu_initsvtor_property =
735 DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
737 static void arm_cpu_post_init(Object *obj)
739 ARMCPU *cpu = ARM_CPU(obj);
741 /* M profile implies PMSA. We have to do this here rather than
742 * in realize with the other feature-implication checks because
743 * we look at the PMSA bit to see if we should add some properties.
745 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
746 set_feature(&cpu->env, ARM_FEATURE_PMSA);
749 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
750 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
751 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
752 &error_abort);
755 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
756 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
757 &error_abort);
760 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
761 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
762 &error_abort);
765 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
766 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
767 * prevent "has_el3" from existing on CPUs which cannot support EL3.
769 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
770 &error_abort);
772 #ifndef CONFIG_USER_ONLY
773 object_property_add_link(obj, "secure-memory",
774 TYPE_MEMORY_REGION,
775 (Object **)&cpu->secure_memory,
776 qdev_prop_allow_set_link_before_realize,
777 OBJ_PROP_LINK_STRONG,
778 &error_abort);
779 #endif
782 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
783 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
784 &error_abort);
787 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
788 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
789 &error_abort);
792 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
793 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
794 &error_abort);
795 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
796 qdev_property_add_static(DEVICE(obj),
797 &arm_cpu_pmsav7_dregion_property,
798 &error_abort);
802 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
803 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
804 qdev_prop_allow_set_link_before_realize,
805 OBJ_PROP_LINK_STRONG,
806 &error_abort);
807 qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
808 &error_abort);
811 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
812 &error_abort);
815 static void arm_cpu_finalizefn(Object *obj)
817 ARMCPU *cpu = ARM_CPU(obj);
818 ARMELChangeHook *hook, *next;
820 g_hash_table_destroy(cpu->cp_regs);
822 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
823 QLIST_REMOVE(hook, node);
824 g_free(hook);
826 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
827 QLIST_REMOVE(hook, node);
828 g_free(hook);
832 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
834 CPUState *cs = CPU(dev);
835 ARMCPU *cpu = ARM_CPU(dev);
836 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
837 CPUARMState *env = &cpu->env;
838 int pagebits;
839 Error *local_err = NULL;
840 bool no_aa32 = false;
842 /* If we needed to query the host kernel for the CPU features
843 * then it's possible that might have failed in the initfn, but
844 * this is the first point where we can report it.
846 if (cpu->host_cpu_probe_failed) {
847 if (!kvm_enabled()) {
848 error_setg(errp, "The 'host' CPU type can only be used with KVM");
849 } else {
850 error_setg(errp, "Failed to retrieve host CPU features");
852 return;
855 #ifndef CONFIG_USER_ONLY
856 /* The NVIC and M-profile CPU are two halves of a single piece of
857 * hardware; trying to use one without the other is a command line
858 * error and will result in segfaults if not caught here.
860 if (arm_feature(env, ARM_FEATURE_M)) {
861 if (!env->nvic) {
862 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
863 return;
865 } else {
866 if (env->nvic) {
867 error_setg(errp, "This board can only be used with Cortex-M CPUs");
868 return;
871 #endif
873 cpu_exec_realizefn(cs, &local_err);
874 if (local_err != NULL) {
875 error_propagate(errp, local_err);
876 return;
879 /* Some features automatically imply others: */
880 if (arm_feature(env, ARM_FEATURE_V8)) {
881 if (arm_feature(env, ARM_FEATURE_M)) {
882 set_feature(env, ARM_FEATURE_V7);
883 } else {
884 set_feature(env, ARM_FEATURE_V7VE);
889 * There exist AArch64 cpus without AArch32 support. When KVM
890 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
891 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
893 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
894 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
897 if (arm_feature(env, ARM_FEATURE_V7VE)) {
898 /* v7 Virtualization Extensions. In real hardware this implies
899 * EL2 and also the presence of the Security Extensions.
900 * For QEMU, for backwards-compatibility we implement some
901 * CPUs or CPU configs which have no actual EL2 or EL3 but do
902 * include the various other features that V7VE implies.
903 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
904 * Security Extensions is ARM_FEATURE_EL3.
906 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
907 set_feature(env, ARM_FEATURE_LPAE);
908 set_feature(env, ARM_FEATURE_V7);
910 if (arm_feature(env, ARM_FEATURE_V7)) {
911 set_feature(env, ARM_FEATURE_VAPA);
912 set_feature(env, ARM_FEATURE_THUMB2);
913 set_feature(env, ARM_FEATURE_MPIDR);
914 if (!arm_feature(env, ARM_FEATURE_M)) {
915 set_feature(env, ARM_FEATURE_V6K);
916 } else {
917 set_feature(env, ARM_FEATURE_V6);
920 /* Always define VBAR for V7 CPUs even if it doesn't exist in
921 * non-EL3 configs. This is needed by some legacy boards.
923 set_feature(env, ARM_FEATURE_VBAR);
925 if (arm_feature(env, ARM_FEATURE_V6K)) {
926 set_feature(env, ARM_FEATURE_V6);
927 set_feature(env, ARM_FEATURE_MVFR);
929 if (arm_feature(env, ARM_FEATURE_V6)) {
930 set_feature(env, ARM_FEATURE_V5);
931 if (!arm_feature(env, ARM_FEATURE_M)) {
932 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
933 set_feature(env, ARM_FEATURE_AUXCR);
936 if (arm_feature(env, ARM_FEATURE_V5)) {
937 set_feature(env, ARM_FEATURE_V4T);
939 if (arm_feature(env, ARM_FEATURE_VFP4)) {
940 set_feature(env, ARM_FEATURE_VFP3);
941 set_feature(env, ARM_FEATURE_VFP_FP16);
943 if (arm_feature(env, ARM_FEATURE_VFP3)) {
944 set_feature(env, ARM_FEATURE_VFP);
946 if (arm_feature(env, ARM_FEATURE_LPAE)) {
947 set_feature(env, ARM_FEATURE_V7MP);
948 set_feature(env, ARM_FEATURE_PXN);
950 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
951 set_feature(env, ARM_FEATURE_CBAR);
953 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
954 !arm_feature(env, ARM_FEATURE_M)) {
955 set_feature(env, ARM_FEATURE_THUMB_DSP);
958 if (arm_feature(env, ARM_FEATURE_V7) &&
959 !arm_feature(env, ARM_FEATURE_M) &&
960 !arm_feature(env, ARM_FEATURE_PMSA)) {
961 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
962 * can use 4K pages.
964 pagebits = 12;
965 } else {
966 /* For CPUs which might have tiny 1K pages, or which have an
967 * MPU and might have small region sizes, stick with 1K pages.
969 pagebits = 10;
971 if (!set_preferred_target_page_bits(pagebits)) {
972 /* This can only ever happen for hotplugging a CPU, or if
973 * the board code incorrectly creates a CPU which it has
974 * promised via minimum_page_size that it will not.
976 error_setg(errp, "This CPU requires a smaller page size than the "
977 "system is using");
978 return;
981 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
982 * We don't support setting cluster ID ([16..23]) (known as Aff2
983 * in later ARM ARM versions), or any of the higher affinity level fields,
984 * so these bits always RAZ.
986 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
987 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
988 ARM_DEFAULT_CPUS_PER_CLUSTER);
991 if (cpu->reset_hivecs) {
992 cpu->reset_sctlr |= (1 << 13);
995 if (cpu->cfgend) {
996 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
997 cpu->reset_sctlr |= SCTLR_EE;
998 } else {
999 cpu->reset_sctlr |= SCTLR_B;
1003 if (!cpu->has_el3) {
1004 /* If the has_el3 CPU property is disabled then we need to disable the
1005 * feature.
1007 unset_feature(env, ARM_FEATURE_EL3);
1009 /* Disable the security extension feature bits in the processor feature
1010 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1012 cpu->id_pfr1 &= ~0xf0;
1013 cpu->isar.id_aa64pfr0 &= ~0xf000;
1016 if (!cpu->has_el2) {
1017 unset_feature(env, ARM_FEATURE_EL2);
1020 if (!cpu->has_pmu) {
1021 unset_feature(env, ARM_FEATURE_PMU);
1022 cpu->id_aa64dfr0 &= ~0xf00;
1025 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1026 /* Disable the hypervisor feature bits in the processor feature
1027 * registers if we don't have EL2. These are id_pfr1[15:12] and
1028 * id_aa64pfr0_el1[11:8].
1030 cpu->isar.id_aa64pfr0 &= ~0xf00;
1031 cpu->id_pfr1 &= ~0xf000;
1034 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1035 * to false or by setting pmsav7-dregion to 0.
1037 if (!cpu->has_mpu) {
1038 cpu->pmsav7_dregion = 0;
1040 if (cpu->pmsav7_dregion == 0) {
1041 cpu->has_mpu = false;
1044 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1045 arm_feature(env, ARM_FEATURE_V7)) {
1046 uint32_t nr = cpu->pmsav7_dregion;
1048 if (nr > 0xff) {
1049 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1050 return;
1053 if (nr) {
1054 if (arm_feature(env, ARM_FEATURE_V8)) {
1055 /* PMSAv8 */
1056 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1057 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1058 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1059 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1060 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1062 } else {
1063 env->pmsav7.drbar = g_new0(uint32_t, nr);
1064 env->pmsav7.drsr = g_new0(uint32_t, nr);
1065 env->pmsav7.dracr = g_new0(uint32_t, nr);
1070 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1071 uint32_t nr = cpu->sau_sregion;
1073 if (nr > 0xff) {
1074 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1075 return;
1078 if (nr) {
1079 env->sau.rbar = g_new0(uint32_t, nr);
1080 env->sau.rlar = g_new0(uint32_t, nr);
1084 if (arm_feature(env, ARM_FEATURE_EL3)) {
1085 set_feature(env, ARM_FEATURE_VBAR);
1088 register_cp_regs_for_features(cpu);
1089 arm_cpu_register_gdb_regs_for_features(cpu);
1091 init_cpreg_list(cpu);
1093 #ifndef CONFIG_USER_ONLY
1094 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1095 cs->num_ases = 2;
1097 if (!cpu->secure_memory) {
1098 cpu->secure_memory = cs->memory;
1100 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1101 cpu->secure_memory);
1102 } else {
1103 cs->num_ases = 1;
1105 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1107 /* No core_count specified, default to smp_cpus. */
1108 if (cpu->core_count == -1) {
1109 cpu->core_count = smp_cpus;
1111 #endif
1113 qemu_init_vcpu(cs);
1114 cpu_reset(cs);
1116 acc->parent_realize(dev, errp);
1119 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1121 ObjectClass *oc;
1122 char *typename;
1123 char **cpuname;
1124 const char *cpunamestr;
1126 cpuname = g_strsplit(cpu_model, ",", 1);
1127 cpunamestr = cpuname[0];
1128 #ifdef CONFIG_USER_ONLY
1129 /* For backwards compatibility usermode emulation allows "-cpu any",
1130 * which has the same semantics as "-cpu max".
1132 if (!strcmp(cpunamestr, "any")) {
1133 cpunamestr = "max";
1135 #endif
1136 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1137 oc = object_class_by_name(typename);
1138 g_strfreev(cpuname);
1139 g_free(typename);
1140 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1141 object_class_is_abstract(oc)) {
1142 return NULL;
1144 return oc;
1147 /* CPU models. These are not needed for the AArch64 linux-user build. */
1148 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1150 static void arm926_initfn(Object *obj)
1152 ARMCPU *cpu = ARM_CPU(obj);
1154 cpu->dtb_compatible = "arm,arm926";
1155 set_feature(&cpu->env, ARM_FEATURE_V5);
1156 set_feature(&cpu->env, ARM_FEATURE_VFP);
1157 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1158 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1159 cpu->midr = 0x41069265;
1160 cpu->reset_fpsid = 0x41011090;
1161 cpu->ctr = 0x1dd20d2;
1162 cpu->reset_sctlr = 0x00090078;
1165 * ARMv5 does not have the ID_ISAR registers, but we can still
1166 * set the field to indicate Jazelle support within QEMU.
1168 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1171 static void arm946_initfn(Object *obj)
1173 ARMCPU *cpu = ARM_CPU(obj);
1175 cpu->dtb_compatible = "arm,arm946";
1176 set_feature(&cpu->env, ARM_FEATURE_V5);
1177 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1178 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1179 cpu->midr = 0x41059461;
1180 cpu->ctr = 0x0f004006;
1181 cpu->reset_sctlr = 0x00000078;
1184 static void arm1026_initfn(Object *obj)
1186 ARMCPU *cpu = ARM_CPU(obj);
1188 cpu->dtb_compatible = "arm,arm1026";
1189 set_feature(&cpu->env, ARM_FEATURE_V5);
1190 set_feature(&cpu->env, ARM_FEATURE_VFP);
1191 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1192 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1193 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1194 cpu->midr = 0x4106a262;
1195 cpu->reset_fpsid = 0x410110a0;
1196 cpu->ctr = 0x1dd20d2;
1197 cpu->reset_sctlr = 0x00090078;
1198 cpu->reset_auxcr = 1;
1201 * ARMv5 does not have the ID_ISAR registers, but we can still
1202 * set the field to indicate Jazelle support within QEMU.
1204 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1207 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1208 ARMCPRegInfo ifar = {
1209 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1210 .access = PL1_RW,
1211 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1212 .resetvalue = 0
1214 define_one_arm_cp_reg(cpu, &ifar);
1218 static void arm1136_r2_initfn(Object *obj)
1220 ARMCPU *cpu = ARM_CPU(obj);
1221 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1222 * older core than plain "arm1136". In particular this does not
1223 * have the v6K features.
1224 * These ID register values are correct for 1136 but may be wrong
1225 * for 1136_r2 (in particular r0p2 does not actually implement most
1226 * of the ID registers).
1229 cpu->dtb_compatible = "arm,arm1136";
1230 set_feature(&cpu->env, ARM_FEATURE_V6);
1231 set_feature(&cpu->env, ARM_FEATURE_VFP);
1232 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1233 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1234 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1235 cpu->midr = 0x4107b362;
1236 cpu->reset_fpsid = 0x410120b4;
1237 cpu->isar.mvfr0 = 0x11111111;
1238 cpu->isar.mvfr1 = 0x00000000;
1239 cpu->ctr = 0x1dd20d2;
1240 cpu->reset_sctlr = 0x00050078;
1241 cpu->id_pfr0 = 0x111;
1242 cpu->id_pfr1 = 0x1;
1243 cpu->id_dfr0 = 0x2;
1244 cpu->id_afr0 = 0x3;
1245 cpu->id_mmfr0 = 0x01130003;
1246 cpu->id_mmfr1 = 0x10030302;
1247 cpu->id_mmfr2 = 0x01222110;
1248 cpu->isar.id_isar0 = 0x00140011;
1249 cpu->isar.id_isar1 = 0x12002111;
1250 cpu->isar.id_isar2 = 0x11231111;
1251 cpu->isar.id_isar3 = 0x01102131;
1252 cpu->isar.id_isar4 = 0x141;
1253 cpu->reset_auxcr = 7;
1256 static void arm1136_initfn(Object *obj)
1258 ARMCPU *cpu = ARM_CPU(obj);
1260 cpu->dtb_compatible = "arm,arm1136";
1261 set_feature(&cpu->env, ARM_FEATURE_V6K);
1262 set_feature(&cpu->env, ARM_FEATURE_V6);
1263 set_feature(&cpu->env, ARM_FEATURE_VFP);
1264 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1265 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1266 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1267 cpu->midr = 0x4117b363;
1268 cpu->reset_fpsid = 0x410120b4;
1269 cpu->isar.mvfr0 = 0x11111111;
1270 cpu->isar.mvfr1 = 0x00000000;
1271 cpu->ctr = 0x1dd20d2;
1272 cpu->reset_sctlr = 0x00050078;
1273 cpu->id_pfr0 = 0x111;
1274 cpu->id_pfr1 = 0x1;
1275 cpu->id_dfr0 = 0x2;
1276 cpu->id_afr0 = 0x3;
1277 cpu->id_mmfr0 = 0x01130003;
1278 cpu->id_mmfr1 = 0x10030302;
1279 cpu->id_mmfr2 = 0x01222110;
1280 cpu->isar.id_isar0 = 0x00140011;
1281 cpu->isar.id_isar1 = 0x12002111;
1282 cpu->isar.id_isar2 = 0x11231111;
1283 cpu->isar.id_isar3 = 0x01102131;
1284 cpu->isar.id_isar4 = 0x141;
1285 cpu->reset_auxcr = 7;
1288 static void arm1176_initfn(Object *obj)
1290 ARMCPU *cpu = ARM_CPU(obj);
1292 cpu->dtb_compatible = "arm,arm1176";
1293 set_feature(&cpu->env, ARM_FEATURE_V6K);
1294 set_feature(&cpu->env, ARM_FEATURE_VFP);
1295 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1296 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1297 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1298 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1299 set_feature(&cpu->env, ARM_FEATURE_EL3);
1300 cpu->midr = 0x410fb767;
1301 cpu->reset_fpsid = 0x410120b5;
1302 cpu->isar.mvfr0 = 0x11111111;
1303 cpu->isar.mvfr1 = 0x00000000;
1304 cpu->ctr = 0x1dd20d2;
1305 cpu->reset_sctlr = 0x00050078;
1306 cpu->id_pfr0 = 0x111;
1307 cpu->id_pfr1 = 0x11;
1308 cpu->id_dfr0 = 0x33;
1309 cpu->id_afr0 = 0;
1310 cpu->id_mmfr0 = 0x01130003;
1311 cpu->id_mmfr1 = 0x10030302;
1312 cpu->id_mmfr2 = 0x01222100;
1313 cpu->isar.id_isar0 = 0x0140011;
1314 cpu->isar.id_isar1 = 0x12002111;
1315 cpu->isar.id_isar2 = 0x11231121;
1316 cpu->isar.id_isar3 = 0x01102131;
1317 cpu->isar.id_isar4 = 0x01141;
1318 cpu->reset_auxcr = 7;
1321 static void arm11mpcore_initfn(Object *obj)
1323 ARMCPU *cpu = ARM_CPU(obj);
1325 cpu->dtb_compatible = "arm,arm11mpcore";
1326 set_feature(&cpu->env, ARM_FEATURE_V6K);
1327 set_feature(&cpu->env, ARM_FEATURE_VFP);
1328 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1329 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1330 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1331 cpu->midr = 0x410fb022;
1332 cpu->reset_fpsid = 0x410120b4;
1333 cpu->isar.mvfr0 = 0x11111111;
1334 cpu->isar.mvfr1 = 0x00000000;
1335 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1336 cpu->id_pfr0 = 0x111;
1337 cpu->id_pfr1 = 0x1;
1338 cpu->id_dfr0 = 0;
1339 cpu->id_afr0 = 0x2;
1340 cpu->id_mmfr0 = 0x01100103;
1341 cpu->id_mmfr1 = 0x10020302;
1342 cpu->id_mmfr2 = 0x01222000;
1343 cpu->isar.id_isar0 = 0x00100011;
1344 cpu->isar.id_isar1 = 0x12002111;
1345 cpu->isar.id_isar2 = 0x11221011;
1346 cpu->isar.id_isar3 = 0x01102131;
1347 cpu->isar.id_isar4 = 0x141;
1348 cpu->reset_auxcr = 1;
1351 static void cortex_m0_initfn(Object *obj)
1353 ARMCPU *cpu = ARM_CPU(obj);
1354 set_feature(&cpu->env, ARM_FEATURE_V6);
1355 set_feature(&cpu->env, ARM_FEATURE_M);
1357 cpu->midr = 0x410cc200;
1360 static void cortex_m3_initfn(Object *obj)
1362 ARMCPU *cpu = ARM_CPU(obj);
1363 set_feature(&cpu->env, ARM_FEATURE_V7);
1364 set_feature(&cpu->env, ARM_FEATURE_M);
1365 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1366 cpu->midr = 0x410fc231;
1367 cpu->pmsav7_dregion = 8;
1368 cpu->id_pfr0 = 0x00000030;
1369 cpu->id_pfr1 = 0x00000200;
1370 cpu->id_dfr0 = 0x00100000;
1371 cpu->id_afr0 = 0x00000000;
1372 cpu->id_mmfr0 = 0x00000030;
1373 cpu->id_mmfr1 = 0x00000000;
1374 cpu->id_mmfr2 = 0x00000000;
1375 cpu->id_mmfr3 = 0x00000000;
1376 cpu->isar.id_isar0 = 0x01141110;
1377 cpu->isar.id_isar1 = 0x02111000;
1378 cpu->isar.id_isar2 = 0x21112231;
1379 cpu->isar.id_isar3 = 0x01111110;
1380 cpu->isar.id_isar4 = 0x01310102;
1381 cpu->isar.id_isar5 = 0x00000000;
1382 cpu->isar.id_isar6 = 0x00000000;
1385 static void cortex_m4_initfn(Object *obj)
1387 ARMCPU *cpu = ARM_CPU(obj);
1389 set_feature(&cpu->env, ARM_FEATURE_V7);
1390 set_feature(&cpu->env, ARM_FEATURE_M);
1391 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1392 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1393 cpu->midr = 0x410fc240; /* r0p0 */
1394 cpu->pmsav7_dregion = 8;
1395 cpu->id_pfr0 = 0x00000030;
1396 cpu->id_pfr1 = 0x00000200;
1397 cpu->id_dfr0 = 0x00100000;
1398 cpu->id_afr0 = 0x00000000;
1399 cpu->id_mmfr0 = 0x00000030;
1400 cpu->id_mmfr1 = 0x00000000;
1401 cpu->id_mmfr2 = 0x00000000;
1402 cpu->id_mmfr3 = 0x00000000;
1403 cpu->isar.id_isar0 = 0x01141110;
1404 cpu->isar.id_isar1 = 0x02111000;
1405 cpu->isar.id_isar2 = 0x21112231;
1406 cpu->isar.id_isar3 = 0x01111110;
1407 cpu->isar.id_isar4 = 0x01310102;
1408 cpu->isar.id_isar5 = 0x00000000;
1409 cpu->isar.id_isar6 = 0x00000000;
1412 static void cortex_m33_initfn(Object *obj)
1414 ARMCPU *cpu = ARM_CPU(obj);
1416 set_feature(&cpu->env, ARM_FEATURE_V8);
1417 set_feature(&cpu->env, ARM_FEATURE_M);
1418 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1419 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1420 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1421 cpu->midr = 0x410fd213; /* r0p3 */
1422 cpu->pmsav7_dregion = 16;
1423 cpu->sau_sregion = 8;
1424 cpu->id_pfr0 = 0x00000030;
1425 cpu->id_pfr1 = 0x00000210;
1426 cpu->id_dfr0 = 0x00200000;
1427 cpu->id_afr0 = 0x00000000;
1428 cpu->id_mmfr0 = 0x00101F40;
1429 cpu->id_mmfr1 = 0x00000000;
1430 cpu->id_mmfr2 = 0x01000000;
1431 cpu->id_mmfr3 = 0x00000000;
1432 cpu->isar.id_isar0 = 0x01101110;
1433 cpu->isar.id_isar1 = 0x02212000;
1434 cpu->isar.id_isar2 = 0x20232232;
1435 cpu->isar.id_isar3 = 0x01111131;
1436 cpu->isar.id_isar4 = 0x01310132;
1437 cpu->isar.id_isar5 = 0x00000000;
1438 cpu->isar.id_isar6 = 0x00000000;
1439 cpu->clidr = 0x00000000;
1440 cpu->ctr = 0x8000c000;
1443 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1445 CPUClass *cc = CPU_CLASS(oc);
1447 #ifndef CONFIG_USER_ONLY
1448 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1449 #endif
1451 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1454 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1455 /* Dummy the TCM region regs for the moment */
1456 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1457 .access = PL1_RW, .type = ARM_CP_CONST },
1458 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1459 .access = PL1_RW, .type = ARM_CP_CONST },
1460 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1461 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1462 REGINFO_SENTINEL
1465 static void cortex_r5_initfn(Object *obj)
1467 ARMCPU *cpu = ARM_CPU(obj);
1469 set_feature(&cpu->env, ARM_FEATURE_V7);
1470 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1471 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1472 cpu->midr = 0x411fc153; /* r1p3 */
1473 cpu->id_pfr0 = 0x0131;
1474 cpu->id_pfr1 = 0x001;
1475 cpu->id_dfr0 = 0x010400;
1476 cpu->id_afr0 = 0x0;
1477 cpu->id_mmfr0 = 0x0210030;
1478 cpu->id_mmfr1 = 0x00000000;
1479 cpu->id_mmfr2 = 0x01200000;
1480 cpu->id_mmfr3 = 0x0211;
1481 cpu->isar.id_isar0 = 0x02101111;
1482 cpu->isar.id_isar1 = 0x13112111;
1483 cpu->isar.id_isar2 = 0x21232141;
1484 cpu->isar.id_isar3 = 0x01112131;
1485 cpu->isar.id_isar4 = 0x0010142;
1486 cpu->isar.id_isar5 = 0x0;
1487 cpu->isar.id_isar6 = 0x0;
1488 cpu->mp_is_up = true;
1489 cpu->pmsav7_dregion = 16;
1490 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1493 static void cortex_r5f_initfn(Object *obj)
1495 ARMCPU *cpu = ARM_CPU(obj);
1497 cortex_r5_initfn(obj);
1498 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1501 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1502 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1503 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1504 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1505 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1506 REGINFO_SENTINEL
1509 static void cortex_a8_initfn(Object *obj)
1511 ARMCPU *cpu = ARM_CPU(obj);
1513 cpu->dtb_compatible = "arm,cortex-a8";
1514 set_feature(&cpu->env, ARM_FEATURE_V7);
1515 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1516 set_feature(&cpu->env, ARM_FEATURE_NEON);
1517 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1518 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1519 set_feature(&cpu->env, ARM_FEATURE_EL3);
1520 cpu->midr = 0x410fc080;
1521 cpu->reset_fpsid = 0x410330c0;
1522 cpu->isar.mvfr0 = 0x11110222;
1523 cpu->isar.mvfr1 = 0x00011111;
1524 cpu->ctr = 0x82048004;
1525 cpu->reset_sctlr = 0x00c50078;
1526 cpu->id_pfr0 = 0x1031;
1527 cpu->id_pfr1 = 0x11;
1528 cpu->id_dfr0 = 0x400;
1529 cpu->id_afr0 = 0;
1530 cpu->id_mmfr0 = 0x31100003;
1531 cpu->id_mmfr1 = 0x20000000;
1532 cpu->id_mmfr2 = 0x01202000;
1533 cpu->id_mmfr3 = 0x11;
1534 cpu->isar.id_isar0 = 0x00101111;
1535 cpu->isar.id_isar1 = 0x12112111;
1536 cpu->isar.id_isar2 = 0x21232031;
1537 cpu->isar.id_isar3 = 0x11112131;
1538 cpu->isar.id_isar4 = 0x00111142;
1539 cpu->dbgdidr = 0x15141000;
1540 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1541 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1542 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1543 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1544 cpu->reset_auxcr = 2;
1545 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1548 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1549 /* power_control should be set to maximum latency. Again,
1550 * default to 0 and set by private hook
1552 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1553 .access = PL1_RW, .resetvalue = 0,
1554 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1555 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1556 .access = PL1_RW, .resetvalue = 0,
1557 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1558 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1559 .access = PL1_RW, .resetvalue = 0,
1560 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1561 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1562 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1563 /* TLB lockdown control */
1564 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1565 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1566 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1567 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1568 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1569 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1570 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1571 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1572 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1573 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1574 REGINFO_SENTINEL
1577 static void cortex_a9_initfn(Object *obj)
1579 ARMCPU *cpu = ARM_CPU(obj);
1581 cpu->dtb_compatible = "arm,cortex-a9";
1582 set_feature(&cpu->env, ARM_FEATURE_V7);
1583 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1584 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1585 set_feature(&cpu->env, ARM_FEATURE_NEON);
1586 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1587 set_feature(&cpu->env, ARM_FEATURE_EL3);
1588 /* Note that A9 supports the MP extensions even for
1589 * A9UP and single-core A9MP (which are both different
1590 * and valid configurations; we don't model A9UP).
1592 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1593 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1594 cpu->midr = 0x410fc090;
1595 cpu->reset_fpsid = 0x41033090;
1596 cpu->isar.mvfr0 = 0x11110222;
1597 cpu->isar.mvfr1 = 0x01111111;
1598 cpu->ctr = 0x80038003;
1599 cpu->reset_sctlr = 0x00c50078;
1600 cpu->id_pfr0 = 0x1031;
1601 cpu->id_pfr1 = 0x11;
1602 cpu->id_dfr0 = 0x000;
1603 cpu->id_afr0 = 0;
1604 cpu->id_mmfr0 = 0x00100103;
1605 cpu->id_mmfr1 = 0x20000000;
1606 cpu->id_mmfr2 = 0x01230000;
1607 cpu->id_mmfr3 = 0x00002111;
1608 cpu->isar.id_isar0 = 0x00101111;
1609 cpu->isar.id_isar1 = 0x13112111;
1610 cpu->isar.id_isar2 = 0x21232041;
1611 cpu->isar.id_isar3 = 0x11112131;
1612 cpu->isar.id_isar4 = 0x00111142;
1613 cpu->dbgdidr = 0x35141000;
1614 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1615 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1616 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1617 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1620 #ifndef CONFIG_USER_ONLY
1621 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1623 /* Linux wants the number of processors from here.
1624 * Might as well set the interrupt-controller bit too.
1626 return ((smp_cpus - 1) << 24) | (1 << 23);
1628 #endif
1630 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1631 #ifndef CONFIG_USER_ONLY
1632 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1633 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1634 .writefn = arm_cp_write_ignore, },
1635 #endif
1636 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1637 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1638 REGINFO_SENTINEL
1641 static void cortex_a7_initfn(Object *obj)
1643 ARMCPU *cpu = ARM_CPU(obj);
1645 cpu->dtb_compatible = "arm,cortex-a7";
1646 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1647 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1648 set_feature(&cpu->env, ARM_FEATURE_NEON);
1649 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1650 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1651 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1652 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1653 set_feature(&cpu->env, ARM_FEATURE_EL2);
1654 set_feature(&cpu->env, ARM_FEATURE_EL3);
1655 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1656 cpu->midr = 0x410fc075;
1657 cpu->reset_fpsid = 0x41023075;
1658 cpu->isar.mvfr0 = 0x10110222;
1659 cpu->isar.mvfr1 = 0x11111111;
1660 cpu->ctr = 0x84448003;
1661 cpu->reset_sctlr = 0x00c50078;
1662 cpu->id_pfr0 = 0x00001131;
1663 cpu->id_pfr1 = 0x00011011;
1664 cpu->id_dfr0 = 0x02010555;
1665 cpu->pmceid0 = 0x00000000;
1666 cpu->pmceid1 = 0x00000000;
1667 cpu->id_afr0 = 0x00000000;
1668 cpu->id_mmfr0 = 0x10101105;
1669 cpu->id_mmfr1 = 0x40000000;
1670 cpu->id_mmfr2 = 0x01240000;
1671 cpu->id_mmfr3 = 0x02102211;
1672 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1673 * table 4-41 gives 0x02101110, which includes the arm div insns.
1675 cpu->isar.id_isar0 = 0x02101110;
1676 cpu->isar.id_isar1 = 0x13112111;
1677 cpu->isar.id_isar2 = 0x21232041;
1678 cpu->isar.id_isar3 = 0x11112131;
1679 cpu->isar.id_isar4 = 0x10011142;
1680 cpu->dbgdidr = 0x3515f005;
1681 cpu->clidr = 0x0a200023;
1682 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1683 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1684 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1685 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1688 static void cortex_a15_initfn(Object *obj)
1690 ARMCPU *cpu = ARM_CPU(obj);
1692 cpu->dtb_compatible = "arm,cortex-a15";
1693 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1694 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1695 set_feature(&cpu->env, ARM_FEATURE_NEON);
1696 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1697 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1698 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1699 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1700 set_feature(&cpu->env, ARM_FEATURE_EL2);
1701 set_feature(&cpu->env, ARM_FEATURE_EL3);
1702 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1703 cpu->midr = 0x412fc0f1;
1704 cpu->reset_fpsid = 0x410430f0;
1705 cpu->isar.mvfr0 = 0x10110222;
1706 cpu->isar.mvfr1 = 0x11111111;
1707 cpu->ctr = 0x8444c004;
1708 cpu->reset_sctlr = 0x00c50078;
1709 cpu->id_pfr0 = 0x00001131;
1710 cpu->id_pfr1 = 0x00011011;
1711 cpu->id_dfr0 = 0x02010555;
1712 cpu->pmceid0 = 0x0000000;
1713 cpu->pmceid1 = 0x00000000;
1714 cpu->id_afr0 = 0x00000000;
1715 cpu->id_mmfr0 = 0x10201105;
1716 cpu->id_mmfr1 = 0x20000000;
1717 cpu->id_mmfr2 = 0x01240000;
1718 cpu->id_mmfr3 = 0x02102211;
1719 cpu->isar.id_isar0 = 0x02101110;
1720 cpu->isar.id_isar1 = 0x13112111;
1721 cpu->isar.id_isar2 = 0x21232041;
1722 cpu->isar.id_isar3 = 0x11112131;
1723 cpu->isar.id_isar4 = 0x10011142;
1724 cpu->dbgdidr = 0x3515f021;
1725 cpu->clidr = 0x0a200023;
1726 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1727 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1728 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1729 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1732 static void ti925t_initfn(Object *obj)
1734 ARMCPU *cpu = ARM_CPU(obj);
1735 set_feature(&cpu->env, ARM_FEATURE_V4T);
1736 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1737 cpu->midr = ARM_CPUID_TI925T;
1738 cpu->ctr = 0x5109149;
1739 cpu->reset_sctlr = 0x00000070;
1742 static void sa1100_initfn(Object *obj)
1744 ARMCPU *cpu = ARM_CPU(obj);
1746 cpu->dtb_compatible = "intel,sa1100";
1747 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1748 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1749 cpu->midr = 0x4401A11B;
1750 cpu->reset_sctlr = 0x00000070;
1753 static void sa1110_initfn(Object *obj)
1755 ARMCPU *cpu = ARM_CPU(obj);
1756 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1757 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1758 cpu->midr = 0x6901B119;
1759 cpu->reset_sctlr = 0x00000070;
1762 static void pxa250_initfn(Object *obj)
1764 ARMCPU *cpu = ARM_CPU(obj);
1766 cpu->dtb_compatible = "marvell,xscale";
1767 set_feature(&cpu->env, ARM_FEATURE_V5);
1768 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1769 cpu->midr = 0x69052100;
1770 cpu->ctr = 0xd172172;
1771 cpu->reset_sctlr = 0x00000078;
1774 static void pxa255_initfn(Object *obj)
1776 ARMCPU *cpu = ARM_CPU(obj);
1778 cpu->dtb_compatible = "marvell,xscale";
1779 set_feature(&cpu->env, ARM_FEATURE_V5);
1780 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1781 cpu->midr = 0x69052d00;
1782 cpu->ctr = 0xd172172;
1783 cpu->reset_sctlr = 0x00000078;
1786 static void pxa260_initfn(Object *obj)
1788 ARMCPU *cpu = ARM_CPU(obj);
1790 cpu->dtb_compatible = "marvell,xscale";
1791 set_feature(&cpu->env, ARM_FEATURE_V5);
1792 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1793 cpu->midr = 0x69052903;
1794 cpu->ctr = 0xd172172;
1795 cpu->reset_sctlr = 0x00000078;
1798 static void pxa261_initfn(Object *obj)
1800 ARMCPU *cpu = ARM_CPU(obj);
1802 cpu->dtb_compatible = "marvell,xscale";
1803 set_feature(&cpu->env, ARM_FEATURE_V5);
1804 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1805 cpu->midr = 0x69052d05;
1806 cpu->ctr = 0xd172172;
1807 cpu->reset_sctlr = 0x00000078;
1810 static void pxa262_initfn(Object *obj)
1812 ARMCPU *cpu = ARM_CPU(obj);
1814 cpu->dtb_compatible = "marvell,xscale";
1815 set_feature(&cpu->env, ARM_FEATURE_V5);
1816 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1817 cpu->midr = 0x69052d06;
1818 cpu->ctr = 0xd172172;
1819 cpu->reset_sctlr = 0x00000078;
1822 static void pxa270a0_initfn(Object *obj)
1824 ARMCPU *cpu = ARM_CPU(obj);
1826 cpu->dtb_compatible = "marvell,xscale";
1827 set_feature(&cpu->env, ARM_FEATURE_V5);
1828 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1829 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1830 cpu->midr = 0x69054110;
1831 cpu->ctr = 0xd172172;
1832 cpu->reset_sctlr = 0x00000078;
1835 static void pxa270a1_initfn(Object *obj)
1837 ARMCPU *cpu = ARM_CPU(obj);
1839 cpu->dtb_compatible = "marvell,xscale";
1840 set_feature(&cpu->env, ARM_FEATURE_V5);
1841 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1842 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1843 cpu->midr = 0x69054111;
1844 cpu->ctr = 0xd172172;
1845 cpu->reset_sctlr = 0x00000078;
1848 static void pxa270b0_initfn(Object *obj)
1850 ARMCPU *cpu = ARM_CPU(obj);
1852 cpu->dtb_compatible = "marvell,xscale";
1853 set_feature(&cpu->env, ARM_FEATURE_V5);
1854 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1855 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1856 cpu->midr = 0x69054112;
1857 cpu->ctr = 0xd172172;
1858 cpu->reset_sctlr = 0x00000078;
1861 static void pxa270b1_initfn(Object *obj)
1863 ARMCPU *cpu = ARM_CPU(obj);
1865 cpu->dtb_compatible = "marvell,xscale";
1866 set_feature(&cpu->env, ARM_FEATURE_V5);
1867 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1868 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1869 cpu->midr = 0x69054113;
1870 cpu->ctr = 0xd172172;
1871 cpu->reset_sctlr = 0x00000078;
1874 static void pxa270c0_initfn(Object *obj)
1876 ARMCPU *cpu = ARM_CPU(obj);
1878 cpu->dtb_compatible = "marvell,xscale";
1879 set_feature(&cpu->env, ARM_FEATURE_V5);
1880 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1881 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1882 cpu->midr = 0x69054114;
1883 cpu->ctr = 0xd172172;
1884 cpu->reset_sctlr = 0x00000078;
1887 static void pxa270c5_initfn(Object *obj)
1889 ARMCPU *cpu = ARM_CPU(obj);
1891 cpu->dtb_compatible = "marvell,xscale";
1892 set_feature(&cpu->env, ARM_FEATURE_V5);
1893 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1894 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1895 cpu->midr = 0x69054117;
1896 cpu->ctr = 0xd172172;
1897 cpu->reset_sctlr = 0x00000078;
1900 #ifndef TARGET_AARCH64
1901 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1902 * otherwise, a CPU with as many features enabled as our emulation supports.
1903 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1904 * this only needs to handle 32 bits.
1906 static void arm_max_initfn(Object *obj)
1908 ARMCPU *cpu = ARM_CPU(obj);
1910 if (kvm_enabled()) {
1911 kvm_arm_set_cpu_features_from_host(cpu);
1912 } else {
1913 cortex_a15_initfn(obj);
1914 #ifdef CONFIG_USER_ONLY
1915 /* We don't set these in system emulation mode for the moment,
1916 * since we don't correctly set (all of) the ID registers to
1917 * advertise them.
1919 set_feature(&cpu->env, ARM_FEATURE_V8);
1921 uint32_t t;
1923 t = cpu->isar.id_isar5;
1924 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1925 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1926 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1927 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1928 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1929 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1930 cpu->isar.id_isar5 = t;
1932 t = cpu->isar.id_isar6;
1933 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1934 cpu->isar.id_isar6 = t;
1936 t = cpu->id_mmfr4;
1937 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
1938 cpu->id_mmfr4 = t;
1940 #endif
1943 #endif
1945 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1947 typedef struct ARMCPUInfo {
1948 const char *name;
1949 void (*initfn)(Object *obj);
1950 void (*class_init)(ObjectClass *oc, void *data);
1951 } ARMCPUInfo;
1953 static const ARMCPUInfo arm_cpus[] = {
1954 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1955 { .name = "arm926", .initfn = arm926_initfn },
1956 { .name = "arm946", .initfn = arm946_initfn },
1957 { .name = "arm1026", .initfn = arm1026_initfn },
1958 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1959 * older core than plain "arm1136". In particular this does not
1960 * have the v6K features.
1962 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1963 { .name = "arm1136", .initfn = arm1136_initfn },
1964 { .name = "arm1176", .initfn = arm1176_initfn },
1965 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1966 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
1967 .class_init = arm_v7m_class_init },
1968 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1969 .class_init = arm_v7m_class_init },
1970 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1971 .class_init = arm_v7m_class_init },
1972 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
1973 .class_init = arm_v7m_class_init },
1974 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1975 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
1976 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1977 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1978 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1979 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1980 { .name = "ti925t", .initfn = ti925t_initfn },
1981 { .name = "sa1100", .initfn = sa1100_initfn },
1982 { .name = "sa1110", .initfn = sa1110_initfn },
1983 { .name = "pxa250", .initfn = pxa250_initfn },
1984 { .name = "pxa255", .initfn = pxa255_initfn },
1985 { .name = "pxa260", .initfn = pxa260_initfn },
1986 { .name = "pxa261", .initfn = pxa261_initfn },
1987 { .name = "pxa262", .initfn = pxa262_initfn },
1988 /* "pxa270" is an alias for "pxa270-a0" */
1989 { .name = "pxa270", .initfn = pxa270a0_initfn },
1990 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1991 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1992 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1993 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1994 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1995 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1996 #ifndef TARGET_AARCH64
1997 { .name = "max", .initfn = arm_max_initfn },
1998 #endif
1999 #ifdef CONFIG_USER_ONLY
2000 { .name = "any", .initfn = arm_max_initfn },
2001 #endif
2002 #endif
2003 { .name = NULL }
2006 static Property arm_cpu_properties[] = {
2007 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2008 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2009 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2010 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2011 mp_affinity, ARM64_AFFINITY_INVALID),
2012 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2013 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2014 DEFINE_PROP_END_OF_LIST()
2017 #ifdef CONFIG_USER_ONLY
2018 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2019 int rw, int mmu_idx)
2021 ARMCPU *cpu = ARM_CPU(cs);
2022 CPUARMState *env = &cpu->env;
2024 env->exception.vaddress = address;
2025 if (rw == 2) {
2026 cs->exception_index = EXCP_PREFETCH_ABORT;
2027 } else {
2028 cs->exception_index = EXCP_DATA_ABORT;
2030 return 1;
2032 #endif
2034 static gchar *arm_gdb_arch_name(CPUState *cs)
2036 ARMCPU *cpu = ARM_CPU(cs);
2037 CPUARMState *env = &cpu->env;
2039 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2040 return g_strdup("iwmmxt");
2042 return g_strdup("arm");
2045 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2047 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2048 CPUClass *cc = CPU_CLASS(acc);
2049 DeviceClass *dc = DEVICE_CLASS(oc);
2051 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2052 &acc->parent_realize);
2053 dc->props = arm_cpu_properties;
2055 acc->parent_reset = cc->reset;
2056 cc->reset = arm_cpu_reset;
2058 cc->class_by_name = arm_cpu_class_by_name;
2059 cc->has_work = arm_cpu_has_work;
2060 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2061 cc->dump_state = arm_cpu_dump_state;
2062 cc->set_pc = arm_cpu_set_pc;
2063 cc->gdb_read_register = arm_cpu_gdb_read_register;
2064 cc->gdb_write_register = arm_cpu_gdb_write_register;
2065 #ifdef CONFIG_USER_ONLY
2066 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2067 #else
2068 cc->do_interrupt = arm_cpu_do_interrupt;
2069 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2070 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2071 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2072 cc->asidx_from_attrs = arm_asidx_from_attrs;
2073 cc->vmsd = &vmstate_arm_cpu;
2074 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2075 cc->write_elf64_note = arm_cpu_write_elf64_note;
2076 cc->write_elf32_note = arm_cpu_write_elf32_note;
2077 #endif
2078 cc->gdb_num_core_regs = 26;
2079 cc->gdb_core_xml_file = "arm-core.xml";
2080 cc->gdb_arch_name = arm_gdb_arch_name;
2081 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2082 cc->gdb_stop_before_watchpoint = true;
2083 cc->debug_excp_handler = arm_debug_excp_handler;
2084 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2085 #if !defined(CONFIG_USER_ONLY)
2086 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2087 #endif
2089 cc->disas_set_info = arm_disas_set_info;
2090 #ifdef CONFIG_TCG
2091 cc->tcg_initialize = arm_translate_init;
2092 #endif
2095 #ifdef CONFIG_KVM
2096 static void arm_host_initfn(Object *obj)
2098 ARMCPU *cpu = ARM_CPU(obj);
2100 kvm_arm_set_cpu_features_from_host(cpu);
2103 static const TypeInfo host_arm_cpu_type_info = {
2104 .name = TYPE_ARM_HOST_CPU,
2105 #ifdef TARGET_AARCH64
2106 .parent = TYPE_AARCH64_CPU,
2107 #else
2108 .parent = TYPE_ARM_CPU,
2109 #endif
2110 .instance_init = arm_host_initfn,
2113 #endif
2115 static void cpu_register(const ARMCPUInfo *info)
2117 TypeInfo type_info = {
2118 .parent = TYPE_ARM_CPU,
2119 .instance_size = sizeof(ARMCPU),
2120 .instance_init = info->initfn,
2121 .class_size = sizeof(ARMCPUClass),
2122 .class_init = info->class_init,
2125 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2126 type_register(&type_info);
2127 g_free((void *)type_info.name);
2130 static const TypeInfo arm_cpu_type_info = {
2131 .name = TYPE_ARM_CPU,
2132 .parent = TYPE_CPU,
2133 .instance_size = sizeof(ARMCPU),
2134 .instance_init = arm_cpu_initfn,
2135 .instance_post_init = arm_cpu_post_init,
2136 .instance_finalize = arm_cpu_finalizefn,
2137 .abstract = true,
2138 .class_size = sizeof(ARMCPUClass),
2139 .class_init = arm_cpu_class_init,
2142 static const TypeInfo idau_interface_type_info = {
2143 .name = TYPE_IDAU_INTERFACE,
2144 .parent = TYPE_INTERFACE,
2145 .class_size = sizeof(IDAUInterfaceClass),
2148 static void arm_cpu_register_types(void)
2150 const ARMCPUInfo *info = arm_cpus;
2152 type_register_static(&arm_cpu_type_info);
2153 type_register_static(&idau_interface_type_info);
2155 while (info->name) {
2156 cpu_register(info);
2157 info++;
2160 #ifdef CONFIG_KVM
2161 type_register_static(&host_arm_cpu_type_info);
2162 #endif
2165 type_init(arm_cpu_register_types)